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 AAAAbbbbssssttttrrrraaaacccctttt.  The objective of a classification procedure is to identify subsets of observations that

arise from the same probability distribution. Examples include cluster analysis, change point

detection, discriminant analysis, outlier detection, and multiple comparisons. A distinction is made

between random partition (mixture model) classification and fixed partition classification, and we

show that for a Bayesian approach with natural models and priors, the former is a special case of

the latter. We also show that in any Bayesian mixture problem where a Dirichlet prior is assumed

for the unknown mixing distribution, the posterior distribution unavoidably depends upon the kind

of classification analysis described here.  For both fixed-partition and random partition

classification problems, numerical difficulties are overcome by a Gibbs sampling method.  The

techniques are illustrated with data from a study of songbird diets.

1111....    IIIInnnnttttrrrroooodddduuuuccccttttiiiioooonnnn. 

In a classification problem, data obtained from each of n objects are used as a basis for deciding

which of the objects are somehow similar.  An "object" may be a person, an ant colony, a species,

an experimental treatment, or any other entity capable of generating data.  An object may potentially

contribute more than one observation, and those observations may or may not be assumed

independent. Our approach will be Bayesian. Therefore it will necessarily be based on a well-

defined probability model for the data -- unlike, for example, Draper and Smith's (1981)

discussion of outlier detection, and many but not all of the versions of cluster analysis in the

collection edited by Arabie, Hubert and De Soete (1996).  Indeed, our view of the classification

problem is that the objects we are trying to classify may have generated data from different

probability distributions, and that our task is to group them into subsets so that objects are assigned

to the same subset if and only if they have generated data from the same distribution. 

Let Xi denote the observation (possibly vector valued) obtained from object i, i = 1, ..., n. We

shall begin by studying the following model; then we will extend it.  Given the vector ƒƒƒƒ =

(ƒ1, ..., ƒn), let the observations XXXX = (X1, ..., Xn) be independent with respective densities

k(xi|ƒi), i = 1, ..., n.  The functional form of k is known except for the value of ƒi. Our goal is

Bayesian inference about a partition of the integers {1, ..., n}, consisting of a collection of

subsets such that ƒi=ƒj if and only if i and j belong to the same subset. That is, observations
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with indices in the same subset come from the same distribution. This framework is general enough

so that either directly or with straightforward extensions, it encompasses various Bayesian

approaches to cluster analysis (Hartigan 1975 p. 113; Shapiro 1977; Binder 1978; Menzefricke

1981; Symons 1981; Titterington, Smith and Makov 1985; Lavine and West 1992;  Grenander

1993 Ch. 14; Bernardo 1994;  Bock 1996; Liu 1996), discriminant analysis (Geisser 1964, 1966,

1982; Bernardo 1988; Lavine and West 1992; Johnson and Kokolakis 1994; Johnson and Mouhab

1996), outlier detection (Box and Tiao 1968; Guttman 1973; Guttman, Dutter and Freeman 1978),

and structural change in linear models and time series (Broemeling 1985, Ch. 7).

To give a bit more detail for a non-standard example, we remark that Menzefricke's (1981)

Bayesian clustering of data sets is obtained by allowing the "observations" Xi to be vectors of i.i.d.

random variables (so that the density k(xi|ƒi) above is a product of marginals), one vector for each

treatment. In this way, the problem of multiple comparisons emerges as one of classification. The

"objects" are experimental treatments, and the statistician seeks to classify them into subsets that

generate data from distributions with, for example, the same mean. In fact, any statistical procedure

for deciding whether there is a relationship between some dependent variable and a categorical

independent variable can be viewed a a type of classification analysis, for the question is really

whether the values of the independent variable are generating data from a single probability

distribution. 

We also think it worthwhile to point out how a basic version of discriminant analysis fits our

framework with no special modification. Here, the number of "groups" or subsets is known. There

is a "training sample" of observations for which group membership is known, and an additional

sample of observations for which group membership is unknown; these are to be classified.  To

obtain posterior classification probabilities using the methodology of the present paper, we simply

assign prior probability zero to partitions with the wrong number of subsets, and also to partitions

in which any two members of the training sample who belong to the same group appear in different

subsets. 

There would appear to be two major types of classification problem (Bock, 1996).  Fixed partition
classification makes no assumption about why the elements of ƒƒƒƒ might happen to be different; ƒƒƒƒ is
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simply an unknown parameter. Random partition or mixture model classification assumes a two-

stage sampling procedure in which ƒ1, ..., ƒn are first sampled independently from some unknown

mixing distribution G, and then the Xi are independently sampled from k(xi|ƒi), i = 1, ..., n. In the

random partition model, the parameter is the probability distribution G, and ƒƒƒƒ is a latent variable.  

Random partition models are appealing in cases where the objects being classified have been

sampled from some population, but the methods they require can be complicated. Not only is there

an unobservable latent vector, but the parameter G is itself a probability distribution.  In the absence

of special restrictions (like assuming G to be supported on a finite number of points) the problem is

non-parametric, and the natural candidate for a prior distribution on G will be some version of

Ferguson's (1973) Dirichlet process prior, which is a stochastic process. 

In this paper we show that for a Bayesian, random partition classification reduces to fixed partition

classification with a special choice of prior. This means that although there is an important

conceptual difference between fixed-partition and random-partition classification, the practical

details of performing an analysis are the same -- except that for random-partition analysis, the

prior distribution must have a particular form.  Thus we are able to restrict our attention to the fixed

partition version throughout most of the paper, and confine the discussion of stochastic processes to

a single section. There, we will show how random partition classification is a special case of fixed

partition classification, and also reveal a deep relationship between classification analysis and

Bayesian inference for mixture models -- not just mixture models for classification analysis, but

mixture models in general.  We show that for any mixture problem where a Dirichlet prior is

adopted for the unknown mixing distribution, the posterior distribution is based on a fixed partition

classification analysis with a special kind of prior.  

Here is the plan of the paper.  In Section 2 we begin by describing a natural fixed-partition

classification problem, adopt a fairly general prior, and compute the posterior distribution. Then we

extend the model to allow for a covariate, and to let us deal in a natural way with change-point

problems. We observe that consistency is obtained when each object being classified contributes a

sequence of independent  observations.  This leads us to the view that in most classification

problems, one should consider the sample size to be not the number of objects being classified, but

the number of data values contributed by each object. From this perspective, most of the ad hoc
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methods for cluster analysis are valiant but largely futile attempts to solve an n=1 problem.

Section 3 is concerned the problem of numerically evaluating posterior quantities for a fixed-

partition classification analysis; this includes the mixture model version as a special case.

Numerical evaluation truly is a problem, because the number of partitions of {1, ..., n},  grows so

rapidly with the sample size n that even listing all of them is a practical impossibility for moderate

sample sizes (see for example the account by Comtet 1974, Ch. 5).  Our primary solution is to

approximate posterior probabilities by means of a Gibbs sampler (Geman and Geman 1984,

Gelfand and Smith 1990).  That is, we construct a Markov chain whose limiting stationary

distribution is the posterior distribution on partitions, and then use the strong law of large numbers

for Markov chains (Chung 1967) to approximate any posterior quantity of interest.  Since the

Markov chain has a finite state space (the space of all partitions), checking conditions of

convergence is easy, and in addition we benefit from a geometric rate of convergence and a central

limit theorem.  

The general idea of a Gibbs sampler on partitions comes from MacEachern (1994).  He describes a

related method for use in Bayesian density estimation, using a model that is a location mixture of

normals. The most important difference between our procedure and MacEachern's, apart from

technical details, is that ours applies to fixed-partition as well as to mixture model classification

(strictly speaking, MacEachern's method applies to density estimation rather than classification

analysis, but its use for the latter purpose is immediate). So, although other Markov chain Monte

Carlo methods have been developed for mixture model classification analysis (Lavine and West's

1992 Gibbs sampler and Liu's 1996 sequential imputation scheme as well as MacEachern's Gibbs

sampler), we believe that ours is the first that allows actual computation of fixed-partition
Bayesian classification with no restrictions on the possible partitions or the number of objects being

classified. 

Section 4 is an application of the methods in this paper to clustering songbirds (using Gibbs

sampling) and songbird species (exact calculation) according to the contents of their gizzards.  In

Section 5, we outline further applications and extensions of the method.  In Section 6, we discuss

the connection of the classification problem to Bayesian mixture models in general.  We begin by
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considering a mixture model classification analysis, in which a Dirichlet process prior (Ferguson

1973) has been adopted for the unknown mixing distribution. When we derive the posterior on

partitions for this model, we see that it is a special case of the posterior for fixed-partition

classification analysis.  Thus we learn that for a Bayesian, mixture model classification analysis is

equivalent to a fixed-partition classification analysis with a special form of prior distribution -- and

that the form of that prior distribution is determined by the parameters of the Dirichlet process prior.

We then demonstrate a deep relationship between classification analysis and Bayesian inference for

mixture models -- not just mixture models for classification analysis, but mixture models in

general.  We show that for any mixture problem where a Dirichlet prior is adopted for the unknown

mixing distribution, the posterior distribution is based on a classification analysis that can be viewed

as a fixed-partition analysis with a special choice of prior distribution.  To give an idea of the

range of applications involved, mixture models with Dirichlet priors have yielded non-parametric

Bayes procedures for estimation of an arbitrary density (Escobar 1988, Escobar and West 1995,

Ferguson 1983, Lo 1978 and 1984, MacEachern 1994, West, Escobar and Müller 1994) and

inference about monotone hazard rates (Dykstra and Laud 1981, Lo and Weng 1989), as well as

semi-parametric methods for decreasing densities (Brunner 1994, Brunner and Lo 1989),

symmetric unimodal densities on the line (Brunner and Lo 1989), elliptically symmetric densities in

RRk (Brunner 1989), rotationally symmetric densities on the sphere (Brunner and Lo 1994), and

densities on the line that are unimodal but not necessarily symmetric (Brunner 1992).  Our results

show that all of these non-parametric methods depend, at least implicitly, on a garden variety

parametric classification analysis.   

2.1 Fixed-partition classification.  

A classification of n objects corresponds to a partition of the set of integers {1, ...., n}.  Such a

partition P consists of m mutually exclusive and exhaustive subsets or "cells;" they will be denoted

C1, ..., Cm.  The number of integers in cell Ci is ni, i = 1, ..., m.  When the dependence of m,

Ci and ni upon P need to be indicated explicitly, they will be written as m(P), Ci(P) and ni(P)

respectively. 
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Model 1. We will begin with the following model. Conditionally on value of ƒƒƒƒ = (ƒ1, ..., ƒn), the

observations XXXX = (X1, ..., Xn) arise independently from distributions with densities k(.|ƒi),

i = 1, ..., n.  The form of k is known exactly except for the parameter value ƒi; both Xi and ƒi can

be vectors.  Some of the observations may come from the same distribution.  Let P be the partition

of indices such that  ƒi=ƒj for i≠j if and only if i and j belong to the same cell.  Denoting by çi

the common parameter value of observations with indices in cell Ci and letting

ççççP = (ç1, ..., çm(P)) we have the model density  

f(xxxx|P,ççççP) = 
  Π

∈ Ci
Π
i = 1

m(P)

k(x |çi) (2.1.1)

We construct a prior on the pair (P,çççç) by first selecting a prior distribution π(P), a completely

general discrete distribution on the space of partitions. Conditionally on P, we adopt a fairly general

prior on ççççP.  That is, dπ(P,ççççP) = dπ(ççççP|P)π(P) = dπ(ç1, ..., çm(P)|P) π(P). Note that the

notation π is being used here for any prior or conditional prior distribution or density, with the

arguments of the function providing information about what parameters are involved. 

It is convenient to choose the conditional prior on (ç1, ..., çm) so that its components are

independent; for maximum flexibility, the form of this prior may depend on the partition.  That is,

dπ(P,ççççP) = π(P) dπ(ççççP)|P)=π(P)   Π
i = 1

m(P)

dπi(çi|P). (2.1.2)

Our primary interest is in the marginal posterior distribution on partitions -- that is, on subset

membership. It is given in Theorem 1a below; the proof is a simple calculation and appears in the

Appendix.  

TTTThhhheeeeoooorrrreeeemmmm    1111aaaa. For the model (2.1.1) and prior (2.1.2), the posterior distribution is specified by 

Pr(P|XXXX) ã π(P) 
  Π

∈ Ci,P
Π
i = 1

m(P)

k(x |ç) dπi,P(ç|P), (2.1.3)

and given (P,XXXX), ç1, ...,çm(P) are independent with respective distributions 

dπi(çi|XXXX,P) ã   Π
∈ Ci,P

k(x |çi) dπi,P(çi|P), i=1,...,m(P)
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This formulation is different from others such as Binder's (1978) not just in notation, but because

both prior and posterior independence of the components of ççççP appear explicitly.  Prior and

posterior independence seems to imply that independence between cells is the natural property,

suggesting a model where independence holds only between cells.  For example, there could be a

time-series or spatial autocorrelation structure within cells, and one might choose to cluster only

temporally or spatially adjacent observations. In this way, we obtain change point detection in time

series as a type of classification analysis.

MMMMooooddddeeeellll    2222. Denote by h(xxxx|çi,Ci,P) the joint density of observations with indices in cell i of

partition P. The subset of indices Ci,P serves to select the observations of which the density is a

function, and may also select a vector of covariates that applies to those observations. In the i.i.d.

case (Model 1), we would have h(xxxx|çi,Ci,P) =   Π
∈ Ci,P

k(x |çi). The model density is now

f(xxxx|P,ççççP) =    Π
i = 1

m(P)

h(xxxx|çi,Ci,P). (2.1.4)

Exactly the same calculations leading to Theorem 1a now yield

 

TTTThhhheeeeoooorrrreeeemmmm    1111bbbb. For the model (2.1.4) and prior (2.1.2), the posterior distribution is given by 

Pr(P|XXXX) ã π(P) 
  Π

i = 1

m(P)

h(xxxx|ç,Ci,P) dπi,P(ç|P), (2.1.5)

and given (P,XXXX), ç1, ...,çm(P) are independent with respective distributions 

dπi(çi|XXXX,P) ã h(xxxx|çi,Ci,P) dπi,P(çi|P), i=1,...,m(P)

Notice that the marginal posterior on partitions is just the prior, multiplied by an expression that

looks like the product of marginal distributions of the data with the parameter integrated out --

marginal distributions in which a separate Bayesian analysis with model density h(.|çi,Ci,P) and

prior dπi,P is being carried out on the data with indices in cell i of the partition, i=1,...,m(P).  We

will call these expressions component marginals, and denote the component marginal distribution

by dF(xxxx|Ci,P), the component posterior distribution distribution by dF(çi|XXXX,Ci,P) and the

component predictive density by f(x|XXXX,Ci,P).
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2.2 Consistency 

Each observation Xj may be a vector of length N, so that h(.|çi,Ci,P) is the joint density of a

matrix with N rows and ni,P columns. In particular, the rows may be independent, so that each of

the component data sets consists of N i.i.d. observations of dimension ni,P, and h(.|çi,Ci,P) is a

product of marginal densities for each i = 1, ..., m(P). In this case, a result of Doob (1949)

ensures that the marginal posterior distribution on partitions will become concentrated on the true

partition with probability one as N (not n) tends to infinity, for almost all parameter values. The

discreteness of P means that "almost" all partitions means all partitions.

If we do not have N i.i.d. copies of the experiment, but instead some other model admitting of a

consistent estimate of the true partition, then the Bayes procedure is also consistent.  But it is

important to repeat that this consistency is not obtained by letting the number of objects n become

large. Rather, it is a large amount of information from each object that allows accurate

determination of the true classification structure. In the absence of drastic a priori restrictions on

the set of partitions with positive prior probability, increasing the number of objects results only in

a geometric expansion of the parameter space, and posterior opinion about the classification of

individual objects remains diffuse. Thus for example, ordinary cluster analysis (Bayesian or not)

with no restriction on the number of clusters is properly viewed as an N=1 problem.

3. A Gibbs sampler for Bayesian classification

For small numbers of objects, the number of partitions is manageable. Detailed, substantively based

priors on the space of partitions are possible, and the normalizing constant of (2.1.5) may be

obtained explicitly (with more or less effort, depending on the component model and prior). But

there are 115,975 partitions of 10 objects, and around 1.38 billion partitions of 15 objects (see

Comtet 1974 for more detail). To resolve this difficulty we construct a Gibbs sampler (Geman and

Geman 1984, Gelfand and Smith 1990) that may be used to obtain Markov chain Monte Carlo
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approximations of posterior probabilities.  The general idea for this method (not the details) comes

from MacEachern (1994), who suggested a Gibbs sampler on partitions for Bayesian kernel density

estimation. Like MacEachern, we define a Markov chain whose state space is the set of partitions,

and whose stationary distribution is the posterior. We benefit from an exponential rate of

convergence as well as a Strong Law of Large Numbers and a Central Limit Theorem (Chung

1967).  

The procedure to be described here differs from MacEachern's in four important respects.  First,

MacEachern's n observations are i.i.d., while ours need only be independent between clusters.

Second, our approach applies to a general component model and prior, and is not limited to the

normal case. Third and perhaps most importantly, our method applies to fixed partition

classification (which includes random partition classification as a special case), while MacEachern is

solving a mixture model problem; we believe his solution is limited to random partition

classification. A fourth apparent difference is that when we do specify our method to mixture

models, the formulas are much simpler. This may be because while we use a Dirichlet process prior

on the mixing distribution, MacEachern assumes a mixture of Dirichlet processes. We also mention

that Lavine and West (1992) describe a Gibbs sampler for classification, but theirs is also the

solution to a mixture model problem, the number of categories is assumed known in advance, and

it is based on a Markov process with continuous state space; this makes convergence of the Gibbs

sampler much harder to check in particular cases. 

Our Gibbs sampler proceeds as follows.  Start with an initial partition, to be denoted P0. Remove

the integer 1, and then put it back, possibly where it was before and possibly in another location,

according to a well-chosen conditional probability distribution. By "location," we mean either into

one of the existing subsets of the partition, or into a subset -- possibly a new subset -- by itself.

With the resulting partition, perform the same kind of removal and replacement operation on the

integer 2.  Continue, successively removing and replacing the integers 3, ..., n.  This n-step

procedure will be called a Gibbs cycle.  The partition at the end of one cycle will be denoted P1,

and continuing for M cycles yields P1, ..., PM.  The conditional probabilities governing

replacement of integers will be defined so that  P1, ... is the realization of a Markov chain whose

unique stationary distribution is the posterior distribution on partitions.  We may then use the
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Strong Law of Large Numbers for Markov Chains (Chung 1967) to approximate the posterior with

E(b(P)|XXXX) —   1
M

  Σ j = 1

M
b(Pj).  

The proposition below gives the probability distribution that governs how the Gibbs sampler moves

from one partition to another. Let P be a partition of the integers {1, ..., n}, let P(i) denote P with

the integer i removed, and let   Pi,w
′  be the partition formed by placing the integer i into cell Cw

of P(i), w = 0, ..., m(P(i)). Placing i in cell zero means that a new cell is formed, whose only

occupant is the integer i.  We will write the cells of   Pi,w
′  as   Cj

′ , j = 1, ..., m(P′).  The conditional

distribution of   Pi,w
′  given P(i) is denoted π(   Pi,w

′ |P(i)); the notation π is used because this distribution

depends only upon the prior on partitions. 

PPPPrrrrooooppppoooossssiiiittttiiiioooonnnn. Pr(   Pi,w
′ | XXXX,P(i)) ã  π(   Pi,w

′ |P(i)) 
  
Π
j = 1

m(Pi,w
′ )

h(xxxx|çj,Cj,   Pi,w
′ ) dπj,   Pi,w

′ (ç|   Pi,w
′ ). (3.1)

Note that the normalizing constant is given by summing from w = 0 to m(   Pi,w
′ ).  The proof appears

in the Appendix.  

Computing expression (3.1) is not a problem, but in the important case where there is no covariate

and the component prior is the same for all partitions, it assumes an even more convenient and

suggestive form.  This will be the case, for example, in mixture model classification, as we shall

see later. 

TTTThhhheeeeoooorrrreeeemmmm    2222. Assume the notation of the Proposition above, a common component prior π0 for

each cell of every partition, and also that the component model density h(xxxx|ç,Cj,P) depends on Cj,P

only through {xk: k“Ci,P}.  Then Pr(   Pi,w
′ | XXXX,P(i)) ã π(   Pi,w

′ |P(i)) f(xi|XXXX,Cw,P(i) ), where

f(xi|XXXX,Cw,P(i) ) is the component predictive density based on data with indices in cell w of P(i).

Again, the proof may be found in the Appendix.  

To use the Proposition or Theorem 2 in applications, we must have π(   Pi,w
′ |P(i)). When all possible

classifications are equally likely a priori, so that π(P) is a discrete uniform distribution, π(   Pi,w
′ |P(i))

is uniform too.  That is, 
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π(   Pi,w
′ |P(i)) =  1

m(P(i)) + 1
  for w = 0, ..., m(P(i)). (3.2)

For random partition classification, π(P) assumes a special form we call the Pólya prior, and this

implies  

π(   Pi,w
′ |P(i))  

  

={ c
c + n – 1 for w = 0

nw
(i)

c + n – 1 for w = 1, , m(P(i)) , (3.3)

See Section 6 for a discussion, including definition of the constant c.

4. Example: Songbird diets 

We will illustrate the methods described in this paper with a subset of the data from an unpublished

study of the contents of songbird gizzards; we would like to thank Bill McMartin of the University

of Toronto Department of Forestry for permission to use the data. For each bird, we note the

species, whether or not the gizzard contained insect prey of category I, and whether or not the

gizzard contained insect prey of category II. The exact nature of the bird and prey species are

deliberately not given here.

For this problem, the parameter ƒi is a vector of four quantities representing the probabilities of

observing the combinations of prey species. The density k(.|ƒi) is multinomial, and we will adopt a

conjugate component prior that is Dirichlet. Based on the idea that these major food sources should

not both be absent from the gizzards of very many birds, and also upon considerations of habitat

overlap of the prey species, the prior Dirichlet parameters were chosen to be å1 = 1 and å2 = å3 =

å4 = 4; the parameter å1 corresponds to the cell where both prey species are absent. For mixture

model classification, this component prior is the base probability distribution of the Dirichlet process

prior. 
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4.1 Classifying birds

To illustrate the Gibbs sampling method, we will pretend that we do not know species, and classify

individual birds. We will perform a mixture model classification, because it seems reasonable to the

think of the bird (the object) being sampled first, and then the prey being selected conditionally on

the characteristics of the bird and its habitat. Because we do not anticipate a large number of

meaningful clusters, we will let c = 1 in the Pólya prior on partitions (6.3). 

Starting with a uniformly chosen partition of the integers {1, ..., 283}, we warmed up the Gibbs

sampler for 1,000 cycles, and then simulated a Markov chain segment of 5,000 partitions one

Gibbs cycle apart.  The estimated posterior probability of a partition is simply the number of times

the partition was visited, divided by 5000. Table 4.1 shows the estimated posterior probabilities for

several potentially interesting partitions. 

Table 4.1: Estimated posterior probabilities for several partitions of songbirds, based on diet

Partition Estimated Posterior Probability

All birds in one subset 0.0002

One subset for each species 0.0008

Two subsets: Birds of species (1 & 3) vs. (2) 0.0034

Each bird in a separate subset 0.0000

The low probabilities in Table 4.1 are entirely typical of both real and simulated data. In simulation

studies, we repeatedly have found that when individual observations are being classified, the

posterior probabilities of all the partitions tended to be quite low; this includes the true partition we

are trying to identify (in a simulation study we know which observations come from identical

distributions). Only when we fix the number of objects being classified and increase the number of

independent observations from each object does the posterior probability of the correct partition

become large. This phenomenon illustrates the discussion of consistency in Section 2.2.
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4.2 Classifying bird species

Another approach to this data set is to classify songbird species rather than individual birds, and to

view the samples obtained from each species to be homogeneous a priori. In this case there are

only five partitions of the three objects we seek to classify, and the calculation can be done with a

calculator or with interactive software. Table 4.2.1 shows all the data we need to perform the

analysis. Also, a serious prior on partitions is easy to evoke. Based on substantive considerations,

species One and Three were expected to have similar diets, while Species Two was expected to be

different. This partition was assigned prior probability 0.35, and to "keep an open mind," 0.35 was

also assigned to the partition with only one subset (representing no relationship between species and

diet). The remaining 0.30 prior probability was divided evenly among the remaining three

partitions. 

Table 4.2.1: Species and presence of prey category for a sample of 283 songbirds. 

Cell contents are counts (and percentages of column total).

Prey Category Songbird Species

I II 1 2 3

Absent Absent 2

(1.90)

1

 (0.93)

 2

  (2.86)

Absent Present 43

(40.95)

7

 (6.48)

21

 (30.00)

Present Absent 8

(7.62)

44

(40.74)

12

 (17.14)

Present Present 52

(49.52)

56

(51.85)

35

 (50.00)

Table 4.2.2 shows the results of the analysis, both for the substantive prior described above, and

for a more "unbiased" one involving a uniform prior on partitions and a uniform component
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Dirichlet prior with å1 = å2 = å3 = å4 = 1. Both analyses group species One and Three together,

separately from Two; this is consistent with what one would conclude from Table 4.2.1 using other

methods.

Table 4.2.2: Posterior distribution on partitions of songbird species 

Partition of Bird Species
Posterior Probability

Substantive Prior Uniform Prior

(1 2 3) 2.8 ×  10-54 1.5 ×  10-59

(1 2) (3) 5.1 ×  10-11 1.6 ×  10-11

(1 3) (2) 0.99932 0.986673

(1) (2 3) 0.000068 0.000105

(1) (2) (3) 3.1 ×  10-8 0.013223

It is worth observing that the classification of species is essentially a Bayesian multiple comparison

procedure; it is equivalent to Menzefricke's "Bayesian clustering of data sets" for multinomial data.

Classification of species was more successful than classification of individual birds (in that a clearer

picture emerged) because there was a generous amount of data for each of the objects being

classified.

5555....    AAAAddddddddiiiittttiiiioooonnnnaaaallll    RRRReeeemmmmaaaarrrrkkkkssss. 

It would also be useful to expand the model by including a parameter that is assumed to be the

same for each object being classified, and making all the other prior distributions (as well as the

component model h) conditional on this parameter. Such an extended model would be useful in

outlier analysis, where there might be a vector of regression coefficients that is the same for each

case, and we wish to classify cases according to their dispersion.  The challenge here is to extend

the Gibbs sampling method to allow a parameter that is the same over all partitions, without losing

the simplicity of a Markov chain with finite state space.

The Gibbs sampler on partitions is a method of moving randomly from one partition of the data to

another, based on the data values and the prior distribution. With slight modification, it becomes a
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method of moving deterministically from partition to partition, so that the posterior probability (or

the expected value of a utility function) increases at each step.  Thus one obtains a numerical

method that is capable of finding at least a local maximum -- for example the posterior mode, or

the local maximum of some utility function.  It is similar in spirit to a numerical search suggested

by Bernardo (1994) and Grenander (1993), though it is based on steepest ascent rather than

simulated annealing. 

A potential difficulty is that there may be many local maxima; this can happen with optimization on

discrete spaces in general.  One solution (as described, for example, by Geman and Geman 1984)

is simulated annealing, where a deterministic search rule is metaphorically "heated" so that it melts

into a random process that will not remain stuck at a local maximum, but will not stay at a global

maximum either. The process is then gradually "cooled" back to a deterministic search. The

function that governs cooling is called an annealing schedule. Geman and Geman prove that if the

annealing schedule is right, this procedure will converge to the global maximum.  Unfortunately,

their theorem prescribes a schedule that is too gradual to be actually computed for most problems,

so that one must try a faster schedule (or better, several faster schedules) and hope for the best.

This is essentially Bernardo's (1994) simulated annealing method for cluster analysis.

Our preference is to carry out the process in two phases. We suggest first running a simple Gibbs

sampling program that moves randomly from partition to partition without cooling, but remembers

where it happened to encounter partitions with high posterior probability. These partitions (along

with others that are chosen from a uniform distribution on partitions) can later be used as starting

points for a number of fully deterministic searches based on steepest ascent in the space of

partitions.

6666....    MMMMiiiixxxxttttuuuurrrreeee    mmmmooooddddeeeellllssss    aaaannnndddd    ccccllllaaaassssssssiiiiffffiiiiccccaaaattttiiiioooonnnn

The material in this section is of a more technical nature than the rest of the paper, and

complements some developments in Lo, Brunner and Chan (1998). Readers who are interested

primarily in applications may just note that random partition classification with a Dirichlet prior on

the mixing distribution is a special case of the fixed-partition classification with a prior given by
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Theorem 3 below. The rest of this section may then be skipped.

6666....1111    RRRRaaaannnnddddoooommmm    ppppaaaarrrrttttiiiittttiiiioooonnnn    ccccllllaaaassssssssiiiiffffiiiiccccaaaattttiiiioooonnnn. Here is the random partition model. Conditionally on an

unknown probability distribution G, the data XXXX = (X1, ..., Xn) are assumed to come from a

distribution with density 

f(xxxx|G) =   Π
i = 1

n

æ k(xi|ƒi) dG(ƒi) .   (6.1.1)

This density can be interpreted in terms of the following two-stage sampling procedure. First, the

n objects, or equivalently, ƒƒƒƒ = (ƒ1, ..., ƒn) are sampled independently from the distribution G,

and then conditionally on ƒƒƒƒ and G, the Xi are sampled from a distribution with density k(.|ƒi),

independently for i = 1, ..., n.  Note that the conditional distribution of XXXX given ƒƒƒƒ and G depends

on ƒƒƒƒ but not G.  This is a kind of Markov structure. Exploiting the Markov structure and re-

parameterizing from ƒƒƒƒ to (P,ççççP) as in Section 2, we have

f(xxxx|ƒƒƒƒ,G) = f(xxxx|ƒƒƒƒ) = f(xxxx|P,ççççP) = 
  Π

∈ Ci
Π
i = 1

m(P)

k(x |çi(P)). (6.1.2)

This is the same as our Model 1 for fixed partition classification.

To perform a classification analysis, we require the marginal posterior distribution of P.  Now if

we had a prior distribution on the pair (P,ççççP), we could obtain the posterior exactly as in the

fixed-partition case.  However, in random-partition classification the parameter is not the pair

(P,ççççP); it is the mixing distribution G.  Therefore we will proceed by deriving the marginal prior

distribution of ƒƒƒƒ, in the process re-parameterizing to obtain the marginal distribution of (P,ççççP); this

will serve as our "prior"  on partitions.  The conditional distribution of P given XXXX is then the

posterior distribution on partitions for a mixture model classification.  

Our prior distribution on the mixing distribution G will be a Dirichlet process distribution (Ferguson

1973), which reduces to an ordinary multinomial Dirichlet if G is supported on a finite number of

points.  The prior parameter of the Dirichlet process is a finite measure which we will write as
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cπ0, where c is a positive constant and π0 is a probability distribution with the same domain as

G; π0 is the prior expected value of G.  If G were supported by two points ƒ1 and ƒ2, the Dirichlet

process distribution would be a beta distribution with parameters cπ0(ƒ1) and cπ0(ƒ2). 

TTTThhhheeeeoooorrrreeeemmmm    3333.  Assume the model (6.1.1), and let the prior on G be a Dirichlet process with

parameter cπ0, where c is a positive constant and π0 is a probability distribution defined on the

same domain as G.  Then re-expressing the vector ƒƒƒƒ as the pair (P,ççççP), the (prior) distribution of

the pair (P,ççççP) is as follows. The marginal distribution of the partition P is given by

π(P) = 
  

cm(P) Γ(c) (ni(P) – 1)!Π
i = 1

m(P)

Γ(c + n) , (6.1.3)

and given P, ç1, ..., çm(P) are independent with common distribution π0.

The proof of Theorem 3 appears in the Appendix.  From the details given there, one can see that

the marginal distribution of the pair (P,ççççP) may be understood in terms of Blackwell and

MacQueen's (1973) Pólya urn scheme, as follows. One begins by selecting a point ƒ1 from a

"continuum of colors" according to the probability distribution π0.  A marble with unit weight and

color ƒ1 is placed at that point. The distribution on the continuum of colors is then re-normalized

so that the original distribution π0 has weight c/(c+1), and the point ƒ1 has weight 1/(c+1). Next,

we draw the color ƒ2 from the new distribution (cπ0+∂ƒ1
)/(c+1), place a second marble there,

draw a third point ƒ3 from (cπ0+∂ƒ1
+ ∂ƒ2

)/(c+2), and so on.  

After n draws from the extended Pólya urn, we have marbles numbered 1, ..., n; their colors are

ƒ1, ..., ƒn respectively.  Marbles whose numbers appear in the same cell of the partition P are all

of the same color, and the vector ççççP contains a list of the unique colors. This experiment

determines a marginal distribution on the set of partitions, given by π(P) in (6.1.3). Therefore we

will call it the Pólya prior on partitions.

An immediate consequence of Theorem 3 is that, performing the same calculations as in the fixed

partition case, the conditional distribution of P given XXXX is given by (2.1.3), setting πi,P – π0, and

18



letting π(P) be specified by (6.1.3).  That is, for the random partition classification model we have

Pr(P|XXXX) ã  
  

cm(P) (ni(P) – 1)!Π
i = 1

m(P)   
k(x | θ) dπ0(θ)Π

∈ Ci(P)
Π
i = 1

m(P)

 (6.1.4)

In this way,  we discover that for a Bayesian, random-partition classification is a special case of

fixed-partition classification, one in which the Dirichlet prior on the mixing distribution dictates a

specific form for both the prior on partitions and the component priors. Notice how this mixture

modelling dictates that the components of ççççP be identically distributed as well as independent. 

6666....2222    AAAA    ggggeeeennnneeeerrrraaaallll    BBBBaaaayyyyeeeessssiiiiaaaannnn    mmmmiiiixxxxttttuuuurrrreeee    mmmmooooddddeeeellll.  We now show that classification plays a crucial role

in any Bayesian mixture problem where a Dirichlet prior has been assumed for the mixing

distribution.  Our first hint of this comes from Lo's (1984, Theorem 2) formula for Bayesian kernel

density estimation.  There, except for differences in notation, Lo's formula (2.4) has exactly the

form (6.1.4) above, and Lo's W(PPPP) is exactly the posterior distribution on partitions for a mixture

model classification problem.  So we see that the general formula for Bayesian classification has

been hidden in plain view for well over a decade.  

Assume the mixture model (6.1.1) and a Dirichlet process prior on the mixing distribution G.

Again, the parameter in this problem is G, and we will express its posterior distribution in terms of

E(h(G)|XXXX), where h is a non-negative function.  Notice that in our treatment of mixture model

classification analysis we did not pursue the posterior distribution of G.  Instead, we integrated G

out and re-parameterized to obtain a marginal posterior on partitions. 

Theorem 4 expresses the posterior distribution of G as a mixture of Dirichlet processes.  It is

equivalent to the following four-step recipe for simulating a value of h(G).  Of course this is just a

conceptual recipe, since step three calls for the simulation of G from a Dirichlet process, something

that is only possible when the Dirichlet process is an ordinary Dirichlet distribution.  Still, the

following procedure captures the idea of Theorem 4.

1.  Sample a partition of {1, ..., n} from the posterior distribution of a random-partition
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classification analysis; that is, from expression (6.1.4) for Pr(P|XXXX). 

2. Given the partition P from step 1, sample ç1, ..., çm(P) independently from the component

posterior distributions dF(çi|XXXXi,P) ã   Π ∈ Ci(P) k(x |çi) dπ0(çi), i = 1, ..., m(P).

3. Given the partition P from step one and the vector ççççP from step 2, sample G from a

Dirichlet process distribution with parameter measure cπ0 +    Σi = 1
m(P)

ni(P) ∂çi
, where ∂çi

 is a point

mass (Dirac probability) measure at çi.  

4. Compute h(G).  

 

TTTThhhheeeeoooorrrreeeemmmm    4444.  Let XXXX = (X1, ..., Xn) be drawn from the distribution with mixture density (6.1.1).

Let the prior distribution on G be a Dirichlet process with parameter measure cπ0, written

dP(G|cπ0),  where c is a positive constant and π0 is a probability distribution with the same

domain as G.  Then for any non-negative function h, 

E[h(G)|XXXX] =  

  Σ
P

[ æ  æ {æ h(G) dP(G|cπ0+   Σi = 1
m(P)

ni(P) ∂çi
)}   Π

i = 1

m(P)
 dF(çi|XXXXi,P) ] Pr(P|XXXX), (6.2.1)

where Pr(P|XXXX) is given by (6.1.4), and other expressions are defined in steps 1 through 4 of the

recipe above.  

The proof of Theorem 4 is given in the Appendix. Again, the role of Pr(P|XXXX) as the primary

mixing distribution in the mixture posterior (6.2.1) shows that a wide range of non-parametric

Bayesian methods based on mixtures depend on an ordinary parametric classification analysis with a

special choice of prior; references are given in the introduction.  In fact, when a Bayesian is

unwilling to assume a specific form for the mixing distribution in a mixture model, there are really

just two tractable choices for the prior. One is a Dirichlet or Dirichlet process prior, in which case

Theorem 4 applies directly. The other is a mixture of Dirichlet or Dirichlet process distributions (for
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example, Antoniak 1974, Escobar and West 1995, MacEachern 1994). In this more complex case

the posterior distribution depends on a mixture of classification analyses.

6666....3333    PPPPrrrriiiioooorrrrssss    ffffoooorrrr    mmmmiiiixxxxttttuuuurrrreeee    mmmmooooddddeeeellll    ccccllllaaaassssssssiiiiffffiiiiccccaaaattttiiiioooonnnn....  For any Bayesian mixture model problem

with a Dirichlet prior, the parameters are the positive constant c and the base probability

distribution π0, which is the expected value of the prior.  In choosing π0, it should be helpful to

recall that it functions as a component prior in the parametric analyses that are performed separately

on the data in each cluster.  If prior opinion is available about the value of ƒ in the kernel (i.e.,

component model) density k(x|ƒ), that opinion should be expressed by π0.  Even if such prior

opinion is not available, it will often be desirable on grounds of convenience to choose π0 as a

conjugate prior for the density k, so that the marginal density of the observations in (6.1.4) may be

obtained in closed form.  This done, the parameters of π0 may be selected so that in the mixture

f(x) = æ k(x|ƒ) dπ0(ƒ), (6.3.1)

the density f is as close as possible to one's best prior guess about the unconditional density of the

data.  Purists who object to choosing priors for convenience might consider setting f(x) equal to

their best guess about the density of the data, and then solving (6.3.1) for π0 as an integral

equation; this is feasible in some cases, for example that of Brunner and Lo (1989). 

We will now discuss the choice of c.  When a set of data X1, ..., Xn are assumed to arise from

an unknown discrete distribution F, and a Dirichlet process prior is directly adopted for F as in

Ferguson's original (1973) case, c is clearly the weight given to prior opinion.  But when a

Dirichlet process prior is adopted for the mixing distribution in a mixture model, the meaning of c
is less obvious.  Its role has been studied by Antoniak (1974), who shows that the prior mean

number of subsets (cells in the partition) is asymptotically c log(1+n/c) as n £ ª, and by

Korwar and Hollander (1973), who prove that for a fixed partition P,   m(P) / log (n) →
a.s. c as

n £ ª.  Both these results suggest that larger values of c imply larger numbers of subsets, and

so presumably smaller values of c would be used to represent a prior opinion that there will be just

a few subsets.

21



This is right, but it can be shown much more directly.  Looking at expression (6.1.3), consider the

partition with just one cell, so that m(P) = 1 and n1,P = n.  It is very easy to see that this prior

probability goes to one as c£ 0.  At the other extreme, consider the partition with n cells, where

m(P) = n and ni,P = 1, i = 1, ..., m(P).  A more lengthy but still elementary calculation using

Stirling's formula and L'Hoâpital's rule shows that the prior probability of this partition goes to one

as c£ ª.  These simple results clarify the role of c in Bayesian mixture models generally, and

show that it is quite useful to have an explicit formula for the Pólya prior on partitions.  

As another application of Theorem 3, consider Lo's (1984, Theorem 2) explicit formula for

Bayesian kernel density estimation.  Recognize Lo's W(PPPP) as our mixture model posterior Pr(P|XXXX),

note that prior probability one implies posterior probability one, and let c £ 0 as in Section 4 of

this paper (our c is Lo's å[R]).  Then we see that if the parameter measure of the Dirichlet

process prior is "deflated" in this manner, the Bayesian kernel density estimate reduces to a

parametric predictive density in which π0 (Lo's å/å[R] ) serves as prior and the kernel k acts as

the model.  The solution to this deflation problem had eluded us for quite a while, but with

Theorem 3 it is straightforward. 

Theorem 4 suggests the following question, which is of theoretical interest.  Since mixture model

classification is just a special kind of fixed-partition classification, suppose that we were to replace

the random-partition classification analysis in Theorem 4 (step one of the recipe) with another

fixed-partition classification analysis.  This is just a matter of replacing the Pólya prior on

partitions, perhaps with a uniform prior. The result is obviously still a distribution on G.  Our

question is whether this distribution is still the posterior on the mixing distribution of a mixture

model, and if so, whether it is possible to recover the prior.  It is worth exploring whether priors

obtained in this manner would be convenient to work with or easily interpretable.

On the topic of "other" priors for mixing distributions, note that our results on mixtures apply

strictly to the case of a Dirichlet or Dirichlet process priors on unknown mixing distributions. In the

literature on Bayesian density estimation, one tradition (Antoniak 1974, Escobar and West 1995,

MacEachern 1994, West Müller and Escobar 1994) uses a prior that is a mixture of Dirichlet
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processes. We believe that for a mixture model classification with this type of prior, the clustering

phase of MacEachern's Gibbs sampler for density estimation (see also West et al. 1994) will prove

to be the analogue of the Gibbs sampler suggested here.  This remains to be checked. 
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AAAAppppppppeeeennnnddddiiiixxxx::::    PPPPrrrrooooooooffffssss

PPPPrrrrooooooooffff    ooooffff    TTTThhhheeeeoooorrrreeeemmmm    1111aaaa.

Pr(P|XXXX)  ã π(P) æ 
  Π

∈ Ci,P
Π
i = 1

m(P)

k(x |çi) dπ(ççççP|P)

= π(P) æ  æ 
  Π

∈ Ci,P
Π
i = 1

m(P)

k(x |çi) 
  Π

i = 1

m(P)

dπi,P(çi|P)

= π(P) 
  Π

∈ Ci,P
Π
i = 1

m(P)

k(x |ç) dπi,P(ç|P) ,

and 

dπ(ççççP|XXXX,P) ã 
  Π

∈ Ci,P
Π
i = 1

m(P)

k(x |çi) dπ(ççççP|P)

= 
  Π

∈ Ci,P
Π
i = 1

m(P)

k(x |çi)  
  Π

i = 1

m(P)

dπi,P(çi|P)

= 
  Π

∈ Ci,P
Π
i = 1

m(P)

k(x |çi)dπi,P(çi|P)     À

PPPPrrrrooooooooffff    ooooffff    tttthhhheeee    PPPPrrrrooooppppoooossssiiiittttiiiioooonnnn.  We will write   Pi,w
′  as P′, j = 1, ..., m(P′).  Using Bayes' theorem,

 Pr(P′| XXXX,P(i)) ã π(P′|P(i)) f(xxxx|P′,P(i)) = π(P′|P(i)) f(xxxx|P′)  

=  π(P′|P(i)) æ f(xxxx|P′,çççç
 P′ ) dπ(çççç

 P′ |P′)

=  π(P′|P(i))  æ  æ 
  

Π
j = 1

m(P′)

h(xxxx|çj,Cj, P′ ) 
  

Π
j = 1

m(P′)
dπj,P′(çj|P′) 

=  π(P′|P(i)) 
  

Π
j = 1

m(P′)

h(xxxx|çj,Cj, P′ ) dπj,  P′ (ç|  P′ )  À

PPPPrrrrooooooooffff    ooooffff    TTTThhhheeeeoooorrrreeeemmmm    2222.  Assume the notation of the proposition. We distinguish between the case

w = 0, where the integer i is placed into a new cell by itself, and the case w = 1, ... , m(P(i)),

where i is placed into an existing cell of  P(i).  In the former case, the conditional independence of

observations in different cells implies  
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  Pr(P′|XXXX,P(i)) ã  π(P′|P(i)) [  h(xxxx|ç,C0,  P′ ) dπ0(ç)] [
  
Π
j ≠ w

m(P′) – 1

h(xxxx|ç,Cj, P′ ) dπ0(ç) ]

  = π(P′|P(i)) [  h(xxxx|ç,C0,  P′ ) dπ0(ç)] [
  

Π
j = 1

m(P(i))

h(xxxx|ç,Cj,   P(ι) ) dπ0(ç) ]

  ã  π(P′|P(i))  h(xxxx|ç,C0, P′ ) dπ0(ç) = π(P′|P(i)) f(xi|XXXX,Cw,P(i) ) ,

where we recognize h(xxxx|ç,C0,  P′ ) as just the marginal density of Xi conditional on ç, and the

predictive density indicated is a (component) prior predictive. In the case where w ≠0, Pr(P′|XXXX,P(i))

is proportional to

π(P′|P(i)) 
  

Π
j = 1

m(P′)

h(xxxx|ç,Cj,  P′ ) dπ0(ç|  P′ ) 

= π(P′|P(i))  h(xxxx|ç,Cw,  P′ ) dπ0(ç) 
  
Π
j ≠ w

m(P′) – 1

h(xxxx|ç,Cj, P′ ) dπ0(ç)

= π(P′|P(i))  h(xxxx|ç,Cw,  P′ ) dπ0(ç) 
  
Π
j ≠ w

m(P(ι)) – 1

h(xxxx|ç,Cj,   P(i) ) dπ0(ç)

ã π(P′|P(i))  h(xxxx|ç,Cw,  P′ ) dπ0(ç)

= π(P′|P(i))  f(xi|{xj: j“Cw,   P(i) },ç) h(xxxx|ç,Cw,   P(i) ) dπ0(ç)

ã π(P′|P(i)) 
   f(xi|{xj: j ∈ Cw,P(i)},θ) h(x|θ,Cw,P(i)) dπ0(θ)

h(x|θ,Cw,P(i)) dπ0(θ)
 = π(P′|P(i)) f(xi|XXXX,Cw,P(i) )  À

PPPPrrrrooooooooffff    ooooffff    TTTThhhheeeeoooorrrreeeemmmm    3333.  Let h(ƒƒƒƒ) be a non-negative function (not a component model density!),

and define h' so that  h(ƒƒƒƒ) = h'(P,ççççP) whenever the pair (P,ççççP) corresponds to ƒƒƒƒ.  Then

E[h(ƒƒƒƒ)] = E{E[h(ƒƒƒƒ)|G]} = ææææ æ h(ƒƒƒƒ) dF(ƒƒƒƒ|G) dP(G|cπ0)

 = ææææ æ  æ h(ƒƒƒƒ)   Π
i = 1

n

dG(ƒi)  dP(G|cπ0), 

where dP(G|cπ0) refers to the distribution of the Dirichlet process with parameter measure cπ0.

Applying Lo's (1984) Lemma One to exchange order of integration n times, the expression
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becomes

æ  æ ææææ dP(G|cπ0 +   Σi = 1
n ∂ƒ i

) h(ƒƒƒƒ) 
   d(cπ0+ Σi = 1

n – 1δφi
))(φn)

c + n – 1  
   d(cπ0+ δφ1

)(φ2)
c + 1   dπ0(φ1)

= 
   Γ(c)

Γ(c+n)
 æ  æ h(ƒƒƒƒ)   Π

i = 1

n
d(cπ0 +   Σj = 1

i – 1 ∂ƒ j
(ƒi), 

where ∂ƒi
 indicates a point mass measure at ƒi.  Lo's (1984) Lemma Two allows this to be

expressed as a sum over partitions, automatically re-parameterizing from ƒƒƒƒ to (P,ççççP) so that we

may write 

E[h(ƒƒƒƒ)] = E[h'(P,ççççP)] = 
  Γ(c)

Γ(c + n)
  Σ

P
{ æ  æ h'(P,ççççP)   Π

i = 1

m(P)
(ni(P)-1)! dcπ0(çi,P) }

 =   Σ
P

{ æ  æ h'(P,ççççP)   Π
i = 1

m(P)
dπ0(çi,P) } 

  
cm(P) Γ(c) (ni(P) –1)!Π

i = 1

m(P)

Γ(c + n)

establishing the claim of the theorem. À

PPPPrrrrooooooooffff    ooooffff    TTTThhhheeeeoooorrrreeeemmmm    4444.  Bayes' theorem states that 

E(h(G)|XXXX) = 

     
h(G) f(x|G) dP (G|cπ0)

f(x|G) dP (G|cπ0)
.  

The numerator of this quantity is

   ææææ æ  æ h(G)   Π
i = 1

n

k(xi|ƒi)dG(ƒi) dP(G|cπ0)

= æ  æ ææææ h(G)   Π
i = 1

n

k(xi|ƒi) dP(G|cπ0 +   Σi = 1
n ∂ƒ i

)

 
   d(cπ0+ Σi = 1

n – 1δφi
))(φn)

c + n – 1  
   d(cπ0+ δφ1

)(φ2)
c + 1   dπ0(φ1)
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= 
  Γ(c)

Γ(c + n)
æ  æ ææææ h(G)   Π

i = 1

n

k(xi|ƒi) dP(G|cπ0 +   Σi = 1
n ∂ƒ i

)   Π
i = 1

n
d(cπ0 +   Σj = 1

i – 1 ∂ƒ j
)(ƒi), 

 

where the exchange of integration is accomplished by Lo's (1984) Lemma One.  Following the

combinatoric argument of Lo's Lemma Two, this may be written as 

   Γ(c)

Γ(c + n)
  Σ

P
[   Π

i = 1

m(P)
(ni(P)-1)! æ  æ{ææææ h(G) dP(G|cπ0+   Σi = 1

m(P)
ni(P) ∂çi

)} 

  Π ∈ Ci(P) k(x |çi) dcπ0(çi) ].

Notice that the collapsing of ƒƒƒƒ into ççççP has changed the n-fold integral into an m(P)-fold integral.

Multiplying and dividing by the product of normalizing constants for dF(çi|XXXXi,P) defined in step 2

of the "recipe," our expression for the numerator becomes

   Γ(c)

Γ(c + n)
  Σ

P
[ (cm(P)   Π

i = 1

m(P)
(ni(P)-1)!)(   Π

i = 1

m(P) æ   Π ∈ Ci,P
k(x |çi) dπ0(çi))

 æ  æ {ææææ h(G) dP(G|cπ0+   Σi = 1
m(P)

ni(P) ∂çi
)}   Π

i = 1

m(P)
 dF(çi|XXXXi,P) ] . (*)

The denominator of E(h(G|XXXX) is just (*) with h(G)–1.  Integrating probability distributions to one

and cancelling ratios of gammas in numerator and denominator, we get a numerator equal to (*)

without the gammas.  The denominator is 

  Σ
P

(cm(P)   Π
i = 1

m(P)
(ni(P)-1)!)(   Π

i = 1

m(P) æ   Π ∈ Ci(P) k(x |çi) dπ0(çi)) . 

We recognize this as the normalizing constant of Pr(P|XXXX), and the result follows. À
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