Logistic Regression

Some slides from Craig Burkett

STA303/STA1002: Methods of Data Analysis II, Summer 2016

Michael Guerzhoy

Titanic Survival Case Study

- The RMS *Titanic*
 - A British passenger liner
 - Collided with an iceberg during her maiden voyage
 - 2224 people aboard, 710 survived
- People on board:
 - 1st class, 2nd class, 3rd class passengers (the price of the ticket and also social class played a role)
 - Different ages
 - Different genders

Exploratory data analysis (in R)

The Statistical Sleuth, 3rd ed

What's Wrong with Linear Regression?

- $E[Y_i] = \beta_0 + \beta_1 X_1^{(i)} + \dots + \beta_{k-1} X_{k-1}^{(i)}$ $Y_i \sim Bernoulli(\pi_i) (\pi_i = \pi(X_1, X_2 \dots))$
- We *can* match the expectation. But we'll have $Var[Y_i] = \pi_i(1 \pi_i)$
- Y_i is very far from normal (just two values)
- $Var[Y_i]$ is not constant
- Predictions for Y_i can have the right expectations, but will sometimes be outside of (0, 1)

Inputs can be in $(-\infty,\infty)$, outputs will always be in (0,1)

Logistic Regression

• We will be computing

$$1 + \exp(-\beta_0 - \beta_1 X_1 - \dots - \beta_k X_k)$$

1

to always get a value between 0 and 1

• Model:

$$Y_i \sim Bernoulli(\pi_i), \pi_i = \frac{1}{1 + \exp(-\beta_0 - \beta_1 X_1^{(i)} - \dots - \beta_k X_k^{(i)})}$$

• $Var(Y_i) = ?$

Log-Odds

Odds

• If the probability of an event is π , the odds of the event are $\frac{\pi}{1-\pi}$

Back to: Home » Football Bett	ting » International	Football Outrights	5 » Euro 2016 » Euro	2016 - Outright	Follow Us: 📑	🛂 👯 🛅 G+1
Search bets Q	FOOTBALL MA			TS SPECIAL	S TEAM PAGES	
QUICK LINKS	EURO 20	016 - OUT	FRIGHT B	ETTING	\sim	Back
> In-Play	Euro 2016 Mate	ches				
✓ Football Betting	23:00 Wednesda	ay, 6th July 2016				
Football Coupons	Categories	Markets				
Football Matches	cuccyones	Pidi Kets				
Football Specials	Markets					
Football Outrights						
Football Team Pages	SEARCH	Enter a market	or selection name	/nlaver name	e a 'Correct Sco	ore'
> Euro 2016 Matches	SEARCH	Enter a market		player name,	e.g. ooneer oor	
> Portugal v Wales					Expand Al	i Collapse Ali
Sermany v France						+1 bet 🙆
> Horse Racing	Outright Bottin			11 11 11 1		Callanaa
> Next Five Races	Outright Betun	g			Market available	Collapse A
> Mens Wimbledon				\$4	mai Net avaliable	
	Franco	9/5	Germany	9/5	Portugal	7/2
> Ladies Wimbledon	Trance	-7-	· · · ·			//2
 Ladies Wimbledon Scottish Open 	Wales	8/1	,		-	//2

- You pay \$5 if France don't win, and get \$9 if they do.
- What's the probability of France winning assuming "true odds" are offered?
- (What about if the odds r=p/(1-p) are given as 0.6?)

The Log-Odds are Linear in X

•
$$\log\left(\frac{\pi}{1-\pi}\right) = \beta_0 + \beta_1 x_1 + \cdots$$

• Generalized linear model: $g(\mu) = X\beta$, with a distribution imposed on Y

•
$$g(\mu) = \log\left(\frac{\mu}{1-\mu}\right)$$
 with $Y \sim Bernoulli(\mu)$ is Logistic regression

• g is the *link function*

•
$$logit(\mu) = log\left(\frac{\mu}{1-\mu}\right)$$

Maximum Likelihood

$$Y_{i} \sim Bernoulli(\pi_{i})$$

$$P(Y_{i} = y_{i}|\beta_{0}, \beta_{1}, ..., \beta_{k-1}) = \pi_{i_{n}}^{y_{i}}(1 - \pi_{i})^{1 - y_{i}}$$

$$P(Y_{1} = y_{1}, ..., Y_{n} = y_{n}|...) = \prod_{i=1}^{n} \pi_{i}^{y_{i}}(1 - \pi_{i})^{1 - y_{i}}$$

$$\log P(Y_{1} = y_{1}, ..., Y_{n} = y_{n}|...) = \prod_{i=1}^{i=1} \pi_{i}^{y_{i}}(1 - \pi_{i})^{1 - y_{i}}$$

$$\sum_{i=1}^{n} (y_{i} \log \pi_{i} + (1 - y_{i}) \log(1 - \pi_{i}))$$

$$\pi_{i} = \frac{1}{1 + \exp(\beta_{0} + \beta_{1}X_{1}^{(i)} + ... + \beta_{k-1}X_{k-1}^{(i)})}$$

Now, take the derivative wrt the betas, and find the betas that maximize the log-likelihood....

Titanic Analysis

• (in R)

Interpretation of $oldsymbol{eta}_0$ - Linear Reg.

 In Linear Regression, if there are no other predictors, the least-squares (and Maximum Likelihood) estimate of Y is the mean

•
$$E[Y] = \beta_0 \Rightarrow \overline{Y} = b_0$$

- y <- rnorm(100, 10, 25)
- > summary(lm(y ~ 1))

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 8.727 2.524 3.458 0.000804

> mean(y)

[1] 8.726752

Interpretation of $oldsymbol{eta}_0$ - Logistic Reg.

- MLE for $\pi = P(Y = 1)$ is also the sample mean \overline{Y} (proportion of the time Y is 1/the marginal probability that Y is 1)
- In Logistic Regression, without predictors we have $\pi = \frac{1}{1 + e^{-\beta_0}}$ $\beta_0 = logit(\bar{Y})$

Interpretation of $oldsymbol{eta}_0$ - Logistic Reg.

- Now, back to predicting with age. What's the interpretation of β_0 now?
- (in R)

Interpretation of β_1 (Categorical Predictor)

fit <- glm(survived ~ sex, family= binomial, data= titan)

> summary(fit)

Coefficients:

	Estimate	Std.	Error	Ζ	value	Pr(> z)
(Intercept)	-1.44363	0.	08762	-	-16.48	<2e-16
sexfemale	2.42544	0.	13602		17.83	<2e-16

> exp(coef(fit))

(Intercept) sexfemale 0.2360704 11.3071844

 Interpretation: the odds of survival for women are 11.3 times higher than for men

Interpretation of β (Mixed Predictors)

 $logit(\pi) = \beta_0 + \beta_1 \cdot age + \beta_2 \cdot I_{female}$

- In Linear Regression, β_1 would the increase in survival for a unit change in *age*, keeping other variables constant
- β_2 is the difference between group means, keeping other variables constant
- In logistic regression, β_1 is the increase in the log-Odds of survival, for a unit change in *age*, keeping other variables constant
- β_2 is the increase in the log-Odds of survival for women compared to men, keeping age constant

Quantifying Uncertainty

• (in R)

Interpreting Coefficients

fit <- glm(survived ~ age + sex, family= binomial, data= titan)

> exp(coef(fit))

(Intercept) age sexfemale 0.2936769 0.9957548 11.7128810

> exp(confint(fit))

Waiting for profiling to be done...

	2.5 %	97.5 %
(Intercept)	0.2037794	0.4194266
age	0.9855965	1.0059398
sexfemale	8.7239838	15.8549675

Controlling for age, we are 95% confident that females have a 772% to 1485% higher odds of survival, compared to males

Likelihood Ratio Test

- Can be used to compare any two nested models
- Test statistic:
 - $LRT = 2 \log(LMAX_{full}) 2 \log(LMAX_{reduced})$
 - Has a χ^2 distribution when the extra parameters in $LMAX_{full}$ are 0
 - LMAX: the maximum likelihood value
- A lot of the time what's computed is
 - $deviance = const 2 \log LMAX$
- Then:
 - $LRT = deviance_{reduced} deviance_{full}$

Wald Test

- The test based on approximating the sampling distribution of the coefficients as normal
 - The SE's that are show shown when you call summary
- Unreliable for "small" sample sizes

Model Assumptions

- Independent observations
- Correct form of model
 - Linearity between logits & predictor variables
 - All relevant predictors included
- For CIs and hypothesis tests to be valid, need large sample sizes

Titanic Dataset: Model Checking

- Independent observations?
 - Not really, for one thing, they were all on one ship!
- Large sample?
 - Yes

Titanic Dataset: Other Worries

- Do we have all relevant predictors?
 - I.e., might there be confounding variables we haven't considered/don't have available?