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Summary.

The weighted Chinese restaurant process is a sequential seating algorithm which
generates a random partition of the data. Repeated simulation of the weighted Chinese restaurant
process can be used to provide an iid Monte Carlo approximation to posterior quantities for
Bayesian mixture models. Numerical examples illustrating the algorithm are given in Bayesian
deconvolutions, i.e., estimation of the mixing distribution, and Bayesian density estimations.
Numerical comparisons of the weighted Chinese restaurant process and a recently proposed
missing data sequential imputation algorithm show that the weighted Chinese restaurant process
performs consistently better. The weighted Chinese restaurant process also provides an iid
Monte Carlo approximation to posterior quantities for Bayesian mixture hazard rate models.
Comparison of sequential seating and sequential imputation algorithms are discussed using
Blackwell's criterion of comparison of experiments.

1. Introduction.

Kuo (1986), studying Bayesian mixture models, argued that an evaluation of the mixture
of Dirichlet process posteriors based on an iid simulation of the extended Polya urn sequence
[Blackwell-MacQueen (1973)] would not work, and proposed an alternative iid Monte Carlo
method based on the Chinese restaurant process of sampling partitions [Aldous (1985); see also
Ferguson (1983)]. However, numerical results [Ji (1991)] indicate that Kuo's method fails to
produce acceptable estimates if the true density under question is multi-modal, while its
performance for a unimodal density model is mixed. Kuo's method has difficulties due to the
fact that the Chinese restaurant process essentially samples from the prior distribution, and it
captures little contribution from the likelihood part of the data.

The Chinese restaurant process is a sequential seating algorithm in which a partition of
the set {1.,...,n} is built up by seating the integers 1,...,n into cells of the partition sequentially,
one at a time. Here we propose another sequential seating algorithm which, in the course of the
simulation, accounts for both contributions from both the likelihood and the prior distribution.
This is achieved by attaching to each integer a weight based on a Bayesian predictive argument.
The resulting algorithm is called the weighted Chinese restaurant restaurant process (WCR). The
WCR is essentially a new kind of clustering algorithm where the probability of assigning a unit
to a cluster is proportional to the product of the cluster size and the Bayesian predictive density
of the unit to be assigned (conditional on the cluster). Section 2 describes the WCR algorithm.
Section 3 discusses its application in Bayesian mixture models. In this case the WCR produces
a random partition which, up to a product factor, has a distribution explicitly represented in

Theorem 2 in Lo (1984). The WCR algorithm is illustrated with numerical examples in Bayesian



deconvolution, kernel density estimation, and location models where the mixture distribution is a
nuisance parameter. Effects of nested models and sequential orders are also investigated using a
mixture of normal models.

While the present paper was in draft form, Liu (1996) published a paper studying
mixture of binomial models from a Bayesian viewpoint. In this paper, he proposed a sequential
imputation algorithm for missing data [Kong, Liu, and Wong (1994)] to evaluate posterior
distributions which are mixtures of Dirichlet processes. Up to a product factor, Liu's algorithm
is a simulation of a random vector (missing data), the distribution of which was explicitly
represented by Theorem 1 in Lo (1984). Section 4 discusses an extension of Liu's simulation
algorithm to mixtures of arbitrary kernels, called a weighted Polya process (WP). The WP
algorithm dictates that the missing values are either drawn from the (sub—)posterior distribution
given one observation, or that it be one of the previously drawn missing values. The posterior
distribution, given one single observation, differs little from the prior distribution and, as a
result, the imputed missing values are approximately observations from the prior distribution. As
such, the WP is sensitive to the choice of prior parameters even for large sample sizes. While
the WP improves significantly on Kuo's raw Chinese restaurant process algorithm by
accounting for the peaky integrand in the course of the sequential sampling, the improvement is
greatly retarded by this sensitivity. Numerical examples comparing the WCR and WP are given
in connection with the Bayesian deconvolution and the Bayesian kernel density estimation. The
tack data [Beckett and Diaconis (1994)] are examined using a mixture of binomial models.

Section 5 discusses the application of the WCR method in Bayesian mixture hazard rate
models. Mixture hazard rates have been popular models for emission tomography; see Chapter 3
in Snyder and Miller (1991) for references. Here it is illustrated that the WCR and WP

algorithms for computing posterior moments applies as well.

Section 6 discusses the comparison of the sequential imputation and sequential seating
experiments using Blackwell's notion of comparing experiments [Blackwell (1951, 1953)]. An
interpretation of Lemma 2 in Lo (1984) results in a conditional distribution of a sequentially
imputed missing random vector given a sequential seating random partition. This in part explains
the noisy feature of the WP in comparison with the WCR. Another consequence of this
conditional distribution is in the application of Markov chain Monte Carlo methods [Hastings
(1970)] to Bayesian mixture models, which has the merit of eliminating the normalization
constant upon convergence to stationarity. The state—of—the—art Markov chain Monte Carlo

method for Bayesian mixture models constructs a Markov chain based on sequentially imputing



the "missing data", and Liu (1996) provided an excellent summary and recent references for
evaluating posterior distributions which are mixtures of Dirichlet processes; see also Diebolt and
Robert (1994). In this approach, the state space is the collection of all possible missing values.
The conditional distribution obtained reveals that the search for better Markov chain Monte Carlo
method for Bayesian mixture models should be confined to the class of sequential seating

Markov chains which have a finite state space being the collection of partitions of {1,...,n}.



Section 2. Sequential seating: a weighted Chinese restaurant process (WCR).

The (unweighted) Chinese restaurant process is a procedure for randomly partitioning the
integers {1,...,n} into subgroups that are called tables (or cells). It takes its name from a seating
process allegedly witnessed by Jim Pitman in a Bay area Chinese restaurant he frequented [see
Aldous (1985)]. A Chinese restaurant process with parameter ¢>0 selects a random partition by
sequentially assigning the integers to tables/cells as follows: Customers 1,...,n enter the
restaurant in the order written and they are seated one after the other. Initially, all tables in the
restaurant are folded up. When customer 1 comes in, a table is opened to seat him/her. After
customers labelled 1,...,.k—1 (k=2) are seated, customer k with be seated on an empty table with
probability ¢/[c+k—1]; otherwise, he/she sits on an occupied table with probability proportional
to the number of occupants at that table. The seating process will continue until all customers
are seated. (In this paper, we only consider restaurants with n or more tables.)

The Chinese restaurant process p with parameter ¢ has the density
@.1) a(plo)=IBpy_y ()T 1MPIAIT, iy ) (=),
where B,_j(©)=c(c+1)x...x(c+n—1),
p={C1,...,Cn(p)} is a partition of {1,....n} into n(p) tables (i.e., disjoint subsets of {1.,...,n})
and e1,...en(p) ¢ table sizes. The density (2.1) can be proved by letting g's to be the identity
function in Lemma 2 in Lo (1984) and setting ou(R)=c.

The seating probabilities are parameters which define a sequential seating process. In the
WCR case, these seating probabilities are defined in terms of a (prior) mixing measure o/(du),
the number of customers to be seated n, and a nonnegative and finite (likelihood) weighting
function wj(u) for customer j, j=1,...n. Define the "marginal" weight for a table C by
(2.2) m(C)=lTj¢ cwj(we(duw).
The marginal weights are assumed to satisfy m(C)<ee. Since m(C)=0 implies that m(r,C)=0 for
r¢ C, we define "predictive" weights by the ratio
(2.3) m(r|C)=m(r,C)/m(C), for r¢ C; =0 if m(C)=0.
By (2.3), for any table C, the marginal weight m(C) can be written as a product of predictive
weights, by adding customers one at a time, starting from an empty table. According to this
definition, the order of seating customers is irrelevant. For example, suppose C has e elements,
and iy,y,...,le 18 any ordering of them, the product rule states that
(2.4) m(C):Hlstem(ij|i1,...,ij_1), [m(jlig)=m().]
The essence of this argument is that the numerator of a term in the product cancels with the

denominator of the next term. A similar cancellation reduces the Kaplan—Meier estimator to the



empirical distribution function in the absence of incomplete observations.
A "posterior distribution" of u given table C is defined by
7(du|C) o< Hjecwj(u)(x(du).
The notion of posterior distribution is less significant in the development of the WCR, which is
founded on a (Bayesian) predictive argument.
In the WCR, customer k is seated on an empty table with probability proportional to
m(k); otherwise, he/she sits on an occupied table with probability proportional to the product
eim(k|Ci). More precisely, the WCR algorithm for seating customers 1,...,n is:
(2.5) Set AM0)=m(1).
Step 1: Assign 1 to the first table with probability A(0)/A(0)=1.
Step k (k=2....,n):
Given p={C1,C2,...,C#(p)} from step k—1, with table sizes €15-CH(p)
calculate k(k—l)=m(k)+ZlSis#(p)eim(k|Ci).
Assign k to a new table with probability m(k)/A(k—1);
otherwise, k sits on table C; with probability e;m(k|C;)/Ak-1),
i=1,...#(p).
The completion of Step n results in a WCR process p={C1,C2,...,Cn(p)} with sizes
€L (p)> respectively.
Going through the n—step WCR algorithm with the product rule (2.4) operating at each
step, we obtain the density of the WCR as
(2.6) q(p|otn,w)=[IT; <i<p p)(ej=DIM(CPIx Ay,
where Ap,_;=A0)x...xA(n—1).

The weighted Chinese restaurant process q(p|a.,n,w) reduces to the Chinese restaurant
process q(p|c) if w;(uw)=l1, and the measure o.) is finite with total mass c. For the Chinese
restaurant process, the predictive weights m(k|C) remain a constant one for all nonempty tables
C. The following is a change of variables lemma connects the Chinese restaurant process and

the WCR.

Lemma 1. B, (1)q(p| 1)XHISiSn(p)m(Ci)zAn—lq(P oL,Nn,W).

The way incoming customers in the WCR are assigned to occupied tables deserves
comments as it reveals a Bayesian way of performing cluster analysis for a set of data {x;,
i=1,...,n} by means of predictive densities rather than the usual ones based on a distance
function defined between (groups of) data [Duda and Hart (1973)]. Identify the observation x;

with customer i, i=1,...,n. The definitions of the marginals and predictive weights (2.3) state



that at the kth step, the kth customer is assigned to tabe C; with seating probability proportional
to e;m(k|C;). Regarding C; as a cluster of data, and the predictive weight m(k|C;) defined in
(2.3) is really the value of a predictive density, conditional on C;, evaluated at a future
observation k. The predictive weight m(k|Ci) is large if k (i.e., x}) is close to (the X in) C;;
otherwise m(k|C;) is small. Hence if k is "close to" C;, the seating probability that it will be
grouped into C; is also large. So (on average) eventually a partition p from a WCR is formed
by tables C; i=1,...,n(p), which yields clusters of the observed data. This phenomenon is made
clear in the context of Bayesian mixture density and hazard rate modelss discussed in the next

section and Section 5.



Section 3. Bayesian mixture model.

A mixture model is a family of densities defined by
(3.1) f(x|G) =lk(x|u)G(du), Ge®,
where the parameter space ® is the collection of distributions; x and u are points in Euclidean
spaces and G is a distribution of u. The kernel k(.|.) is given, and for each u, k(.|u) is a
density of x. The kernel densities {k(.|u), all u} are the extreme points of the model (3.1). The
model densities have desirable smoothness properties which sometimes can be characterized via
extreme point representations. On the other hand, the mixture model often arises as a result of
missing information in the sense that a complete observation (x,u) is not available. Instead, one
observes the variable x which is a randomization of u. Let xl,...,xn|G be i.i.d. observations
from the mixture density f(x|G). The problem is to estimate G based on the sample x1.,....x,.
Assuming a Dirichlet process prior on G [Ferguson (1973)] with shape measure o(.), Lo
(1984) obtains the posterior distribution of G explicitly as a mixture of Dirichlet processes
[Antoniak (1974)], and represents the posterior mean of f(t|G) as an average over partitions of
the set {1,...,n} [see the following expression (3.2)]. The number of partitions of the set
{1,....,n} is called Bell's number, which increases roughly as the factorial of n. As a result, the
exact evaluation of the posterior mean is formidable for sample sizes larger than twelve. This
section uses a weighted Chinese restaurant process of simulating random partitions which may
be averaged to yield an approximation of the stated sum over partitions. To describe it, one
needs the notation of a sub—Bayesian system:

Suppose 0o(.) is a finite mixing measure with total mass o((R). u has a (sub—)prior
distribution m(du)=0i(du)/a(R), and yq,....y,|u are iid k(.|u). Given a table C, the marginal
density of the Yj» j€ C are then m(yj,je C)/a(R). Denote the predictive density of y, given
{yjeC} by m(yr|C)Em(yr,yj,je C)/m(yj Jj€C), where y & C. The (sub-) posterior distribution
of u|yj,jeC is denoted by m(du|C).

The posterior mean of the mixture density, f(t)=E[f(t|G)|x], has the representation
[Theorem 2 in Lo (1984)]

(3.2) f(t) o< Zp{m(t)+215i§n(p)eim(t|ci)}xq(p| I)HISiSn(p)m(Xj’jG C)

Here m(t)=fk(t|u)(x(du), i.e., a(R) times the predictive density based on no observation.
It follows that the predictive density f(t) is a two—layer mixture of sub—predictive density
m(t|Ci)‘s which are kernel functions with variable bandwidths. This contrasts significantly with
the classical kernel estimator [Rosenblatt (1956), Parzen (1962) and Cencov (1962)] which is a

one—layer mixture of kernels with a fixed bandwidth.



Kuo (1986) proposed an iid Monte Carlo method to evaluate (3.2) based on sampling a
Chinese restaurant process p from q(p|a(R))= q(p| l)a(R)_n(P)/Bn_l((x(R)). One feature of the
Chinese restaurant process is that large tables have a higher probability of receiving newcomers
and, as a result, it will grow larger still. According to Korwar and Hollander (1973), the
number of occupied tables in a Chinese restaurant process is approximately o(R)xlog(n). The
presence of only a very few occupied tables in a random partition results in peaky integrands,
the product of which is highly variable. This variability in effect drastically reduces the
efficiency of Kuo's method based on sampling a Chinese restaurant process q(p|o(R)). On the
other hand, the weighted Chinese restaurant process accounts for the peaky integrands in the
course of simulation and the problem of highly variable peaky integrands diminishes. An
inspection of the summand of (3.2) suggests that k(xi|u)=wi(u), and identifying x; as 1,
i=1,...,n, result in

f(0) o< Zp{m(O+E | <en(p)eim(tCxAp_1q(P
which can be written as, since /m(t)dt=o(R),
(3.3) f(t):[(x(R)+n]‘1prAnq(p (x,n,k)/ZpAn_lq(p
where Mn)=m(t)+21Sjsn(p)eim(dci) is defined at the completion of the nth step of the

o,n,k)

o,n,k)

algorithm, p is a partition of {1,....,n}. Run the WCR process M times independently to get M
iid partitions and compute A,_;(m), A (m), m=1,...M. (Set x,_,=t.) The WCR approximation
to f(t) is
(3.4) fl\,[(t):[oc(R)+n]‘1 xZ1 <m<MAnM/Z 1 <nemAp_ ().

A WCR approximation to a higher posterior moment is essentially an extension of the
algorithm to more steps. A higher posterior cross moment is a similar sum over partitions of the

set {1,.....n,n+1,....n+k—1} where k is the total order of the cross moments. As such, it can

be written as an expectation with repect to q(p'|a,n+k—1,k") where p' is a partition of
{1,....,n+k—1} and k' has n+k—1 components. A WCR, extended to n+k—1 steps, provides an
appropriate approximation. For example, the posterior (j,k)th—cross moment is, j+k=>1,
(3.5) E[{f(s|G) Px{£(t|G)}¥|x....x]
={[o(R)+n]x...x [0 R)+n—1+j+k]}~!
x IAn_1+j+kq(p' oun++k—1.5)/JA,_a(p
where p' is a partition of {1,....n+j+k—1}, wi(u)zk(s|u) for i=n+1,...,n+j, wi(u)zk(t|u) for

a,nk)

i=n+j+1,...,n+s+k—1, and A k=m(t)+Zieim(t|Ci); the index i runs over indices of currently

n—1+j+
available tables. Run the (n+j+k—1)—step WCR algorithm M times independently to get Aj,_

1(m), and A (m), m=1,...,M. The M—-average

n—1+j+k



(3.6) {[oR)+n]x..x[U(R)+n=1+j+k] } 7 IxZ; <« n<MAn1 4 kM/Z <pnamAn (M)
is a WCR approximation to (3.5). Joint posterior cross—product moments of f(t|G), t=t,..ty
can be handled analogously.

Numerical computations showed that the WCR algorithm performs well for mixture
models that generate unimodal mixture densities. A list includes the scale—mixture of
exponentials [Jewell (1982)], of uniforms [Brunner and Lo (1989)], and of normals. Finite
mixture models [Everitt and Hand (1981); Titterington and Smith (1985); Diebolt and Robert
(1994)] form a finite dimensional subset of the model considered in this paper. However, the
posterior quantities derived by assuming a finite mixture model are also sums over partitions and
are not any simpler. A WCR algorithm in this case can be defined by a properly chosen discrete
a(.). A more interesting testing ground is provided by mixture models with multimodal mixture
densities, and this will form the main body of the following numerical examples. Conjugate
priors [see for example De Groot (1970)] exist for the sub—systems in these examples and we
shall use them. To obtain a posterior density with respect to an arbitrary prior density, the
posterior density with respect to conjugate priors is weighted with a weight being the ratio of
the two prior densities.

Unless otherwise specified, the Monte Carlo sample size M is 1000 and o(R) is 2.5 in
all figures.

Example 3.1 Bayesian deconvolution. Location or scale mixture models, i.e.,
k(x|u)=k(x—u) or k(x|u)=uk(xu), respectively, are in general identifiable in G and it is useful to
calculate a point estimate of G. The posterior mean of G(u), G(u)zE[G(u)|x1,...,xn], has the

same expression as (3.3) with the same A(1),...,A(n) and

(3.7) Mm=0UWH+E | < (p)eiT (] C.
That is,
(3.8) G(u) oc Zp[oc(u)+21Sjsn(p)ejn(u|Ci)]An_1q(p o,n.k).

G(du) is a(du)/o(R) with probability o R)[ou(R)+n]~!; otherwise it is proportional to
ejn(du|Ci)]. Notice that n(du|Ci) peaks for a large table C;. Since G(u) is basically an average
of Mn):a(u)"'zISiSn(p)ein(u|Ci)’ it is approximately a mixture of step functions. In
comparison, the maximum likelihood estimator of G(u) is exactly discrete [Lindsay (1983)]. We
illustrate the Bayesian deconvolution by

(1) location mixture of N(u,1) s. We use data from a three—peak location mixture of
normals: 0.125N(=5,1)+ 0.375N(0,1) + 0.5N(5,1). The sub—prior a(.)/a(R) is N(m,1/t). For

table C;, the sub—sample posterior n(du|Ci) is N(mi,l /ti)’ where ti:t+ei’ m.= ti_l(tm+ ei)_(i);

)_(i:ei_le e CH)Nj- The sub—sample predictive density m(x|C;) is N(mi,1+1 /ri). Figure 3.1a plots



GM(u) for a nested sample of n=10, 50, 150, and 300.

(ii) location mixture of U(u—1/2,u+1/2) s. We use data from a three—peak location
mixture of uniforms: 0.2U(-0.9,0.1)+0.4U(0,1) + 0.4U(0.9,1.9). Note that G(u) is
differentiable if the shape o(.)/o(R) is differentiable. Let a(.)/ouR) be N(0,1). Figure 3.1b
plots gM(u)=(d/du)GM(u) for a nested sample of n=10, 50, 150, and 300; for large n (=300),
gyv(v) is a mixture of d—functions approaching a mixture of three d—functions with mass 0.2,
0.4, and 0.4 at —0.5, 0.5, and 1.4, respectively. The deconvolution effect is clear. However,
the deconvolution effect reduces if we move the two uniforms at both ends closer. Figure 2.1c
plots three different fM(t) for n=10, 50, and 150. The convergence of fM(t) to the (dotted)
mixture density f(x|G) is clear.

Example 3.2. Location and scale mixture models and a local band for a
density. Since a density lies in the L!—closure of the location and scale mixtures, it would be
reasonable to use the location and scale mixture model to estimate an arbitrary density [Lo
(1984)]. Here, k(x|u) is tk(t(x—s) where u=(t,s) is two dimensional. The idea is that by
allowing G to carry mass at T close to zero, the consistent behavior of a shrinking kernel in the
frequentist kernel density estimator can be captured. Pick a standard normal k(.). Suppose
odv)/a(R) is a gamma—normal distribution defined by: T is gamma (a,1/b) and |t is normal
(m,1/(tt)). [The mean of gamma (a,1/b) is a/b.] In this case, we say that (T,)t) is gamma~—
normal (a,1/b; m,1/t). The sub—posteriors are gamma-normal (a;,1/b;; my,1/t;) where t;=t+e;,
my=(mt+x;e;)/t;, a;=a+e;/2, and bi=b+2—1[2j c C(i)(xj—)_(i)2+(m—ii)2/(t—1+ei—1)]. The sub—sample
predictive density m(x|Ci) is a t—density with degrees of freedom 2a;, location m;, and pecision
(a;/bpt/(t;+1).

The interplay between the prior parameters a, b, m and t is subtle. Inspection of the
sub—predictive t densities suggests that t can not be very large, or else m;=m and f(t) will be
approximately unimodal with mode close to m; on the other hand, a small t results in a
predictive t—density centered at X; and reveals the data structure better. We shall confine our
choice to small t. To keep things simple, we assume a and |m| are moderate, say, bounded by
2. If b is large, the precision (ai/bi)ti/ (t;+1) for the predictive t—densities will be small, resulting
in a flat f(t); so a large b is not recommended. The analysis can then be confined to small t and
moderate size b. It turns out that for sample sizes less than 400, small t (t<0.1) and moderate b
(be[0.5, 3]) are desirable; see Example 4.3 in the next section for detailed analysis of this
issue. Figure 3.2a displays WCR approximations to the local band E[f(t|G)|x]+20[f(t|G)|x], for
a grid of t and for nested data n=10, 50, 150, 300 from a three—peak location—scale mixture of

10



normals (a=0.5, b=0.5, m=1, and t=0.1; M=2000). The evaluation of o[f(t|G)|x] requires a
WCR approximation to the second posterior moment E[f(t|G)2|x] given by (2.9) with j=0 and
k=2. Figure 3.2b displays WCR approximations to the local band E[f(t|G)|x]+20[f(t|G)|x] for
nested data n=10, 50, 150, and 300 from a log—normal density (a=1.5, b=1.5, m=0, and
t=0.05; M=2000).

Example 3.3. Effect of nested mixture models. Here we investigate the effect of nested
models. The two models we use for comparison are the location and scale mixture of normals
(dashed), and its strict subset, the location mixture of normals (solid). Data are from a location
mixture of normal density with four peaks (dotted; the small peak at 3 is barely detectable):
(1/8)N(-2.5,52)+(2/8)N(0,s2)+(1/8)N(3,52)+(4/8)N(5,s2) where s=0.7. Figure 3.3a displays
fM(t) for nested data. The location mixture model WCR reveals the peak more clearly. For the
same large data set of size 400, we ran several WCR. It turns out that the fM(t) based on the
location model is quite stable and consistently reveal the small peak (1st column in Figure 3.3b).
The performance of the fM(t) based on the location—scale mixture model is less stable (2 nd
column in Figure 3.3c), and it fails to reveal the small peak in 20% of the trials.

Example 3.4. WCR and the sequential order of the data. Technically, the WCR
depends on the order in which the customers (data) arrive. Figure 3.4 displays fM(t) (M=2000)
based on sorted and unsorted data. We use data from a five—peak location mixture of normals.
The fM(t) based on the order statistics (sorted data) does not appear to be more accurate for
samples of sizes larger than 150. The fact that fM(t) perform better for positive t appears to be
due to the prior assignment that m=1. More numerical studies based on the location—scale
mixture of normal model and the three—peak data in Example 3.2 show that sorting the data in
descending and ascending order, and Siegel-Tukey ranking the data, produce almost identical
fM(t) for nested sample sizes n=10, 50, 150, and 300. These numerical results suggest that the
dependence of WCR fM(.) on the ordering of the data is minor.

Example 3.5 A location problem. Here k(x|u,0)=uk(u(x—60)) where the parameter (6,G)
has a joint distribution: 6~p(d6) and G|6~D(dG|o,), G is supported by [0,e0). Given the
6,G)=Juk(u(x-8))G(du) where 8 is a location
parameter and G is an unknown probability on the half line. The extreme point method states
that {f(x

For the location problem, G is a nuisance parameter. Average out G to get the posterior

parameter (0, G), the model density is f(x

O,G)=fuk(u(x—9))G(du)} consists of all unimodal and symmetric density with mode 6.

distribution of 6 given the data as p(d8|x):
p(d[x) o Zle(P|0€e(R)) ngjgn(p)[fnje Ciuk(u(Xj—e))OCe(du)/ 0g(R)]7(d6).

Assume that 0y is independent of 6 (i.e., the shape G and the location 6 are independent), and

11



that p'(0)=1 (i.e., a "flat" prior), the posterior density of 0 is
(3.9) P(OJX) = Zpa(pla(R)) T i (py Ui uk(ulxj-O) () /a(R)

o< 2pAn—l(e)q(p
o,n,wg) is the WCR density defined in (2.6) with wg;(u)=uk(u(x;-8)). [The same

o,n,Wg)

where q(p
modification applies in the definition of A(j).] Ap—; depends on 6 and is denoted by A,_1(6).
According to the WCR, p(0|x) is approximated by the density pys(0) where

(3.10) PM(®) > X1 <memAn-1(8;m);

Ap_1(6;m), m=1,....M are A_;(0) obtained from running the WCR algorithm M times.

The location problem was discussed by Brunner and Lo (1989, 1994) where k(.) is
essentially a U(—1/2,1/2) density and u>0. Here we discuss a smooth subset of this model by
assuming that k(.) is a N(0,1) density. Suppose then o(du)/o(R) is gamma (a,1/b). Then, the
sub—sample posteriors are also gamma: n(du|Ci) is gamma (a;,1 /bi)’ where ai=a+ei/2; b;=b+2-
1Zj€ C(i)sz- The sub—sample predictive density m(x|Ci) is a t—density with degrees of freedom
2a;, location 0, precision (ai/bi)' Figure 3.5 displays pp(8) (M=2000) for a grip of 6, for
nested samples from standard normal and Cauchy densities.

Remark 3.1. In another direction, the model (3.1) can be extended to the case that the kernel
k(.|u) depends on the i th observation through some extraneous regression variable z; which
may contain other parameters 0 of interest (Example 3.5 is a case in point). But this extension
to (3.1) does not present additional technical difficulties as was noted by Lo (1978): The
likelihood function is ijki(xi|u)G(du), and one simply uses k;(x;|u) to play the role of k(x;|u),
resulting in a WCR algorithm [i.e., wi(u)zki(xi|u)], extended to cover this regression sampling
plans. Regression problems using a Bayesian mixture model approach were also considered by

Bunke (1985). Brunner (1995) assumed a uniform k(.) and discussed linear regression.
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Section 4. Sequential imputation: a weighted Polya process (WP).

An extended Polya urn sequence Uy,...,U,, with parameter a finite measure o.) is
defined as follows [Blackwell and MacQueen (1973)]: U; has distribution a(.)/a(R). Given
U;=uy, Us equals u; with probability 1/[o(R)+1]; otherwise, U, has distribution o(.)/o(R).
Given Uy=uy,...,U,_=u,_ 4, Unzuj with probability 1/[o(R)+n—1] for j=1,...,n—1; otherwise,
U,, has distribution o(.)/a(R). Assume the mixture model (3.1) and G has a Dirichlet process
prior D (dG|o) [Ferguson (1973)] with shape measure o4.), the posterior distribution of G is
an average with respect to the distribution of an extended Polya sequence as follows [Lo
(1984)]:

4.1) T(dG|xq,....Xp) o ID (dG|0c+Zi5ui)Hik(xi|ui)u(du|oc),

where the measure p(du|o) is defined by

4.2) ”(du|“)=H1SiSn(O‘+ZISjSi—1Suj)(dui)-

The normalized p(dulo), u(dujo)/B,,_;(au(R)), is the distribution of the extended Polya
sequence.

One can define a sequential sampling scheme based on sampling the random variable U;
in the posterior representation (4.1) weighted by ITik(x;|u;). This is the approach taken in Liu
(1996) for mixtures of binomial kernels. The extension, called the weighted Polya process
(WP), is described as follows. Given a finite shape measure o, a kernel k(.|.) and data
X1,-Xp: Set K(0)=m(x1), and using the notation for the Bayesian sub—system in the last
section.

Step 1: Uy has distribution m(du|x ).

Step k (k=2,...,n): Given up,uy,...,uj_1,

calculate (k—1)=m(xj)+k(xk|u)+...+ k(xg|ug_y).
Uy equals yj with probability k(xk|uj)/1<(k—1), =1,..k-1;
otherwise, Uy has distribution m(du|xy).
The joint distribution of Uy,...,Uy is denoted by P(du

a,n,k). Note that if the kernels
k(.|.)=1, and the shape measure is finite with with total mass o/(R) the WP reduces to the
extended Polya process with shape measure 0(.). An inspection of (4.1) results in the
following change of variable result connecting the distribution p(du|o) and the WP distribution
P(du
Lemma 2. Let K;,_;=k(0)x...xk(n—1). For all s20,
Js@)TT ;< k(x;|upr(dujo)=fsw)K,_; P(du

a,nk).

a,nk).
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According to Lemma 2, (4.1) can be written as, for any h=0,
4.3) E[h(G)|X1,...,Xn]

=J[lhG)D (dG|or+T1 <<y, ) 1K P(du o,n.k)//K,,_;P(du

o,n,k).

The iid WP method is defined by running the WP algorithm M times independently to
get uy(m),...,uy(m), and K_;(m), m=1,..,M. The M-average
(4.4) hyy

=[0c(R)+n]—'leSmsM[fh(G)D (dG|OH'ZlSiSnSui(m)]Kn—l(m)/ZISkSMKn—l(m)
is an iid MC approximation to E[h(G)|x{,....xy].

The WP is easy to implement; it is a straightforward simulation of the "missing value" u;
based on k(.|.) and a(.)/o(R). It does not account for the data reduction part of the missing
values, and the cost is heavy.

Example 4.1. Bayesian deconvolution (cont.) For location or scale models,
k(x|u)=k(x—u) or k(x|u)=uk(xu), respectively. The WCR and WP are compared in the case of
estimating G. Here

4.5) G(y) o< f[oc(y)+21sisnl{uiSy}Kn_lP(du
and the WP simulated G(y) (dotted) is essentially an average of a(y)+X1<j<pl{u;<y} and hence

o,n,k)

is discrete [up to the prior factor factor of o(y)]. In comparison, the WCR G(y) (dashed) given
by (3.8) is differentiable since it is essentially an average of the sub—posterior distribution
function n(du|Ci), which is differentiable if o(.) is differentiable. The sensitivity of the GM(u)
to the choice of prior parameters can also be detected. Data n=400 are from a three—peak
location mixture of normals. Moving from the first column to the second column, the normal
sub—prior mean increases from 0.1 to 4.9 (while the sub—prior precision remains a constant
t=0.1), GM right—shifts accordingly. Moving from the first row to the second row, the normal
sub—prior precision increases from 0.1 to 0.5 (while the sub—prior mean m remains constant),
the accuracy of GM deteriorates.

Figure 4.1 suggests that the WP is more sensitive to the choice of prior parameters than
the WCR. Examining the WP algorithm, one sees that at the kth step Ug would be one
observation from n(du|xk), or that it is one of the previous Uy,...,U;_;. Since n(du|xk) differs
from 7m(du) only by one observation, the Uj; are close to a sample from the sub—prior (du).
This could disrupt the WP algorithm if the data likelihood and the sub—prior 7t(du) are
approximately "orthogonal" (for a lack of a better word). The next example isolates this effect.
Example 4.2. Sensitivity of WP to the prior. We use the location—scale mixture of
N(u,0.72)'s; o.)/a(R) is N(m,1/t). Figure 3.2 displays fM(t). Data are n=300 observations
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from a unimodal N(0,0.72). One expects a good fit due to the unimodal nature of the data. At
m=3 and t=5, the sub—prior a(.)/ouR) being N(3,0.4472) is almost "orthogonal" to a N(0,
0.72) in the sense that they have almost no overlap. The resulting WP approximation is bad; in
comparison, the WCR approximation is already indistinguishable from the target N(0,0.72).
Deflating the sub—prior N(3,1/t) by reducing the precision t from t=5, 3.5, 2, 0.01 results in
incresingly better WP approximations; at t=0.01, the WP approximation is indistinguishable
from the target N(0,0.72).

For a defence against such orthogonal property between the data likelihood and the prior
density, one could choose a prior which is "flat". For example, in the last Example 4.2, t=0.01
corresponds to a flat N(3,10%) sub—prior, and results in an excellent WP approximation.
However, there is a question of the degree of "flatness". The following example suggests that in
some cases, too "flat" will result in noise artifact for WP and, to a lesser degree, for WCR.
Example 4.3. Location and scale mixture of normals (cont.). Data (n=300) are from
the three—peak location and scale mixture of normals of Example 3.2, and the sub—prior used is
the gamma—normal conjugate prior discussed in that example. f(t) is essentially a mixture of
sub—predictive t densities, with degrees of freedom 2a;, location m;, and pecision
(a;/bpty/(t;+1). In Example 3.2, we gave the reasons for considering only the case of small and
moderate b and t. Set m=-2 and a=1.5 and observe fM(t) as a function of b and t [WCR
(dashed) and WP (solid)]. A moderate size t, say t=2, and small b (b=0.5, 0.05, 0.005) result
ina fM(t) with a sharp and narrow peak at m=-2 (first column of Figure 4.3a) which can be
explained by the no data predictive t—density with location m (=—2) as the precision (a/b)t/(t+1)
increases. For a small t, say t=0.0005, decreasing b (b=10, 1.5, 0.05) produces noise artifact
(second column of Figure 4.3a). The best results are obtained from moderate be [0.5, 2] and a
small t<0.01. Figure 4.3b exemplifies the effect of different a(R)'s. The parameters are set at a
moderate b (=1.5) and a small t (=0.0005). Increasing a(R) (20 or 100) shifts the mass of a
WP fM(t) to the tails; the WCR fM(t) remains stable. In conclusion, the "window of
opportunity" for WP is very narrow, at least for sample sizes less than 400.

Example 4.4. Mixture of binomial (m,u) kernels; 0<u<l. If a(.)/o(R) is beta (a,b),

J

predictive density for the next observation conditional on table C;, m(x|Cj), is beta—binomial.

the sub—posterior distribution of u given x;,je C; is beta (a+Zj eCXjr b+mei—Zj c Cixj). The

The sub—prior is a "flat" uniform (0,1) distribution, and the WCR and the WP are compared vs
the changes of a(R). The data are 320 tack data from Beckett and Diaconis (1994); the data
were analysed by Kong, Liu and Wong (1992) and Liu (1996). fM(t) is a histogram, so are its
WCR and WP approximations. Figure 4.4a plots the WCR fM(t) (dashed), the WP fM(t)
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(solid), and the histogram of the data (dotted). The mixture of binomial (m,u) density is
determined by m+1 mixture probabilities which sum up to unity. The m probabilities determine
the first m moments of G, which does not determine G in general. Thus, the model is not
identifiable in G and estimating G is a problem. Nevertheless, Figure 4.4b plots a discrete WP
Gp(u) (solid), a WCR Gy(u) (dashed). The derivative of a WCR Gy,(u) is plotted in the graph
imediately below it, which reveals two peaks at 0.5 and 0.8. The graphs for the WP GM(u) fail
to reveal two jumps at 0.5 and 0.8; repeated WP Monte Carlo simulations result in different
Gp(w).

Example 4.5. An empirical WCR. The WCR density has two key factors: the Chinese
restaurant process weight a(R)n(p)HISiSn(p)(ei_l)! and the "predictive weight"

HISiSn(p)HISjSeim(X(i)j|X(i)1”-“’x(i)j—1)- One suspects that the contribution of the predictive

weight would be paramount, and an empirical WCR which is guided by the predictive weights
would perform well. To define it, set ou(R)=1, X(O)zm(xl). After customers 1,....k—1 are
seated (k=2,...,n), define

AMk—1)=m(x )+Em(xy |C;),
the index i runs over indices of currently available tables. The seating probability for customer k
is then m(xk|Ci)/7u(k—1) for table C;; customer k sits at an empty table with probability
m(xk)/ AMKk—1). At the completion of the n—th step, define

Mn)=m(t)+21Sjsn(p)eim(t|ci)-

Denote the probability distribution of p induced by this sequential seating by qe(p|x),

and an empirical WCR density by

e(t) :[OL(R)+n]_lZPAnqe(p|x)/ZpAn_lqe(p|x).
Define e (t) accordingly. It turns out that in general the ey (t) performs slightly better than the
WP, yet is worse than the WCR. Figure 4.5 displays ey,(t), WCR, and WP for the location and
scale mixture of normal model. Data are the three—peak data of Example 4.3. ou(R)=1.

We conclude this section with a discussion of the running time (of compiled C code on a

SUN Sparc 20) of the WCR and WP algorithms. A scrutiny of the two algorithms reveals that
they differ in the sense that the WP algorithm requires the simulation a missing value from a
posterior distribution in each step of the loop, and the WCR requires the selection of a table out
of n(p)+1 possible tables with prescribed seating probabilities. Additional tables mean more
updating and calculations for the WCR. As a result, the WCR algorithm runs more slowly as
the number of tables increases. The probability of opening a new table is proportional to 0(R),

hence, the WCR runs slower when o(R) is large. For comparison, the WP is essentially a
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constant function of o(R). Table 4.1 illustrates the running time as a function of o(R) using the
three—peak data from the location and scale mixture of normal model in Example 4.3 (calculating
fM(u) at a grip of 350 u on the u—axis; a=b=1.5, m=0.0, t=0.0005). The sample size is fixed at
n=150.

Table 4.1 CPU time for sequential sampling algorithms vs changes in o(R)

a(R) 0.1 1 5 10
WCR 1'o1" 1'38" 2'41" 329"
WP 112" 11'15" 11'14" 11'15"

The comparison of the WCR and the WP in terms of the sample size is more
complicated. Table 4.2 summarizes a study of the running time vs the sample size where the
missing value u has a dimension of one. The data are from the three—peak location mixture of
normals in Example 4.1 (a(R)=1.0; m=0.0, t=0.1). In each case, fM(x) are evaluated for 350
grips on the x—axis.

Table 4.2 CPU time for sequential sampling algorithms vs changes in sample

size (u is one dimensional)

n 50 150 300
WCR 0'16" 023" 031"
WP 2'53" 9'45" 23'49"

Table 4.3 summarizes a study of the running time vs the sample size n where the
missing value u=(t,l1) has a dimension of two. The data are from the three—peak location and
scale mixture of normals in Example 4.3 (a(R)=1.0; a=b=1.5, m=0.0, t=0.0005). In each case,
fM(x) are evaluated for 350 grips on the x—axis.

Table 4.3 CPU time for sequential sampling algorithms vs changes in sample

size (u is two dimensional)

n 50 150 300
WCR 1'16" 1'41" 2'13"
WP 3'19" 11'14" 26'36"

(For M=2000 repetitions, the running time approximately doubles.) The two tables suggest that
an increase in the dimension of the missing value affects the speed of the WCR more than the
WP. That is, for high dimensional mixture models, the management and updating of the opened
tables is less efficient than simulating a high—dimensional missing value, and the WP could have
an edge in terms of a smaller running time. However, this possible effect should be investigated

in a thorough study of high dimensional mixture problems.
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Section 5. The mixture hazard rate model.

The likelihood function of a hazard rate point process model is proportional to
(5.1) M1 <j<p 1(X5)] exp{—fIY(s)r(s)ds}
where 1(s) is a hazard rate, I is the interval in which the point process is being observed, x; is
the "failure time", and Y(s) is a left continuous integer valued function of the data. The
likelihood function of the multiplicative point process models [Aalen (1981)] involves a product
of these likelihood factors, each of which can be treated independently (by a Bayesian) and
creates no additional complexities [Lo and Weng (1989)]. The hazard rate model (5.1) and its
multiplicative extension include point process models such as life testing models with censored
data, Poisson models and competing risk models, amomg other point process models. In a
mixture hazard rate model, the hazard rate r(.) depends on a kernel k(.|.) and a mixing measure
1(du) on the "missing" variable u such that
(5.2) r(s|w=lk(s[w)p(du);
k(.|.)>0 and satisfies integrability conditions in both variables. Often, it is convenient to assume
that for each u, k(.|u) is a density [see Section 5 in Lo and Weng (1989), and Chapter 3 in
Snyder and Miller (1991)]. In some cases, the kernel k(.|.) generates a hazard rate which has
desirable smoothness properties. For example, the scale mixture of uniforms generates
monotone hazard rates, and the scale mixture of exponentials generates "completely monotone"
hazard rates [see page 20 in Feller (1971)]. On the other hand, the mixture hazard rate model
often arises as a result of missing information. The most renowned example perhaps is the
emission tomography models where the data are in fact from a Poisson point process with
mixture hazard rates; see Chapter 3 in Snyder and Miller (1991) for references.

In their discussion of the Bayesian mixture hazard rate model, Lo and Weng (1989)
argued that the likelihood function (5.1) [and (5.2)] looks like a gamma density in u(.), and
suggested a weighted gamma process prior for pu(.). A random measure V(.) iS a gamma process
with shape measure o(.) if (i) v(.) is "independent increment" and (ii) for each A, V(A) is a
gamma (a(A),1) random variable. [The theory of Dirichlet process can be understood via a
gamma process in the sense that v(.)/V(R) is a Dirichlet process with a finite shape measure
0l(.).] The random process W(.) defined by u(A)zf AB(u)V(du) is called a weighted gamma
o,B). See Lo

(1982) for the calculus of weighted gamma processes. In this gamma process prior setting,

process with shape a.) and multiplier B(.)>0; its distribution is denoted by G (du

hazard rates which are scale mixture of uniform kernels were considered by Dykstra and Laud

(1971) in life testing models. Theorem 4.1 in Lo and Weng (1989) provides a representation
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which states that the posterior distribution of i for model (5.1) and (5.2) is an extended Polya
mixture of weighted gamma processes given by

(5.3) n(du|data) o JG (du|0c+2i8ui,[3*)Hik*(xi|ui)u(du|oc),

where B (w=B(w)/[1+BW Y ()xk(t|w)dt],
ke (t]w)=B* (w)k(tlu),
and W(du|a) is defined in (4.2). This mixture of gamma processes posterior distribution is
another example of (4.1) where k*(xi|u) playing the role of the likelihood weight k(xi|u), and
WCR and WP can be defined by a change to the *—notation. That is, putting wi(u)zk*(xi|u) in
the definition of the WCR marginal and predictive weights [(2.2) and (2.3)] The definitions of
A* 1, A%, and q(p
[Theorem 4.2 in Lo and Weng (1989)], t=x;{,
(5.5) r()=ZpA*q(plonnk*)/EpA*,_1q(p

This expression is almost identical to the expression of f(t) in (3.3), except the factor [a(R)+n]~

o,n.k*) follow. The posterior mean of r(t|W)=E[r(t|w)|xy.....x,] is

o,nk*).

I which now becomes a part of B* in the definition of k*. Sampling the WCR from

o,n,k*) results in an iid Monte Carlo approximation to 1(t) and to posterior moments of L.

q(p
One could also incorporate a regression model here by letting wj(u)Ek(xj|u) which

depends on a regression variable Z;-
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Section 6. Comparing simulation experiments.

The usual way of comparing the performance of different Monte Carlo methods is to
compare the variances or the covariance matrices of the resulting Monte Carlo approximations.
However, Blackwell's notion of comparison of experiments [Blackwell (1951, 1953); see also
De Groot (1970) and Strassen (1965)] provides a desirable alternative. Suppose the experiment
is to observe two random variables T and S. If there is a known nondegenerate conditional
distribution of T given S, F(dt|s), then S is sufficient for T in the sense that if S is observed,
then one should not observe T (without taking into account the observed S) as one can always
produce an observation in T using the conditional distribution F(dt|S). In short, if you know S,
T is still uncertain. This comparison implies that S is less variable and hence more informative
than T. (If there is also a known nondegenerate distribution of S given T, then one can say that
S and T are equally informative.)

Accordingly, the comparison of the Chinese restaurant process and Blackwell—
MacQueen's extended Polya urn process is as follows. S is a random partition p, and T is the
urn (missing value) vector u. According to discussions in Sections 2 and 3, p has a marginal
density q(p|c) and u has a marginal distribution p(du|a)/B,_;(c), where c=the total mass of
a(.). Korwar and Hollander (1973) constructed a conditional distribution of u given p which
can be described as follows: Given p=C1,...,Cn(p), define
6.1) (O Uj|p has distribution o(du)/a(R), for i=1,...,n(p),

1)) Ul,...,Un(p)|p are independent,

()  for i=l,...,n(p), duplicate Uj a total of e; times, and denote them by U;, jeC;;
i=1,....,n(p).

The existence of the conditional distribution (6.1) supports Kuo's (1986) initial proposal
to use the Chinese restaurant process rather than the extended Polya urn to perform the iid MC
approximation to posterior quantities in Bayesian mixture models. Unfortunately, the
contribution from the peaky integrands dominates and blurs the otherwise observable
improvements.

Conditional distributions of u|p also exist in comparing a sequential imputation u which

has a distribution proportional to K,,_;P(duja,n k), and a sequential seating p which has a

distribution proportional to A_;q(p|o.n.k). First, we extend Lemma 2 in Lo (1984) from a
finite o(.) to a o—finite o(.) so that both mixture density models and hazard rates models can be

treated together. Recall definition (4.2) that u(du|0c)=H1Sisn(0c+21Sij_1Suj)(duj).

20



Lemma 3. For a 6—finite o(.) and all g;=0,
(I, <y wi(uy) Hu(du|o)=Zp[TT, <3< (p)(ei~D'm(C)].

The above equality is true if o.) is restricted to a set Ay such that a(Ay) is finite
[Lemma 2 in Lo (1984)]. Lemma 3 follows from letting Ay increases to R such that a(Ay)
increases to 0(R). The existence of such a sequence { Ay} is guaranteed by the o—finiteness of
o(.). Denote a WP distribution of u generated from the weights w;(u) rather than k(xi|u),

i=1,...,n, by P(du

o,n,w). Lemma 3 and the product rule of probability (2.4) imply the
following:
Lemma 4. For all g;=0,
NI, <i<ngi(u) <K P(du
=2p{Mi<i<n(p)Mje ¢,gj(Wm(du|C }xAy_yq(p

o,Nn,w)

o,N,W);

in particular, [K,_;P(duloun,w)=EpA,_;q(ploun,w).

The equality in Lemma 4 is valid for all nonnegative g; and hence defines a conditional

distribution as follows: Suppose p has a (marginal) density proportional to A,,_;q(p|c.,n,w),

o,n,w). Given

and the u has a (marginal) distribution proportional to K,_;P(du
p=C1,...,Cn(p), define ulp as in (6.1) except that (I) is replaced by

() Ujlp has distribution nt(du|C;) for i=1,...,n(p).

Use Lemma 4 and the double expectation formula to rewrite the n—fold integrals in (4.1)
and (5.3) as sums of n(p)—fold integrals, and we arrive at
Theorem 1. Suppose the joint distribution of p, uy,...,u, is specified by (I'), (II), and (IID).
@) For the Bayesian mixture density model with posterior distribution given by (4.1),

n(dGlx) ZPID (dG|(X+21gjgn(p)ej5ui)[H1SiSn(p)ﬂ(duﬂci)]An_ﬂ(P

o,n,k);

(i1) for the Bayesian mixture hazard rate model with posterior distribution (5.3),

T(du[x) o< ZpJG - (duloetE) < (p)eidy, B Misicn(pym(dy; | CIA,_q(plonk®).

Theorem 1 states that all posterior quantities are obtainable from sampling a partition,
and then sampling from the transition probability given the observed partition. Discussions in
Section 3 point out that for evaluating posterior moments, sampling from the transition
probability can be replaced by running an extended WCR.

Wing Hung Wong recently brought to our attention of Liu, Chen, and Wong (1996)
which discussed an improvement of the sequential imputation method [Kong, Liu, Wong
(1994)] based on a rejection scheme. The resulting rejection control sequential imputation

reduces the variability of the product WP K, _; factor, resulting in an improved sequential
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imputation simulation. In this regard, one anticipates that a WCR equiped with a rejection
control strategy reduces the variability of the WCR product factor A,,_; and will fare even

better. The ideal sequential imputation samples a missing value vector from a distribution

proportional to K,_,P(du a,n.k); likewise, an ideal sequential seating experiment samples a

random partition from a distribution proportional to A,,_;q(p|c,n.k). Such ideal sequential
sampling experiments reduce the variabilities in K,,_; and A;_; to zero. According to (I'), (II),
and (III), Theorem 1(i), and (4.1), the latter beats the former. Similar conclusions hold for the
mixture hazard rate model using Theorem 1(ii).

Lemma 4 applies to the MCMC method for Bayesian mixture models yields the

following: Upon convergence to stationarity, a sequential imputation MCMC approximates a

distribution proportional to K;,_;P(dujo,n.k). A sequential seating MCMC approximates a

a,n,k). According to (I'), (II), and (III), Theorem 1(i),

distribution proportional to A,_;q(p
and (4.1), a sequential seating MCMC is better in the sense of comparison of experiments;
furthermore, it houses a simpler convergence theory since its state space is finite. Similar

conclusions holds for the mixture hazard rate model.
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Fig 3.1a Data: 0.125N(5,1)+0.375N(0,1)+0.5N(5,1) [ m=0.1 & t=0.1 ]
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Fig 3.1b Uniform Kernel < M = 2000 >

Data: 0.2U(-0.9,0.1)+0.4U(0,1)+0.4U(0.9,1.9)
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Fig 3.1c Uniform Kernel < M = 2000 >
Data: 0.2U(-0.9,0.1)+0.4U(0,1)+0.4U(0.9,1.9)
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Fig 3.2a Data: 0.6N(=5,0.25)+0.25N(0,1)+0.15N(5,2.25) [ a=b=0.5,m=1.0,t=0.1; M=2000 ]
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Fig 3.2b Data: exp(0.8N(0,1)+1.5) [ a=1.5,b=1.5,m=0,t=0.05; M=2000 ]
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Fig 3.3a [ a=b=1.5,m=0.0,t=0.0005 |
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Fig 3.4 Data: 0.15N(=10,1)+0.15N(=5,1)+0.4N(0,1)+0.15N(5,1)+0.15N(10,1)
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Fig 3.5 Data: Cauchy(0,1) & N(0,1) < ALPHA(R) = 1.0; M = 2000 >
Dash: N(0,1) ——- Solid: Cauchy(0,1)
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Fig 4.1 Data: 0.125N(-5,1)+0.375N(0,1)+0.5N(5,1) ( N =400 )
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Fig 4.2 Location Model ( N = 300)
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Fig 4.3a Location-scale Mixture Model ( N = 300 )
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Fig 4.3b Location—-scale Mixture Model ( N = 200 ) [ a=b=1.5,m=0,1=0.0005 ]
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Fig 4.4a Binomial Kernel Bi(9,u) (N =320)
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Fig 4.4b Binomial Kernel Bi(9,u) (N =320 )
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Fig 4.5 Location-scale Mixture Model ( N = 300 )

o Data : 0.6N(=5,0.25)+0.25N(0,1)+0.15N(5,2.25)
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_ Dot : True mixture density

J Dash : WCR

| Dash-dot : empirical WCR

il Solid : WP

Data : 0.6N(=5,0.25)+0.25N(0,1)+0.15N(5,2.25)
a=15Db=15m=0.0,t=05
ALPHA(R) = 1.0
Dot : True mixture density

: Dash : WCR

T Dash-dot : empirical WCR

T Solid : WP

10



