Binomial and Poisson Distributions

STA303/STA1002: Methods of Data Analysis II, Summer 2016

Michael Guerzhoy

Binomial Distribution

- $Binomial(n, \theta)$:
 - Out of n independent trials, each of which has a probability θ of success, what is the probability of a total of k successes?
 - Example: If a coin is tossed n times, and has a probability θ of coming up heads, what is the probability that it will come up heads
- If $K = B_1 + B_2 + \dots + B_n$, $B_i \sim Bernoulli(\theta)$, iid, then $K \sim Binomial(n, \theta)$

 B_i is 1 if trial succeeds, 0 if it fails. The sum of all the B's is the number of successes

Binomial Distribution

- $K \sim Binomial(n, \theta)$ then $p(K = k) = {n \choose k} \theta^k (1 - \theta)^{1-k}, {n \choose k} = \frac{n!}{k!(n-k)!}$
- (Generate Binomial variables in R)

Poisson Distribution

- Appropriate for modelling the number of events that occur within a certain time interval
 - E.g.: number of goals in a soccer match
- Appropriate when:
 - The events are independent of each other
 - The expected number of events is proportional to the length of the time interval

Poisson Distribution

•
$$K \sim Poisson(\lambda) \Rightarrow P_{\lambda}(K = k) = \frac{\lambda^k \exp(-\lambda)}{k!}$$

- $E(K) = \lambda$, the average number of events in an interval
- $Var(K) = \lambda$
- For large λ , $Poisson(\lambda)$ is approximately $N(\lambda, \lambda)$

Poisson vs. Binomial Distribution

- $Binomial(n, \theta)$: the total number of successes is bounded by n
- $Poisson(\lambda)$: the events are independent, the number of events is *not* bounded