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In scientific fields that depend on significance tests to document their findings, statistical power
is a necessary condition for replicability. For any population of published results, there is a pop-
ulation of power values of the statistical tests on which conclusions are based. We give exact
theoretical results showing how suppression of non-significant results (publication bias) affects
the distribution of statistical power in a heterogeneous population of significance tests. In a
set of large-scale simulation studies, we compare four methods for estimating population mean
power, based only on significant results. The methods are maximum likelihood, extensions of
of p-curve and p-uniform, and a new method we call z-curve. The versions of p-uniform and p-
curve we consider perform well when effect size is a single fixed value, and under heterogeneity
in sample size. When there is substantial variability in effect size as well as sample size, both
methods fail. If the assumptions of maximum likelihood are satisfied, it is the most accurate
method of estimation under most conditions. When the assumptions of maximum likelihood
are incorrect, z-curve is better. We describe and validate a conservative bootstrap confidence
interval that makes it possible to use z-curve with smaller samples of studies.
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The purpose of this paper is to develop and evaluate meth-
ods for estimating the mean power of a diverse population of
significance tests, based only on statistically significant re-
sults. The power of a statistical test is defined (Neyman &
Pearson, 1933) as the probability of correctly rejecting the
null hypothesis. Technically, this would make the concept of
population mean power applicable only to populations where
the null hypotheses are all known to be false. One way
around the problem is to assume that no null hypothesis is
ever exactly true (Sterling, Rosenbaum, & Weinkam, 1995).
Another approach is to extend the definition of power so that
it is defined even when the null hypothesis is true. In the
end, these solutions coincide. Power approaches the signifi-
cance criterion in the limit as the true size of the effect being
tested approaches zero. Assuming the usual 0.05 significance
level, power equals effectively 0.05 when the null hypothesis
is true. As we will use the term in this paper, power is simply
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the probability of rejecting the null hypothesis, whether the
null hypothesis is true or not.

Estimating power is important because of its connection
to reproducibility, a connection that has been noted by sev-
eral authors (Greenwald, Gonzalez, Harris, & Guthrie, 1996;
Posavac, 2002; Yuan & Maxwell, 2005). In fields like psy-
chology where findings are often legitimized by tests of sta-
tistical significance, it is difficult to claim that a finding has
been replicated unless analysis of the replication data yields
a significant result again. Reproducibility is acknowledged
to be a requirement of good science (Bunge, 1998; Popper,
1959), so that high statistical power is a necessary condi-
tion for quality science – again, assuming a gatekeeping role
for significance testing. We are well aware of the power-
ful arguments against the null hypothesis significance test-
ing paradigm (Berger & Selke, 1987; Cohen, 1994; Halsey,
Curran-Everett, Vowler, & Drummond, 2015; Harlow, Mu-
laik, & Steiger, 1997; Krueger, 2001; Nickerson, 2000;
Rozenboom, 1960; Schervish, 1996). However, we consider
significance testing to be a fact of life in psychology.

Ideally, one would like to estimate the power of the
statistical test that supports a particular finding. Unfor-
tunately, well-documented problems with the “observed
power" method (Boos & Stefnski, 2012; Gerard, Smith, &
Weerakkody, 1998; Gillett, 1994; Hoenig & Heisey, 2001;
Thomas, 1997; Yuan & Maxwell, 2005) suggest that estimat-
ing the true power of an individual test may be out of reach.
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Estimates are subject to serious bias, and even if the bias
could be corrected on average, the estimates for individual
results are too variable to be practically useful.

Estimating the mean true power of a population of tests is
more feasible, and has the potential to yield valuable infor-
mation. Consider a population of empirical findings. Each
finding in the population has been validated by a test of sig-
nificance, and every test has its own probability of being sig-
nificant; that is, there is a population of power values. Now
suppose that one finding is randomly selected from the pop-
ulation. The study and analysis are repeated exactly. In the
theoretical section of this paper entitled “Two populations of
power," Principle 1 states that the probability of obtaining
significance a second time (replicating the result) is exactly
equal to the population mean true power value. This explains
our interest in estimating mean power rather than the median
or some other kind of average.

Power depends upon the sample size and the true parame-
ter values. In particular, power depends upon the parameters
through effect size, a function of the parameter values that
measures how wrong the null hypothesis is (Cohen, 1962,
1988; Grissom & Kim, 2012). This traditional, statistical
conception of effect size is in contrast to that of Kelly and
Preacher (2012). We seek to estimate mean power under
conditions of general heterogeneity, in which both sample
size and effect size might be quite variable, giving rise to sub-
stantial variation in power. This is different from the typical
meta-analysis, where all the studies are testing essentially the
same effect using similar research designs. One would expect
much less heterogeneity in a meta-analysis.

It is important to distinguish our undertaking from that of
Cohen (1962) and the follow-up studies by L. J. Chase and
Chase (1976) and Sedlmeier and Gigerenzer (1989). In Co-
hen’s classic survey of power in the Journal of Abnormal and
Social Psychology, the results of the studies were not used in
any way. Power was never estimated. It was calculated ex-
actly for a priori effect sizes deemed “small," “medium" and
“large." If a “medium" effect size referred to the population
mean (which Cohen never claimed), power at the mean effect
size is still not the same as mean power. In fact, by Jensen’s
inequality (Billingsley, 1986, p. 283), true power at the mean
effect size is greater than mean true power.

To estimate mean power successfully, one must allow for
the well-documented tendency for results that are not statis-
tically significant to be suppressed, and not to appear in the
published literature. This condition has been called “publi-
cation bias" (Hedges, 1992; Sterling, 1959; Sterling et al.,
1995). While selection for significance clearly inflates naive
estimates of effect size (Simonsohn, Nelson, & Simmons,
2014b; van Assen, van Aert, & Wicherts, 2014) and power,
at the same time it should increase actual power by selecting
effects that are more likely to be detected. In the theoretical
section of this paper entitled “Two populations of power," we

reveal exactly how selection for significance affects the pop-
ulation distribution of true power (Principe 2), and show that
the increase in mean power due to selection equals the popu-
lation variance of power before selection divided by the pop-
ulation mean of power before selection (Principle 5). Thus,
selection for significance increases population mean power
except in the artificial case where all the significance tests in
the population have exactly the same power, and hence zero
variance.

This means it is vital to clearly distinguish between the
population of power values before selection and the popu-
lation after selection. Population mean power before selec-
tion could be called the “success rate" in a field of study,
while population mean power after selection corresponds to
average replicability. Any reasonable estimate of population
mean power must choose between these two quantities, and
explicitly take selection for significance into account.

To allow for selection, we adopt a model like the one
employed by Hedges (1984), Simonsohn et al. (2014b) and
van Assen et al. (2014) for estimating a single fixed effect
size. We assume that, provided a test yields significant re-
sults at the conventional 0.05 level, the finding will be pub-
lished with some unknown probability that has no further
dependence on the p-value. This simple binary model is a
special case of the more elaborate scheme in Hedges (1992)
and Hedges and Vevea (1996), where significant results with
lower p-values are more likely to be selected. In the model
we use, once a result is significant, publication depends upon
factors unrelated to the p-value.

Though some non-significant results may be available as
data, these do not represent “findings" in the conceptual
framework we are using. Moreover, non-significant tests that
make it through the filter of publication bias may well be cho-
sen to make a particular point, and so may be quite unrepre-
sentative of the population from which they are taken. In
our view it is safest to discard them. Thus, the estimates we
consider will be based upon samples from a sub-population
of tests that are statistically significant. For each test in that
subpopulation, there is a probability that exact repetition of
the study would yield significant results again. It is the mean
of these probabilities that we seek to estimate.

As far as we can tell, there is only one publicly available
method for estimating population mean power, the online p-
curve application (“p-curve app 4.06,” n.d.). The power esti-
mates from this application have not been formally subjected
to peer review. While it does assume selection for signifi-
cance and uses only significant results, the application does
not use information about sample size, and is acknowledged
by its authors to yield biased estimates of population mean
power under substantial heterogeneity in power (Simmons,
Nelson, & Simonsohn, n.d.). In this paper, we develop and
evaluate four methods for estimating population mean true
power. One of them is a p-curve that allows for heterogene-
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ity in sample size. Our version of p-curve produces accurate
estimates under heterogeneity in power, if most of that het-
erogeneity comes from heterogeneity in sample size.

Only one of the estimation methods in this paper is truly
new; we call it z-curve. The other three are extensions of ex-
isting methods for estimating effect size. Of these, Hedges’
maximum likelihood approach (Hedges, 1992; Hedges &
Vevea, 1996) is chronologically first, assumes selection for
significance, and allows for heterogeneity in both sample
size and effect size. However, the method depends critically
on both effect size and the test statistic being normally dis-
tributed, and is strictly limited to the case where all the test
statistics are Z. Thus it is inapplicable to most real data, and
should be considered a proof of concept rather than a practi-
cal method for estimating mean effect size.

The version of maximum likelihood we consider is in one
way less advanced than Hedges’ in that it assumes a simple
binary model of selection (which we consider more plausi-
ble anyway) based on p < 0.05. It is an extension of Hedges’
method in two ways. First, it allows the test statistics to be
F or chi-squared, and second, it estimates mean power rather
than mean effect size.

We are aware of two other methods for estimating effect
size in the presence of publication bias. They are the p-
curve method of Simonsohn et al. (2014b) and the p-uniform
method of van Assen et al. (2014). Once an estimate of the
population effect size has been found, it is straightforward
to combine this estimate with the observed sample size to
to compute an estimated power for each study. The sample
mean of these quantities is an estimate of population mean
power. We must point out that this obvious idea is not imple-
mented in the papers by Simonsohn et al. (2014b) and van
Assen et al. (2014). We are adding one more step, extending
the p-curve and p-uniform estimates of a single fixed effect
size to produce estimates of mean power. These estimates al-
low for heterogeneity in sample size, but assume homogene-
ity in effect size. Under heterogeneity in effect size, they are
ad hoc methods whose performance we are investigating.

The developers of p-curve and p-uniform have different
opinions about the performance of their methods when pop-
ulation effect sizes vary across studies. The p-uniform team
(van Aert, Wicherts, & van Assen, 2016) explicitly warn
that their method should not be used to estimate effect size
if effect sizes are heterogeneous. They report simulations
in which both p-uniform and p-curve produced inflated esti-
mates of population mean effect size under conditions of sub-
stantial heterogeneity. This suggests that the corresponding
estimates of mean power will be inflated too.

In contrast, the p-curve team is more optimistic. Their on-
line application (“p-curve app 4.06,” n.d.) encourages input
of a diverse collection of t, F, Z, r and chi-squared statistics,
implying heterogeneity not just in effect size, but in the met-
rics by which effect size is measured. In a blog post (Sim-

mons et al., n.d.), they present simulations in which a slightly
simplified version of their online estimator appears to per-
form well as long as there is not too much heterogeneity in
true power. Schimmack (n.d.) has challenged the details of
the simulations in another blog post .

The p-curve method is under active development. In the
interest of fairness and clarity, we need to specify exactly the
variant of p-curve to be considered in this paper. As of this
writing, the online application is at Version 4.06. We desig-
nate Simonsohn et al.’s (2014b) method for estimating a fixed
effect size in the presence of heterogeneity in sample size as
“p-curve 2.0." Our extension to the estimation of mean power
will be called “p-curve 2.1." Despite some clumsiness in sen-
tence structure, we will use the term p-curve 2.1 rather than
p-curve throughout this paper to refer to our adaptation of the
p-curve method.

Higher version numbers do not always indicate higher
quality. Currently (and these things are subject to change),
the online version of p-curve is designed for the extremely
restrictive setting of a single unknown power value, which
means zero population variance in true power, and no ef-
fect of selection for significance. We have test cases with
complete homogeneity in effect size and realistic heterogene-
ity in sample size, where the online version (p-curve 4.06)
produces radical over-estimates of mean power 100% of the
time. In contrast, the simulations in this paper show that p-
curve 2.1 performs well with heterogeneity in sample size,
as long as there is mild or no heterogeneity in effect size.

In this paper, we present several large-scale simulation
studies comparing estimates of mean power after selection
for significance, based on p-curve 2.1, p-uniform, maximum
likelihood and z-curve. As previous simulations have fo-
cused on effect size estimation, our simulations provide the
first test of these methods for the estimation of population
mean power.

Notation and statistical background

To present our methods formally, it is necessary to intro-
duce some statistical notation. Rather than using traditional
notation from statistics that might make it difficult for non-
statisticians to understand our method, we follow Simon-
sohn, Nelson, and Simmons (2014a), who employed a mod-
ified version of the S syntax (Becker, Chambers, & Wilks,
1988) to represent probability distributions. The S language
is familiar to psychologists who use the R statistical software
(R Core Team, 2012). The notation also makes it easier to
implement our methods in R, particularly in the simulation
studies.

The outcome of an empirical study is partially determined
by random sampling error, which implies that statistical re-
sults will vary across studies. This variation is expected to
follow a random sampling distribution. Each statistical test
has its own sampling distribution. We will use the symbol T
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to denote a general test statistic; it could be a t-statistic, F,
chi-squared, Z, or something more obscure.

Assume an upper-tailed test, so that the null hypothesis
will be rejected at significance level α (usually α = 0.05),
when the continuous test statistic T exceeds a critical value c.
Typically there is a sample of test statistic values T1, . . . ,Tk,
but when only one is being considered the subscript will be
omitted. The notation p(t) refers to the probability under
the null hypothesis that T is less than or equal to the fixed
constant t. The symbol p would represent pnorm if the test
statistic were standard normal, pf if the test statistic had an
F-distribution, and so on. While p(t) is the area under the
curve, d(t) is the value on the y axis for a particular t, as
in dnorm. Following the conventions of the S language, the
inverse of p is q, so that p(q(t)) = q(p(t)) = t.

Sampling distributions when the null-hypothesis are true
are well-known to psychologists because they provide the
foundation of null-hypothesis significance testing. Most psy-
chologists are less familiar with non-central sampling distri-
butions (see Johnson, Kotz, & Balakrishnan, 1995, for a de-
tailed and authoritative treatment). When the null hypothesis
is false, the area under the curve of the test statistic’s sam-
pling distribution is p(t,ncp), representing particular cases
like pf(t,df1,df2,ncp). The initials ncp stand for “non-
centrality parameter." This notation applies directly when T
has one of the common non-central distributions like the non-
central t, F or chi-squared under the alternative hypothesis,
but it can be extended to the distribution of any test statistic
under any specific alternative, even when the distribution in
question is technically not a non-central distribution. The
non-centrality parameter is positive when the null hypothesis
is false, and statistical power is a monotonically increasing
function of the non-centrality parameter. This function is
given explicitly by Power = 1 − p(c,ncp).

For the most important non-central distributions (Z, t, chi-
squared and F), the non-centrality parameter can be factored
into the product of two terms. The first term is an increasing
function of sample size, and the second term is a function
of the unknown parameters that reflects how wrong the null
hypothesis is. In symbols,

ncp = f1(n) · f2(es). (1)

In this equation, n is the sample size and es is the effect
size. While sample size is observable, effect size is a func-
tion of unknown parameters and can never be known exactly.
The quantities that are computed from sample data and com-
monly called “effect size" are properly estimates of es.

As we use the term, effect size refers to any function of the
model parameters that equals zero when the null hypothesis
is true, and assumes larger and larger positive values as the
null hypothesis becomes more false. From this perspective,
all reasonable definitions of effect size for a particular sta-
tistical model are deterministic monotone functions of one

another and so the choice of which one to use is determined
by convenience and interpretability. This usage is consistent
with that of Cohen (1988), who freely uses “effect size" to
describe various functions of the model parameters, even for
the same statistical test. Also see Grissom and Kim (2012).

As an example of Equation (1), consider for example a
standard F-test for difference between the means of two nor-
mal populations with a common variance. After some sim-
plification, the non-centrality parameter of the non-central F
may be written as

ncp = n ρ (1 − ρ) d2,

where n = n1 + n2 is the total sample size, ρ = n1
n is

the proportion of cases allocated to the first treatment, and
d =

|µ1−µ2 |

σ
is Cohen’s (1988) effect size for the two-sample

problem. This expression for the non-centrality parameter
can be factored in various ways to match Equation 1; for ex-
ample, f1(n) = n ρ (1 − ρ) and f2(es) = es2. Note that this
is just an example; Equation 1 applies to the non-centrality
parameters of the non-central Z, t, chi-squared and F distri-
butions in general. Thus for a given sample size and a given
effect size, the power of a statistical test is

Power = 1 − p(c, f1(n) · f2(es)). (2)

The function f2(es) is particularly convenient because it will
accommodate any reasonable definition of effect size. Let
es′ be another effect size measure that is a monotone increas-
ing function of es. For example, es could be Cohen’s d, and
the alternative effect size es′ could be the point-biserial cor-
relation r (Cohen, 1988, p. 24). Symbolically, es′ = g(es).
Since the function g(es) is monotone increasing, a corre-
sponding inverse function exists, so that es = g−1(es′). Then
Equation (2) becomes

Power = 1 − p(c, f1(n) · f2(es))
= 1 − p(c, f1(n) · f2

(
g−1(es′)

)
)

= 1 − p(c, f1(n) · f ′2
(
es′

)
),

where f ′2 just means another function f2. That is, if the def-
inition of effect size is changed (in a monotone way), the
change is absorbed by the function f2, and Equation (2) still
applies.

Two populations of power

Consider a population of statistical tests corresponding to
potential findings that are publishable provided the test is sta-
tistically significant. Each test has its own true power value,
a true probability of rejecting the null hypothesis that is de-
termined by the sample size, procedure and true parameter
values. The tests are conducted. Significant results are pub-
lished and become available as data. Non-significant results
go into the mythical “file drawer" of Rosenthal (1979).
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This means that there are are two populations of true
power values: the original population, and the sub-
population corresponding to the tests that were statistically
significant. We now give a set of fundamental principles
connecting the probability distribution of true power before
selection to its distribution after selection. These principles
are very general. They do not depend on the particular pop-
ulation distribution of power, the significance tests involved,
or the Type I error probabilities of those tests. They do not
even depend on the appropriateness of the tests or the as-
sumptions of the tests being satisfied. The only requirement
is that each true power value in the population is the proba-
bility that the corresponding test will be deemed significant.
Proofs are given in the appendix, along with an illustration
of the Principles by simulation.

Principle 1 establishes the connection between power and
replicability.

Principle 1 Population mean true power equals the overall
probability of a significant result.

The meaning of Principle 1 is that if one randomly selects a
test from the full population before selection for significance,
the probability that the test will be statistically significant
equals population mean power before selection. The prin-
ciple also applies to power after selection for significance. In
this case, it means that if a single significant result is ran-
domly selected and the study is repeated exactly, the prob-
ability of obtaining another significant result equals popula-
tion mean power after selection.

Principle 1 establishes the central importance of popula-
tion mean power after selection for significance. Think of a
coin-tossing experiment in which a large population of coins
is manufactured, each with a different probability of heads.
All the coins are tossed, and only the ones showing heads
are retained. One of these is randomly selected, and tossed
again (exact replication). By Principle 1, the probability of
observing a head is exactly the mean probability of a head
for the set of coins that were retained. This is why we seek
to estimate mean power after selection.

Since low-powered tests are by definition less likely to be
significant, it is clear that selection for significance will affect
the probability distribution of power values. Principle 2 gives
an exact formula for the effect of selection.

Principle 2 The effect of selection for significance is to mul-
tiply the probability of each power value by a quantity equal
to the power value itself, divided by population mean power
before selection. If the distribution of power is continuous,
this statement applies to the probability density function.

Figure 1 illustrates Principle 2 for a simple, artificial example
in which power before selection is uniformly distributed on
the interval from 0.05 to 1.0. The corresponding distribution

Figure 1. Uniform distribution of power before selection
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after selection for significance is triangular – a substantial
change. In Figure 2, power before selection is less hetero-
geneous, and higher on average. Consequently, the distribu-
tions of power before selection and after selection are much
more similar. In both cases, though, mean true power after
selection for significance is higher.

Figure 2. Chi-squared distribution of power before selection
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In the Appendix, Principle 2 is used to derive the remain-
ing principles. The next Principle shows how mean power
after selection is related to mean power before selection. In
the simulations, it is used to choose the parameters of distri-
butions before selection so that expected power after selec-
tion will have some desired value. Finding exactly the right
values by trial and error is difficult.

Principle 3 Population mean power after selection for sig-
nificance equals the population mean of squared power be-
fore selection, divided by the population mean of power be-
fore selection.

It is also possible to go back from power after selection to
mean power before selection, again without knowing the full
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distributions. In Principle 4, the reciprocal of power refers to
one divided by the power value. Naturally this quantity has a
population mean.

Principle 4 Population mean power before selection equals
one divided by the population mean of the reciprocal of
power after selection.

Although we do not pursue the topic in this paper, Principle 4
opens the door to estimating mean power before selection
(the typicl “success rate" in a field) using only significant
results.

Selection for significance is often called “publication
bias" (Sterling, 1959; Sterling et al., 1995), and it has indis-
putable drawbacks. However, it does increase average power
because tests with higher power are more likely to be se-
lected. Principle 5 quantifies the increase.

Principle 5 The increase in population mean power due to
selection for significance equals the population variance of
power before selection divided by the population mean of
power before selection.

Because variances cannot be negative, population mean
power after selection for significance is always greater than
or equal to population mean power before selection, with
equality occurring only in the homogeneous case where the
population variance of power before selection is equal to
zero. The greatest increases in mean power will occur when
the distribution of power before selection is heterogeneous,
and average power is low.

Since power arises from the combination of sample size
with effect size, selection for significance affects both. This
last Principle shows how selection affects the joint probabil-
ity distribution of sample size and effect size. The similarity
to Principle 2 is remarkable.

Principle 6 The effect of selection for significance is to mul-
tiply the joint distribution of sample size and effect size be-
fore selection by power for that sample size and effect size,
divided by population mean power before selection.

Principle 6 implies that if sample size and effect size are
independent before selection they cannot be independent af-
ter selection, and vice versa. In simulations, it allows the
distribution of sample size before selection to be constructed
so that selection for significance produces a sample size dis-
tribution that matches observed data. An observed distribu-
tion of sample sizes after selection may imply a large pro-
portion of studies before selection with very small sample
sizes. Most of these small-sample studies are filtered out by
the selection process — in theory.

Estimation Methods

In this section, we describe four methods for estimating
population mean power under conditions of heterogeneity,
after selection for statistical significance.

P-curve 2.1 and p-uniform estimation of mean power

The original p-curve 2.0 (Simonsohn et al., 2014b) and p-
uniform (van Assen et al., 2014) methods are designed for
estimating effect sizes in meta-analyses where there is a sin-
gle fixed effect size, but possibly varying sample sizes. We
adapted them slightly to produce estimates of mean power,
again for the setting of heterogeneity in sample size but not
effect size. As stated earlier, we refer to our adaptation of
p-curve as p-curve 2.1.

Both p-uniform and p-curve 2.1 are based on the idea that
p-values are uniformly distributed when the null hypothesis
is true. Originally, the test statistics were used to test the null
hypothesis that the effect size is zero, and they all rejected
that null hypothesis. Now the set of significant test statis-
tics is used to test a modified null hypothesis that the effect
size equals some specified non-zero value. If the modified
null hypotheses were true, the resulting p-values would again
have a uniform distribution. To find the best fitting effect size
for a set of observed test statistics, p-curve 2.1 and p-uniform
compute p-values for various effect sizes and chose the effect
size that yields the best approximation of a uniform distribu-
tion.

If the modified null hypothesis that effect size = es is true,
the cumulative distribution function of the test statistic is the
conditional probability

F0(t) = Pr{T ≤ t|T > c}

=
p(t,ncp) − p(c,ncp)

1 − p(c,ncp)

=
p(t, f1(n) · f2(es)) − p(c, f1(n) · f2(es))

1 − p(c, f1(ni) · f2(es))
,

using ncp = f1(n) · f2(es) as given in Equation 1. The corre-
sponding modified p-value is

1 − F0(T ) =
1 − p(T, f1(n) · f2(es))
1 − p(c, f1(n) · f2(es))

.

Note that since the sample sizes of the tests may differ, the
symbols p, n and c as well as T may have different refer-
ents for j = 1, . . . , k test statistics. The subscript j has been
omitted to reduce notational clutter.

If the modified null hypothesis were true, the modified p-
values would have a uniform distribution. Both p-curve 2.1
and p-uniform choose as estimated effect size the value of es
that makes the modified p-values most nearly uniform. They
differ only in the criterion for deciding when uniformity has
been reached.

P-curve 2.1 is based on a Kolmogorov-Smirnov test for
departure from a uniform distribution, choosing the es value
yielding the smallest value of the test statistic. P-uniform is
based on a different criterion. Denoting by P j the modified
p-value associated with test j, calculate Y = −

∑k
j=1 ln(P j),

where ln is the natural logarithm. If the P j values were uni-
formly distributed, Y would have a Gamma distribution with
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expected value k, the number of tests. The P-uniform esti-
mate is the modified null hypothesis effect size es that makes
Y equal to k, its expected value under uniformity.

These technologies are designed for heterogeneity in sam-
ple size only, and assume a common effect size for all the
tests. Given an estimate ês of the common effect size, es-
timated power for each test is solely determined by sample
size. Using Expression 2, the estimated power of test j is
1−p(c j, f1(n j) · f2(ês)). Population mean power can then be
estimated by averaging the k power estimates. This natural
way of estimating mean power is merely implicit in the pa-
pers by van Assen et al. (2014) and Simonsohn et al. (2014b).

Maximum likelihood

The mechanism for data generation would be fully deter-
mined if the joint distribution of sample size and effect size
were known. Because sample size values are directly ob-
servable, we escape from assuming a distribution for them by
conducting the analysis conditionally upon their values. This
is deliberately similar to the way that independent variable
values are treated as fixed constants in the theory of multiple
regression. To take selection for significance into account,
the likelihood function for this problem is a product of k con-
ditional densities; each term is the conditional density of the
test statistic T j, given N j = n j and T j > c j, the critical value.

Likelihood function. For simplicity, assume that the
sample size and effect size before selection for significance
are independent, an assumption that does no harm when it
is violated in the simulations. Suppose that the distribution
of effect size before selection is continuous with probability
density gθ(es). This notation indicates that the distribution
of effect size depends on an unknown parameter or parame-
ter vector θ. In the appendix, it is shown that the likelihood
function (a function of θ) is a product of k terms of the form∫ ∞

0 d(t j, f1(n j) · f2(es))gθ(es) des∫ ∞
0

[
1 − p(c j, f1(n j) · f2(es))

]
gθ(es) des

, (3)

where the integrals denote areas under curves that can be
computed with R’s integrate function. The maximum
likelihood estimate, denoted by θ̂ is the value of θ for which
the value of the product is highest. Typically θ̂ is a single
number or a pair of numbers located by a numerical search.

An estimate of population mean power is produced by
averaging estimated power for the k significance tests. As
shown in the appendix, the terms to be averaged are∫ ∞

0

[
1 − p(c j, f1(n j) · f2(es))

]2
gθ̂(es) des∫ ∞

0

[
1 − p(c j, f1(n j) · f2(es))

]
gθ̂(es) des

. (4)

Z-curve

Z-curve follows a traditional meta-analyses that converts
p-values into Z-scores as a common metric to integrate re-

sults from different original studies (Rosenthal, 1979; Stouf-
fer, Suchman, DeVinney, Star, & Williams, 1949). The use
of Z-scores as a common metric makes it possible to fit a sin-
gle function to p-values arising from widely different statisti-
cal methods and tests. The method is based on the simplicity
and tractability of power analysis for the one-tailed Z-test,
in which the distribution of the test statistic under the alter-
native hypothesis is just a standard normal shifted by a fixed
quantity that plays the role of a non-centrality parameter, and
will be denoted by m. Input to the Z-curve is a sample of p-
values, all less than α = 0.05. These p-values are processed
in several steps to produce an estimate.

1. Convert p-values to Z-scores. The first step is to imag-
ine, for simplicity, that all the p-values arose from two-
tailed Z-tests in which results were in the predicted
direction. This is equivalent to an upper-tailed Z-test
with significance level α/2 = 0.025. The conversion to
Z-scores (Stouffer et al., 1949) consists of finding the
test statistic Z that would have produced that p-value.
The formula is

Z = qnorm(1 − p/2). (5)

2. Set aside Z > 6. We assume that p-values in this range
come from tests with power essentially equal to one.
To avoid numerical problems arising from p ≈ 0, we
set them aside for now and bring them back in the final
step.

3. Fit a finite mixture model. Before selecting for sig-
nificance and setting aside values above six, the dis-
tribution of the test statistic Z given a particular non-
centrality parameter value m is normal with mean m.
Afterwards, it is a normal distribution truncated on the
left at the critical value c (usually 1.96) truncated on
the right at 6, and re-scaled to have area one under the
curve.

Because of heterogeneity in sample size and effect
size, the full distribution of Z is an average of trun-
cated normals, with potentially a different value of m
for each member of the population. As a simplifica-
tion, heterogeneity in the distribution of Z is repre-
sented as a finite mixture with r components. The
model is equivalent to the following two-stage sam-
pling plan. First, select a non-centrality parameter m
from m1, . . . ,mr according to the respective probabil-
ities w1, . . . ,wr. Then generate Z from a normal dis-
tribution with mean m and standard deviation one. Fi-
nally, truncate and re-scale.

Under this approximate model, the probability density
function of the test statistic after selection for signifi-
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cance is

f (z) =

r∑
j=1

w j
dnorm(z − m j)

pnorm(6 − m j) − pnorm(c − m j)
.

(6)

The finite mixture model is only an approximation. If
the true probability density function of Z given signif-
icance were known, the approximation could be opti-
mized by choosing w1, . . . ,wr and m1, . . . ,mr to bring
(6) as close to the true density as possible. Since
the true density is unknown, we use a kernel den-
sity estimate (Silverman, 1986) as implemented in R’s
density function, with the default settings.

Specifically, the fitting step proceeds as follows. First,
obtain the kernel density estimate based on the sample
of significant Z values, re-scaling it so that the area un-
der the curve between 1.96 and 6 equals one. Call this
the conditional density estimate. Next, calculate the
conditional density estimate at a set of equally spaced
points ranging from 2 to 6. Then, numerically choose
w j and m j values so as to minimize the sum of abso-
lute differences between the conditional density esti-
mate and (6).

4. Estimate mean power for Z < 6. The estimate of rejec-
tion probability upon replication for Z < 6 is the area
under the curve above the critical value, with weights
and non-centrality values from the curve fitting step.
The estimate is

` =

r∑
j=1

ŵ j(1 − pnorm(c − m̂ j)), (7)

where ŵ1, . . . , ŵr and m̂1, . . . , m̂r are the values located
in Step 3. Note that while the input data are censored
both on the left and right as represented in Forumula 6,
there is no truncation in Formula 7 because it represets
the distribution of Z upon replication.

5. Re-weight using Z > 6. Let q denote the proportion of
the original set of Z statistics with Z > 6. Again, we
assume that the probability of significance for those
tests is essentially one. Bringing this in as one more
component of the mixture estimate, the final estimate
of the probability of rejecting the null hypothesis for
exact replication of a randomly selected test is

Zest = (1 − q) ` + q · 1 (8)

= q + (1 − q)
r∑

j=1

ŵ j(1 − pnorm(c − m̂ j))

By Principle 1, this is also an estimate of population true
mean power after selection.

Simulations

The simulations reported here were carried out using the R
programming environment (R Core Team, 2012) distributing
the computation among 70 quad core Apple iMac computers.
The R code is available in the supplementary materials, at
http://www.utstat.toronto.edu/∼brunner/zcurve2018.
In the simulations, the four estimation methods (p-curve 2.1,
p-uniform, maximum likelihood and z-curve) were applied
to samples of significant chi-squared or F statistics, all with
p < 0.05. This covers most cases of interest, since t statistics
may be squared to yield F statistics, while Z may be squared
to yield chi-squared with one degree of freedom.

Heterogeneity in Sample Size Only: Effect size fixed

Sample sizes after selection for significance were ran-
domly generated from a Poisson distribution with mean 86,
so that they were approximately normal, with population
mean 86 and population standard deviation 9.3. Population
mean power, number of test statistics on which the estimates
were based, type of test (chi-squared or F) and (numerator)
degrees of freedom were varied in a complete factorial de-
sign. Within each combination, we generated 10,000 sam-
ples of significant test statistics and applied the four estima-
tion methods to each sample. In these simulations, it was not
necessary to simulate test statistic values and then literally
select those that were significant. A great deal of computa-
tion was saved by using the R functions rsigF and rsigCHI,
(available from the supplementary materials) to simulate di-
rectly from the distribution of the test statistic after selection.
A description of the simulation method and a proof of its
correctness are given in the appendix.

Effect sizes were selected to yield population mean power
values after selection of 0.05, 0.25, 0.50 or 0.75. For F-tests,
we used Cohen’s (1988, p. 275) effect size metric f. For chi-
squared tests, we used Cohen’s w (Cohen, 1988, p. 216). The
number of test statistics k on which estimates were based was
15, 25, 50, 100 or 250. Numerator degrees of freedom (just
degrees of freedom for the chi-squared tests) were one, three
or five. Because the pattern of results was similar for F and
chi-squared tests and for different degrees of freedom, we
give details for F-tests with one numerator degree of free-
dom; preliminary data mining of the psychological literature
suggests that this is the case most frequently encountered in
practice. Full results are given in the supplementary materi-
als.

Average performance. Table 1 shows mean estimated
population mean power after selection, based on 10,000 sim-
ulations in each condition. Standard deviations are given in
the supplementary materials. Differences between the esti-
mates and the true values represent bias in estimation. We
conclude that all methods performed fairly well, with z-curve
showing a bit more bias than the other methods. The z-curve

http://www.utstat.toronto.edu/~brunner/zcurve2018
http://www.utstat.toronto.edu/~brunner/zcurve2018
http://www.utstat.toronto.edu/~brunner/zcurve2018
http://www.utstat.toronto.edu/~brunner/zcurve2018
http://www.utstat.toronto.edu/~brunner/zcurve2018
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Table 1
Average estimated population mean power for heterogeneity
in sample size only: F-tests with numerator d f = 1

Number of Tests
15 25 50 100 250

Population Mean Power = 0.05
P-curve 2.1 0.083 0.073 0.064 0.059 0.055
P-uniform 0.076 0.067 0.061 0.058 0.054
MaxLike 0.076 0.067 0.061 0.057 0.054
Z-curve 0.086 0.071 0.058 0.049 0.040
Population Mean Power = 0.25
P-curve 2.1 0.269 0.261 0.256 0.253 0.251
P-uniform 0.256 0.253 0.252 0.251 0.251
MaxLike 0.260 0.255 0.253 0.251 0.251
Z-curve 0.314 0.305 0.293 0.280 0.268
Population Mean Power = 0.50
P-curve 2.1 0.484 0.491 0.496 0.497 0.499
P-uniform 0.473 0.485 0.493 0.496 0.499
MaxLike 0.479 0.489 0.495 0.497 0.499
Z-curve 0.513 0.516 0.513 0.508 0.502
Population Mean Power = 0.75
P-curve 2.1 0.728 0.736 0.742 0.747 0.749
Puniform 0.721 0.732 0.740 0.746 0.748
MaxLike 0.728 0.736 0.742 0.747 0.749
Zcurve 0.704 0.712 0.717 0.723 0.728

estimates were also more variable. This is understandable,
since the other methods directly use information about sam-
ple size, and z-curve does not.

Absolute error of estimation. It is desirable for aver-
age estimates to be close to the true values, but still posi-
tive and negative errors may cancel. More interesting is how
close the estimate is on average to the true value being esti-
mated. Table 2 shows mean absolute error of estimation for
F-tests with one numerator degree of freedom; full results
are givn in the supplementary materials. As expected, all the
methods become more accurate with larger numbers of tests.
Though the differences are fairly small, Z-curve is least accu-
rate when mean power is low, and most accurate when mean
power is high. Maximum likelihood has a slight edge over
the other methods under most circumstances, except that z-
curve sometimes does better when population mean power
is moderate to high and the estimates are based on a small
number of tests.

Testing differences in accuracy. Because results like the
ones in in Table 2 are based on random number generation,
some of the apparent differences could be due to chance.
Thus we find ourselves applying statistical tests to an investi-
gation of statistical tests. Within each of the 20 combinations
of mean true power and number of tests, there are six po-
tential pairwise comparisons of mean absolute error. These
comparisons were carried out using large-sample two-sided

Table 2
Mean absolute error of estimation for heterogeneity in sam-
ple size only: F-tests with numerator d f = 1

Number of Tests
15 25 50 100 250

Population Mean Power = 0.05
P-curve 2.1 3.32 2.25 1.41 0.93 0.52
P-uniform 2.57 1.75 1.11 0.76 0.43
MaxLike 2.59 1.74 1.09 0.73 0.39
Z-curve 6.53 4.90 3.38 2.44 1.79
Population Mean Power = 0.25
P-curve 2.1 12.94 10.49 7.69 5.53 3.64
P-uniform 12.11 9.87 7.17 5.18 3.38
MaxLike 12.07 9.76 7.05 5.10 3.32
Z-curve 13.55 11.09 8.21 5.96 3.87
Population Mean Power = 0.50
P-curve 2.1 14.32 11.20 8.14 5.80 3.67
P-uniform 13.93 10.68 7.80 5.56 3.51
MaxLike 13.61 10.41 7.60 5.39 3.41
Z-curve 12.42 9.91 7.44 5.48 3.59
Population Mean Power = 0.75
P-curve 2.1 9.77 7.59 5.38 3.72 2.35
P-uniform 9.79 7.59 5.34 3.71 2.32
MaxLike 9.33 7.23 5.11 3.53 2.21
Z-curve 8.34 6.96 5.56 4.30 3.13

matched Z-tests with a Bonferroni correction, yielding a joint
0.001 significance level for the 120 tests.

Tables 3 and 4 show the number of times that the row
method was significantly more accurate than the column
method by this stringent criterion. For example, for chi-
squared tests with one degree of freedom, p-curve 2.1 was
significantly more accurate than z-curve 14 times, while z-
curve was significantly more accurate than p-curve 2.1 for 5
treatment combinations.

Tables 3 and 4 each have three sub-tables, one for each de-
grees of freedom value. Note that the Bonferroni correction
was applied separately to each sub-table. In all, Tables 3 and
4 summarize the results of 720 tests. Full details are given in
the supplementary materials.

In each sub-table of Tables 3 and 4, the most accu-
rate method overall is maximum likelihood, followed by p-
uniform. When maximum likelihood lost a comparison it
was usually to z-curve – especially when mean power was
moderate to high and the number of tests on which the es-
timates were based was low. P-curve 2.1 and z-curve were
least accurate overall, with p-curve 2.1 perhaps having a
slight edge for chi-squared tests with larger degrees of free-
dom.

As one would expect from the large-sample theory of
maximum likelihood estimation (Lehman & Casella, 1998,
Ch. 6), maximum likelihood performed particularly well

http://www.utstat.toronto.edu/~brunner/zcurve2018
http://www.utstat.toronto.edu/~brunner/zcurve2018
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Table 3
Number of times row method is significantly more accurate
than column method: Chi-squared tests, heterogeneity in
sample size only

d f = 1
PC PU ML ZC Total

P-curve 2.1 (PC) 0 0 0 14 14
P-uniform (PU) 15 0 0 14 29
MaxLike (ML) 20 16 0 16 52
Z-curve (ZC) 5 4 3 0 12

d f = 3
P-curve 2.1 (PC) 0 0 0 15 15
P-uniform (PU) 16 0 0 15 31
MaxLike (ML) 20 15 0 16 51
Z-curve (ZC) 5 2 2 0 9

d f = 5
P-curve 2.1 (PC) 0 0 0 15 15
P-uniform (PU) 15 0 1 16 32
MaxLike (ML) 20 15 0 17 52
Z-curve (ZC) 3 2 2 0 7

Table 4
Number of times row method is significantly more accurate
than column method: F-tests, heterogeneity in sample size
only

Numerator d f = 1
PC PU ML ZC Total

P-curve 2.1 (PC) 0 0 0 13 13
P-uniform (PU) 15 0 0 13 28
MaxLike (ML) 20 17 0 14 51
Z-curve (ZC) 7 5 4 0 16

Numerator d f = 3
P-curve 2.1 (PC) 0 0 0 13 13
P-uniform (PU) 15 0 0 14 29
MaxLike (ML) 20 16 0 15 51
Z-curve (ZC) 6 4 3 0 13

Numerator d f = 5
P-curve 2.1 (PC) 0 0 0 13 13
P-uniform (PU) 14 0 0 14 28
MaxLike (ML) 20 16 0 15 51
Z-curve (ZC) 6 4 3 0 13

when estimates were based on a large number of tests. It is
important to recognize, however, the the differences in av-
erage estimation error are fairly small. We conclude that
although maximum likelihood performs best, all the meth-
ods yield reasonable estimates when effect sizes are homo-
geneous.

Heterogeneity in Both Sample Size and Effect Size

To model heterogeneity in effect size, we let effect size be-
fore selection vary according to a gamma distribution (John-
son, Kotz, & Balakrishnan, 1995), a flexible continuous dis-
tribution taking positive values. Sample size before selec-
tion remained Poisson distributed with a population mean of
86. For convenience, sample size and effect size were inde-
pendent before selection for significance. Maximum likeli-
hood correctly assumed a gamma distribution for effect size,
and the likelihood search was over the two parameters of the
gamma distribution. The other three methods were not mod-
ified in any way. P-curve 2.1 and p-uniform continued to
assume a fixed effect size, and z-curve continued to assume
heterogeneity in the non-centrality parameter without distin-
guishing between heterogeneity in sample size and hetero-
geneity in effect size.

We carried out a simulation experiment like the one in
Section , with one additional factor: amount of heterogene-
ity in effect size, as represented by the standard deviation
of the effect size distribution. The factors were true popu-
lation mean power (0.25, 0.50 or 0.75), standard deviation
of effect size after selection (0.10, 0.20 or 0.30), number of
test statistics upon which estimates of mean power are based
(k =100, 250, 500, 1,000 or 2,000), type of test (F or chi-
squared), and experimental degrees of freedom (1, 3 or 5).
Within each cell of the design, ten thousand significant chi-
squared test statistics were randomly generated, and popula-
tion mean power was estimated using all four methods. For
brevity, we present results for F-tests with numerator d f = 1.
Full results are given in the supplementary materials.

When there is heterogeneity in effect size, maximum like-
lihood is computationally demanding. The areas under many
curves must be calculated numerically; see Expression 3. Us-
ing R’s integrate function, the calculation involves fitting
a histogram to each curve and then adding the areas of the
bars. It is slow, and some of the curves are very skewed and
razor thin. Numerical accuracy is an issue, especially for
ratios of areas when the denominators are very small. In ad-
dition, the likelihood function has many local maxima, and
it is necessary to try more than one starting value to have
a hope of locating the global maximum. In our simulations,
we used three random starting points. More would have been
better, but the computational burden was too great for a sim-
ulation study. As a result, we consider the performance of
maximum likelihood to be somewhat under-stated. Note that
speed would not be a serious issue in applications to real data,
but here we are simulating 2,700,000 meta-analyses for this
one section alone.

Average performance. Table 5 shows estimated popu-
lation mean power as a function of true population mean
power and the standard deviation of effect size size. Dif-
ferences between the average estimates and population mean
values represent bias in estimation. The averages are mean

http://www.utstat.toronto.edu/~brunner/zcurve2018
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estimates over 10,000 simulated samples of test statistics. In
this table the estimates were based on k = 1, 000 test statis-
tics, and good accuracy may be anticipated. P-uniform broke
down completely for higher values of heterogeneity in effect
size, with most estimates close to one regardless of the true
value. For moderate to high mean power, p-curve 2.1 also
produced an over-estimate on average, with the problem be-
coming most severe when mean power and heterogeneity in
effect size were both high. Maximum likelihood and z-curve
performed much better.

Table 5
Average estimated power for heterogeneity in sample size
and effect size based on k = 1, 000 F-tests with numerator
d f = 1

SD of Effect Size
0.1 0.2 0.3

Population Mean Power = 0.25
P-curve 2.1 0.225 0.272 0.320
P-uniform 0.294 0.694 0.949
MaxLike 0.230 0.269 0.283
Z-curve 0.233 0.225 0.226
Population Mean Power = 0.50
P-curve 2.1 0.549 0.679 0.757
P-uniform 0.602 0.913 0.995
MaxLike 0.501 0.502 0.506
Z-curve 0.504 0.492 0.487
Population Mean Power = 0.75
P-curve 2.1 0.824 0.928 0.962
P-uniform 0.861 0.992 1.000
MaxLike 0.752 0.750 0.750
Z-curve 0.746 0.755 0.760

Absolute error of estimation. Table 6 shows mean ab-
solute error of estimation. It confirms the inaccuracy of p-
uniform under heterogeneity in effect size, and suggests that
p-curve 2.1 may be competitive with maximum likelihood
and z-curve when heterogeneity and true mean power are
both low. Otherwise, p-curve 2.1 can severely over-estimate
population mean power.

Testing differences in accuracy. Table 6 is a sub-table,
giving results based on k = 1, 000 F-tests with numerator
d f = 1. The full simulation study has 3 levels of popula-
tion mean true power, 3 levels of the standard deviation of
effect size (heterogeneity), and 5 levels of number of tests k.
Within each of these 45 combinations, there are 6 pairwise
comparisons of the 4 estimation methods. The resulting 270
matched Z-tests were protected with a Bonferroni correction
at the joint 0.001 significance level. This correction was ap-
plied separately for F-tests and chi-squared tests. Table 7
counts the wins for chi-squared tests, and Table 8 counts the
wins for F-tests.

For all three d f values and all five values of k (the num-

Table 6
Mean absolute error of estimation in percentage points, for
heterogeneity in sample size and gamma effect size based on
k = 1, 000 F-tests with numerator d f = 1

SD of Effect size
0.1 0.2 0.3

Population Mean Power = 0.25
P-curve 2.1 2.87 3.16 7.08
P-uniform 4.50 44.38 69.90
MaxLike 3.55 2.06 3.34
Z-curve 2.59 3.08 2.90
Population Mean Power = 0.50
P-curve 2.1 4.93 17.86 25.70
P-uniform 10.21 41.28 49.54
MaxLike 1.80 1.49 1.50
Z-curve 2.12 2.19 2.23
Population Mean Power = 0.75
P-curve 2.1 7.45 17.75 21.23
P-uniform 11.08 24.17 24.99
MaxLike 1.42 1.18 1.16
Z-curve 1.69 1.42 1.55

Table 7
Number of times row method is significantly more accurate
than column method: Chi-squared tests, heterogeneity in
sample size and gamma effect size

d f = 1
PC PU ML ZC Total

P-curve 2.1 (PC) 0 45 0 0 45
P-uniform (PU) 0 0 0 0 0
MaxLike (ML) 41 45 0 33 119
Z-curve (ZC) 45 45 8 0 98

d f = 3
P-curve 2.1 (PC) 0 45 4 1 50
P-uniform (PU) 0 0 0 0 0
MaxLike (ML) 40 44 0 34 118
Z-curve (ZC) 40 45 7 0 92

d f = 5
P-curve 2.1 (PC) 0 45 5 4 54
P-uniform (PU) 0 0 0 0 0
MaxLike (ML) 40 45 0 36 121
Z-curve (ZC) 38 45 5 0 88

ber of significance tests on which the estimates were based),
Table 7 counts the wins for chi-squared tests, and Table 8
counts the wins for F-tests. Maximum likelihood is clearly
the best, followed by z-curve, p-curve 2.1 and p-uniform in
that order. When other methods beat maximum likelihood,
it was almost always when heterogeneity in effect size and
population mean true power were both low. This is consis-
tent with Table 5, in which maximum likelihood performs
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Table 8
Number of times row method is significantly more accurate
than column method: F-tests, heterogeneity in sample size
and gamma effect size

Numerator d f = 1
PC PU ML ZC Total

P-curve 2.1 (PC) 0 45 4 0 49
P-uniform (PU) 0 0 0 0 0
MaxLike (ML) 40 45 0 31 116
Z-curve (ZC) 42 45 10 0 97

Numerator d f = 3
P-curve 2.1 (PC) 0 45 5 4 54
P-uniform (PU) 0 0 5 0 5
MaxLike (ML) 40 40 0 34 114
Z-curve (ZC) 39 45 7 0 91

Numerator d f = 5
P-curve 2.1 (PC) 0 45 5 6 56
P-uniform (PU) 0 0 5 1 6
MaxLike (ML) 40 40 0 34 114
Z-curve (ZC) 38 42 8 0 88

best when mean power is moderate to high.

Violating the Assumptions

In the preceding simulation study, heterogeneity in effect
size before selection was modeled by a gamma distribution,
with effect size independent of sample size before selection.
Maximum likelihood had a substantial and arguably unfair
advantage, since it assumed exactly the correct distribution
for effect size. Also, maximum likelihood unfairly “knew"
that sample size and effect size before selection were inde-
pendent. It is well known that when its assumptions are cor-
rect, maximum likelihood is very accurate compared to other
methods (Stuart & Ord, 1999, Ch. 18). When its assumptions
are incorrect, the performance of maximum likelihood must
be assessed on a case-by-case basis.

To test the robustness of maximum likelihood to assump-
tions, we conducted a smaller-scale simulation limited to F-
tests with numerator degrees of freedom equal to one. Max-
imum likelihood continued to assume a gamma distribution
for effect size before selection, but the true distribution was
beta; see Johnson, Kotz, and Balakrishnan (1995) for full de-
tails about these distributions. Though the beta distribution
covers the interval zero to one and thus lacks the long right
tail of the gamma, still the maximum value of one is more
than more than twice Cohen’s (1988, p. 287) large effect size
of f = 0.4.

Maximum likelihood also continued to assume indepen-
dence of sample size and effect size before selection. We
used a Poisson regression to connect them, inducing vary-
ing population correlations between sample size and effect

Table 9
Average estimated power with beta effect size and sample
size correlated with effect size: k = 1, 000 F-tests with nu-
merator d f = 1

Correlation between n and es
-0.8 -0.6 -0.4 -0.2 0.0

Population Mean Power = 0.25
P-curve 2.1 0.407 0.405 0.403 0.403 0.402
P-uniform 0.853 0.852 0.852 0.852 0.852
MaxLike 0.302 0.301 0.300 0.300 0.300
Z-curve 0.232 0.231 0.230 0.231 0.230
Population Mean Power = 0.50
P-curve 2.1 0.839 0.840 0.841 0.841 0.841
P-uniform 0.906 0.906 0.906 0.906 0.906
MaxLike 0.532 0.533 0.533 0.534 0.534
Z-curve 0.493 0.494 0.495 0.495 0.495
Population Mean Power = 0.75
Pcurve 0.990 0.991 0.992 0.992 0.992
Puniform 0.964 0.966 0.966 0.967 0.967
MaxLike 0.826 0.832 0.836 0.838 0.840
Zcurve 0.785 0.790 0.793 0.794 0.796

size. Negative correlations would be expected, because of
some researchers doing power analyses to select sample size,
or otherwise having a sense of the sample sizes required for
significance in their fields of study.

In our simulations, the variance of effect size after selec-
tion was fixed at 0.30, the high heterogeneity value in the
preceding section. Sample size after selection was Poisson
distributed with expected value exp(β0 + β1es). Mean ef-
fect size after selection and the parameters β0 and β1 were
selected to achieve (a) Desired population mean power after
selection, (b) Desired population correlation between effect
size and sample size after selection, and (c) Population mean
sample size after selection equal to 86 at the mean effect size.
Details are given in the appendix.

Three values of population mean power (0.25, 0.50 and
0.75), five values of the number of test statistics (k = 100,
250, 500, 1000 and 2000) and five values of the correlation
between sample size and effect size (0.0, -0.2, -0.4, -0., -0.8)
were varied in a factorial design, with ten thousand sets of
simulated F statistics at each combination of values. All four
estimation methods were applied to each simulated data set,
with three random starting values for maximum likelihood.

Table 9 shows average estimated population mean power
as a function of true population mean power and the stan-
dard deviation of effect size. In this table, the estimates were
based on k = 1, 000 test statistics. Maximum likelihood
tends to overestimate power when true power is high or low
but not as much when true power equals 0.5. Correlation
between sample size and effect size does not appear to mat-
ter much. P-curve 2.1 and p-uniform produce estimates that
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are much too high on average. The bias of z-curve is lowest
overall.

Table 10 shows mean absolute error of estimation when
estimates are based on k = 1, 000 test statistics. It shows
maximum likelihood to be consistently less accurate than z-
curve, though not as bad as p-curve 2.1 and p-uniform. Cor-
relation between sample size and effect size appears to have
little effect. Table 10 shows the results only for k = 1, 000
test statistics, but results are very similar for the other values
of k. Full details are given in the supplementary materials.

Table 10
Mean absolute error of estimation in percentage points, with
beta effect size and sample size correlated with effect size:
k = 1, 000 F-tests with numerator d f = 1

Correlation between n and es
-0.8 -0.6 -0.4 -0.2 0.0

Population Mean Power = 0.25
P-curve 2.1 15.67 15.49 15.33 15.30 15.24
P-uniform 60.26 60.24 60.23 60.22 60.22
MaxLike 5.17 5.11 5.05 5.05 5.01
Z-curve 2.37 2.41 2.47 2.48 2.50
Population Mean Power = 0.50
P-curve 2.1 33.88 33.99 34.07 34.09 34.11
P-uniform 40.59 40.61 40.63 40.63 40.64
MaxLike 3.25 3.34 3.42 3.43 3.46
Z-curve 1.92 1.91 1.89 1.90 1.89
Population Mean Power = 0.75
P-curve 2.1 24.04 24.13 24.18 24.21 24.24
P-uniform 21.43 21.56 21.63 21.67 21.72
MaxLike 7.62 8.23 8.56 8.76 8.97
Z-curve 3.51 4.01 4.27 4.43 4.59

Within each of the 5 × 3 × 5 = 75 combinations of corre-
lation between sample size and effect size, population mean
power and number of tests on which the estimates are based,
there are six pairwise comparisons of mean absolute error for
the four estimation methods. The resulting 450 matched Z-
tests were protected with a Bonferroni correction at the joint
0.001 significance level. The full set of Z statistics may be
found in the supplementary materials.

Table 11 counts the wins. While Table 10 shows results
just for estimates based on k = 1, 000 tests, Table 11 pools
the results for all five values of k, because they were ex-
tremely similar. These results show that when the distribu-
tional assumptions of maximum likelihood are violated, z-
curve is usually more accurate. Maximum likelihood still
beat p-curve 2.1 and p-uniform in every comparison, as did
z-curve.

Full Heterogeneity

When population mean power in a field of study is being
estimated, there will typically be heterogeneity not just in

Table 11
Number of times row method is significantly more accurate
than column method with beta effect size and sample size
correlated with effect size: F-tests with numerator d f = 1

P-curve 2.1 P-uniform MaxLike Z-curve Total
P-curve 2.1 0 50 0 0 50
P-uniform 25 0 0 0 25
MaxLike 75 75 0 5 155
Z-curve 75 75 69 0 219

sample size and effect size, but also in the tests on which
estimates are based. The distribution of sample size is un-
likely to be Poisson, the distribution of effect size will not
be gamma and the null hypothesis will be true with non-zero
probability. Our full heterogeneity simulation examines the
performance of the four methods in this situation. Given the
performance of p-curve 2.1 and p-uniform in the previous
scenario, we do not expect these methods to succeed. A more
important question is how z-curve and maximum likelihood
perform when they are faced with full heterogeneity.

Sample size. In the simulations so far, sample sizes have
been Poisson distributed. While the Poisson distribution is a
widely accepted model for count data (Johnson, Kemp, &
Kotz, 1995), sample size may be more dispersed and skewed
than the Poisson in practice when a variety of research de-
signs are employed. Figure 3 compares the Poisson distribu-
tion with mean 86 to a histogram of 7,000 approximate sam-
ple sizes based on denominator degrees of freedom in the
journal Psychological Science during the years 2001-2015.
These are preliminary data and not a random sample, but we
believe they are closer to reality than the Poisson when a full
range of topics is being investigated.

The Psychological Science data consist of 7,000 pairs of
numerator and denominator degrees of freedom. Actual sam-
ple sizes were not collected in this preliminary attempt at data
mining, so sample size was approximated by n = d f1+d f2+1.
Numerator degrees of freedom were limited to ten or fewer,
and the data were edited so that sample size ranged from 20
to 500, with a mean of 86.

Tests. In the simulations under full heterogeneity, eighty
percent of the tests were F-tests, and twenty percent were
chi-squared. For the F-tests, (d f1, d f2) pairs were randomly
sampled with replacement from the Psychological Science
data. The degrees of freedom for the chi-squared tests were
randomly sampled with replacement from the d f1 values.
Sample sizes for the chi-squared tests were selected with re-
placement, independently of degrees of freedom.

Effect size. In this set of simulations, effect size has
a mixed continuous-discrete distribution. With probability
0.10, effect size equals zero, so that the null hypothesis is ex-
actly true 10% of the time. With probability 0.05, effect size

http://www.utstat.toronto.edu/~brunner/zcurve2018
http://www.utstat.toronto.edu/~brunner/zcurve2018


14 BRUNNER AND SCHIMMACK

Figure 3. Poisson versus Psychological Science Sample
Sizes
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has a standard exponential distribution shifted by one; in this
case the minimum effect size is over twice Cohen’s (1988,
p. 287)“high" value for the F-test, representing manipulation
checks and other “findings" that are too good to be true. The
other 0.85 probability is devoted to a beta distribution, with
parameters chosen to make population mean power after se-
lection either 0.25, 0.50 or 0.75. The same effect size dis-
tribution was used for chi-squared and F-tests even though
the substantive meanings and power corresponding to a given
effect size and sample size are different. No special attempt
was made to hold the standard deviation of effect size con-

Figure 4. Distributions of effect size and power after selec-
tion, under full heterogeneity

Figure 3: Distributions of effect size and power after selection under full heterogeneity
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stant, but all values were above the earlier “high" value of
0.30. Sample size and effect size are independent after selec-
tion, so that before selection they are non-independent. This
is a minor point, since we saw in the preceding section that
correlation between sample size and effect size appears to
make little difference.

Figure 4 shows the distribution of effect size after selec-
tion and and the resulting distribution of power after selec-
tion. The distribution of power includes the power of both
chi-squared tests and F-tests. It is evident that the effect of
heterogeneity in sample size and effect size is increased het-
erogeneity in power. Since power is bounded by 0.05 and
one, its distribution is forced to the extremes.

Average performance. The p-curve 2.1, p-uniform,
maximum likelihood and z-curve methods were used to es-
timate the means of the power distributions depicted in Fig-
ure 4. Maximum likelihood continued to assume a gamma
distribution for effect size, and independence of sample size
and effect size before selection. For maximum likelihood,
three sets of random starting values for the gamma parame-
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ters were employed. Table 12 shows means of the estimates
over 10,000 simulated sets of test statistics in each condition.
The p-uniform method yields estimates that are much too
high. P-curve 2.1 also over-estimates mean power, though
to a much lesser degree than p-uniform. Over-estimation by
p-curve 2.1 is most pronounced when true population mean
power is high. Maximum likelihood and z-curve also yield
mildly biased estimates, though not in a consistent direction
across conditions. Overall, we judge the average estimates
of maximum likelihood to be acceptable, and the average
estimates of p-curve 2.1 to be acceptable when population
mean power is low to medium. However, accuracy is more
important than low estimation bias.

Table 12
Average estimated population mean power under full hetero-
geneity

k = Number of Tests
100 250 500 1000 2000

Population Mean Power = 0.25
P-curve 2.1 0.280 0.280 0.283 0.288 0.292
P-uniform 0.691 0.776 0.823 0.856 0.877
MaxLike 0.267 0.267 0.268 0.269 0.269
Z-curve 0.251 0.240 0.234 0.232 0.230
Population Mean Power = 0.50
P-curve 2.1 0.561 0.571 0.577 0.581 0.585
P-uniform 0.807 0.861 0.891 0.911 0.923
MaxLike 0.473 0.468 0.465 0.463 0.462
Z-curve 0.517 0.505 0.497 0.491 0.487
Population Mean Power = 0.75
P-curve 2.1 0.828 0.836 0.840 0.842 0.844
Puniform 0.921 0.945 0.956 0.964 0.968
MaxLike 0.740 0.736 0.734 0.731 0.730
Zcurve 0.764 0.756 0.750 0.745 0.740

Absolute error of estimation. Table 13 shows mean ab-
solute differences between the estimates and mean power,
multiplied by 100. The p-uniform estimates are unaccept-
able, and p-curve 2.1 is clearly less accurate than maximum
likelihood or z-curve. Table 13 suggests that maximum like-
lihood may have an advantage over z-curve when population
mean power is low, while z-curve prevails when population
mean power is medium to high.

Within each of the 15 combinations of power and num-
ber of tests, there are six potential pairwise comparisons of
mean accuracy. These comparisons were carried out using
large-sample two-sided matched Z-tests with a Bonferroni
correction at the joint 0.001 level. As would be anticipated
from Table 13, p-uniform was significantly less accurate than
the other methods in all comparisons, and p-curve 2.1 was
significantly less accurate than maximum likelihood and z-
curve in all comparisons. Table 14 counts significant wins
and losses; z-curve prevails over maximum likelihood by a

Table 13
Mean absolute error of estimation under full heterogeneity,
in percentage points

Number of Tests
100 250 500 1000 2000

Population Mean Power = 0.25
P-curve 2.1 6.27 4.68 4.05 4.00 4.25
P-uniform 44.14 52.57 57.35 60.56 62.67
MaxLike 3.87 2.66 2.23 2.03 1.99
Z-curve 5.13 3.53 2.95 2.60 2.43
Population Mean Power = 0.50
P-curve 2.1 7.39 7.21 7.67 8.10 8.50
P-uniform 30.67 36.14 39.13 41.06 42.30
MaxLike 4.81 3.84 3.67 3.74 3.79
Z-curve 5.93 3.78 2.81 2.23 1.98
Population Mean Power = 0.75
P-curve 2.1 7.88 8.62 8.99 9.24 9.41
P-uniform 17.11 19.48 20.61 21.36 21.84
MaxLike 3.67 2.61 2.16 2.03 2.07
Z-curve 3.64 2.45 1.81 1.48 1.38

score of seven to six. Five of maximum likelihood’s six wins
occur when the true population mean power is 0.25. In this
setting, the z-curve estimate appears to settle down to 0.23
rather than 0.25 as the number of tests k on which the esti-
mate is based increases. This is not a serious error in practice.

Note that while the distributional assumptions of maxi-
mum likelihood are violated in this simulation, it still per-
forms approximately as well as z-curve. A glance at the up-
per left panel of Figure 4 suggests why. Even though the
distribution of effect size is certainly not gamma, still the
right-skewed and mostly decreasing distribution for low pop-
ulation mean power might be approximated fairly well be a
gamma distribution.

Table 14
Number of times row method is significantly more accurate
than column method under full heterogeneity

P-curve 2.1 P-uniform MaxLike Z-curve Total
P-curve 2.1 0 15 0 0 15
P-uniform 0 0 0 0 0
MaxLike 15 15 0 6 36
Z-curve 15 15 7 0 37

A conservative bootstrap confidence interval for z-curve

Estimates should always be accompanied by confidence
intervals, to give an idea of their precision. For z-curve, the
most natural choice is a bootstrap confidence interval. The
bootstrap (Efron, 1979; Efron & Tibshirani, 1993) is based
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on re-sampling from the observed data with replacement, cal-
culating a statistic on each re-sampled data set, and using the
histogram of the resulting values as an approximation of the
sampling distribution of the statistic. In this case the statistic
is the z-curve estimate. Our choice is the percentile confi-
dence interval method, which assumes that the sampling dis-
tribution of the estimate is symmetric, and centered on the
quantity being estimated. Here, we re-sampled test statis-
tics and computed z-curve estimates B = 500 times. The
95 percent bootstrap confidence interval ranges from the 2.5
percentile to the 97.5 percentile of the estimates.

Especially when samples are small, it is important to ver-
ify that a proposed 95% confidence interval contains the true
value 95% of the time. This is called the coverage of the
confidence interval. In a pilot study, we found that the cover-
age of the 95% bootstrap confidence interval was sometimes
less than 95%. For example, notice in Table 12 that the mean
estimate for power = 0.25 and k = 2, 000 is 0.23 rather than
0.25. The sampling distribution of the z-curve estimate is
nicely symmetric as required by the bootstrap method, but it
is centered on 0.23 and not 0.25. The resulting coverage of
the confidence interval is roughly 84% when it should be 95.
With increasing volume of data, the width of the confidence
interval would shrink and the coverage would decrease to
zero.

Reviewing the average z-curve estimates from all the sim-
ulations, we determined that the the bias of the z-curve esti-
mate is seldom more than two percentage points, and never
more than two percentage points for larger samples. Thus
an easy fix of the confidence interval is to decrease the lower
limit by 0.02 and increase the upper limit by 0.02. This yields
our conservative bootstrap confidence interval.

We tested the conservative bootstrap confidence interval
in the setting of full heterogeneity, with 10,000 simulated
datasets at each combination of three values of true popu-
lation mean power (again, the distributions in Figure 4), and
seven values of the number of test statistics, ranging from
k = 25 to k = 2, 000.

Table 15 gives the coverage values. Even for k = 25 its
performance is respectable. The table shows that the conser-
vative bootstrap confidence interval is indeed conservative
under most circumstances. When the estimates are based on
larger numbers of test statistics, it behaves more like a 99 per-
cent confidence interval. For estimates based on fewer than
25 test statistics, it might be helpful to increase the correction
factor from 0.02 to 0.025.

Table 15
Coverage of the 95% conservative bootstrap confidence in-
terval

Population Number of Tests
Mean Power 25 50 100 250 500 1000 2000

0.25 95.78 97.13 98.02 98.69 98.76 98.35 97.95
0.50 94.58 95.51 96.79 98.27 99.11 99.28 99.15
0.75 93.21 94.81 96.83 98.85 99.37 99.73 99.58

Table 16 shows mean upper and lower confidence limits.
The upper limit is the top number in each cell, and the lower
limit is the bottom number. For example, when the true pop-
ulation mean power is 0.75 and the z-curve estimate is based
on k = 100 test statistics, the average confidence interval will
range from 0.65 to 0.85. This may be sufficient precision for
some purposes, but it is desirable to base estimates on a larger
number of test statistics if possible.

Table 16
Average Upper and Lower Confidence limits

Population Number of Tests
Mean Power 25 50 100 250 500 1000 2000

0.25 0.54 0.46 0.40 0.35 0.32 0.30 0.29
0.06 0.09 0.11 0.14 0.16 0.17 0.17

0.50 0.76 0.71 0.67 0.62 0.58 0.56 0.55
0.26 0.32 0.36 0.39 0.41 0.42 0.43

0.75 0.89 0.87 0.85 0.83 0.81 0.80 0.79
0.55 0.61 0.65 0.67 0.68 0.69 0.69

Table 16 suggests that estimating population mean power
is fundamentally a large-sample game. When it is applied to
smaller collections of studies, it is particularly important to
accompany the estimates with confidence intervals.

Discussion

In this paper, we have compared four methods for estimat-
ing the mean statistical power of a heterogeneous population
of significance tests, after selection for significance. We have
discovered and formally proved a set of fundamental princi-
ples relating the distribution of power values before selection
to their distribution after selection. These principles were
used extensively in a set of large-scale simulation studies
comparing the estimation methods. For example, Principle 3
states that population mean power after selection equals the
population mean of squared power before selection, divided
by population mean power before selection. This principle
allowed the bivariate distribution of sample size and effect
size before selection to be adjusted so that population mean
power after selection would have exactly some desired value.
Finding the right values by trial and error would have been
extremely tedious, and never completely successful.
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We used simulation to compare four methods for estimat-
ing population mean power after selection for significance:
p-curve 2.1, p-uniform, maximum likelihood and z-curve.
We found that z-curve was the most accurate method when
there was substantial heterogeneity in effect size and the dis-
tribution of effect size was unknown. Z-curve is also the most
convenient, requiring only a set of p-values as input. Esti-
mates should be accompanied by confidence intervals. We
have provided a conservative bootstrap confidence interval
for z-curve and verify by simulation that has good coverage
even for small samples.

In a meta-analysis of studies testing exactly the same hy-
pothesis with very similar subject populations, it is reason-
able to assume that effect size is a single fixed constant,
while sample size of course may vary. This is the setting
for which p-curve 2.1 and p-uniform were designed. Here,
all the methods performed reasonably well in our simula-
tions. The most accurate method was maximum likelihood,
followed by p-uniform. The original p-uniform method of
van Assen et al. (2014) includes a high-quality confidence
interval that extends readily to estimates of mean power. In
simulation studies not reported here, we found the coverage
of the p-uniform confidence intervals to be superior to cover-
age of the maximum likelihood confidence intervals, partic-
ularly for small samples. For this reason, we recommend the
p-uniform method when there is strong reason to believe that
heterogeneity in effect size is absent.

Then we introduced heterogeneity in effect size. In this
situation, maximum likelihood estimates are based on a para-
metric model for the distribution of effect size, and also for
the relationship between sample size and effect size. We car-
ried out another large-scale simulation experiment in which
effect size was gamma distributed and independent of sample
size before selection. Maximum likelihood made full use of
these features. When heterogeneity in effect size was mod-
erate to high, maximum likelihood was by far the most accu-
rate method in spite of numerical difficulties. The next most
accurate was z-curve, which performed acceptably but not as
well as maximum likelihood. The effect of high heterogene-
ity on p-uniform was particularly severe, leading to very high
estimated mean power almost regardless of the true value.
This confirms the view of the p-uniform team (van Aert et
al., 2016), who warn against using either p-curve 2.1 or p-
uniform to estimate effect size when effect size is heteroge-
neous.

In practice, the probability distribution of effect size will
never be known, and effect size may well be related to sam-
ple size. To test the robustness of maximum likelihood, we
conducted a study in which effect size was beta distributed
(limited to values between zero and one, in contrast to the as-
sumed right-skewed gamma distribution), and the population
correlation between sample size ranged from zero to -0.8.
Maximum likelihood continued to assume a gamma distribu-

tion for effect size and zero correlation between sample size
and effect size before selection. Here, z-curve was clearly
more accurate than maximum likelihood, which in turn still
out-performed p-curve 2.1 and p-uniform. The study pro-
vided strong evidence that maximum likelihood estimation
of power is sensitive to violation of distributional assump-
tions, while correlation between sample size and effect size
had little effect. In another simulation where effect size was
right skewed but not gamma distributed, z-curve and maxi-
mum likelihood performed about equally well. We conclude
that since the distribution of effect size is always unknown
and moderate heterogeneity in effect size cannot be ruled out,
the preferred method of estimating population mean power
from published results is z-curve.

Some important statistical features of z-curve require fur-
ther investigation. One is the question of independence. In
all our simulations, the input p-values were independent.
While z-curve does not formally assume independent inputs,
the bootstrap confidence interval definitely does. Further
simulations could provide reassurance (or raise a warning
flag) about the performance of the method when clusters of
p-values come from tests conducted on the same data set.

Another unresolved issue is how well the method z-curve
method performs for tests that do not have one of the com-
mon non-central distributions under the alternative hypoth-
esis. The most important case is in classical repeated mea-
sures ANOVA, where many test statistics have central F dis-
tributions when the null hypothesis is true, but multiples of a
central F when the null hypothesis is false. Z-curve requires
only p-values as input and can be computed immediately for
such data, while special versions of the other methods would
have to be developed. Conceptually, z-curve depends on esti-
mating the approximate distribution of a latent non-centrality
parameter. The question is how well it performs when there
is no non-centrality parameter. Preliminary results are en-
couraging, but a full simulation study is needed.

Neither the estimation methods we consider nor our sim-
ulations make any allowance for the kind of exploratory sta-
tistical analysis that capitalizes on chance, and makes statis-
tical significance a near certainty. The terms “vibration ef-
fects" (Ioannidis, 2008), “False-positive psychology" (Sim-
mons, Nelson, & Simonsohn, 2011), “p-hacking" (Simon-
sohn et al., 2014a) and “Questionable Research Practices"
(Schimmack, 2012) have been used. Here, we will call it p-
hacking. We have no doubt that the practice of p-hacking is
widespread and we suspect that it reduces the average true
power of published studies.

The question is how it influences estimates of power. Si-
monsohn et al. (2014b) report simulations that suggest opti-
mism about the effect of p-hacking upon p-curve estimates
of effect size. There is a need for larger-scale simulations
that focus on the estimation of mean power and allow for
heterogeneity in both sample size and effect size. Also, p-
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hacking can take a variety of different forms, and different
p-hacking strategies may have different effects on the distri-
bution of significant p-values. For example, stepwise regres-
sion results in lower average p-values than an optional stop-
ping rule in which “exploration" stops once p < 0.05. Vari-
ation in p-hacking strategy needs to be explored. Only when
we understand the effects of p-hacking on estimated power,
particularly when true power is greater than 0.05, will we
be able to confirm the potential accuracy of z-curve for real
data.
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Appendix

Proofs of the Principles, with an example

This section of the appendix contains formal proofs of the
Principles given in Two populations of power. The princi-
ples are also illustrated with a numerical example. Consider
a population of F-tests with 3 and 26 degrees of freedom,
and varying true power values. Variation in power comes
from variation in the non-centrality parameter, which is sam-
pled from a chi-squared distribution with degrees of freedom
chosen so that population mean power is very close to 0.80.

Denoting a randomly selected power value by G and the
non-centrality parameter by λ, population mean power is

E(G) =

∫ ∞

0
(1 − pf(c, ncp = λ)) dchisq(λ) dλ

To verify the numerical value of expected power for the ex-
ample,

> alpha = 0.05; criticalvalue = qf(1-alpha,3,26)
> fun = function(ncp,DF)
+ (1 - pf(criticalvalue,df1=3,df2=26,ncp))*dchisq(ncp,DF)
> integrate(fun,0,Inf,DF=14.36826)
0.8000001 with absolute error < 5.9e-06

The strange fractional degrees of freedom were located using
the R function uniroot, minimizing the absolute difference
between the output of integrate and the value 0.8 numer-
ically over the degrees of freedom value. The minimum oc-
curred at 14.36826.

Principle 1 states that Population mean true power equals
the overall probability of a significant result.

Proof. Suppose that the distribution of true power is dis-
crete. Again denoting a randomly chosen power value by G,
the probability of rejecting the null hypothesis is

Pr{T > c} =
∑

g

Pr{T > c|G = g}Pr{G = g}

=
∑

g

g Pr{G = g}

= E(G), (9)

which is population mean power. If the distribution of power
is continuous with probability density function fG (g), the cal-
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culation is

Pr{T > c} =

∫ 1

0
Pr{T > c|G = g} fG (g) dg

=

∫ 1

0
g fG (g) dg

= E(G) �

Continuing with the numerical example, we first sample one
million non-centrality parameter values from the chi-squared
distribution that yields an expected power of 80%. These val-
ues are in the vector NCP. We then calculate the correspond-
ing power values, placing them in the vector Power. Next,
we generate one million random F statistics from non-central
F distributions, using the non-centrality parameter values in
NCP. In the R output below, observe that mean power is very
close to the proportion of F statistics exceeding the criti-
cal value. This illustrates Principle 1 for the distribution of
power before selection. Needless to say, Principle 1 applies
both before and after selection.

> popsize = 1000000; set.seed(9999)
> NCP = rchisq(popsize,df=14.36826)
> Power = 1 - pf(criticalvalue,df1=3,df2=26,NCP)
> mean(Power)
[1] 0.8002137
> Fstat = rf(popsize,df1=3,df2=26,NCP)
> sigF = subset(Fstat,Fstat>criticalvalue)
> length(sigF)/popsize # Proportion significant
[1] 0.800177

To show how Principle 1 applies to the distribution of
power after selection, the sub-population of power values
corresponding to significant results are stored in SigPower.
The tests that were significant are repeated (with the same
non-centrality parameters), and the test statistics placed in
Fstat2. The proportion of test statistics in Fstat2 that
are significant is very close to the mean of SigPower. This
gives empirical support to the statement that population mean
power after selection for significance equals the probability
of obtaining a significant result again.

> SigPower = subset(Power,Fstat>criticalvalue)
> mean(SigPower) # Mean power after selection
[1] 0.8274357
> # Replicate the tests that were significant.
> sigNCP = subset(NCP,Fstat>criticalvalue)
> Fstat2 = rf(length(sigF),df1=3,df2=26,ncp=sigNCP)
> # Proportion of replications significant
> length(subset(Fstat2,Fstat2>criticalvalue)) /
+ length(sigF)
[1] 0.827172

Principle 2 states that the effect of selection for signifi-
cance is to multiply the probability of each power value by
a quantity equal to the power value itself, divided by pop-
ulation mean power before selection. If the distribution of

power is continuous, this statement applies to the value of
the probability density function.

Proof. Suppose the distribution of power is discrete. Us-
ing Bayes’ Theorem,

Pr{G = g|T > c} =
Pr{T > c|G = g}Pr{G = g}

Pr{T > c}
=

g Pr{G = g}
E(G)

.

(10)
If the distribution of power is continuous with density fG (g),

Pr{G ≤ g|T > c} =
Pr{G ≤ g,T > c}

Pr{T > c}

=

∫ g
0 Pr{T > c|G = x} fG (x) dx

E(G)

=

∫ g
0 x fG (x) dx

E(G)
.

By the Fundamental Theorem of Calculus, the conditional
density of power given significance is

d
dg

Pr{G ≤ g|T > c} =
g fG (g)
E(G)

. � (11)

For the numerical example we are pursuing by simulation,
the density function of power before selection is a technical
challenge and we will not attempt it. As a substitute, sup-
pose that power before selection follows a beta distribution,
a very flexible family on the interval from zero to one (John-
son, Kotz, & Balakrishnan, 1995). If power before selection
(denoted by G) has a beta distribution with parameters α and
β, Principle 2 says that the density of power after selection (a
function of the power value g) is

f (g|T > c) =
Γ(α + β)
Γ(α)Γ(β)

gα−1(1 − g)β−1
(

g
E(G)

)
=

(
1

α/(α + β)

)
Γ(α + β)
Γ(α)Γ(β)

gα(1 − g)β−1

=
(α + β) Γ(α + β)
αΓ(α) Γ(β)

gα+1−1(1 − g)β−1

=
Γ(α + 1 + β)
Γ(α + 1) Γ(β)

gα+1−1(1 − g)β−1,

which remarkably is again a beta density, this time with pa-
rameters α + 1 and β. Figure 5 shows how a beta with α = 2
and β = 4 is transformed into a beta with α = 3 and β = 4.

Principle 3 states that Population mean power after selec-
tion for significance equals the population mean of squared
power before selection, divided by the population mean of
power before selection..

Proof. Suppose that the distribution of power is discrete.
Then using (10),

E(G|T > c) =
∑

g

g
g Pr{G = g}

E(G)
=

E(G2)
E(G)

. (12)
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Figure 5. Beta density of power before and after selection
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If the distribution of power is continuous, (11) is used to ob-
tain

E(G|T > c) =

∫ 1

0
g

g fG (g)
E(G)

dg =
E(G2)
E(G)

. � (13)

In the example, SigPower contains the sub-population of
power values corresponding to significant results. Observe
the verification of Formula 13.

> # Repeating ...
> SigPower = subset(Power,Fstat>criticalvalue)
> mean(SigPower)
[1] 0.8274357
> mean(Power^2)/mean(Power)
[1] 0.8275373

Principle 4 states that population mean power before se-
lection equals one divided by the population mean of the re-
ciprocal of power after selection..

Proof. Using Formula 10,

E
(

1
G

∣∣∣∣∣ T > c
)

=
∑

g

(
1
g

)
g Pr{G = g}

E(G)

=
1

E(G)

∑
g

Pr{G = g} =
1

E(G)
· 1

=
1

E(G)
,

so that

E(G) = 1
/
E

(
1
G

∣∣∣∣∣ T > c
)
.

A similar calculation applies in the continuous case. �

To illustrate Principle 4, recall that the example was con-
structed so that mean power before selection was equal to
0.80.

> 1/mean(1/SigPower)
[1] 0.8000502

In the example, population mean power is 0.80, while
population mean power given significance is roughly 0.83. It
is reasonable that selecting significant tests would also tend
to select higher power values on average, and in fact this in-
tuition is correct. Since

Var(G) = E(G2) − (E(G))2 ≥ 0, we have
E(G2) ≥ (E(G))2 , and hence
E(G2)
E(G)

≥ E(G).

Principle 3 says E(G2)
E(G) = E(G|T > c), so that E(G|T > c) ≥

E(G). That is, population mean power given significance is
greater than the mean power of the entire population, except
in the homogeneous case where Var(G) = 0. The exact
amount of increase has a compact and somewhat surprising
form.

Principle 5 states that the increase in population mean
power due to selection for significance equals the population
variance of power before selection divided by the population
mean of power before selection..

Proof.

E(G|T > c) − E(G) =
E(G2)
E(G)

− E(G)

=
E(G2)
E(G)

−
(E(G))2

E(G)

=
Var(G)
E(G)

. �

Illustrating Principle 5 for the ongoing example,

> mean(SigPower) - mean(Power)
[1] 0.02722205
> var(Power)/mean(Power)
[1] 0.02732371

Principle 6 says that the effect of selection for significance
is to multiply the joint distribution of sample size and effect
size by power for that sample size and effect size, divided by
population mean power before selection.

Proof. Note that power for a given sample size and ef-
fect size is P{T > c|X = es,N = n}. Suppose effect size is
discrete. Then P{X = es,N = n|T > c} is

P{X = es,N = n,T > c}
P{T > c}

=
P{T > c|X = es,N = n}P{X = es,N = n}

E(G)

=

(
P{T > c|X = es,N = n}

E(G)

)
P{X = es,N = n} ,
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where E(G) is expected power before selection, equal to
P{T > c} by Principle 1.

Suppose that effect size is continuous with density g(es).
The joint distribution of sample size and effect size before
selection is determined by P{N = n|X = es}g(es). The joint
distribution after selection is determined by
P{N = n|X = es,T > c} g(es|T > c)

=
P{T > c|X = es,N = n}P{N = n|X = es}g(es)

g(es|T > c)P{T > c}
g(es|T > c)

=

(
P{T > c|X = es,N = n}

E(G)

)
P{N = n|X = es}g(es) .

It is also possible to write the joint distribution of sample size
and effect size as the conditional density of effect size given
sample size, times the discrete probability of sample size.
That is, the joint distribution before selection is determined
by g(es|N = n)P{N = n}, and the joint distribution after se-
lection is determined by g(es|N = n,T > c)P{N = n|T > c}

=
d

des
P{X ≤ es|N = n,T > c}P{N = n|T > c}

=
d

des
P{X ≤ es,N = n,T > c}

P{N = n,T > c}
P{N = n,T > c}

P{T > c}

=
1

E(G)
d

des

∫ es

0
P{T > c|X = y,N = n}g(y|N = n)P{N = n} dy

=
P{T > c|X = es,N = n}g(es|N = n)P{N = n}

E(G)

=

(
P{T > c|X = es,N = n}

E(G)

)
g(es|N = n)P{N = n} � (14)

Principle 6 cannot be illustrated for the ongoing numer-
ical example, because the example employs a distribution
of the non-centrality parameter, rather than of sample size
and effect size jointly. As a substitute, consider that an ob-
served distribution of sample size after selection must imply
a distribution of sample size in the unpublished studies be-
fore selection. If that distribution is too outlandish (for ex-
ample, implying an enormous “file drawer" of pilot studies
with tiny sample sizes) we may be forced to another model
of the research and publication process. Principle 6 allows
one to solve for P{N = n}, the unconditional probability dis-
tribution of sample size before selection, though an estimated
or hypothesized distribution of effect size given sample size
before selection is needed. When sample size and effect size
are deemed independent before selection, this is not a serious
obstacle.

Expression 14 says that g(es|N = n,T > c)P{N = n|T >
c} is equal to

(
P{T > c|X = es,N = n}

E(G)

)
g(es|N = n)P{N = n},

so that integrating both sides with respect to es,∫
g(es|N = n,T > c)P{N = n|T > c} des

= P{N = n|T > c}
∫

g(es|N = n,T > c) des

= P{N = n|T > c} · 1

=

∫ (
P{T > c|X = es,N = n}

E(G)

)
g(es|N = n)P{N = n} des

=

(
P{N = n}

E(G)

) ∫
P{T > c|X = es,N = n} g(es|N = n) des,

and we have

P{N = n} = E(G)

 P{N = n|T > c}∫
P{T > c|X = es,N = n} g(es|N = n) des


(15)

The numerator of the fraction is the probability of observ-
ing a sample size of n after selection for significance. The
denominator is expected power given that sample size, and
could be calculated with R’s integrate function. By Prin-
ciple 1, the quantity E(G) is both population mean power
before selection and P{T > c}, the probability of randomly
choosing a significant result from the population of tests be-
fore selection. In Equation 15, though, it is just a proportion-
ality constant. In practice, one obtains P{N = n} by calculat-
ing the fraction in parentheses for each n, and then dividing
by the total to obtain numbers that add to one.

Maximum Likelihood

Even though sample size is a random variable, the quanti-
ties n1, . . . , nk are treated as fixed constants. This is similar to
the way that x values in normal regression and logistic regres-
sion are treated as fixed constants in the development of the
theory, even though clearly they are often random variables
in practice. Making the estimation conditional on the ob-
served values n1, . . . , nk allows it to be distribution free with
respect to sample size, just as regression and logistic regres-
sion are distribution free with respect to x. This is preferable
to adopting parametric assumptions about the joint distribu-
tion of sample size and effect size.

Suppose there is heterogeneity in both sample size and
effect size, and that effect size is continuous. The likelihood
function given significance is a product of conditional den-
sities evaluated at the observed values of the test statistics.
Each term is the conditional density of the test statistic given
both the sample size and the event that the test statistic ex-
ceeds its respective critical value.

The joint probability distribution of sample size and effect
size before selection is determined by the marginal distribu-
tion of sample size P{N = n} and the conditional density of
effect size given sample size gθ(es|n), where θ is a vector of
unknown parameters. Denoting the random effect size by X,
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the conditional density of an observed test statistic T given
significance and a particular sample size n is

d
dt

P{T ≤ t|T > c,N = n}

=
d
dt

P{T ≤ t,T > c,N = n}
P{T > c,N = n}

=
d
dt

P{c < T ≤ t|N = n}P{N = n}
P{T > c|N = n}P{N = n}

=
d
dt

P{c < T ≤ t|N = n}
P{T > c|N = n}

=
d
dt

∫ ∞
0

P{c < T ≤ t|N = n, X = es}gθ(es|n) des∫ ∞
0

P{T > c|N = n, X = es}gθ(es|n) des

=
d
dt

∫ ∞
0

[
p(t, f1(n) f2(es)) − p(c, f1(n) f2(es))

]
gθ(es|n) des∫ ∞

0

[
1 − p(c, f1(n) f2(es))

]
gθ(es|n) des

=

∫ ∞
0

d
dtp(t, f1(n) f2(es))gθ(es|n) des∫ ∞

0

[
1 − p(c, f1(n) f2(es))

]
gθ(es|n) des

=

∫ ∞
0
d(t, f1(n) f2(es))gθ(es|n) des∫ ∞

0

[
1 − p(c, f1(n) f2(es))

]
gθ(es|n) des

,

where moving the derivative through the integral sign is jus-
tified by dominated convergence. The likelihood function is
a product of k such terms. In the main paper, the simplifying
assumption that sample size and effect size are independent
before selection means that gθ(es|n) is replaced by gθ(es),
yielding Expression (3).

In the problem of estimating power under heterogeneity
in effect size, the unknown parameter is the vector θ in the
density of effect size. Let θ̂ denote the maximum likelihood
estimate of θ. This yields a maximum likelihood estimate
of the true power of each individual test in the sample, and
then the estimates are averaged to obtain an estimate of mean
power. We now give details.

Consider randomly sampling a single test from the pop-
ulation of tests that were significant the first time they were
carried out. Let T1 denote the value of the test statistic the
first time a hypothesis is tested, and let T2 denote the value
of the test statistic the second time that particular hypothesis
is tested, under exact repetition of the experiment. Condi-
tionally on fixed values of sample size n and effect size es,
T1 and T2 are independent. By Principle 1, population mean
power after selection is

P{T2 > c|T1 > c} =
∑

n

P{T2 > c|T1 > c,N = n}P{N = n|T1 > c}

(16)
This is the expression we seek to estimate. Applying Princi-
ple 3 to the sub-population of tests based on a sample of size
n,

P{T2 > c|T1 > c,N = n}

=
E(G2|N = n)
E(G|N = n)

=

∫ ∞
0

[
1 − p(c, f1(n) f2(es))

]2 gθ(es|n) des∫ ∞
0

[
1 − p(c, f1(n) f2(es))

]
gθ(es|n) des

. (17)

Substituting (17) into (16) yields P{T2 > c|T1 > c} =

∑
n

∫ ∞
0

[
1 − p(c, f1(n) f2(es))

]2 gθ(es|n) des∫ ∞
0

[
1 − p(c, f1(n) f2(es))

]
gθ(es|n) des

P{N = n|T1 > c} .

(18)
Expression 18 has two unknown quantities, the parameter
θ of the effect size distribution, and P{N = n|T1 > c}. For
the former quantity, we use the maximum likelihood esti-
mate, while the P{N = n|T1 > c} values are estimated by the
empirical relative frequencies of sample size, which is the
non-parametric maximum likelihood estimate. The result is
a maximum likelihood estimate of population power given
significance:

1
k

k∑
j=1

∫ ∞
0

[
1 − p(c j, f1(n j) f2(es))

]2
gθ̂(es|n j) des∫ ∞

0

[
1 − p(c j, f1(n j) f2(es))

]
gθ̂(es|n j) des

.

In the simulations, the density g of effect size is assumed
gamma, there is no dependence on n, and the parameter θ is
the pair (a, b) that parameterize the gamma distribution.

Simulation

Direct simulation from the distribution of the test statis-
tic given significance. To study the behaviour of an esti-
mation method under selection for significance, it is natural
to simulate test statistics from the distribution that applies
before selection, and then discard the ones that are not sig-
nificant. But if one can simulate from the joint distribution of
sample size and effect size after selection, the wasteful dis-
carding of non-significant test statstics can be avoided. The
idea is to do the simulation in two stages. First, simulate pairs
from the joint distribution of sample size and effect size af-
ter selection, and calculate a non-centrality parameter using
Expression (ncpmult). Then using that ncp value, simulate
from the distribution of the test statistic given significance.
We will now show how to do the second step.

It is well known that if F(t) is a cumulative distribution
function of a continuous random variable and U is uniformly
distributed on the interval from zero to one, then the random
variable T = F−1(U) has cumulative distribution function
F(t). In this case the cumulative distribution function from
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which we wish to simulate is P{T ≤ t|T > c, X = es,N = n}

=
P{T ≤ t,T > c|X = es,N = n}

P{T > c|X = es,N = n}

=
P{c < T ≤ t|X = es,N = n}

P{T > c|X = es,N = n}

=
p(t,ncp) − p(c,ncp)

1 − p(c,ncp)

for t > c, where as usual ncp = f1(n) f2(es). To obtain the
inverse, set u equal to the probability and solve for t, as fol-
lows. Denoting the power of the test by γ = 1 − p(c,ncp),

u =
p(t,ncp) − p(c,ncp)

1 − p(c,ncp)
⇔ u (1 − p(c,ncp)) = p(t,ncp) − p(c,ncp)

⇔ p(t,ncp) = u (1 − p(c,ncp)) + p(c,ncp)

⇔ p(t,ncp) = γu + 1 − γ
⇔ t = q(γu + 1 − γ,ncp).

Accordingly, let U be a Uniform (0,1) random variable. The
significant test statistic is

T = q(γU + 1 − γ,ncp)
= q(1 + γ(U − 1),ncp)
= q(1 − γ(1 − U),ncp) .

Since 1 − U also has a Uniform (0,1) distribution, one
may proceed as follows. For a given sample size and ef-
fect size, first calculate the non-centrality parameter ncp =

f1(n) f2(es), and use that to compute the power value γ =

1 − p(c,ncp). Then calculate the significant test statistic

T = q(1 − γU,ncp) , (19)

where U is a pseudo-random variate from a Uniform (0,1)
distribution. In R, the process can be applied to a vector of
ncp values and a vector of independent U values of the same
length.

Again, this is the second step. The first step is to simulate
a collection of ncp values using the desired joint distribution
of sample size and effect size after selection for significance.
Naturally, simulation is is easiest if sample size and effect
size come from well-known distributions with built-in ran-
dom number generation, and if sample size and effect size
are specified to be independent after selection. In one of our
simulations, sample size and effect size after selection were
correlated. The next section describes how this was done.

Correlated sample size and effect size. Let effect size
X have density gθ(es), where θ represents a vector of pa-
rameters for the distribution of effect size. Conditionally on
X = es, let the distribution of sample size be Poisson dis-
tributed with expected value exp(β0 + β1es). This is stan-
dard Poisson regression. Simulation from the joint distri-
bution is easy. One simply simulates an effect size es ac-
cording to the density g, computes the Poisson parameter

λ = exp(β0 + β1es), and then samples a value n from a
Poisson distribution with parameter λ. The challenge is to
choose the parameters θ, β0 and β1 so that after selection,
(a) the population mean power has a desired value, and at the
same time (b) the population correlation between sample size
and effect size has a desired value. Population mean power
is γ =∫ ∞

0

∑
n

[
1 − p(c, f1(n) f2(es))

]
P{N = n|X = es}gθ(es)des .

Given values of θ, β0 and β1, this expression can be calcu-
lated by numerical integration; recall that P{N = n|X = es}
is a Poisson probability.

The population correlation between sample size and effect
size is

ρ =
E(XN) − E(X)E(N)

SD(X) SD(N)
,

where SD(·) refers to the population standard deviation of
something. The quantities E(X) and SD(X) are direct func-
tions of θ. The standard deviation of sample size SD(N) =√

E(N2) − [E(N)]2, where

E(N) = E(E[N |X])

=

∫ ∞

0
E[N |X = es] gθ(es)des

=

∫ ∞

0
eβ0+β1esgθ(es)des

and

E(N2) = E(E[N2|X])
= E(Var(N) + E(N)2|X)

=

∫ ∞

0

(
eβ0+β1es + e2β0+2β1es

)
gθ(es)des .

Finally,

E(XN) =

∫ ∞

0

∑
n

es n P{N = n|X = es}gθ(es)des

=

∫ ∞

0
es E(N |X = es)gθ(es)des

=

∫ ∞

0
es eβ0+β1esgθ(es)des .

All these expected values can be calculated by numerical in-
tegration using R’s integrate function, so that the correla-
tion ρ can be evaluated for any set of θ, β0 and β1 values.

In our simulation of correlated sample size and effect
size, gθ(es) was a beta density, re-parameterized so that
θ = (µ, σ2) consisted of the mean µ and variance σ2. Con-
ditionally on effect size, sample size was Poisson distributed
with expected value exp(β0 + β1es). We set the variance of
effect size σ2 to a fixed value of 0.09, so that the standard
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deviation of effect size after selection was 0.30, a high value.
Given any mean effect size µ and slope β1, the parameter
β0 (the intercept of the Poisson regression) was adjusted so
that expected sample size at the mean value was equal to 86:
β0 = ln(86) − β1µ.

With these constraints, the population mean power γ and
correlation ρ were a function of the two free parameters µ

and β1. Let γ0 be a desired value of mean power; for exam-
ple, γ0 = 0.5. Let ρ0 be a desired value of the correlation
between sample size and effect size; for example, ρ0 = −0.8.
Values of µ and β1 were locating by numerically minimizing
the function f (µ, β1) = |γ − γ0| + |ρ − ρ0|. We used R’s optim
function.
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