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Reminder: Logistic Regression

• Logistic Regression:

• log
𝜋𝑖

1−𝜋𝑖
= 𝛽0 + 𝛽1𝑥1

(𝑖)
+⋯+ 𝛽𝑘𝑥𝑘

(𝑖)

• 𝜋𝑖: the likelihood that 𝑦(𝑖) = 1

• (Log-)Likelihood:
• Compute 𝜋𝑖 for every datapoint for which 𝑦(𝑖) = 1, and 
(1 − 𝜋𝑖) for every datapoint for which 𝑦(𝑖) = 0. 

• If the fit is very good, the product
P y 𝛽 = ς𝑖=1

𝑛 𝜋𝑖
𝑦𝑖 1 − 𝜋𝑖

1−𝑦𝑖 is close to 1
• log 𝑃 𝑦 𝛽) =σ𝑖=1

𝑛 𝑦𝑖 log 𝜋𝑖 + 1 − 𝑦𝑖 log 1 − 𝜋𝑖 is close to 0



Deviance

𝑑𝑒𝑣𝑖𝑎𝑛𝑐𝑒 = 𝑐𝑜𝑛𝑠𝑡 − 2 log P y 𝛽

• (where 𝛽 is the fitted parameter – the one that 
maximizes log P y 𝛽 . In other words, 
log P y 𝛽 = 𝐿𝑀𝐴𝑋)

• Smaller deviance => better fit
• “Better fit” means 𝜋𝑖 is close to 1 if 𝑦𝑖 is close to 1, and 
𝜋𝑖 is close to 0 if 𝑦𝑖 is close to 0



Last Time

• Null Hypothesis: the extra coefficients in the full 
model are 0

• Test Statistic:
• 𝐿𝑅𝑇 = 2 log(𝐿𝑀𝐴𝑋𝑓𝑢𝑙𝑙) − 2 log 𝐿𝑀𝐴𝑋𝑟𝑒𝑑𝑢𝑐𝑒𝑑

• Has a 𝜒2 distribution with df=(#of extra parameters in the full 
model)

• Test?
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• (1-pchisq(L, df=df))



Which Covariates to Include?

• 𝐴𝐼𝐶 = 𝐷𝑒𝑣𝑖𝑎𝑛𝑐𝑒 + 2 × 𝑝
• p – number of parameters
• Popularly called “Akaike Information Criterion

• Hirutogu Akaike calls it “An Information
Criterion”

• Smaller AIC => Better Model
• Note: larger model always implies

smaller deviance
• Problem: Why?

• AIC compensates for that
• The full model has to be reduce the deviance by enough to be 

considered better than the reduced model



Classification (Iris Example)



Visualization

• (in R)



Classification

• Classification:
• Given data, we want to predict the class of the datapoint

• Fit a logistic model and pick a cut point
• Default: 0.5

• If ො𝜋∗ > 0.5, predict 𝑦∗ = 1

• If ො𝜋∗ < 0.5, predict 𝑦∗ = 0



Confusion Matrix

+ –

D TP FN Sensitivity = TP / (TP + FN)

Dc FP TN Specificity = TN / (TN + FP)

PPV = TP / 
(TP + FP)

NPV = TN / 
(TN + FN)



ROC Curves

• Receiver Operating Characteristic

• A plot of sensitivity vs. specificity (complement)

• Originally designed to grade radar detection 
methods for German planes

• Decades later, their usefulness in classification 
problems was realized
• But the name stuck



ROC Curve

require(pROC)

> titan.roc <- with(titanR, roc(Isurvived, p, percent=T, auc=T, plot=T, 

auc.polygon=T, max.auc.polygon=T, print.auc=T, main= "ROC curve"))



AUC

• Area Under the Curve
• Larger is better

• Ideally: 100% sensitivity for any specificity


