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Preface to Edition 0.10

This book is free and open source

From the perspective of the student, possibly the most important thing about this text-
book is that you don’t have to pay for it. You can read it either online or in hard copy,
and there are no restrictions on copying or printing. You may give a copy to anyone you
wish; you may even sell it without paying royalties. The point is not so much that the
book is free, but that you are free.

The plan for publishing this book is deliberately modeled on open source software.
The source code is BTEX (along with some modifiable graphics files in the OpenOffice
drawing format), and the compiled binary is a PDF or DjVu file. Everthing is available
at

http://www.utstat.toronto.edu/~brunner/openSEM.

This document is distributed without any warranty. You are free to copy and distribute
it in its present form or in modified form, under the terms of the GNU Free Documentation
License as published by the Free Software Foundation. A copy of the license is included in
Appendix E. In case the appendix is missing, the Free Documentation License is available
at

http://www.gnu.org/copyleft/fdl.html.

Reconstructed data sets Structural equation modelling is a craft that is difficult to
learn without having realistic data to analyze. But most good good data sets belong
to somebody, and getting agreement to put them under copyleft protection can be a
challenge. One solution is to make the data up, using a combination of random number
generation and manual editing. Such a data set could be called constructed. 1 have
done this in a few cases, and it can be quite tedious to make the sample statistics seem
reasonable.

Another solution is to base the data upon the results of published studies. When I
do this, I try to never use the original raw data set, even if I can get my hands on it.
Instead, I start with a set of statistics derived directly or indirectly from the published
source, and then simulate data that yield roughly (but not exactly) the same values of
the statistics. I freely round the simulated data, change the sample size, and even add
variables that the investigators probably would have measured, given sufficient resources.

vil
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Finally, I modify the data in any other way I can think of to make the example more
instructive. I call such a data set reconstructed. I am not a lawyer, but it seems to me
that (especially when the simulation is done using open source and copy-left protected
software such as R) the specific raw data values generated in this manner can be protected
under the GNU Free Documentation License. Another advantage is that the analysis of a
reconstructed data set cannot necessarily be taken as a criticism of the way the data were
originally treated, and it is easy to deny that conclusions based on a reconstructed data
set have any clear scientific meaning. The purpose, of course, is to prepare the student
to do statistical analyses that do have scientific meaning.

All the statistical analyses described in this book are based on constructed or recon-
structed data sets. Appendix C contains a listing of the data sets used in examples and
homework problems. A Zipped archive will also be available. As of this writing, it is not
available yet.

Software Moderate familiarity with the R statistical computing environment [47] is
assumed. Calculations on numerical data will use the lavaan (latent variable analysis)
package described by Rossel [48]. In this text, computing also extends to symbolic cal-
culations that would ordinarily be done with paper and pencil. Symbolic calculations in
this area (primarily, calculation of covariance matrices) are important for understanding
particular models, but they are largely mechanical can get very tedious. The open source
symbolic math program SageMath [53] is used extensively for pushing symbols around,
starting with Chapter 1. Familiarity with the software is not assumed. An introduction
is provided in Appendix B.

This book is for Statistics students

This textbook is designed for third and fourth year undergraduate students in Statistics
and Mathematics. It assumes the usual calculus-based second year sequence in Probability
and Statistics and a basic course in linear algebra. Familiarity with linear regression is
very helpful. Appendix A contains reference material and exercises that remind students
of the necessary concepts. Some additional background material, especially on vector-
valued random variables and the multivariate normal distribution, is needed but cannot
be assumed. It is also covered in Appendix A.

This text is also appropriate (possibly as a supplemental text) for Masters level grad-
uate students in Statistics. Since requests for structural equation models come up from
time to time in consulting situations, it may also be useful to professional statisticians
who need a quick introduction to the topic, in language they can understand.

But the main audience is undergraduate. For this reason, comments that are likely to
be of interest to more advanced readers are often relegated to footnotes. These can be
safely skipped by students who are primarily interested in learning the main ideas and
getting a good mark.
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Message to the Instructor

It is common for textbook authors to claim that they decided to write a book because they
could not locate an appropriate text, and I find myself in exactly this situation. Many
introductions to structural equation models are available, but most of the ones I have
seen are written for graduate students and researchers in the social sciences. Compared
to most Statistics undergraduates, this audience has a very large English vocabulary and
virtually no background in mathematical statistics. What works for them does not work
as well for my students. So I have tried to write mainstream Statistics textboook on a
topic that is somewhat out of the statistical mainstream.

Why bother? The main reason is that in addition to being standard statistical practice,
ignoring measurement error is a disaster — and structural equation modeling is the simplest
way [ know to start addressing the problem. It helps that a well-prepared undergraduate
is just a step away from having the necessary tools.

From a pedagogical viewpoint, structural equation modeling has another advantage.
While the usual statistical methods we teach are like analytical devices purchased off the
shelf, structural equation modeling methods are more like a kit which one can use to make
a semi-customized analytical device. So, they help bridge the gap between applications
of Statistics and genuine Applied Statistics. In particular, they force students to think
at the interface between subject matter and technical statistical issues. And perhaps this
is where the intellectual value of our discipline is most dense. Well, I said this was a
message to the instructor.

More details

The covariance review really is review and little else. Scalar covariance calculations are
important throughout the course.

The maximum likelihood section has some warmup problems that are really review,
but it also has some useful material on numerical maximum likelihood that students
may find unfamiliar — for example the connection between the Hessian and the Fisher
information. The main purpose is to build intuition about what can happen in more
complicated situations.
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Chapter -1

Overview

Structural equation models may be viewed as extensions of multiple regression. They
generalize multiple regression in three main ways. First, there is usually more than one
equation. Second, a response variable in one equation can be an explanatory variable in
another equation. Third, structural equation models can include latent variables.

Multiple equations Structural equation models are usually based upon more than one
regression-like equation. Having more than one equation is not really unique; multivariate
regression already does that. But structural equation models are more flexible than the
usual multivariate linear model.

Variables can be both explanatory and response This is an attractive feature.
Consider a political science study in which favourable information about a political party
contributes to a favourable impression among potential voters at time one. But people
often seek out information that supports their viewpoints, so that a favourable impression
at time one contributes to exposure to favourable information at time two, which in turn
contriutes to a favourable opinion at time two. Thus, opinion at time two is both a
response variable and a response variable. Structural equation models are also capable of
representing the back-and-forth nature of supply and demand in Economics. There are
many other examples.

Latent variables To a degree that is often not acknowledged, the data you can see and
record are not what you really are interested in. A latent variable is a random variable
whose values cannot be directly observed — for example, true family income last year.
Contrast this with an observable variable — for example, reported family income last year.
Usually, interest is in relationships between latent variables, but the data set by definition
includes only observable variables. Structural equation models may include latent as well
as observable random variables, along with the connections between them. This capability
(combined with relative simplicity) is their biggest advantage. It allows the statistican
to admit that measurement error exists, and to incorporate it directly into the statistical
model.
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There are some ways that structural equation models are different from ordinary linear
regression. These include random (rather than fixed) explanatory variable values, a bit
of specialized vocabulary, and some modest changes in notation. Also, while structural
equation models are definitely statistical models, they are also simple scientific models of
the phenomena being investigated.

This last point is best conveyed by an example. Consider a study of arthritis patients,
in which joint pain and exercise are assessed at more than one time point. Figure 1 is a
path diagram that represents a structural equation model for the data.

Figure 1: Arthritis Pain

v v v v

D, = Reported D, = Judged D, = Judged D, = Reported
Pain 1 Severity 1 Severity 2 Pain 2
+ \ / +
Y. = Pain 1 X = Severity Y. = Pain 2
! of Disease 8

/.l AN

Y, = Exercise 1 + —p Y, =Exercise 2
o l b\
D3 = Reported D6 = Reported
Exercise 1 Exercise 2

T T

The notation is standard. Latent variables are in ovals, while observable variables are
in boxes. Error terms seem to come from nowhere; in many path diagrams they are not
shown at all. There is real modeling here, and plenty of theoretical input is required. The
plusses and minuses on some of the straight arrows are a bit non-standard. The represent
hypothesized positive and negative relationships.

As the directional arrows suggest, structural equation models are usually interpreted
as causal models. That is, they are models of influence. A — B means A has an influence
on B. In the path diagram, reported pain at time one is influenced by true pain at time
one. There are other influences on reported pain, including the patient’s reading level,
interpretation of the questions on the questionnaire, self-presentation strategy, and so on.
These unmeasured influences are represented by an error term. The error term is not



shown explicitly, but the arrow that seems to come from nowhere is coming from the
error term.

Structural equation models are causal models [9], but the data are usually observa-
tional. That is, explanatory variables are typically not manipulated or randomly assigned
by the investigator, as they would be in an experimental study. Instead, they are simply
measured or assessed. This brings up the classic correlation versus causation issue. The
point is often summarized by saying “correlation does not imply causation.” That is, if
the variables X and Y are related to one another (not independent), it could be that X is
influencing Y, or that Y is influencing X, or that a third variable, Z is influencing both
X and Y. In the absence of other information, it’s wise to be cautious. Practitioners
of applied regression are often warned not to claim that the x variables influence the y
variable unless the values of the x variables are randomly assigned.

Structural equation modeling adresses the correlation-causation problem by construct-
ing a model that is simultaneously a statistical model and a substantive theory of the
data. In this way, a great many details are decided on theoretical or at least common-
sense grounds, and the rest are left to statistical estimation and testing. In Figure 1, for
example, it is obvious that the arrows should run from Time One to Time Two and not
the other way around. Notice that in the path diagram, the severity of the disease is
essentially the same at Time One and Time Two. This is a theoretical assertion based on
the nature of the disease and the length of time involved. All such assertions are open to
healthy debate.

Not everybody likes this. Some statisticians, particularly students, don’t feel com-
fortable with theory construction in a scientific discipline outside their field. This is less
a problem than it seems. While it’s true that the ideal case is for the same person to
be expert in both the statistics and the subject matter (as in econometrics), frequently
the statistician works together with a scientist who wants to apply structural equation
models to his or her data. Most scientists get the idea of path diagrams very fast, and
the collaboration can go smoothly.

It must be admitted, though, that some scientists are uncomfortable with making the-
oretical commitments and incorporating them into the statistical analysis. To them, data
analysis is where evidence is assessed and weighed. Building theory into the statistical
model seems biased, like putting a finger on the scale'. One response to this is that the
generic statistical models in common use also carry assumptions with theoretical impli-
cations. Getting involved in the assembly of the statistical model just serves to make the
black box less mysterious, and that can only be a good thing.

Path diagrams correspond to systems of regression-like equations. Here are the equa-

IThere is a distinctly Bayesian feel to the way structural equation models depend on prior information.
The objection of bias is also raised against Bayesian methods, for exactly the same reason. It is possible
to do structural equation modeling in a fully Bayesian way, but the approach in this book is strictly
frequentist.



CHAPTER -1.

4

tions corresponding to Figure 1. Independently for i =1,...,n,
Yi1 Boi + L1 X + €1
Yio Boz + B2Yi1 + €2

D5
D,

Bogs + B3 X + BaYio + €3
Boa + Bs5Yi2 + B6Yisz + €ia
Ao+ MY +ein
Aoz + XX + €0
Aoz + A3Yio +ei3
Mo+ AYis+eia
Ao+ X +eis
Ao+ AsYia+ €6

OVERVIEW

Every variable that appears on the left side of an equation has at least one arrow pointing
to it, and the arrows pointing to the left-side variable originate from the variables on the

right side.

The path diagram contains some additional information. Note that there are no direct
connections between the error terms, or between the error terms and underlying disease
severity X;. This represents an assertion that these quantities are independent. If they
were not independent, covariances would be represented by curved, double-headed arrows.
An example is given in Figure 2. Notice that all the variables are observable, the error term
is shown this time, and the straight arrows from x to y are labelled with the regression
coefficients. This is all within the range of standard notation for path diagrams.

Figure 2: Regression with Observable variables

Y= Fo+ 51 Xi1 + Bo2Xio + B3 X3 + ¢

E



Returning to the example of Figure 1, the model as given is still not fully specified. It
is common to assume that everything is normal. In most software, the default method of
estimation is numerical maximum likelihood based on a multivariate normal distribution
for the observable data. There is considerable robustness to this assumption so it does
little harm. With the normal assumption and letting the expected values of the error
terms equal zero, we have 12 more model parameters, including the expected value and
variance of X;, underlying disease severity. As usual in Statistics, the objective is to
estimate and draw inferences about the unknown parameters, with the goal of casting
light on the phenomena that gave rise to the data.

Parameter identifiability It is an uncomfortable truth that for the model given here,
maximum likelihood estimation will fail. The maximum of the likelihood function would
not be unique. Instead, infinitely many sets of parameter values would yield the same
maximum. Geometrically, the likelihood function would have a flat surface at the top.

Here’s why. Let 0 denote the vetor of parameters we are trying to estimate. 0 contains
all the Greek-letter parameters in the model equations (1), plus ten error variances, and
also the expected value and variance of X;. Thus, 6 has 34 elements.

Assume that the model is completely correct, and that disease severity and all the error
terms are normally distributed. This means the vector of six observable variables (there
are six boxes in the path diagram) have a joint distribution that is multivariate normal —
independently forz = 1,...,n, of course. All one can ever learn from a data set is the joint
distribution of the observable data, and a multivariate normal is completely characterized
by its mean vector and variance covariance matrix. Thus, with increasing sample sizes,
all you can ever know is a closer and closer approximations of the six expected values
(call them gy, ..., ug) and the 21 unique values of the 6 x 6 covariance matrix (call them
0ij,% < j). Suppose you knew the ; and o;; values exactly (conceptually letting n — oo,
if that is an idea that helps). Would this tell you the values of all the model parameters
in 67

The p; and o;; are definitely functions of @, and those functions may be obtained
by direct calculation of the expected values, variances and covariances using the model
equations (1). This yields 27 equations. To ask whether the 34 model parameters can
be recovered from the p1; and o;; is to ask whether it’s possible to solve the 27 equations
for 34 unknowns. As one might expect, the answer is no. More precisely, it is impossible
to solve uniquely. There are infinitely many solutions, so that infinitely many sets of
parameter values are equally compatible with any data set. This corresponds to the flat
place on the top of the likelihood surface.

In general, model parameters are said to be identifiable if their values can be recovered
from the probability distribution of the observable data. In structural equation modeling,
it is very easy to come up with reasonable models whose parameters are not identifiable
— like the arthritis pain and exercise example we are considering. When parameters
are not identifiable, estimation and inference can be a challenge, though in some cases
the problems can be overcome. In structural equation modeling, almost everything is
connected to the the issue of parameter identifiability, and on a technical level, this is
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what sets structural equation modeling apart from other applied statistical methods based
on large-sample maximum likelihood. One of the most important tools in the structural
equation modeling toolkit is a set of rules (based on theorems about solving systems
of equations) that often allow the identifiability of a model to be determined based on
visual inspection of a path diagram, without any calculations. The story begins with an
important special case: regression with measurement error.



Chapter 0O

Regression with measurement error

Introduction

This chapter seeks to accomplish two things. First, it is a self-contained introduction
to linear regression with measurement error in the explanatory variables, suitable as a
supplement to an ordinary regression course. Second, it is an introduction to the study
of structural equation models. Without confronting the general formulation at first, the
student will learn why structural equation models are important and see what can be
done with them. Some of the ideas and definitions are repeated later in the book, so that
the theoretical treatment of structural equation modeling does not depend much on this
chapter. On the other hand, the material in this chapter will be used throughout the rest
of the book as a source of examples. It should not be skipped by most readers.

0.1 Covariance and Relationship

Most of the models we will consider are linear in the explanatory variables as well as the
regression parameters, and so relationships between explanatory variables and response
variables are represented by covariances. To clarify this fundamental point, first note that
saying two random variables are “related” really just means that they are not independent.
A non-zero covariance implies lack of independence, and therefore it implies a relationship
of some kind between the variables. Furthermore, if the random variables in question are
normally distributed (a common and very useful model), zero covariance is exactly the
same thing as independence.

More generally, consider two random variables X and Y whose joint distribution might
not be bivariate normal. Suppose there is a tendency for higher values of X to go with
higher values of Y, and for lower values of X to go with lower values of Y. This idea of
a “positive” relationship is pictured in the left panel of Figure 1. Since the probability of
an (z,y) pair is roughly proportional to the height of the surface, a large sample of points
will be most dense where the surface is highest'. On a scatterplot, the best-fitting line

!Presumably this is why it’s called a probability density function.
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relating X to Y will have a positive slope. The right panel of Figure 1 shows a negative
relationship. There, the best-fitting line will have a negative slope.

Figure 1: Relationship between X and Y

Positive Relationship Negative Relationship

::::::::::::::::::::::::::::::::::::::::::::::::::

The word “covariance” suggests that it is a measure of how X and Y vary together. To
see that positive relationships yield positive covariances and negative relationships yield
negative covariances, look at Figure 2.

Figure 2 shows contour plots of the densities in Figure 1. Imagine you are looking
down at a density from directly above, and that the density has been cut into slices that
are parallel with the x, y plane. The ellipses are the cut marks. The outer ellipse is lowest,
the next one in is a bit higher, and so on. All the points on an ellipse (contour) are at
the same height. It’s like a topographic map of a mountainous region, except that the
contours on maps are not so regular.

The definition of covariance is

CorlX.¥) = E{(X =) =)} = [ ) / " (- )y — 1) f (s y) dody

In the left panel of Figure 2, more of the probability is in the upper right and lower left,
and that is where (z — 1, )(y — p,) is positive. The positive volume in these regions is
greater than the negative volume in the upper left and lower right, so that the integral
is positive. In the right-hand panel the opposite situation occurs, and the covariance is
negative. The pictures are just of one example, but the rule is general. Positive covariances
reflect positive relationships and negative covariances reflect negative relationships.
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Figure 2: Contour Plots

Positive Relationship Negative Relationship

In the study of linear structural equation models, one frequently needs to calculate
covariances and matrices of covariances. Covariances of linear combinations are frequently
required. The following rules are so useful that they are repeated from Sections A.1
and A.3 of Appendix A.

Let Xi,...,X,, and Yj,...,Y,, be scalar random variables, and define the linear
combinations L; and Ly by

ni
L1 = CL1X1 —f- s —f- U,annl = ZaiXi, and

i=1

n2
L2 - b1Y1+"'+bn2Yn2 :szz,
i=1

where the a; and b; are constants. Then
niy  no

cov(Ly, Ly) = ZZaibjCov(Xi,Yj). (1)

i=1 j=1

In the matrix version, let x;,...,%X,, and yi,...,¥y,, be random vectors, and define
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the linear combinations £; and £5 by

ni
b = Ax i+ FA X, = ZAixi, and
i=1

n2
£ = Biyi+ - +Buy. =Y By
1=1

where the A; and B; are matrices of constants. Then

ny n2

cov(ly, ) = Z Z A, cov(x;,;) BjT. (2)

i=1 j=1

Both these results say that to calculate the covariance of two linear combinations, just take
the covariance of each term in the first linear combination with each term in the second
linear combination, and add them up. When simplifying the results of calculations, it can
be helpful to recall that Cov(X, X) = Var(X) and cov(x,x) = cov(x).

0.2 Regression: Conditional or Unconditional?

Consider the usual version of univariate multiple regression. For ¢ =1,...,n,

Y = Bo+ Bixig + Baio + -+ Bpo1Zip_1 + €,

where €1, ... €, are independent random variables with expected value zero and common
variance 0%, and z; 1, . .. x;,_1 are fixed constants. For testing and constructing confidence
intervals, €y, ... €, are typically assumed normal.

Alternatively, the regression model may be written in matrix notation, as follows:

y = XB + € (3)

where X is an n X p matrix of known constants, 3 is a p x 1 vector of unknown constants,
and € is multivariate normal with mean zero and covariance matrix ¢2I,,; the variance
0% > ( is a constant.

Now please take a step back and think about this model, rather than just accepting it
without question. In particular, think about why the x variables should be constants. It’s
true that if they are constants then all the calculations are easier, but in the typical appli-
cation of regression to observational® data, it makes more sense to view the explanatory
variables as random variables rather than constants. Why? Because if you took repeated

2 Observational data are just observed, rather than being controlled by the investigator. For example,
the average number of minutes per day spent outside could be recorded for a sample of dogs. In contrast
to observational data are experimental data, in which the values of the variable in question are controlled
by the investigator. In an experimental study, dogs could be randomly assigned to several different values
of the variable “time outside.”
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samples from the same population, the values of the explanatory variables would be dif-
ferent each time. Even for an experimental study with random assignment of cases (say
dogs) to experimental conditions, suppose that the data are recorded in the order they
were collected. Again, with high probability the values of the explanatory variables would
be different each time.

So, why are the x variables a set of constants in the formal model? One response is
that the regression model is a conditional one, and all the conclusions hold conditionally
upon the values of the explanatory variables. This is technically correct, but consider the
reaction of a zoologist using multiple regression, assuming he or she really appreciated
the point. She would be horrified at the idea that the conclusions of the study would be
limited to this particular configuration of explanatory variable values. No! The sample
was taken from a population, and the conclusions should apply to that population, not
to the subset of the population with these particular values of the explanatory variables.

At this point you might be a bit puzzled and perhaps uneasy, realizing that you have
accepted something uncritically from authorities you trusted, even though it seems to be
full of holes. In fact, everything is okay this time. It is perfectly all right to apply a
conditional regression model, even when the predictors are clearly random. But it’s not
so very obvious why it’s all right, or in what sense it’s all right. This section will give the
missing details. These are skipped in every regression textbook I have seen; I'm not sure
why.

Unbiased Estimation Under the standard conditional regression model (3), it is straight-
forward to show that the vector of least-squares regression coefficients B is unbiased for
B (both of these are p x 1 vectors). This means that it’s unbiased conditionally upon
X = x. In symbols,

B{BIX = x} = 8.

This applies to every fixed x matrix with linearly independent columns, a condition that
is necessary and sufficient for B to exist. Assume that the joint probability distribution
of the random matrix X assigns zero probability to matrices with linearly dependent
columns (which is the case for continuous distributions). Using the double expectation
formula E{Y'} = E{E{Y|X}},

E{B} = E{E{BIX}} = E{B] = 8,

since the expected value of a constant is just the constant. This means that estimates
of the regression coefficients from the conditional model are still unbiased, even when the
explanatory variables are random.

The following calculation might make the double expectation a bit clearer. The outer
expected value is with respect to the joint probability distribution of the explanatory
variable values — all n vectors of them; think of the n x p matrix X. To avoid unfamiliar
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notation, suppose they are all continuous, with joint density f(x). Then

E{E{BIX}}

_ /.../E{a|x:x}f<x>dx
_ /.../ﬁf(x>dx
— g/ /f

= B.-1=0

E{B}

Consistent Estimation It will now be shown that when the explanatory variable val-
ues are random, 3, % B; see Section A.5 in Appendix A for a brief discussion of con-
sistency. The demonstation is a bit lengthy, but the details are shown because one of
the intermediate results will be very useful later. The argument begins by establishing
an alternative formula for the ordinary least-squares estimates. The explanatory variable
values are fixed for now, but in the end, the formula will be applied to random X values.

A regression model can be “centered” by subtracting sample means from the values of
the explanatory variables. Geometrically, what this does is to shift the cloud of points in
a high-dimensional scatterplot left or right along each x axis — or equivalently, to adopt
a shifted set of co-ordinate axes. Clearly, this will not affect the tilt (slopes) of the best-
fitting hyperplane, but it will affect the intercept. Writing the regression model in scalar
form and then centering, ...

yi = Bo+Bixig+ -+ Bpxip+ €
= Bo+ 51T+ + BTy
+B1(Tin —T1) + A Bp(Tip — Tp) + €

= apt+ (T —T1)+ oz, —T,) + 6,

where the a parameters are the regression coefficients of the centered model. We have
ag = Bo+ 1T+ - -+ BTy, and o; = B; for j = 1, ..., p. This re-parameterization is one-
to-one. Since the least-squares and maximum likelihood estimates coincide for multiple
regression with normal errors, the invariance principle of maximum likelihood estimation
(See Section A.6.3 in Appendix A) says that a; = f; for j = 1,...,p. That is, centering
does not change the estimated slopes In addition, the MLE of the intercept for the
centered model is ag = 50 + ﬁlxl +- 6pxp Invoking once again the identity of least-
squares and maximum likelihood estimates for this case, we see that the @; quantities are
also the least-squares estimates for the centered model®.

3This argument uses the invariance principle for maximum likelihood estimation, but that’s not really
necessary. There is also an invariance principle for least-squares, which is proved in exactly the same way
as the invariance principle for maximum likelihood.
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For any regression model with an intercept, the sum of residuals is zero. Thus,
} 1~ ~
Yy = n z; Yi
1=

le~/~ = ~
= - Z <50 + frxign+ -+ ﬁpxi,p>
i=1
= 50“'61514""“'@0517
= Qp
That is, the least-squares estimate of the intercept is y for any centered regression model,
regardless of the data.

We already know how to calculate the Ej, but we are working toward another formula
for them. Suppose we start with the centered model

Yi=ao+ fi(xin —T1) + -+ Bp(xip — Tp) + €

Because this is a centered model, we know that g = 5. To find the B\j, first substitute
ap = y and then minimize

n

QB =D (=7 = Bilwiy —T1) = = Bylwip = Tp) )*

i=1

over all 3. This is the same as centering y as well as z, and then fitting a regression
through the origin. The usual formula B8 = (X'X) !XTy applies. We just need to
remember that the columns of the n X p matrix X are centered, and so is the n x 1 vector
y. For p = 3, the X matrix looks like this:

T11— X1 Tig— T T13 — I3
To1 — X1 Tog — Ty Togz — X3
T31 — X1 X3p— Top X33 — I3
Tp1l — X1 Tpa — To Tpgz — I3

The XX matrix, the so-called the “sums of squares and cross products” matrix, is

Ti1 —T1 T2 — T2 T13 — T3

T11 —T1 To1 — T1 T31 — T1 +° Tpl— T1 To1 —T1 T2 — T2 T23 — T3
XTX = Ti19 — To Tog — Tg T3g — To -+ Tpo — To T31 —T1 T32 — T2 T33 — T3
T13 — T3 T3 —T3 T3z — T3 -+ Tpg — T3 : : :

Tpl — X1 Tpo — To Tpz — I3

> e > ic1 (
= | YLi(@e —T)(zn —T1) i (zi —T)° S (Tio — To) (243 — T3)
> e T3)( T) Y (

(zi3 — T3)(Tio — T2) Yy (Tig — T3)?

Tio —T2) Yoo (xan —T1) (23 — T3)
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It’s clear that larger examples would follow this same pattern. The entries in the matrix
look like sample variances and covariances, except that they are not divided by n. Dividing
and multiplying by n, we have XX = nEI, where Ex is the sample variance-covariance
matrix of the explanatory variables.

Still looking at the p = 3 case for simplicity,

Y1—y

Tl — Ty X1 — Ty T3 — Ty o Tpl — T Yo — Y

XTy = Tig —To Tog —To T3 — T -+ Tpa — T2 Y3 — g
13 — T3 T3 — T3 T3z — T3 -+ Tp3 — T3

Yn — g

where flxy is the £ x 1 vector of sample covariances between the explanatory variables
and the response variable.
Putting the pieces together, the least squares estimator of 3 is

B, = X'X)"'XTy
= (nX,) 'nX,,
1 ~

Several comments are in order. First, recall that Bn is a vector of least-squares slopes only.
It does not include the intercept. However, the intercept for a centered model is g, and
is easily computed. Second, because the slopes are the same for the centered model and
the uncentered model, formula (4) applies equally to uncentered models. Third, in spite
of the suggestive > notation, expression (4) is just a computational formula. It applies
whether the explanatory variable values are random or fixed. Only when the variables
are random do ¥, and X, actually estimate variances and covariances.



0.2. REGRESSION: CONDITIONAL OR UNCONDITIONAL? 15

When the explanatory variables are random, the Strong Law of Large Numbers and
continuous mapping yield R
B =3 B, . (5)

The only requirement for convergence is that X! exist, which is equivalent to 3, being
positive definite.

The convergence (5) applies whether the regression model is correct or not. For this
reason, it can be a valuable tool for studying mis-specified regression models — that is,
models that are assumed, but are not actually correct. If you can calculate E and Exy
under the true model, you can determine where the estimated regression coefficients are
going as the sample size increases. This will often indicate whether the mis-specification
is likely to cause mistaken conclusions.

For the present, suppose that the usual uncentered regression model is correct. Inde-
pendently for : = 1,...,n, let

yi=PBo+B'X;+e

where
Bo (the intercept) is an unknown scalar constant.
B is a p x 1 vector of unknown slope parameters.

x; is a p x 1 random vector with expected value g and positive definite covariance
matrix .

€ is a scalar random variable with E(e;) = 0 and Var(e;) = o

cov(x;, €;) = 0.
So,

3 = cou(x,yi)

= cov(x;, fo+ BT xi + €)

= cov(x;, B x; + €)
(
(

I
o

ov(x;, B x;) + cov(x, €;)
= cov(x;,%x;)3+0

0.
Then by (5)

o)
la

1'%,
= ¥ '%.0
= B.

Since almost sure convergence implies convergence in probability (see Section A.5 in Ap-
pendix A), we have 8, % 3. This is the standard definition of (weak) consistency. The
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meaning is that as the sample size increases, the probability that the usual least-squares
estimate 3,, is arbitrarily close to 3 approaches one. This holds even though the explana-
tory variable values are random variables, and Bn was derived under the assumption that
they are fixed constants.

Size a Tests Suppose Model (3) is conditionally correct, and we plan to use an F' test.
Conditionally upon the x values, the F' statistic has an F' distribution when the null
hypothesis is true, but unconditionally it does not. Rather, its probability distribution is
a mizture of F' distributions, with

Pr{FGA}:/---/PT{FEA|X:X}f(x)dx.

If the null hypothesis is true and the set A is the critical region for an exact size o F-test,
then Pr{F € A|X = x} = « for every fixed set of explanatory variable values x. In that
case,

Pr{Fe A} = /---/af(X>dX

— o[ [ 1o (6)

Thus, the so-called F-test has the correct Type I error rate when the explanatory variables
are random (assuming the model is conditionally correct), even though the test statistic
does not have an F' distribution.

It might be suspected that if the explanatory variables are random and we assume
they are fixed, the resulting estimators and tests might be of generally low quality, even
though the estimators are unbiased and the tests have the right Type I error probability.
Now we will see that given a fairly reasonable set of assumptions, this fear is unfounded.

Denoting the explanatory variable values by X and the response variable values by Y,
suppose the joint distribution of X and Y has the following structure. The distribution
of X depends on a parameter vector 6;. Conditionally on X = x, the distribution of
Y depends on a parameter vector 85, and @, and 6, are not functionally related. For a
standard regression model this means that the distribution of the explanatory variables
does not depend upon the values of 3 or ¢? in any way. This is surely not too hard to
believe.

Please notice that the model just described is not at all limited to linear regression. It
is very general, covering almost any conceivable regression-like method including logistic
regression and other forms of non-linear regression, generalized linear models and the like.

Because likelihoods are just joint densities or probability mass functions viewed as
functions of the parameter, the notation of Appendix A.6.8 may be stretched just a little
bit to write the likelihood function for the unconditional model (with X random) in terms
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of conditional densities as

L(91,92,X, Y) = f91,92(x> Y)
- f92 (Y|X) f01 (X)
= LQ(GQ,X, y) L1<91,X) (7)

Now, take the log and partially differentiate with respect to the elements of @;. The
marginal likelihood L;(64,x) disappears, and 6 is exactly what it would have been for a
conditional model.

In this setting, likelihood ratio tests are also identical under conditional and uncondi-
tional models. Suppose the null hypothesis concerns 05, which is most natural. Note that
the structure of (7) guarantees that the MLE of 0 is the same under the null and alter-
native hypotheses. Letting 8 denote the restricted MLE of 8, under H, the likelihood
ratio for the unconditional model is

N — L2(§0,27X7 }’) Ll(Al
L2(027 X, y) L1(017
Ly(602,%,y)
L2 (027 X, y) 7

which again is exactly what it would have been under a conditional model. While this
holds only because the likelihood has the nice structure in (7), it’s a fairly reasonable set
of assumptions.

Thus in terms of both estimation and hypothesis testing, the fact that explanatory
variables are usually random variables presents no difficulty, regardless of what the distri-
bution of those explanatory variables may be. In fact, the conditional nature of the usual
regression model is a strength. In all the calculations above, the joint distribution of the
explanatory variables is written in a very general way. It really doesn’t matter what it is,
because it disappears. So one might say that with respect to the explanatory variables,
the usual linear regression model is distribution free.

In spite of the virtues of the conditional regression model, in this book we will focus
on unconditional regression models, in which the explanatory variables are random. The
reason is that ultimately, the explanatory variables themselves may be influenced by
other variables. The easiest way to represent this is to admit from the outset that they
are random variables.

,X)

x)

0.3 Unconditional regression with observed variables

Example 0.3.1 Simple Regression

Suppose that the covariance between two random variables arises from a regression. In-
dependently for : = 1,...,n, let

Yi= B0+ 51Xi + ¢ (8)

where
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e X; is has expected value p, and variance ¢ > 0
e ¢; has expected value zero and variance o2 > 0
e X, and ¢; are independent.

The pairs (X;,Y;) have a joint distribution that is unspecified, except for the expected

value ¥
i o H1 o My
e(3) == ()= (a5 )

and variance-covariance matrix

X\ o (b B
“’“( Y, )—E‘["W]‘(w /3%¢1+02)'

The linear property of the covariance (Expression 1 on page 9) is useful for calculating
the covariance between the explanatory and response variables.

Cov(X;,Y;) = Cou(X;, B+ i X + &)
= Cov(X;, /1 X; + €)
= [1Cov(X;, X;) + Cov(X;, €)
= G Var(X;)+0
= o

Since ¢ is a variance, it is greater than zero. Thus the sign of the covariance is the sign of
the regression coefficient. Positive regression coefficients produce positive relationships,
negative regression coefficients produce negative relationships, and zero corresponds to no
relationship as measured by the covariance.

While the sign of the covariance (and hence the direction of the relationship) is de-
termined by (1, the magnitude of the covariance is jointly determined by the magnitude
of B and the magnitude of ¢, the variance of X;. Consequently the covariance of X; and
Y; depends on the scale of measurement of X;. If X, is measured in centimeters instead
of meters, its variance is 100® = 10,000 times as great, and C'ov(X;,Y;) is ten thousand
times as great, as well. This makes raw covariances difficult to interpret, except for the
sign.

A solution is to put the variables on a standard common scale by looking at correlations
instead of covariances. Denoting the correlation of any two random variables X and Y
by Greek letter “rho,” which is a common notation,

_ Cou(X)Y)
Pev = SD(X)SD(Y) (9)
E{(X — pa)(Y — )}
VVar(X)/Var(Y)

- (55 (5}
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That is, the correlation between two random variables is the covariance between versions of
the variables that have been standardized to have mean zero and variance one. Using (9),
the correlation for Example 0.3.1 is

B p1¢
SN N e

= M (10)

VB¢ +o?

This may not look like much, but consider the following. In any regression, the response
variable is likely to represent the phenomenon of primary interest, and explaining why
it varies from unit to unit is an important scientific goal. For example, if Y; is academic
performance, we want to know why some students do better than others. If Y; is the crime
rate in neighbourhood ¢, we want to know why there is more crime in some neighbourhoods
than in others. If there were no variation in some phenomenon (the sum rises in the East)
there might still be something to explain, but it would not be a statistical question.
Because X; and ¢; are independent,

Var(V;) = Var(f1X; +¢€)
= BiVar(X;) + Var(e)
= Bio+o%.

Thus the variance of Y; is separated into two parts?, the part that comes from X; and the
part that comes from ¢;. The part that comes from X; is 3?¢, and the part that comes
from ¢; (that is, everything else) is 2. From (10) the squared correlation between X; and
Y, is

. B -

e

the proportion of the variance in Y; that comes from X;. This quantity does not depend
on the scale of X; or the scale of Y;, because both variables are standardized.

Example 0.3.2 Multiple Regression

Now consider multiple regression. In ordinary multiple regression (the conditional
model), one speaks of the relationship between and explanatory variable and the response
variable “controlling” for other variables in the model®. This really refers to the condi-
tional expectation of Y as a function of z; for fixed values of the other x variables, say
in the sense of a partial derivative. In unconditional regression with random explanatory
variables one talks about it in the same way, but the technical version is a bit different
and perhaps easier to understand. Here is an example with two explanatory variables.

4The word “analysis” means splitting into parts, so this is literally analysis of variance.
5One can also speak of “correcting” for the other variables, or “holding them constant,” or “allowing”
for them, or “taking them into account.” These are all ways of saying exactly the same thing.
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Independently for i = 1,...,n, let Y; = By + 1.X;1 + 52X, 2 + €, where E(X;1) = 1,
E(X;2) = us, E(;) =0, Var(e;) = 02, ¢; is independent of both X;; and X, and

cov < Xin > _ ( P11 P12 )
Xio P12 P22
Figure 3 shows a path diagram for this model. The explanatory and response variables are
all observed, so they are enclosed in boxes. The double-headed curved arrow between the
explanatory variables represents a possibly non-zero covariance. This covariance might
arises from interesting and important processes including common influences on the X
variables, but those processes are not part of the model. Curved double-headed arrows
represent unanalyzed covariances between explanatory variables.

The straight arrows from the explanatory to response variables represent direct influ-
ence, or at least that we are interested in predicting y from x rather than the other way
around. There is a regression coefficient S on each straight arrow, and a covariance ¢
on the curved double-headed arrow.

Figure 3: Unconditional multiple regression

€

X1
b.

For this model, the covariance of X;; and Y; is

Cov(Xi1,Y;) = Cov(Xiy, Bo+ f1Xi1 + foXin + €)
= Cov(Xiq1, 51 Xiqn + BoXio+ €)
= (1Cov(X;1,Xi1) + f2Cov(X;1, Xi2) + Cov(X;1,€)
= BiVar(Xiy) + B2Cov(Xiy, Xi2) +0
= [Sio11 + Badhrz

This means that the relationship between X; and Y has two sources. One is the direct
link from X; to Y through the straight arrow represented by i, and the other is through
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the curved arrow between X; and X, and then through the straight arrow linking X5 to
Y. Even if 5; = 0, there still will be a relationship provided that X, is related to X5 and
X, is related to Y6, Furthermore, 3212 may overwhelm (;¢11, so that the covariance
between X; and Y may be positive even though J; is negative.

All this is true of the unconditional relationship between X; and Y, but what if you
“control” for X, by holding it constant at some fixed value?” When the explanatory
variables are all random, the relationship between X; and Y controlling for X, simply
refers to a conditional distribution — the joint distribution of X; and Y given X, = x».
In this case the regression equation is

Yi = Bo+5iXig+ Bawio+ €
(Bo + Bazio) + 51Xi1 + €
= By+ X1 +e

The constant is simply absorbed into the intercept. It’s a little strange in that the
intercept is potentially different for : = 1,...,n, but that doesn’t affect the covariance.
Following the calculations in Example 0.3.1, the conditional covariance between X;; and
Y; is f1¢11. Thus to test whether X is connected to Y controlling for X, (or correcting
for it, or allowing for it or some such term), it is appropriate to test Hy : f; = 0. If
the null hypothesis is rejected, the sign of the estimated regression coefficient guides
your conclusion as to whether the conditional relationship is positive or negative. These
considerations extend immediately to multiple regression.

In terms of interpreting the regression coefficients, it is helpful to decompose (analyze)
the variance of Y;.

Var(Y;) = Var(fi1 X1 + foXio + €)
B2p11 + Biday + 281 Bapia + 0

The explanatory variables contribute to the variance of the response individually through
their variances and squared regression coefficients, and also jointly through their regression
coefficients and their covariance. This joint effect is not an interaction in the ordinary
sense of the term; the model of Example 0.3.2 has no product term. The null hypothesis
Hy : 51 = 0 means that X; does not contribute at all to the variance of Y, either directly
or through its covariance with X5.

Estimation
Here is some useful terminology, repeated from Appendix A.

Definition 0.1 Moments of a distribution are quantities such F(X), E(Y?), Var(X),
E(X?Y?), Cov(X,Y), and so on.

5Yes, body weight may be positively related to income because men are bigger on average and they
tend to make more money for the same work.
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Definition 0.2 Moment structure equations are a set of equations expressing moments of
the distribution of the data in terms of the model parameters. If the moments involved are
limited to variances and covariances, the moment structure equations are called covariance
structure equations.

For the simple (one explanatory variable) regression model of Example 0.3.1, the moments

are the elements of the mean vector p = F ( V.

), and the unique elements of the

. : X :
covariance matrix X = cov < YZ . The moments structure equations are
i

o= e (12)
pe = o+ Bips

1,1 = o

01,2 = ﬁﬂb

022 = Pio+.

In this model, the parameters are ., ¢, 5y, f1, ¥, and also the unknown distribution
functions of X; and ¢;. Our interest is in the Greek-letter parameters, especially £, and
f1. Method of Moments estimates (See Section A.6.2 in Appendix A) can be obtained
by solving the moment structure equations (12) for the unknown parameters and putting
hats on the result. The moment structure equations form a system of 5 equations in five
unknowns, and may be readily be solved to yield

01,2
Bo = po——"m (13)

01,1
Mz =
<Z§ = 01,1
01,2
Bo= =2
01,1

2

012

1/} = 0292 — —.

01,1

Thus, even though the distributions of X; and ¢; are unknown, we have nice consistent’
estimators of the interesting part of the unknown parameter. Putting hats on the param-

"By the Law of Large Numbers and continuous mapping



0.3. UNCONDITIONAL REGRESSION WITH OBSERVED VARIABLES 23

eters in Expression 13,

i~ _ O12_
Bo = Y— =T
01,1
ﬁx = //1\/1 =7
¢ = E7\1,1
S a\1,2
fi = ==
01,1
~2
~ ~ 012
¢ = 0292 — =< -
01,1

It is very standard to assume that X; and ¢; are normally distributed. In this case, the
existence of the solution (13) tells us that the parameters of the normal version of this
regression model stand in a one-to-one-relationship with the mean and covariance matrix
of the bivariate normal distribution posessed by the observable data. In fact, the two
sets of parameter values are 100% equivalent; they are just different ways of expressing
the same thing. For some purposes, the parameterization represented by the regression
model may be more informative.

Furthermore, the Invariance Principle of maximum likelihood estimation (see Sec-
tion A.6.5 in Appendix A) says that the MLE of a one-to-one function is just that func-
tion of the MLE. So, the Method of Moments estimates are also the Maximum Likelihood
estimates in this case. Recognizing the formula for 3, as a special case of Expression 4 on
Page 14 (from the centered multiple regression model), we see that (; is also the ordinary
least-squares estimate.

The calculations just shown are important, because they are an easy, clear example
of something that will be necessary again and again throughout the course. Here is the
process:

e Calculate the moments of the distribution (usually means, variances and covari-
ances) in terms of the model parameters, obtaining a system of moment structure
equations.

e Solve the moment structure equations for the parameters, expressing the parameters
in terms of the moments.

When the second step is successful, putting hats on all the parameters in the solution
yields Method of Moments estimators, even when these do not correspond to the MLEs®.

It turns out that for many reasonable models that go beyond ordinary multiple regres-
sion, a unique solution for the parameters is mathematically impossible. In such cases,
successful parameter estimation by any method is impossible as well. It is vitally im-
portant to verify the possibility of successful parameter estimation before trying it for a

8When there are the same number of moment structure equations and a unique sulution for the parame-
trers exists, the Mothod of Moments estimators and MLEs coincide. When there are more equations than
parameters they no longer coincide in general, but still the process of “putting hats on everything” yields
Method of Moments estimators.
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given data set (say, by maximum likelihood), and verification consists of a process like
the one you have just seen. Of course it is no surprise that estimating the parameters of
a regression model is technically possible.

Because the process is so important, let us take a look at the extension to multivariate
multiple regression — that is, to linear regression with multiple explanatory variables and
multiple response variables. This will illustrate the matrix versions of the calculations.

Example 0.3.3 Multivariate Regression

Independently for i = 1,...,n, let
yi =B+ Bix +€ (14)
where

y; is a ¢ X 1 random vector of observable response variables, so the regression can
be multivariate; there are ¢ response variables.

B is a ¢ x 1 vector of unknown constants, the intercepts for the ¢ regression equa-
tions. There is one for each response variable.

x; is a p X 1 observable random vector; there are p explanatory variables. x; has
expected value p, and variance-covariance matrix ®, a p X p symmetric and positive
definite matrix of unknown constants.

B is a px ¢ matrix of unknown constants. These are the regression coefficients, with
one row for each explanatory variable and one column for each response variable.

€; is the error term of the latent regression. It is an ¢ x 1 multivariate normal
random vector with expected value zero and variance-covariance matrix W, a ¢ X ¢
symmetric and positive definite matrix of unknown constants. €; is independent of
X;.

The parameter vector for this model could be written 8 = (3, p,, ®, 81, ¥, Fx, Fe), where
it is understood that the symbols for the matrices refer to their unique elements.

Figure 4 depicts a model with three explanatory variables and two response variables.
The explanatory and response variables are all observable, so they are enclosed in boxes.
Double-headed curved arrows between the explanatory variable represent possible non-
zero covariances. The straight arrows from the explanatory to response variables represent
direct influence, or at least that we are interested in predicting y from x rather than the
other way around. There is a regression coefficient 3;; on each arrow. The error terms
€1 and €y represent all other influences on Y; and Y5. Since there could be common
influences (omitted variables that affect both Y} and Y5), the error terms are assumed to
be correlated. This is the reason for the curved double-headed arrow joining €; and es.
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Figure 4: Multivariate multiple regression

X

1
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There is one regression equation for each response variable. In scalar form, the model
equations are

Yii = Boi+ Bi1Xiqn + B2 Xio+ B31Xi3 + €1
Yio = Boa+ Bi2Xi1 + BoaXio+ B32Xi3 + €0

In matrix form,

Yi = Bo + Bi X; + €

Xi
Yia _ Bio n Bia Ba1 B3a X»’; n €i1
Yio B2,0 Bia Ba2 Bs2 XZ’ €;,2
i3
Returning to the general case of Example 0.3.3, the observable data are the random

‘), for ¢ = 1,...,n. The notation indicates that D, is a partitioned

vectors D; = :
random vector, with x; stacked directly on top of y;. Using the notation F(D;) = p and
cov(D;) = X, one may write g and X as partitioned matrices (matrices of matrices).

- (er) = ()
S oo ( X; > _ ( cou(x;) | cov(xiy,) ) _ ( S| S >
yi cov(xi,yi)" | covlyi) 55| e

As in the univariate case, the maximum likelihood estimators may be obtained by solving
the moment structure equations for the unknown parameters. The moment structure

and
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equations are obtained by calculating expected values and covariances in terms of the
model parameters. All the calculations are immediate except possibly

Y = cou(xi,yi)
= cov (Xi , Bo+ BITXZ + ei)
= cov (xi , ﬁlTXi + ei)
= cov (Xi,%;) By + cov(x, €)
= cov(x;)3,+0
= ‘1’131

Thus, the moment structure equations are

Ko = ﬁO + /Birl'l’ac
211 - @
212 - (I)Bl

Yo = [B®6, + V.
Solving for the parameter matrices is routine.

By = N2_21711212M1

H: =

(b = 211 (16)
B = T'Zp

\II == 2 2122 212

As in the univariate case, the Method of Moments estimates are obtained by putting hats
on all the parameters in Expression (16). If the distributions of x; and €; are multivariate
normal, the Invariance Principle implies that these Method of Moments estimates are also
the maximum likelihood estimates.

Least Squares Recall that in the proof of consistency for ordinary least squares with
random explanatory variables, we centered the explanatory variables and obtained For-

mula (4) on Page 14: B, = 2712 Compare this to the estimate of the slopes ob-

tained from the solution (16) above: ﬁl = 211 315, The formulas are almost the same.
EH = Em, the sample variance-covariance matrix of the explanatory variables. 212 and
E zy are both matrices of sample covariances between explanatory and response variables,
except that 212 is p X g while izy isp x 1. 212 has one column for each response vari-
able. So, in addition to being a method of moments estimate and a maximum likelihood
estimate under normality 3, is a p X ¢ matrix of least-squares estimates,
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0.4 Omitted Variables

Some very serious problems can arise when standard regression methods are applied to
non-experimental data. Note that regression methods are applied to non-experimental
data all the time, and we teach students how to do it in almost every statistics class where
regression is mentioned. Without an understanding of the technical issues involved, the
typical applications can be misleading.

The trouble is not the explanatory variables are random. As we saw in Section 0.2,
that’s fine. But when the random explanatory variables have non-zero correlations with
other explanatory variables that are missing from the regression equation and are related
to the response variable, things can get ugly. In this section, we will see how omitting
important explanatory variables from a regression equation can cause the error term to be
correlated with the explanatory variables that remain, and how that can produce incorrect
results.

To appreciate the issue, it is necessary to understand what the error term in a regres-
sion equation really represents. When we write something like

Y = B+ 51 Xi1 + €, (17)

we are saying that X, ; contributes to Y, but there are also other, unspecified influences.
Those other influences are all rolled together into ¢;.

The words “contributes” and “influences” are used deliberately. They should be setting
off alarm bells, because they imply a causal connection between X; and Y;. Regression
models with random explanatory variables are applied mostly to observational data, in
which explanatory variables are merely recorded rather than being manipulated by the
investigator. The correlation-causation issue applies. That is, if X and Y are related,
there is in general no way to tell whether X is influencing Y, or Y is influencing X, or if
other variables are influencing both X and Y.

It could be argued that a conditional regression model (the usual model in which
the explanatory variable values are fixed constants) is just a convenient way to represent
dependence between X and Y by specifying a generic, more or less reasonable conditional
distribution for ¥ given X = x. In this case, the correlation-causation issue can be
set aside, and taken up when it is time to interpret the results. But if the explanatory
variables are explicitly random, it is harder to avoid the obvious. In the simple regression
model (17), the random variable Y; is a function of the random variables X; and ¢;. It
is being directly produced by them. If this is taken seriously as a scientific model as
well as a statistical model?, it is inescapably causal; it is a model of what affects what.
That’s why the straight arrows in path diagrams are directional. The issue of whether X
is influencing Y, or Y is influencing X or both is a modelling issue that will mostly be
decided based on subject-matter theory.

It is natural to ask whether the data can be used to decide which way the arrows should
be pointing. The answer is usually no, but it can be yes with certain other restrictions

9n structural equation modelling, the models are both statistical models and primitive scientific
models of the data. Once the general linear structural model is introduced, you will see that regression
is a special case.
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on the model. We will return to this issue later in the book. In the meantime, regression
models with random explanatory variables, like the general structural equation models
that are their extensions, will be recognized as causal models.

Again, Equation (17) says that X is influencing Y;. All other influences are represented
by €. It is common practice to assume that X;; and ¢ are independent, or at least
uncorrelated. But that does not mean the assumption can be justified in practice. Prepare
yourself for a dose of reality.

Example 0.4.1 Omitted Explanatory Variables

Suppose that the variables X5 and X3 have an impact on Y and are correlated with X7,
but they are not part of the data set. The values of the response variable are generated
as follows:

Yi= B0+ 51 Xi1 + BoXin + B3 Xi3 + €, (18)

independently for ¢ = 1,...,n, where ¢, ~ N(0,0?). The explanatory variables are
random, with expected value and variance-covariance matrix

Xi1 1 Xia o1 P12 P13
El Xio | = e and cov | X;o | = OG22 D23 |,
Xi3 M3 X3 ¢33

where ¢; is independent of X;;, X;5 and X, 3. Values of the variables X;, and X; 3 are
latent, and are not included in the data set.

Figure 5 shows a path diagram of this model. Because the explanatory variables X; 5
and X, 3 are not observable, they are latent variables, and so they are encolsed by ovals
in the path diagram. Their covariances with X;; and each other are represented by
two-headed curved arrows.

Figure 5: Omitted explanatory variables

s
<y :
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Since X5 and X3 are not available, we use what we have, and consider a model with
X, only. In this case X5 and X3 are absorbed by the intercept and error term, as follows.

Yi = Bo+5iXig+ BoXio+ B33 X3+ €
= (Bo + Papiz + Bspz) + 1 Xix + (52Xi2 + 53 Xi3 — Papte — Bz + €;)
= By + i X1+ €.

The primes just denote a new [y and a new ¢; the addition and subtraction of Syus +
Psps serve to make E(e;) = 0. And of course there could be any number of omitted
variables. They would all get swallowed by the intercept and error term, the garbage bins
of regression analysis.

Notice that although the original error term ¢; is independent of X;;, the new error
term €, is not.

Cov(X;1,€) = Cou(Xiq,BaXio+ B3Xi3 — Papia — Pz + €)
= [1Cov(X;1,Xi2) + B3Cou(X;1,Xi3) +0
= [ag1a + O3013 (19)

So, when explanatory variables are omitted from the regression equation and those ex-
planatory variables have non-zero covariance with variables that are in the equation, the
result is non-zero covariance between the error term and the explanatory variables in the
equation”.

Response variables are almost always affected by more than one explanatory variable,
and in observational data, explanatory variables usually have non-zero covariances with
one another. So, the most realistic model for a regression with just one explanatory
variable should include a covariance between the error term and the explanatory variable.
The covariance comes from the regression coefficients and covariances of some unknown
number of omitted variables; it will be represented by a single quantity because there is
no hope of estimating all those parameters individually. We don’t even know how many
there are.

We have arrived at the following model, which will be called the true model in the
discussion that follows. It may not be the ultimate truth of course, but for observational
data it is almost always closer to the truth than the usual model. Independently for
1=1,...,n,

Y; = Bo + 51 Xi + €, (20)

where E(X;) = g, Var(X;) = 02, E(e;) = 0, Var(e;) = 02, and Cov(X;,¢;) = ¢. A
path diagram of the true model is given in Figure 6. The covariance c is indicated on
the curved arrow connecting the explanatory variable and the error term. Consider a
data set consisting of pairs (X1,Y1),...,(Xn, Ys) coming from the true model, and the
interest is in the regression coefficent $;. Who will try to estimate the parameters of

the true model? Almost no one. Practically everyone will use ordinary least squares, as

10The effects of the omitted variables could offset each other. In this example, it is possible that
Bap12 + B3p13 = 0, but that is really too much to hope.
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Figure 6: Omitted explanatory variables have been swallowed by e
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X > Y

described in countless textbooks and implemented in countless computer programs and
even statistical calculators.

The model underlying ordinary least squares is Y; = So+ (1x; +¢€;, where x4, ..., x, are
fixed constants, and conditionally on x4, ..., x,, the error terms €y, . . ., ¢, are independent
normal random variables with mean zero and variance 2. It may not be immediately
obvious, but this model implies independence of the explanatory variable and the error
term. It is a conditional model, and the distribution of the error terms is the same for
every fixed set of values z1, ..., x,. Using a loose but understandable notation for densities

and conditional densities,

fefes) = fe)
RILLINO

which is the definition of independence. So, the usual regression model makes a hidden
assumption. It assumes that any explanatory variable that s omitted from the equation
has zero covariance with the variables that are in the equation.

Surprisingly, this does not depend on the assumption of any particular distribution for
the error terms. All you need is the stipulation E(e;) = 0 in a fixed-x regression model.
It’s worth doing this in generality, so consider the multivariate multiple regression model
of Example 0.3.3 on page 24:

Yi=08,+8X;+e.

If the X; values are considered fixed constants, the statement E(e€;) = 0 actually means
E(€;]X; = x;) = 0 for all p x 1 constant vectors x; in the support of X;. Then,

E(e;) = E{E(&i|X;)} = E{0} =0,
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and

cov(X;, &) = E(Xi€e))— E(X;)E(e)’
= E(X;e/)—0
= B{B(X:e/|Xi)}-

The inner expected value is a multiple integral or sum with respect to the conditional
distribution of €; given X;, so X; may be moved through the inner expected value sign.
To see this, it may help to write the double expectation in terms of integrals of a general
kind!. Continuing the calculation,

E{E(X;€] X))} = / ( / xerPdX(e)) dP, (x)

- [x([rira)ane

= E{X,0"}
= E£{0}
=0

Unconditional (random X) regression models typically assume zero covariance between
error terms and explanatory variables. It is now clear that conditional (fixed x) regression
models smuggle this same assumption in by making the seemingly reasonable and harmless
assertion that E(e;) = 0.

Zero covariance between error terms and explanatory variables means that any poten-
tial explanatory variable not in the model must have zero covariance with the explanatory
variables that are in the model. Of course this is almost never realistic without random
assignment to experimental conditions, so that almost every application of regression
methods to non-experimental data makes an assumption that cannot be justified. Now
we will see the consequences.

For a simple regression, both ordinary least squares and an unconditional regression
model like the true model on Page 29 with ¢ = 0 lead to the same standard formula:

5 ZLXi-X-T)
Z?:1(Xi - X)2
Ly (X —X)(Y;—Y)
% Z?zl(Xi - 7)2

" These are Lebesgue integrals with respect to probability measures and conditional probability mea-
sures. They include multiple sums and ordinary Reimann integrals as special cases.
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where 7, , is the sample covariance between X and Y, and 72 is the sample variance of X.
These are maximum likelihood estimates of Cov(X,Y") and Var(X) respectively under
the assumption of normality. If the denominators were n — 1 instead of n, they would be
unbiased.

By the strong consistency of the sample variance and covariance (see Section A.5 in
Appendix A), 7, , converges almost surely to Cov(X,Y’) and 52 converges almost surely
to Var(X) as n — oo. Under the true model,

Cov(X,)Y) = Cov(Xy, B+ BiXi+€)
= BlCov(Xi, Xz) —f- COU(XZ‘, Ei)

= Biol+ec
So by continuity,
o) a\x a.s. &
B, = aéy = B+ pet (21)

Since the estimator is converging to quantity that is off by a fixed amount, it may be
called asymptotically biased. Thus, while the usual teaching is that sample regression
coeflicients are unbiased estimators, we see here that [ is biased as n — co. Regardless
of the true value f, the estimate 5; could be absolutely anything, depending on the value
of ¢, the covariance between X; and ¢;. The only time 3, behaves properly is when ¢ = 0.

What’s going on here is that the calculation of ; is based on a model that is mis-
specified. That is, it’s not the right model. The right model is what we’ve been calling
the true model. And to repeat, the true model is the most reasonable model for simple
regression, at least for most non-experimental data.

The lesson is this. When a regression model fails to include all the explanatory variables
that contribute to the response variable, and those omitted explanatory variables have
non-zero covariance with variables that are in the model, the regression coefficients are
inconsistent. In other words, with more and more data they do not approach the right
answer. Instead, they get closer and closer to a specific wrong answer.

If you think about it, this fits with what happens frequently in practical regrssion
analysis. When you add a new explanatory variable to a regression equation, the coeffi-
cients of the variables that are already in the equation do not remain the same. Almost
anything can happen. Positive coefficients can turn negative, negative ones can turn posi-
tive, statistical significance can appear where it was previously absent or disappear where
it was previously present. Now you know why.

Notice that if the values of one or more explanatory variables are randomly assigned,
the random assignment guarantees that these variables are independent of any and all
variables that are omitted from the regression equation. Thus, the variables in the equa-
tion have zero covariance with those that are omitted, and all the trouble disappears. So,
well-controlled experimental studies are not subject to the kind of problems described here.

Actually, the calculations in this section support a familiar point, the correlation-
causation issue, which is often stated more or less as follows. If A and B are related to
one another, one cannot necessarily infer that A affects B. It could be that B affects A,
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or that some third variable C' is affecting both A and B. To this we can now add the
possibility that the third variable C affects B and is merely correlated with A.

Variables like C' are often called confounding variables, or more rarely, lurking vari-
ables. The usual advice is that the only way to completely rule out their action is to
randomly assign subjects in the study to the various values of A, and then assess the
relationship of A to B. Again, now you know why.

It should be pointed out that while the correlation-causation issue presents grave
obstacles to interpreting the results of observational studies, there is no problem with
pure prediction. If you have a data set with x and y values and your interest is predicting
y from the x values for a new set of data, a regression equation will be useful, provided
that there is a reasonably strong relationship between x and y. From the standpoint
of prediction, it does not really matter whether y is related to x directly, or indirectly
through unmeasured variables that are related to x. You have z and not the unmeasured
variables, so use it. An example would be an insurance company that seeks to predict
the amount of money that you will claim next year (so they can increase your premiums
accordingly now). If it turns out that this is predictable from the type of music you
download, they will cheerfully use the information, and not care why it works.

Also, the convergence of 31 to the wrong answer in (21) may be misleading, but it does
not necessarily yield the wrong conclusion. In much of the social and biological sciences,
the theories are not detailed and sophisticated enough to make predictions about the
actual values of regression coefficients, just whether they should be positive, negative or
zero. So, if the variable being tested and the omitted variables are pulling in the same
direction (that is, if §; and ¢ in Model (20) on Page 29 are either both positive or both
negative), the study will come to the “right” conclusion. The trouble is that you can’t
tell, because you don’t even know what the omitted variables are. All you can do is hope,
and that’s not a recipe for good science.

Trying to fit the true model We have seen that serious trouble arises from adopting
a mis-specified model with ¢ = Cov(Xj, ¢;) = 0, when in fact because of omitted variables,
¢ # 0. It is natural, therefore, to attempt estimation and inference for the true model
Y, = Bo + 51X; + € (see Page 29) in the case where ¢ = Cov(Xj,¢;) need not equal
zero. For simplicity, assume that X; and ¢; have a bivariate normal distribution, so that
the observable data pairs (X;,Y;) for ¢ = 1,...,n are a random sample from a bivariate
normal distribution with mean vector g and variance-covariance matrix 3.

It is straightforward to calculate g and 3 from the equation and assumptions of the
true model (20). The result is

i X i
= =Lk = 22
i) =2 (5 ) = (atin) 2
(o1 o112\ _ X\ 0'2 51‘7926"‘(3
E_<0’m 022)—001}(;4)—(5103“ Bo?+2perar ) (B

This shows the way in which the parameter vector 8 = (u,, 02, Bo, 1,02, ¢) determines
and X, and hence the probability distribution of the data.

and
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Our primary interest is in ;. Because the data pairs (X;,Y;) come from a bivariate
normal distribution, all you can ever learn from the data are the approximate values of p
and 3. With larger and larger samples, all you get is better and better approximations
of pu and X. That’s all there is to know. But even if you knew p and 3 exactly, could
you know (;7 Formulas (22) and (23) yield a system of five equations in six unknown
parameters.

M1 = g

p2 = Bo+ Bifts

oy = o’ (24)
019 = 510320 +c

oy = fio;+26ic+a?

The problem of recovering the parameter values from g and 3 is exactly the problem
of solving these five equations in six unknowns. p, = gy and 02 = oy, are easy. The
remaining 3 equations in 4 unknowns have infinitely many solutions. That is, infinitely
many sets of parameter values yield exactly the same distribution of the sample data.
Distinguishing among them based on sample data is impossible in principle.

To see this in detail, substitute p for y, and oy; for o2 in (24), obtaining

o = Bo+ B
o1 = Bion+c (25)
O = 512011+2510+062

Letting the moments p; and o;; remain fixed, we will now write the other parameters as
functions of ¢, the covariance between X; and ¢;. Then, moving ¢ will move the other
parameters (except for y, = pu; and o2 = 0y;), tracing out a one-dimensional subset of
the 6-dimensional parameter space where

e All the equations in (24) are satisfied,
e The values of p and ¥ remain constant, and
e The distribution of (X;,Y;)" is Ny(pu, X).
g12—C

First solve for 3 in the second equation, obtaining 3; = #2=¢. Substituting this expres-
sion for B; and simplifying, we are able to write all the other model parameters in terms
of ¢, as follows.

He = M
0'3; = 011
012 — C
Bo = Mz—M( ) (26)
011
8 = 012 — C
011
2 2
ct—o
0’62 = 022+—12

011
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The parameters p, and o2 are constant functions of ¢, while 3y and 3, are linear functions,
and 02 is a quadratic function. The equations (26) define a one-dimensional surface in
the six-dimensional parameter space, a kind of curved thread in R®. Moving ¢ from —oo
to oo traces out the points on the thread. Importantly, as ¢ ranges from —oo to 400 the
regression coefficient 1 ranges from +oo to —oo. This means that $; might be positive,
it might be negative, or it might be zero. But you really can’t tell, because all real values
of 81 on the surface yield the same population mean and population variance-covariance
matrix, and hence the same distribution of the sample data. There is no way to distinguish
between the possible values of 3; based on sample data.

One technical detail needs to be resolved. Can ¢ really range from —oco to oo? If
not, the possible values of ; would be restricted as well. Two conditions need to be
checked. First, the covariance matrix of (X, ¢;) ", like all covariance matrices, has a non-
negative determinant. For the bivariate normal density to exist (not a bad assumption),
the determinant must be non-zero, and hence it must be strictly positive. Second, o2
must be greater than zero. For points on the thread, the first condition is

2
o c
0 < Ty
c o
_ 2 2 2
= 0,0, —¢C
2 2
_ " — 019 2
= 011 0'22+— — C
011

2 2 2
= 01102 +C —0j9 —C

2
= 011022 — 019

= =l

This imposes no restriction on ¢ at all. We also need to check whether o2 > 0 places any
restriction on ¢ — for points on the thread, of course.

02 >0
& 099+ ——
011

& 01109+ — 01y, >0

& B[+ >0

>0

which is true since |X| > 0. Again, the inequality places no restriction on c.

Let me beat this point into the ground a bit, because it is important. Since the
data are bivariate normal, their probability distribution corresponds uniquely to the pair
(p,X). All you can ever learn from any set of sample data is the probability distribution
from which they come. So all you can ever get from bivariate normal data, no matter
what the sample size, is a closer and closer approximation of g and ¥. If you cannot find
out whether (3 is positive, negative or zero from p and 3, you will never be able to make
reasonable estimates or inferences about f; from any set of sample data.

What would happen if you tried to estimate the parameters by maximum likelihood?
For every p € R? and every 2 x 2 symmetric positive definite X, there is a surface (thread)
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A~

in RY defined by (26). This includes (g1, X). On that particular thread, the likelihood is
highest. Picture a surface with a curvy ridge at the top. The surface has infinitely many
maxima, all at the same height, forming a connected set. If you take partial derivatives
of the log likelihood and set all six of them equal to zero, there will be infinitely many
solutions. If you do numerical maximum likelihood, good software will find a point on the
ridge, stop, detect that the surface is not fully concave down there, and complain. Less
sophisticated software will just find a point on the ridge, and stop. The stopping place,
that is, the maximum likelihood estimate, will depend entirely on where the numerical
search starts.

To summarize, if explanatory variables are omitted from a regression equation and
those variables have non-zero covariance ¢ with explanatory variables that are not omitted,
the result is non-zero covariance between explanatory variables and the error term. And,
if there is a non-zero covariance between the error term an an explanatory variable in a
regression equation, the false assumption that ¢ = 0 can easily lead to false results. But
allowing ¢ to be non-zero means that infinitely many parameter estimates will be equally
plausible, given any set of sample data. In particular, no set of data will be able to
provide a basis for deciding whether regression coefficients are positive, negative or zero.
The problem is fatal if all you have is X; and Y;.

The trouble here is lack of parameter identifiability. If a parameter is a function of
the distribution of the observable data, it is said to be identifiable. The idea is that the
parameter is potentially knowable if you knew the distribution of the observable data. If
the parameter is not knowable based on the data, they naturally there will be trouble
with estimation and inference. Parameter identifiability is a central theme of this book,
and will be taken up again in Section 0.9 on Page 58.

0.5 Instrumental Variables

The method of instrumental variables was introduced by the economist Phillip Wright in
the appendix a 1928 book The Tariff on Animal and Vegetable Oils [71]. Phillip Wright
was the father of Sewell Wright, the biologist whose work on path analysis led to modern
structural equation modeling as well as much of Econometrics. The story is told in a 2003
paper by Stock and Trebbi [62].

An instrumental variable for an explanatory is a variable that is correlated with that
explanatory variable, but is not correlated with any error terms or other explanatory
variables, and has no direct connection to the response variable. In Econometrics, the in-
strumental variable usually influences the explanatory variable. An instrumental variable
is usually not the main focus of attention; it’s just a tool.

Example 0.5.1 Credit Card Debt

Suppose we want to know the contribution of income to credit card debt. Because of
omitted variables, the model

K:a+ﬁXZ+€la



0.5. INSTRUMENTAL VARIABLES 37

is guaranteed to fail. Many things influence both income and credit card debt, such as
personal style of money management, education, number of children, expenses caused by
illness .... The list goes on. As a result, X; and ¢; have non-zero covariance. The least
squares estimate of 3 is inconsistent, and so is every other possible estimate!?. We can’t
possibly measure all the variables that affect both income and debt; we don’t even know
what they all are. Instead, let’s add an instrumental variable.

Definition 0.3 An instrumental variable for an explanatory variable is another random
variable that has non-zero covariance with the explanatory variable, and no direct con-
nection with any other variable in the model.

Focus the study on real estate agents in many cities, and include median price of resale
home for each agent along with income and credit card debt. Median price of resale home
qualifies an an instrumental variable according to the definition. Since real estate agents
typically receive a percentage of the selling price, it is definitely related to income. Also,
housing prices are determined by external economic forces that have little to do with all
the personal, individual-level variables that affect the income and debt of individual real
estate agents. So, we have the following:

e IV; is median price of resale home in agent i’s district.
e X, is annual income of real estate agent 1.
e Y, is agent ¢’s credit card debt.

The model equations are

X, = oa+B8iW,+ea
Yi = as+ (X + €,

and Figure 7 shows the path diagram. The main interest is in 5, the link between income
and credit card debt. The covariance between €; and €, represents all the omitted variables
that affect both income and credit card debt.

Denoting the expected value of the data vector D; = (W;, X;,Y;)" by p = [;] and its
covariance matrix by X = [o;;], we have

%74 X Y
W | o2 o2 o2
2 — w 51 w 5152 w (27)
X | - pBlog+of Ba(Bios, +0f) + ¢
Y| - : BiBio% + Bi07 + 20sc + 03

The lower triangle of the covariance matrix is omitted to make it less cluttered. The
notation in (27) is self-explanatory except possibly for Var(e;) = o? and Var(en) = o3.

12This is strictly true if the data are normal. For non-normal data consistent estimation might be
possible, but one would have to know the specific non-normal distribution(s).
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Figure 7: W is median price of resale home, X is income, Y is credit card debt

€ » Y

It is immediately apparent that the critical parameter 85 can be recovered from 3 by
By = %, provided B; # 0. A nice Method of Moments estimator in terms of the sample

covariances is Bg = g—g

The requirement that 5 # 0 can be verified, by testing Hy : 012 = 0 with an elemen-
tary test of the correlation between housing prices and income. We expect no problem,
because W is a good instrumental variable. Median resale price certainly should be re-
lated to the income of real estate agents, and furthermore the relationship is practically
guaranteed to be positive. This is a feature of good a instrumental variable. Its rela-
tionship to the explanatory variable should be clear, and so obvious that it is hardly
worth investigating. The usefulness of the instrumental variable is in the light it casts on
relationships that are not so obvious.

In this example, the instrumental variable works beautifully. All the model parame-
ters that appear in 3 can be recovered by simple substitution, p, = pq, and then a; and
ay can be recovered from py = E(X;) and pg = E(Y;) respectively. The function from
(a1, s, By, Bas phw, 02,02, 03, ¢) to (u, ) is one-to one. Method of Moments estimates
are readily available, and they are consistent by the continuity of the functions involved.
Under the additional assumption of multivariate normality, the Method of Moments esti-
mates are also maximum likelihood by the invariance principle.

To test the central null hypothesis Hy : 85 = 0, fancy software is not required. Since
we have concluded with high confidence that g; > 0, the covariance 013 equals zero if
and only if Sy = 0, and the sign of o3 is the same as the sign of 5. So it is necessary
only to test the correlation between housing price and real estate agents’ credit card
debt. Under the normal assumption, the usual test is exact, and a large sample is not
required. If the normal assumption is worrisome, the non-parametric test associated with
the Spearman rank correlation coefficient is a permutation test carried out on ranks, and
an exact small-sample p-value is available even though some software produces a large-
sample approximation by default.

The instrumental variable method saved the day in this example, but it does not solve
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the problem of omitted variables in every case, or even in most cases. This is because
good instrumental variables are not easy to find. They will not just happen to be in the
data set, except by a miracle. They really have to come from another universe, and still
have a strong, clear connection to the explanatory variable. Data collection has to be
planned, with a model that admits the existence of omitted variables explicitly in mind.

Measurement Error All models are inexact representations of reality, but I must
admit that the model in Figure 7 is seriously wrong. Our interest is in how ¢rue income
affects true credit card debt. But these variables are not observed. What we have in
the data file are reported income and reported credit card debt. For various reasons that
the reader can easily supply, what people report about financial details is not the same
thing as the truth. When we record median price of a resale home, that’s unlikely to
be perfectly accurate either. As we will see later in this chapter, measurement error in
the explanatory variables presents serious problems for regression analysis in general. We
will also see that instrumental variables can help with measurement error as well as with
omitted variables, but first it is helpful to introduce the topic of measurement error in an
organized way.

0.6 The Idea of Measurement Error

In a survey, suppose that a respondent’s annual income is “measured” by simply asking
how much he or she earned last year. Will this measurement be completely accurate?
Of course not. Some people will lie, some will forget and give a reasonable guess, and
still others will suffer from legitimate confusion about what constitutes income. Even
physical variables like height, weight and blood pressure are subject to some inexactness
of measurement, no matter how skilled the personnel doing the measuring. In fact, very
few of the variables in the typical data set are measured completely without error.

One might think that for experimentally manipulated variables like the amount of drug
administered in a biological experiment, laboratory procedures would guarantee that for
all practical purposes, the amount of drug a subject receives is exactly what you think
it is. But Alison Fleming (University of Toronto Psychology department) pointed out to
me that when hormones are injected into a laboratory rat, the amount injected is exactly
right, but due to tiny variations in needle placement, the amount actually reaching the
animal’s bloodstream can vary quite a bit. The same thing applies to clinical trials of drugs
with humans. We will see later, though, that the statistical consequences of measurement
error are not nearly as severe with experimentally manipulated variables, assuming the
study is well-controlled in other respects.

Random variables that cannot be directly observed are called latent variables. The ones
we can observe are sometimes called “manifest,” but here they will be called “observed”
or “observable,” which is also a common usage. Upon reflection, it is clear that most of
the time, we are interested in relationships among latent variables, but at best our data
consist only of their imperfect, observable counterparts. One is reminded of the allegory
of the cave in Plato’s Republic [46], where human beings are compared to prisoners in a
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cave, with their heads chained so that they can only look at a wall. Behind them is a fire,
which casts flickering shadows on the wall. They cannot observe reality directly; all they
can see are the shadows.

A simple additive model for measurement error

Measurement error can take many forms. For categorical variables, there is classification
error. Suppose a data file indicates whether or not each subject in a study has ever had
a heart attack. Clearly, the latent Yes-No variable (whether the person has truly had a
heart attack) does not correspond perfectly to what is in the data file, no matter how
careful the assessment is. Mis-classification can and does occur, in both directions.

Here, we will put classification error aside for now because it is technically difficult,
and focus on a very simple form of measurement error that applies to continuous variables.
There is a latent random variable X that cannot be observed, and a little random shock
e that pushes X up or down, producing an observable random variable W. That is,

W=X+e (28)

Let’s say E(X) = ps, E(e) =0, Var(X) = 02, Var(e) = 02, and Cov(X, e) = 0. Figure 8
is a path diagram of this model.

Figure 8: Additive Measurement Error
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Because X and e are uncorrelated,

Var(W) = Var(X) + Var(e) = o2 + o2
Variance is an index of unit-to unit variation in a measurement. The simple calculation
above reveals that variation in the observable variable has two sources: variation in the
actual quantity of interest, and variation in the magnitude of the random shocks that
create error in measurement. To judge the quality of a measurement W, it is important
to assess how much of its variance comes from variation in the true quantity of interest,
and how much comes from random noise.
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In psychometric theory'?, the reliability* of a measurement is defined as the squared
correlation of the true score with the observed score. Here the “true score” is X and the
“observed score” is W. The reliability of the measurement W is

- (S§?§(>)§bv<vv)v>)2

2

2

Oz
/2. /2 2
0% Ux+ae
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- T (29)
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That is, the reliability of a measurement is the proportion of the measurement’s variance
that comes from the true quantity being measured, rather than from measurement error'®.

A reliability of one means there is no measurement error at all, while a reliability of zero
means the measurement is pure noise. In the social sciences, reliabilities above 0.9 could be
called excellent, from 0.8 to 0.9 good, and from 0.7 to 0.8 acceptable. Frequently, responses
to single questions have reliabilities that are much less than this. To see why reliability
depends on the number of questions that measure the latent variable, see Exercise 6 at
the end of this section.

Since reliability represents quality of measurement, estimating it is an important goal.
Using the definition directly is seldom possible. Reliability is the squared correlation
between a latent variable and its observable counterpart, but by definition, values of the
latent variable cannot be observed. On rare occasions and perhaps with great expense,
it may be possible to obtain perfect or near-perfect measurements on a subset of the
sample; the term gold standard is sometimes applied to such measurements. In that
case, the reliability of the usual measurement can be estimated by a squared sample
correlation between the usual measurement and the gold standard measurement. But even
measurements that are called gold standard are seldom truly free of measurement error.
Consequently, reliabilities that are estimated by correlating imperfect gold standards and
ordinary measurements are biased downward: See Exercise 4 at the end of this section.
It is clear that another approach is needed.

13Psychometric theory is the statistical theory of psychological measurement. The bible of psychometric
theory is Lord and Novick’s (1968) classic Statistical theories of mental test scores [44]. It is not too
surprising that measurement error would be acknowledged and studied by psychologists. A large sector
of psychological research employs “measures” of hypothetical constructs like neuroticism or intelligence
(mostly paper-and-pencil tests), but no sensible person would claim that true value of such a trait is
exactly the score on the test. It’s true there is a famous quote “Intelligence is whatever an intelligence
test measures.” I have tried unsuccessfully to track down the source of this quote, and I now suspect that
it is just an illustration of a philosophic viewpoint called Logical Positivism (which is how I first heard
it), and not a serious statement about intelligence measurement.

14Tn survival analysis and statistical quality control, reliability means something entirely different.

15Tt’s like the proportion of variance in the response variable explained by a regression, except that
here the explanatory variable is the latent true score. Compare Expression (11) on Page 19.
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Figure 9: Two independent measurements of a latent variable

Test-retest reliability Suppose that it is possible to make the measurement of W
twice, in such a way that the errors of measurement are independent on the two occasions.

We have

W1 = X + e

W2 = X + €2,
where E(X) = p,, Var(X) = 02, E(e;) = E(e3) =0, Var(e;) = Var(ey) = 62, and X, e;
and ey are all independent. Because Var(e;) = Var(ey), Wi and Wy are called equivalent
measurements. That is, they are contaminated by error to the same degree. Figure 9 is a
path diagram of this model.
It turns out that the correlation between Wy and W5 is exactly equal to the reliability, and
this opens the door to reasonable methods of estimation. The calculation (like many in

this book) is greatly simplified by using the rule for covariances of linear combinations (1)
on Page 9.

COU(Wl, Wg)
SD(W1)SD(Wy)
COU(X + 61,X + 62)
Vo2 + 0202+ o2
Cov(X, X) 4+ Cov(X,ez) + Cov(er, X) + Cov(E, e2))

2 2
oz + 02

Corr(Wy,Ws) =

Var(X)+0+0+4+0
o2+ o2

0.2

= 5 (30)

2 27
oz + 02

which is the reliability.
The calculation above is the basis of test-retest reliability'®, in which the reliability of
a measurement such as an educational or psychological test is estimated by the sample

16Closely related to test-retest reliability is alternate forms reliability, in which you correlate two
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correlation between two independent administrations of the test. That is, the test is given
twice to the same sample of individuals, ideally with a short enough time between tests
so that the trait does not really change, but long enough apart so they forget how they
answered the first time.

Correlated measurement error Suppose participants remembered their wrong an-
swers or lucky guesses from the first time they took a test, and mostly gave the same
answer the second time. The result would be a positive correlation between the measure-
ment errors e; and e;. Omitted variables (see Section 0.4) like level of test anxiety for
educational tests or desire to make a favourable impression for attitude questionnaires can
also produce a positive covariance between errors of measurement. Whatever the source,
positive covariance between e; and ey is an additional source of positive covariance be-
tween W; and W5 that does not come from the latent variable X being measured. The
result is an inflated estimate of reliability and an unduly rosy picture of the quality of
measurement. Figure 10 shows this situation.

Figure 10: Correlated Measurement Error
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We will return more than once to the issue of correlated errors of measurement. For
now, just notice how careful planning of the data collection (in this case, the time lag
between the two administrations of the test) can eliminate or at least reduce the correla-
tion between errors of measurement. In general, the best way to take care of correlated
measurement error is with good research design!”.

Sample Test-retest Reliability Again, suppose it is possible to measure a variable of
interest twice, in such a way that the errors of measurement are uncorrelated and have

equivalent versions of the test. In split-half reliability, you split the items of the test into two equivalent
subsets and correlate them. There are also internal consistency estimates of reliability based on corre-
lations among items. Assuming independent errors of measurement for split half reliability and internal
consistency reliability is largely a fantasy, because both measurements are affected in the same way by
short-term situational influences like mood, amount of sleep the night before, noise level, behaviour of
the person administering the test, and so on.

"Indeed, one could argue that most principles of good research design are methods for minimizing the
variance and covariance of measurement errors.
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equal variance. Then the reliability may be estimated by doing this for a random sample
of individuals. Let Xi,..., X, be a random sample of latent variables (true scores), with
E(X;) = p and Var(X;) = o2. Independently for i =1,...,n, let

Wii = Xit+ei

Wia = X;+eio,
where E(e;1) = E(e;2) =0, Var(e;1) = Var(e;s) = 02, and X, ;1 and e, 5 are all inde-
pendent for ¢ = 1,...,n. Then the sample correlation between the pairs of measurements
is

_ > (Wia = W) (Wip — W)

Vo (Woy = T2 S, (Wi — T7)2
_ LS (Wig = W) (Wi — W)

\/% 2o (Win — WlV\/i S (Wig — W2
a.s. Cov(W,; 1, Wi )

VVar(Wiq)y/Var(W;)

2

Oz

2 2
oz + 02

Ry,

=
where the convergence follows from continuous mapping and the fact that sample vari-
ances and covariances are strongly consistent estimators of the corresponding population
quantities; see Section A.5.2 in Appendix A. The conclusion is that R, is a strongly con-
sistent estimator of the reliability. That is, for a large enough sample size, R, will get
arbitrarily close to the true reliability, and this happens with probability one.

0.7 Ignoring measurement error

Standard regression models make no provision at all for measurement error, so when we
apply such models to real data, we are effectively ignoring any measurement error that
may be present; we are pretending it’s not there. This section will show that the result
can be a real disaster, featuring incorrect estimates of regression parameters and Type I
error probabilities approaching one as the sample size increases. Much of this material,
including the history of the topic (warnings go back to at least 1936) can be found in a
2009 paper by Brunner and Austin [14].

Measurement error in the response variable

While ignoring measurement error in the explanatory variables can have very bad con-
sequences, it turns out that under some conditions, measurement error in the response
variable is a less serious problem.
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Example 0.7.1 Measurement Error in'Y Only

Independently for i =1,...,n, let

Yi = Bo+6iXi+e
‘/i - V+}/i+€i7

where Var(X;) = o2, Var(e;) = 02, Var(e;) = 02, and X, e;,¢; are all independent.
Figure 11 is a path diagram of this model.

Figure 11: Measurement error in the response variable
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In Example 0.7.1, the explanatory variable X; is observable, but the response variable
Y; is latent. Instead of Y;, we can see V;, which is Y; plus a piece of random noise, and also
plus a constant v that represents the difference between the expected value of the latent
random variable and the expected value of its observable counterpart. This constant term
could be called measurement bias. For example, if Y is true amount of exercise in minutes
and V is reported exercise, the measurement bias v is population mean exaggeration, in
minutes.

Since Y; cannot be observed, V; is used in its place, and the data analyst fits the naive
model

Vi= 0o+ 5 Xi+e.

Studying Mis-specified Models The “naive model” above is an example of a model
that is mis-specified. That is, the model says that the data are being generated in a
particular way, but this is not how the data are actually being produced. Generally
speaking, correct models will usually yield better results than incorrect models, but it’s
not that simple. In reality, most statistical models are imperfect. The real question is
how much any given imperfection really matters. As Box and Draper (1987, p. 424) put
it, “Essentially all models are wrong, but some are useful.” [11]

So, it is not enough to complain that a statistical model is incorrect, or unrealistic.
To make the point convincingly, one must show that being wrong in a particular way
causes the model to yield misleading results. To do this, it is necessary to have a specific
true model in mind; typically the so-called true model is one that is obviously more
believable than the model being challenged. Then, one can examine estimators or test
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statistics based on the mis-specified model, and see how they behave when the true model
holds. We have already done this in Section 0.4 in connection with omitted variables; see
Example 0.4.1 starting on Page 28.

Under the true model of Example 0.7.1 (measurement error in the response variable
only), we have Cov(X;,V;) = 102 and Var(X;) = 02. Then,

5 = X (X = X)(V; = V)
Z?:l(Xi - X)2

0-1‘11

52
a.s. COU(X/“ ‘/Z)
_) -
Var(X;)
5103
o3

= pi

Even when the model is mis-specified by assuming that the response variable is measured
without error, the ordinary least squares estimate of the slope is consistent. There is a
general lesson here about mis-specified models. Mis-specification (using the wrong model)
is not always a problem; sometimes everything works out fine.

Let’s see why the naive model works so well here. The response variable under the
true model may be re-written

Vi = v+Yite

v+ (Bo+ b1 Xi+€)+ e

(v+ Bo) + 51X + (& + €;)

= B+ BiXi+e (32)

What has happened here is a re-parameterization (not a one-to-one re-parameterization),
in which the pair (v, 3y) is absorbed into 3}, and Var(e; + ¢;) = 0 + o2 is absorbed into
a single unknown variance that will probably be called o2. It is true that v and 3, will
never be knowable separately, and also 0% and ¢ will never be knowable separately. But
that really doesn’t matter, because the true interest is in ;.

In this book and in standard statistical practice, there are many models where the
response variable appears to be measured without error. But error-free measurement
is a rarity at best, so these models should be viewed as re-parameterized versions of
models that do acknowledge the reality of measurement error in the response variable. A
critical feature of these re-parameterized models is that the measurement error is assumed
independent of everything else in the model. When this fails, there is usually trouble.

Measurement error in the explanatory variables

Example 0.7.2 Measurement error in a single explanatory variable
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Independently for i =1,...,n, let

i = bo+5HXi+e
WZ’ = Xz-+ei,

where Var(X;) = o2, Var(e;) = 02, Var(e;) = 02, and X, e;,¢; are all independent.
Figure 12 is a path diagram of the model.

Figure 12: Measurement error in the explanatory variable
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Unfortunately, the explanatory variable X; cannot be observed; it is a latent variable.
So instead W; is used in its place, and the data analyst fits the naive model

Y; = Bo + BiWi + €.
Under the naive model of Example 0.7.2, the ordinary least squares estimate of 3, is

5 ZLW =Y =F) Gy
SLWi—wp

Regardless of what model is correct, G,,,, 5 Cov(W,Y) and 52 “3 Var(W)'®, so that by
the continuous mapping property of ordinary limits'®, ; 3 %

Let us assume that the true model holds. In that case,

Cov(W,Y) = pyo2 and Var(W) =02+ 0.

18This is true because sample variances and covariances are strongly consistent estimators of the cor-
responding population quantities; see Section A.5.2 in Appendix A.

19 Almost sure convergence acts like an ordinary limit, applying to all points in the underlying sample
space, except possibly a set of probability zero. If you wanted to do this problem strictly in terms of
convergence in probability, you could use the Weak Law of Large Numbers and then use Slutsky Lemma 7a
of Appendix A.5.
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Consequently,

5 = > (Wi — W)(E -Y)
Z?=1(Wi - W)2
Tuy

52
Ow

g Cov(W)Y')
Var(W)

2
- B (02‘202) (33)

So when the fuzzy explanatory variable W; is used instead of the real thing, 51 con-
verges not to the true regression coefficient, but to the true regression coefficient multiplied
by the reliability of W;. That is, it’s biased, even as the sample size approaches infin-
ity. It is biased toward zero, because reliability is between zero and one. The worse the
measurement of X, the more the asymptotic bias.

What happens to 1 in (33) is sometimes called attenuation, or weakening, and in
this case that’s what happens. The measurement error weakens the apparent relationship
between X; and Y. If the reliability of W can be estimated from other data (and psychol-
ogists are always trying to estimate reliability), then the sample regression coefficient can
be “corrected for attentuation.” Sample correlation coefficients are sometimes corrected
for attenuation too.

Now typically, social and biological sientists are not really interested in point estimates
of regression coefficients. They only need to know whether the coefficients are positive,
negative or zero. So the idea of attenuation sometimes leads to a false sense of security.
It’s natural to over-generalize from the case of one explanatory variables, and think that
measurement error just weakens what’s really there. Therefore, the reasoning goes, if you
can reject the null hypothesis and conclude that a relationship is present even with mea-
surement error, you would have reached the same conclusion if the explanatory variables
had not been measured with error.

Unfortunately, it’s not so simple. With two or more explanatory variables the effects
of measurement error are far more serious and potentially misleading.

Measurement error in more than one explanatory variable
In this example, there are two explanatory variables, both measured with error.
Example 0.7.3 Measurement Error in Two Fxplanatory Variables

Independently for i =1,... n,

Yi = Bo+biXii+ 5Xio+ €
Xi1+eiq
Wia = Xio+e€o,

=
|
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Figure 13: Two explanatory variables measured with error
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Where E(XzJ) = MU, E(XZ’Q) = U2, E(Q) = E(ei,l) = E(6i72) = 0, VCLT’(Q) = 1/},
Var(e;1) = wi, Var(e;a) = wa, the errors €, e;; and e;5 are all independent, X;; is
independent of ¢;,¢;1 and e;2, X, is independent of ¢, ¢;; and ¢;2, and

Xit\ _ [ o1 ¢12
v ( Xin > B ( P12 P22 )
Figure 13 shows the path diagram.

Again, because the actual explanatory variables X;; and X o are latent variables that
cannot be observed, W;; and W, 5 are used in their place. The data analyst fits the naive
model

Yi=Po+ BiWi1 + BoWia + €.

An attractive feature of multiple regression is its ability to represent the relationship
of one or more explanatory variables to the response variable, while controlling for other
explanatory varables. In fact, this may be the biggest appeal of multiple regression and
similar methods for non-experimental data. In Example 0.7.3, our interest is in the
relationship of X5 to Y controlling for X;. The main objective is to test Hy : o = 0, but
we are also interested in the estimation of [s.

The argument that follows illustrates a general way to see what happens as n — oo
for mis-specified (that is, incorrect) regression models. We have already seen special cases
of this, three times. In Example 0.4.1 on omitted explanatory variables, the regression
coefficient converged to the wrong target in Expression 21 on page 32. In Example 0.7.1
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on measurement error in the response variable, the regression coefficient converged to the
correct target in Expression 31 on page 46. In Example 0.7.2 on measurement error in a
single explanatory variable, the regression coefficient converged to the target multiplied
by the reliability of the measurement, in Expression 33 on page 48.

Here is the recipe. Assume some “true” model for how the data are produced, and
a mis-specified model corresponding to a natural way that people would analyze the
data with a regression model. First, write the regression coefficients in terms of sample

variances and covariances. The general answer is given on page 14: Bn = f];lflxy. Then,
because sample variances and covariances are consistent estimators of their population
counterparts, we have the convergence 3, “% X 1Z$y from Page 15. This convergence
follows from the formula for the least-squares estimator, and does not depend in any way
on the correctness of the model. So, if you can derive ¥, and 3,, under the true model, it
is easy to calculate the large-sample target of the ordinary least squares estimates under
the mis-specified model.

In the present application, there is just a minor notational issue. Under the naive
model, the explanatory variables are called w instead of . Adopting a notation that will
be used throughout the book, denote one of the n vectors of observable data by D;. Here,

Wia
Dz - VVi,2
Y;
Then, let ¥ = [0, ;] = cov(D;). Corresponding to X is the sample variance covariance
matrix ¥ = [7;;], with n rather than n — 1 in the denominators. To make this setup
completely explicit,
Wi,l 011 O12 013
Y=cov | Wig = 012 022 023
Y; 013 023 033

Then, we calculate the regression coefficients under the naive model.

~ ~ -1 , ~
011 012 01,3
01,2 022 02,3

( 3226’13_812823

= 2
011022—079y

011023—012013
G11022—024
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Our primary interest is in the estimation of 3,. Because sample variances and covariances
are strongly consistent estimators of the corresponding population quantities,

> 011023 — 012013 ¢4 011023 — 012013
) =

(35)

011022 — 0712 011022 — 01

This convergence holds provided that the denominator o109 —0'%2 # 0. The denominator

is a determinant:
cov Wi
Wi
It will be non-zero provided at least one of

Xin P11 P12 €i,1 wi 0
cov ’ = and cov ’ =
< Xio > ( P12 P22 €i,2 0 wr
is positive definite — not a lot to ask.
The convergence of 35 in Expression 35 applies regardless of what model is correct. To
see what happens when the true model of Example 0.7.3 holds, we need to write the o;;

quantities in terms of the parameters of the true model. A straightforward set of scalar
variance-covariance calculations yields

2
011022 — 019 =

Wi
X = cov| Wi,
Y,
01,1 012 013
= 01,2 O22 023
01,3 023 033
wr + o1 ?12 Bio11 + B2tz
= G12 Wy + P22 Bi1d12 + Baao
Bro11 + Padia Bidia + Bataz  Bidns + 2 B1Badia + Badas + U

Subsituting into expression 35 and simplifying?’, we obtain

> 011023 — 012013

Bo =

a.s. 011023 — 012013
_>

o~ ~ /\2
011022 — 019

011022 — 0%2
Brwidra + Po(widas + d1102 — ¢1,)
(11 + wi) (P22 + w2) — P,
Biw1¢12 + Bowa (P11 — wi)
(P11 + w1) (P22 + w2) — 01,

By the asymptotic normality of sample variances and covariances and the multivariate
delta method (see Appendix A.5), (s has a distribution that is approximately normal for

= fo+ (36)

20The simplification may be elementary, but that does not make it easy. I used Sage; see Appendix B.
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large samples, with approximate mean given by expression (36). Thus, it makes sense
to call the second term in (36) the asymptotic bias. It is also the amount by which the
estimate of By will be wrong as n — oo.

Clearly, this situation is much more serious than the bias toward zero detected for
the case of one explanatory variable. With two explanatory variables, the bias can be
positive, negative or zero depending on the values of other unknown parameters.

In particular, consider the problems associated with testing Hy : S5 = 0. The purpose
of this test is to determine whether, controlling for X, X5 has any relationship to Y. The
supposed ability of multiple regression to answer questions like this is the one of the main
reasons it is so widely used in practice. So when measurement error makes this kind of
inference invalid, it is a real problem.

Suppose that the null hypothesis is true, so S = 0. In this case, Expression (36)

becomes
51w1¢12
(P11 + wi)(Po2 + w2) — Py

Recall that f; is the link between X; and Y, w; = Var(e;) is the variance of measurement
error in X1, and ¢ is the covariance between X; and X5. Thus, when Hy : By = 0 is
true, By converges to a non-zero quantity unless

By &% (37)

e There is no relationship between X; and Y, or
e There is no measurement error in Wi, or
e There is no correlation between X; and Xs.

Brunner and Austin [14] have shown that whether Hj is true or not, the standard error
of Eg goes to zero, and when the large-sample target of 32 is non-zero, the p-value goes
almost surely to zero. That is, the probability of making a Type I error goes to one
because of measurement error in an explanatory variable — not the one being tested, but
the one for which one is “controlling.”

This is potentially a disaster, because the primary function of statistical hypothesis
testing in the social and biological sciences is to filter out results that might be just ran-
dom noise, and keep them from reaching the published research literature. Holding down
the probability of a Type I error is critical. The preceding calculations show that in the
very reasonable scenario where one needs to control for an explanatory variable but the
measurement of that variable is imperfect (which is always the case), standard regression
methods do not work as advertised. Instead, the probability of getting statistically sig-
nificant results can go to one even when the null hypothesis is true and there is nothing
real to discover. You should be appalled.

A large-scale simulation study All this is true as the sample size goes to infinity, but
in reality no sample size can approach infinity. So it is important to see what happens
for realistic sample sizes. The idea is to use computer-generated pseudo-random numbers
to generate data sets in which the true parameter values are known, because actually
those true parameter values are inputs to the program. Applying statistical methods to
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such simulated data allows one to investigate the performance of the methods empirically
as well mathematically. Ideally, empirical and mathematical investigations of statistical
questions are complementary, and usually reinforce one another.

Brunner and Austin [14] took this approach to the topic under discussion. They report
a large simulation study in which random data sets were generated according to a factorial
design with six factors. The factors were

e Sample size: n = 50, 100, 250, 500, 1000

Corr(Xy, Xa): ¢12 = 0.00, 0.25, 0.75, 0.80, 0.90

Proportion of variance in Y explained by X;: 0.25, 0.50, 0.75

Reliability of Wj: 0.50, 0.75, 0.80, 0.90, 0.95

Reliability of W5: 0.50, 0.75, 0.80, 0.90, 0.95
e Distribution of the latent variables and error terms: Normal, Uniform, ¢, Pareto.

Thus there were 5 x5 x3x5x5x4 = 7,500 treatment combinations. Ten thousand random
data sets were generated within each treatment combination, for a total of 75 million data
sets. All the data sets were generated according to the true model of Example 0.7.3, with
B2 = 0, so that Hy : o = 0 was true in each case. For each data set, we fit the naive
model (no measurement error), and tested Hy : S = 0 at @ = 0.05. The proportion of
times Hj is rejected is a Monte Carlo estimate of the Type I Error Probability.

The study yielded 7,500 estimated Type I error probabilities, and even looking at all
of them is a big job. Table 1 shows a small but representative part of the results. In
this table, all the variables and error terms are normally distributed, and the reliability
of both explanatory variables was equal to 0.90. This means that 90% of the variance
came from the real thing as opposed to random noise — a stellar value. The values of the
regression coefficients were 5y = 1, 51 = 1 and of course By = 0.

Remember that we are trying to test the effect of X; on Y controlling for X5, and since
we don’t have X; and X5, we are using W7 and W, instead. In fact, because Hy : f5 = 0 is
true, X5 is conditionally independent of Y given X; = x;. This means that the estimated
Type I error probabilities in Table 1 should all be around 0.05 if the test is working
properly.

When the correlation between X; and X, is zero (the first column of Table 1), none
of the estimated Type I error probabilites is significantly different from 0.05. This is
consistent with Equation (37), where (5 converges to the right target when the covariance
between X; and X is zero. But as the correlation between explanatory variables increases,
so does the Type I error probability — especially when the X; and Y is strong and the
sample size is large. Look at the intermediate case in which 50% of variance in Y is
explained by X; (admittedly a strong relationship, at least in the social sciences) and
n = 250. As the correlation between X; and X, increases from zero to 0.90, the Type I
error probability increases from 0.05 to about 0.60. With the strongest relationship beween
X7 and Y, and the largest sample size, the test of X5’s relationship to Y controlling for
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Table 1: Estimated Type I Error

Correlation between X; and X,
n  0.00 0.25 0.75 0.80 0.90
25% of variance in Y is explained by X;

50 0.04917 0.0505" 0.0663 0.0740 0.0838
100 0.05417 0.05277 0.0896 0.0925 0.1227
250 0.0479" 0.05777 0.1364 0.1688 0.2585
500 0.0510T 0.0588T 0.2399 0.2887 0.4587

1000 0.0489" 0.0734 0.4175 0.4960 0.7391
50% of variance in Y is explained by X;

50 0.0518" 0.0535" 0.0949 0.1081 0.1571
100 0.05017 0.05417 0.1512 0.1763 0.2710
250 0.0487T  0.0710 0.3065 0.3765 0.5994
500 0.0518" 0.0782 0.5499 0.6487 0.8740

1000 0.05007 0.1132 0.8260 0.9120 0.9932
75% of variance in Y is explained by X;

50 0.0504" 0.0554" 0.1669 0.2072 0.3361
100 0.05107  0.0599 0.3019 0.3791 0.5943
250 0.0487T  0.0890 0.6399 0.7542 0.9441
500 0.0496" 0.1296 0.9058 0.9599 0.9987

1000 0.05027  0.2157 0.9969 0.9992 1.0000
"Not Significantly different from 0.05, Bonferroni corrected for 7,500 tests.

X1 was significant 10,000 times out of 10,000. Again, this is when the null hypothesis is
true, and Y is conditionally independent of X5, given Xj.

Again, this simulation study was a 6-factor experiment with 7,500 treatment combi-
nations. A rough way to see general trends is to look at marginal means, averaging the
estimated Type I error probabilities over the other factors, for each factor in the study.
Table 2 is actually six subtables, showing marginal estimated Type I error probabilities
for each factor. The only one that may not be self-explanatory is “Base distribution.”
This is the distribution of X;, X5,e; and es, shifted when necessary to have expected
value zero, and scaled to have variance for the particular treatment condition.

The inescapable conclusion is that ignoring measurement error in the explanatory
variables can seriously inflate Type I error probabilities in multiple regression. To repeat,
ignoring measurement error is what people do all the time. The poison combination
is measurement error in the variable for which you are “controlling,” and correlation
between latent explanatory variables. If either is zero, there is no problem. Factors
affecting severity of the problem are

e As the correlation between X; and X, increases, the problem gets worse.

e As the correlation between X; and Y increases, the problem gets worse.
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Table 2: Marginal Type I Error Probabilities

Base Distribution
normal Pareto t Distr uniform
0.38692448 0.36903077 0.38312245 0.38752571

Explained Variance
0.25 0.50 0.75
0.27330660 0.38473364 0.48691232

Correlation between Latent Independent Variables
0.00 0.25 0.75 0.80 0.90
0.05004853 0.16604247 0.51544093 0.55050700 0.62621533

Sample Size n
50 100 250 500 1000
0.19081740 0.27437227 0.39457933 0.48335707 0.56512820

Reliability of W,
0.50 0.75 0.80 0.90 0.95
0.60637233 0.46983147 0.42065313 0.26685820 0.14453913

Reliability of W,
0.50 0.75 0.80 0.90 0.95
0.30807933 0.37506733 0.38752793 0.41254800 0.42503167

e As the amount of measurement error in X; increases, the problem gets worse.

e As the amount of measurement error in X, increases, the problem gets less severe.
e As the sample size increases, the problem gets worse.

e Distribution of the variables does not matter much.

It is particularly noteworthy that the inflation of Type I error probability gets worse
with increasing sample size. Generally in statistics, things get better as the sample size
increases. This is an exception. For a large enough sample size, no amount of measurement
error in the explanatory variables is safe, assuming that the latent explanatory variables
are correlated.

It might be objected that null hypotheses are never exactly true in observational
studies, so that estimating Type I error probability is a meaningless exercise. However,
look at expression (36), the large-sample target of 5, when the true value of 5y (the
parameter being tested) is not necessarily zero. Suppose that the true value of (5 is
negative, the true value of ; is positive, and the covariance between X; and X, is
positive. This is a perfectly natural scenario. Depending on the values of the variances
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and covariances, it is quite possible for the second term in (36) to be a larger positive
value, overwhelming J; and making the large-sample target of BQ positive. Brunner and
Austin report a smaller-scale simulation of this situation in which measurement error
leads to rejection of the null hypothesis in the wrong direction nearly 100% of the time.
This is a particularly nasty possibility, because findings that are opposite of the truth
(especially if they are published) can only serve to muddy the waters and make scientific
progress slower and more difficult.

Brunner and Austin go on to show that the inflation of Type I error probability
arising from measurement error is not limited to multiple regression and measurement
error of a simple additive type. It applies to other kinds of regression and other types
of measurement error, including logistic regression, proportional hazards regression in
survival analysis, log-linear models (for testing conditional independence in the presence
of classification error, and median splits on explanatory variables, which is a kind of
measurement error created by the data analyst. Even converting X; to ranks inflates
Type I Error probability.

This is a serious problem, but only if one is interested in interpreting the results of
statistical analyses to find out more about the world. If the only interest is in prediction,
you just use the variables you have. You might wish your predictors were measured with
less error, because that might make the predictions more accurate. But it doesn’t really
matter whether a given regression coefficient is positive or negative. On the other hand,
if this is science, then it matters.

It’s worth observing that the news about true experimental studies is good. The first
column of Table 1, where the covariance of explanatory variables is zero, illustrates the
primary virtue of random assignment: it erases any relationship between experimental
treatment and potential confounding variables. Thinking of X5 as the treatment and X;
as a covariate, it is apparent that in an experimental study, the Type I error probability
is not inflated by measurement error in the treatment, the covariate, or both — as long
as random assignment has made the latent versions of these variables independent, and
the experimental procedure has been of sufficiently high quality that the corresponding
measurement errors are uncorrelated.

This example also illustrates that assignment to experimental conditions need not
be random to be effective. All that’s needed is to somehow break up the relationship
between the treatment and any possible confounding variables. In a clinical trial, for
example, suppose that patients coming in to a medical clinic are assigned to experimental
and control conditions alternately, and not randomly. There is no serious problem with
this, because treatment condition would still be unrelated to any characteristic of the
patients.

The whole issue of measurement error in the predictors is really just a sentence or
two in the narrative about correlation versus causation. It goes like this. If X is related
to Y, it could be that X is influencing Y, or that Y is influencing X, or that some
confounding variables related to X are influencing Y. You might think that if you have
an idea what those confounding variables are, you can control for them with regression
methods. Unfortunately, if potential confounding variables are measured with error, the
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standard ways of controlling for them do not quite work (Brunner and Austin, 2009)%!.

The last two sentences are the addition to the standard narrative. It’s only a couple
of sentences, but it’s still a big deal, because correlation-causation is a fundamental issue
in research design. What’s the solution? Surely it must be to admit that measurement
error exists, and incorporate it directly into the statistical model.

0.8 Modeling measurement error

Ignoring measurement error in regression can yield conclusions that are very misleading.
But as soon as we try building measurement error into the statistical model, we encounter
a technical issue that will occupy a central role in this book: parameter identifiability.

A first try at including measurement error

Example 0.8.1 Model Includes Measurement Error

The following is basically the true model of Example 0.7.2, with everything normally
distributed. Independently for ¢ =1,...,n, let

Yi = bo+BiXi+¢ (38)
I/I/i = V+XZ _l_eia

where
e X, is normally distributed with mean p, and variance ¢ > 0
e ¢; is normally distributed with mean zero and variance ¥ > 0
e ¢; is normally distributed with mean zero and variance w > 0
e X, e;,¢; are all independent.

The intercept term v could be called “measurement bias.” If X; is true amount of exercise
per week and W; is reported amount of exercise per week, v is the average amount by
which people exaggerate.

Data from Model (38) are just the pairs (W;,Y;) for i = 1, ..., n. The true explanatory
variable X; is a latent variable whose value cannot be known exactly. The model implies
that the (W;,Y;) are independent bivariate normal with

Wi\ _ om0 _ Mo + V
E(E)—M_(W)_(%‘l'ﬁwz)’

21T could not resist citing the paper. There is no claim that Brunner and Austin discovered the problem
with measurement error in the predictors. The ill effects of measurement error on estimation have been
known since the 1930s, though the issue has been mostly ignored by mainstream statisticians and other
users of statistical methods. What Brunner and Austin did was to review the literature and document
the effect of measurement error on significance testing.
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and variance covariance matrix

W\ o« 4 (btw  Bid
COU(K-)_Z_[%]_( B, ﬁf¢+w)‘

There is a big problem here, and the moment structure equations reveal it.

M1 = fgp TV (39)
po = Bo+ Bipta

o = ¢o+tw

01,2 = 51¢

022 = Pio+.

It is impossible to solve these five equations for the seven model parameters??. That is,
even with perfect knowledge of the probability distribution of the data (for the multivari-
ate normal, that means knowing p and X, period), it would be impossible to know the
model parameters.

To make the problem clearer, look at the table below. It shows two diferent set of
parameter values 8; and 6, that both yield the same mean vector and covariance matrix,
and hence the exact same distribution of the observable data.

P | Bo |V |B1|@|w|
0, 0]01]0|11]212|3
0, 0| 0021131

Both 6; and 6, imply a bivariate normal distribution with mean zero and covariance

matrix
4 2
2=(13):

and thus the same distribution of the sample data.

No matter how large the sample size, it will be impossible to decide between 6, and
0>, because they imply exactly the same probability distribution of the observable data.
The problem here is that the parameters of Model (38) are not identifiable. This calls for
a brief discussion of identifiability, a topic of central importance in structural equation
modeling.

0.9 Parameter Identifiability

The Basic Idea Suppose we have a vector of observable data D = (Dy,...,D,), and
a statistical model (a set of assertions implying a probability distribution) for D. The
model depends on a parameter 8, which is usually a vector. If the probability distribution
of D corresponds uniquely to #, then we say that the parameter vector is identifiable.

22That’s a strong statement, and a strong theorem is coming to justify it.
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But if any two different parameter values yield the same probability distribution, then
the parameter vector is not identifiable. In this case, the data cannot be used to decide
between the two parameter values, and standard methods of parameter estimation will
fail. Even an infinite amount of data cannot tell you the true parameter values.

Definition 0.4 A Statistical Model is a set of assertions that partly®® specify the proba-
bility distribution of a set of observable data.

Definition 0.5 Suppose a statistical model implies D ~ Py, 0 € O. If no two points in
© yield the same probability distribution, then the parameter 0 is said to be identifiable.
On the other hand, if there exist 61 and 02 in © with Py, = Pp,, the parameter 0 is not
identifiable.

A good example of non-identifiability appears in Example 0.4.1 in Section 0.4 on omitted
variables in regression. There, the correct model has a set of infinitely many parameter
values that imply exactly the same probability distribution of the observed data.

Theorem 0.1 If the parameter vector is not identifiable, consistent estimation for all
points in the parameter space is impossible.

In Figure 14, 6, and 6, are two distinct sets of parameter values for which the distribution
of the observable data is the same.

Figure 14: Two parameters values yielding the same probability distribution

Let T,, be a estimator that is consistent for both 6; and 6;. What this means is that if
0, is the correct parameter value, eventually as n increases, the probability distribution of
T,, will be concentrated in the circular neighborhood around #;. And if #; is the correct
parameter value, it the probability distribution will be concentrated around 6.

But the probability distribution of the data, and hence of T;, (a function of the data)
is identical for ¢, and 6,. This means that for a large enough sample size, most of T},’s
probability distribution must be concentrated in the neighborhood around 6, and at the
same time it must be concentrated in the neighborhood around 6#,. This is impossible,
since the two regions do not overlap. Hence there can be no such consistent estimator 7,,.

23Suppose that the distribution is assumed known except for the value of a parameter vector 8. So the
distribution is “partly” specified.
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Theorem 0.1 says why parameter identifiability is so important. Without it, even an
infinite amount of data cannot reveal the values of the parameters.

Surprisingly often, whether a set of parameter values can be recovered from the dis-
tribution depends on where in the parameter space those values are located. That is, the
parameter vector may be identifiable at some points but not others.

Definition 0.6 The parameter is said to be identifiable at a point 8¢ if no other point in
© yields the same probability distribution as 0.

If the parameter is identifiable at at every point in O, it is identifiable.

Definition 0.7 The parameter is said to be locally identifiable at a point @y if there
1s a neighbourhood of points surrounding @q, none of which yields the same probability
distribution as 6.

Obviously, local identifiability at a point is a necessary condition for global identifiability
there.

It is possible for individual parameters (or other functions of the parameter vector) to
be identifiable even when the entire parameter vector is not.

Definition 0.8 Let g(0) be a function of the parameter vector. If g(0y) # g(@) implies
Py, # Py for all 8 € O, then the function g(0) is said to be identifiable at the point 6.

For example, let Dy,..., D, be ii.d. Poisson random variables with mean A; + Ag,
where A\; > 0 and \; > 0. The parameter is the pair @ = (A, Ay). The parameter is not
identifiable because any pair of A values satisfying A\; + Ao = ¢ will produce exactly the
same probability distribution. Notice also how maximum likelihood estimation will fail
in this case; the likelihood function will have a ridge, a non-unique maximum along the
line \; + Ao = D, where D is the sample mean. The function g(@) = A; + A, of course,
is identifiable.

The failure of maximum likelihood for the Poisson example is very typical of situations
where the parameter is not identifiable. Collections of points in the parameter space yield
the same probability distribution of the observable data, and hence identical values of
the likelihood. Often these form connected sets of infinitely many points, and when
a numerical likelihood search reaches such a higher-dimensional ridge or plateau, the
software checks to see if it’s a maximum, and (if it’s good software) complains loudly
because the maximum is not unique. The complaints might take unexpected forms, like a
statement that the Hessian has negative eigenvalues. But in any case, maximum likelihood
estimation fails.

The idea of a function of the parameter vector covers a lot of territory. It includes
individual parameters and sets of parameters, as well as things like products and ratios of
parameters. Look at the moment structure equations (39) of Example 0.8.1 on page 57.
If o019 = 0, this means 5 = 0, because ¢ is a variance, and is greater than zero. Also
in this case ¢ = 029 and [y = po. So, the function ¢(0) = (5o, f1,¢) is identifiable at
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all points in the parameter space where 5; = 0. The other four parameters are still not
identifiable.

Recall how for the regression model of Example 0.8.1, the moment structure equa-
tions (39) consist of five equations in seven unknown parameters. It was shown by a
numerical example that there were two different sets of parameter values that produced
the same mean vector and covariance matrix, and hence the same distribution of the
observable data. Actually, infinitely many parameter values produce the same distribu-
tion, and it happens because there are more unknowns than equations. Theorem 0.2 is a
strictly mathematical theorem?* that provides the necessary details.

Theorem 0.2 Let

Yy = fl(xh“-;xp)

Yy = folzr, .., 7).

If the functions fi,..., fy are analytic (posessing a Taylor expansion) and p > q, the set
of points (1, ..., x,) where the system of equations has a unique solution occupies at most
a set of volume zero in RP.

The following corollary to Theorem 0.2 is the fundamental necessary condition for param-
eter identifiability. It will be called the Parameter Count Rule.

Rule 1: The Parameter Count Rule. Suppose identifiability is to be decided based on
a set of moment structure equations. If there are more parameters than equations, the
parameter vector is identifiable on at most a set of volume zero in the parameter space.

When the data are multivariate normal (and this will frequently be assumed), then
the distribution of the sample data corresponds exactly to the mean vector and covariance
matrix, and to say that a parameter value is identifiable means that is can be recovered
from elements of the mean vector and covariance matrix. Most of the time, that involves
trying to solve the moment structure equations or covariance structure equations for the
model parameters.

Even when the data are not assumed multivariate normal, the same process makes
sense. Classical structural equation models, including models for regression with mea-
surement error, are based on systems of simultaneous linear equations. Assuming simple
random sampling from a large population, the observable data are independent and iden-
tically distributed, with a mean vector g and a covariance matrix 3 that may be written
as functions of the model parameters in a straightforward way. If it is possible to solve
uniquely for a given model parameter in terms of the elements of p and 3, then that

24The core of the proof may be found in Appendix 5 of Fisher’s (1966) The identification problem in
econometrics. [27]
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parameter is a function of g and X, which in turn are functions of the probability dis-
tribution of the data. A function of a function is a function, and so the parameter is a
function of the probability distribution of the data. Hence, it is identifiable.

Another way to reach this conclusion is to observe that if it is possible to solve for
the parameters in terms of moments, simply “putting hats on everything” yields Method
of Moments estimator. These estimators, though they may be less than ideal in some
ways, will still usually be consistent by the Law of Large Numbers and continuous map-
ping. Theorem 0.1 tells us consistency would be impossible if the parameters were not
identifiable.

To summarize, we have arrived at the standard way to check parameter identifiability
for any linear simultaneous equation model, not just measurement error regression. First,
calculate the expected value and covariance matriz of the observable data, as a function of
the model parameters. If it is possible to solve uniquely for the model parameters in terms
of the means, variances and covariances of the observable data, then the model parameters
are identifiable.

If two distinct parameter vectors yield the same pair (@, 3) and the distribution is mul-
tivariate normal, the parameter vector is clearly not identifiable. When the distribution is
not multivariate normal this conclusion does not necessarily follow; the parameters might
be recoverable from higher moments, or possibly from the moment-generating function or
characteristic function.

But this would require knowing exactly what the non-normal distribution of the data
might be. When it comes to analyzing actual data using linear models like the ones in this
book, there are really only two alternatives. Either the distribution is assumed?® normal,
or it is acknowledged to be completely unknown. In both cases, parameters will either be
identifiable from the mean and covariance matrix (usually just the covariance matrix), or
they will not be identifiable at all.

The conclusion is that in practice, “identifiable” means identifiable from the moments.
This explains why the parameter count rule (Rule 1) is frequently used to label parameters
“not identifiable” even when there is no assumption of normality.

0.10 Double measurement

Consider again the model of Example 0.8.1, a simple regression with measurement error in
the single explanatory variable. This represents something that occurs all too frequently
in practice. The statistician or scientist has a data set that seems relevant to a particular
topic, and a model for the observable data that is more or less reasonable. But the
parameters of the model cannot be identified from the distribution of the data. In such
cases, valid inference is very challenging, if indeed it is possible at all.

The best way out of this trap is to avoid getting trapped in the first place. Plan the
statistical analysis in advance, and ensure identifiability by collecting the right kind of
data. Double measurement is a straightforward way to get the job done. The key is to

25Even when the the data are clearly not normal, methods — especially likelihood ratio tests — based
on a normal model can work quite well.
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measure the explanatory variables twice, preferably using different methods or measuring
instruments®.

0.10.1 A scalar example
Example 0.10.1

Instead of measuring the explanatory variable only once, suppose we had a second, inde-
pendent measurement; “independent” means that the measurement errors are statistically
independent of one another. Perhaps the two measurements are taken at different times,
using different instruments or methods. Then we have the following model. Independently
fort=1,...,n, let

Wii = i+ X,+e (40)
Wis = o+ Xi+ep
Yi = Bo+BiXi+e,

where
e X, is normally distributed with mean p, and variance ¢ > 0

e ¢; is normally distributed with mean zero and variance ¢ > 0

e;1 is normally distributed with mean zero and variance w; > 0

e; 2 is normally distributed with mean zero and variance wy > 0
o X, ei1,6,2 and ¢; are all independent.

The model implies that the triples D; = (W, 1, W; o, Y;)T are multivarate normal with

Wia He + 11
E(Dl) =F VVi,l == Hz + 19 )
Y; EO + Bl;ux

26The reason for different instruments or methods is to ensure (or try to ensure) that the errors of
measurements are independent. For example, suppose a questionnaire is designed to measure racism.
Respondents differ in their actual, true unobservable level of racism. They also differ in the extent to
which they wish to be perceived as non-racist. If you give people two similar questionnaires in which
they agree or disagree with various statements that are obviously about racism, the individuals who fake
good on one questionnaire will also fake good on the other one. The result is that if e; and ey are the
measurement errors in the two questionnaires, then e; and ey will surely have positive covariance. If the
unknown covariance is assumed zero, the result will almost surely be incorrect estimation and inference.
If the unknown covariance is a parameter in the model, it usually will create problems with identifiability.
This all may seem quite technical, but there is a common-sense version. Problems with identifiability
almost always correspond to shortcomings in research design. If data are collected in a way that is poorly
thought out, the data analysis is unlikely to yield valid conclusions. Taking two measurements that are
likely to be contaminated in the same way is just not very smart.
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and variance covariance matrix

¢+ w ¢ bio
cov(D;) =% = [o0;4] = ¢+ws  Bio : (41)
Bio+1

Here are some comments.

e There are now nine moment structure equations in nine unknown parameters. This
model passes the test of the parameter count rule, meaning that identifiability is
possible, but not guaranteed.

e Notice that the model dictates 013 = 023. This model-induced constraint upon X%
is testable. If Hy : 013 = 093 were rejected, the correctness of the model would be
called into question®”. Thus, the study of parameter identifiability leads to a useful
test of model fit.

e The constraint oy 3 = 093 allows two solutions for 3, in terms of the moments:
f1 = 013/012 and By = 093/012. Does this mean the solution for f; is not “unique?”
No; everything is okay. Because 013 = 023, the two solutions are actually the same.
If a parameter can be recovered from the moments in any way at all, it is identifiable.

e For the other model parameters appearing in the covariance matrix, the additional
measurement of the explanatory variable also appears to have done the trick. It is
easy to solve for ¢, w;,ws and 9 in terms of o; ; values. Thus, these parameters are

identifiable.

e On the other hand, the additional measurement did not help with the means and
intercepts at all. Even assuming ; known because it can be recovered from X, the
remaining three linear equations in four unknowns have infinitely many solutions.
There are still infinitely many solutions if v = vs.

Maximum likelihood for the parameters in the covariance matrix would work up to a
point, but the lack of unique values for u,, v1, 5 and 5y would cause numerical problems.
A good solution is to re-parameterize the model, absorbing p, + 14 into a parameter called
11, e + Vo into a parameter called po, and By + Piu, into a parameter called uz. The
parameters in p = (u1, ii2, p3) " lack meaning and interest®, but we can estimate them
with the vector of sample means D and focus on the parameters in the covariance matrix.

2"Philosophers of science agree that falsifiability — the possibility that a scientific model can be chal-
lenged by empirical data — is a very desirable property. The Wikipedia has a good discussion under
Falsifiability — see http://en.wikipedia.org/wiki/Falsifiable. Statistical models may be viewed as primi-
tive scientific models, and should be subject to the same scrutiny. It would be nice if scientists who use
statistical methods would take a cold, clear look at the statistical models they are using, and ask “Is this
a reasonable model for my data?”

28Tf X; is true amount of exercise, . is the average amount of exercise in the population; it’s very
meaningful. Also, the quantity 1y is interesting; it’s the average amount people exaggerate how much
they exercise using Questionnaire One. But when you add these two interesting quantities together, you
get garbage. The parameter p in the re-parametrerized model is a garbage can.


http://en.wikipedia.org/wiki/Falsifiable
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Here is the multivariate normal likelihood from Appendix A .4, simplified so that it’s
clear that the likelihood depends on the data only through the MLEs D and 3. This is
just a reproduction of expression (A.20) from Appendix A.

Lip, D) = [T (2m) P exp -2 {r(EX )+ D - w5 D-p)}  (42)

Notice that if 3 is positive definite then so is £ 7', and so for any positive definite 3
the likelihood is maximized when g = D. In that case, the last term just disappears.
So, re-parameterizing and then letting fi = D leaves us free to conduct inference on the
model parameters in 3.

Just to clarify, after re-parameterization and estimation of g with D,,, the likelihood
function may be written

~

L(8) = [Z(O)| "2(2m) 2 exp — 2 {ir(S(6) )} (43)

where 0 is now a vector of just those parameters appearing in the covariance matrix.
This formulation is general. For the specific case of the scalar double measurement Ex-
ample 0.10.1, 8 = (¢,wy,wy, B1,%) ", and X(0) is given by Expression (41). Maximum
likelihood estimation is numerical, and the full range of large-sample likelihood methods
described in Section A.6.3 of Appendix A is available.

Testing goodness of model fit

When there are more covariance structure equations than unknown parameters and the
parameters are identifiable, the parameters are said to be over-identified. In this case,
the model implies functional connections between some variances and covariances. In
the small example we are considering, it is clear from Expression (41) on page 64 that
013 = 093, because they both equal f1¢. This is a testable null hypothesis, and if it is
rejected, the model is called into question.

The traditional way to do the test® is to compare the fit of the model to the fit of a
completely unrestricted multivariate normal using the test statistic

G? = —2In —n (tr (£20) ") ~n [£2(0)

-p). )

where 3 is the ordinary sample variance-covariance matrix with n in the denominator,
and L(-,-) is the multivariate normal likelihood (42) on page 65. The degrees of freedom
equals the number of covariance structure equations minus the number of parameters.
The idea is that if there are r parameters and m unique variances and covariances, the

29The test is documented on page 447 of Joreskog’s classic (1978) article [37] in Psychometrika, but 1
believe it had been in Joreskog and Sérbom’s LISREL software for years before that.
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model imposes m — r equality constraints on the variances and covariances®®. Those
are the constraints being tested, even when we don’t know exactly what they are. The
goodness of fit test is examined more closely in Chapter 7.

The matrix 2(5) is called the reproduced covariance matriz. 1t is the covariance matrix
of the observable data, written as a function of the model parameters and evaluated at
the MLE. For the present example,

N ¢+ ¢ bro
3(0) = ¢ + Wy Aéld)/\
Bio+ o

The reproduced covariance matrix obeys all model-induced constraints, while ‘:‘i\does not.
However, they should be close if the model is right. In the limiting case where ¥ = 3(6),
the G? statistic in (44) equals zero.

When the parameter vector is identifiable and there are more unique variances and
covariances than parameters, we call the parameter vector over-identifiable. An alterna-
tive terminology is to say that the “model is over-identified.” The equality restrictions on
Y imposed by the model are called over-identifying restrictions. The likelihood ratio test
for goodness of fit is testing the null hypothesis that the over-identifying restrictions are
true.

Suppose that the entire parameter vector is identifiable, and m = k. That is, the
number of parameters is equal to the number of unique variances and covariances. In this
case, identifiability is established by solving k£ equations in k& unknowns. The function
from parameters to the variances and covariances is one-to-one (injective), and the model
imposes no constraints on the variances and covariances. In this case the parameter
vector is said to be just identifiable. Alternatively, the model is often said to be “just
identified,” or saturated. In this case, ¥ = 3(6) by the invariance principle, and the
likelihood ratio test statistics for goodness of fit automatically equals zero. The degrees
of freedom m — k = 0 also. These values are usually displayed by software, which could
be confusing unless you know why. It means the model is not testable. It is incapable of
being challenged by any data set, at least using this technology.

0.10.2 Computation with lavaan

A variety of commercial software is available for fitting structural equation models, in-
cluding LISREL, EQS, Amos and Mplus. I myself have used mostly SAS proc calis
until recently. In keeping with the open-source philosophy of this text, we will use the
free, open-source R package lavaan; the name is short for LAtent VAriable ANalysis. The

30Here’s why. In most cases, it is possible to choose just r of the m variances and covariances, and
establish identifiability by solving r equations in r unknowns. In this case, there are m — r unused,
redundant equations. Each sets a variance or covariance equal to some function of the model parameters.
Substituting the solutions for the parameters in terms of o;; back into the unused equations will yield
m — r equality constraints on the variances and covariances.
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software is described very well by Rosseel [48] in his 2012 article in the Journal of Statis-
tical Software. The capabilities of lavaan have grown since the article was published. A
nice tutorial is available at http://lavaan.ugent.be/tutorial.

This first illustration of lavaan will use a data set simulated from the model of Exam-
ple 0.10.1, the same little double measurement example we have been studying. It may
be a toy example, but it’s an educational toy. Readers familiar with lavaan will notice
that for now, I am using synax that favours explicitness over brevity. R input and output
will be interspersed with explanation.

When I begin an R session, I like to clear the deck with rm(1ist=1s()), removing any
existing R objects that may be in the workspace. The statement options(scipen=999)
suppresses scientific notation. This is just a matter of taste.

The lavaan package may be installed with the install.packages command. You
only need to do this once, which is why it’s commented out below. 1library(lavaan) is
necessary to load the package, every time.

> rm(list=1s()); options(scipen=999)

> # install.packages("lavaan", dependencies = TRUE)
> library(lavaan)

This is lavaan 0.6-7

lavaan is BETA software! Please report any bugs.

Next, we read the data, look at the first few lines, and obtain a summary and correlation
matrix. Notice that that the data file has only observable variables (obviously), and that
their means are certainly not zero. In practice, we would examine the data much more
carefully. This vital step in data analysis will not be mentioned again.

> babydouble = read.table("http://www.utstat.toronto.edu/ brunner/openSEM
/data/Babydouble.data.txt")
> head(babydouble)
Wi W2 Y

9.94 12.24 15.23
12.42 11.32 14.55
10.43 10.40 12.40

9.07 9.85 17.09
11.04 11.98 16.83
10.40 10.85 15.04
summary (babydouble)
Wi W2 Y

: 6.190 Min. : 6.76  Min. : 3.98
.932 1st Qu.: 9.11 1st Qu.:10.97
Median : 9.720 Median :10.05 Median :13.22
Mean .809  Mean :10.06  Mean :13.10
3rd Qu.:10.655 3rd Qu.:10.99 3rd Qu.:15.46
Max. :12.830 Max. :13.57  Max. :21.62

vV O 01 W N =

Min. :
1st Qu.:

©O© ©O© 0 O™


http://www.jstatsoft.org/v48/i02
http://lavaan.ugent.be/tutorial/index.html
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> cor (babydouble)

Wi W2 Y
W1 1.0000000 0.5748331 0.1714324
W2 0.5748331 1.0000000 0.1791539
Y 0.1714324 0.1791539 1.0000000

Notice that the sample correlations of Wy with Y and W5 with Y are very close. This is
consistent with the model-induced constraint o3 = 093, especially if w; = w,.

Next comes specification of the model to be fit. Again, this is the model of Exam-
ple 0.10.1 on page 63. The entire model specification is in a model string, assigned to
the string variable dmodell. If the model is big and you are using it repeatedly, you can
compose the model string in a separate file and bring it in with readlines.

> dmodell = ’Y 7 betalx*X # Latent variable model (even though Y is observed)
X =7 1*W1l + 1xW2 # Measurement model
# Variances (covariances would go here too)

X~ "phi*X # Var(X) = phi

Y~ psixY # Var(epsilon) = psi
W1”~“omegal*Wl # Var(el) = omegal
W2"~“omega2*W2 # Var(e2) = omega?2

It’s best to discuss the model string line by line.

Y ~ betal*X: This is reminiscent of R’s 1m syntax. The translation is Y = ;X + €. No-
tice that there is no ;. Though you can specify intercepts and expected values in lavaan
if you wish, by default they are invisible. Thus the whole process of re-parameterization
and swallowing all the non-identifiable expected values and intercepts into p (see page 65)
is implicit.

X =~ 1xW1 + 1#W2: This looks like X is being produced by W; and W5, when actually
it’s the other way around. However, if you read ~ and =~ as two different flavours of “is
modelled as,” it makes more sense. The statment stands for two model equations:

W1 = 1*X+€1
W2 = 1*X—|—€2

These two statements constitute the measurement model for this simple example. The
observable variables W; and Ws are called indicators of X. An indicator of a latent vari-
able is an observable variable that arises from only that latent variable plus an error term.
In lavaan, a latent variable must have indicators. Otherwise, it is assumed observable
even if it’s not in the input data set. The explicit “1%” syntax is necessary if you want
the coefficients to equal one. Otherwise, lavaan will assume you want coefficients that
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are free parameters in the model, but you don’t feel like naming them. It will try to be

helpful, with results that are unfortunate in this case?!.

X~~ phi*X: As the comment statement says, this means Var(X) = ¢. The double tilde
is a way of naming variances, or setting them equal to numeric constants if that’s what
you want to do. Notice that the symbol X appears on both sides. If you had two different
variable names, the statement would specify a covariance. Since a variance may be viewed
as the covariance of a random variable with itself, this is good notation. Also be aware
that if a covariance is not specified, it equals zero.

Y~~ psi*Y: In contrast to the preceding statement, this one is not saying that Var(Y') =
. 1t is saying Var(e) = 1. Here’s the rule. If a variable appears on the left side of any
model equation, then the ~~ notation specifies the variance or covariance of the error
term in the equation. If the variable appears only on the right side (possibly in more
than one equation), the ~~ notation specifies the variance or covariance of the variable
itself. In this way, though error terms are never named in lavaan, you can name their
variances, and you can name their covariances with other variables and error terms.

Wi~~omegal*Wi: Var(e;) = wy
W2~ r~omega2*W2: Var(ey) = wsy

A covariance between the measurement errors e; and e, would be specified with something
like Wi~~omegal2*W2. A covariance of ¢ between X and e would be specified with
X~orvckY.

Next, we fit the model and look at a summary. We use the 1avaan function®? (same name
as the lavaan package).

> dfitl = lavaan(dmodell, data=babydouble)
> summary (dfit1l)
lavaan 0.6-7 ended normally after 23 iterations

Estimator ML
Optimization method NLMINB
Number of free parameters 5
Number of observations 150

Model Test User Model:

311avaan’s “helpful” behaviour really is helpful for many users under many circumstances. It is based
on rules for parameter identifiability that will be developed later in this text.

32Model fitting can also be accomplished with the sem and cfa functions. With these “user friendly”
alternatives, the model specification in the model string is less elaborate, and the software makes choices
about the model for you. These choices are intended to be helpful, and may or may not be what you
want.
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Test statistic 0.007
Degrees of freedom 1
P-value (Chi-square) 0.933

Parameter Estimates:

Standard errors Standard
Information Expected
Information saturated (hl) model Structured

Latent Variables:
Estimate Std.Err z-value P(C|zl)

X ="
Wi 1.000
W2 1.000
Regressions:
Estimate Std.Err z-value P(C|zl)
v -
X (betl) 0.707 0.290 2.442 0.015
Variances:
Estimate Std.Err z-value P(C|z])
X (phi) 1.104 0.181 6.104 0.000
Y (psi) 9.775 1.153 8.481 0.000
W1 (Omgl) 0.834 0.158 5.265 0.000
W2 (Omg2) 0.800 0.156 5.123 0.000

We first learn that the numerical parameter estimation converged in 23 iterations, n =
150, and estimation was by maximum likelihood — the default. Under “Model Test
User Model,” the Test statistic is exactly the G? statistic given in expression (44) on
page 65: the likelihood ratio test for goodness of model fit. The small value of G* and the
correspondingly large p-value indicate that the model passes this test, and is not called
into question.

The next section in the output is entitled Latent Variables, saying that X is man-
afested by the indicators W; and W5. The “estimates” are the fixed numerical constants
of 1.000, specified in the model string. More generally, this section would include all the
latent variables in a model. If coefficients (factor loadings) linking the latent variables to
their indicators were not pre-specified, their estimates would appear here, together with
tests of difference from zero.

The next section of the summary is Regressions. These correspond to all the model
equations using the ~ rather than the ~= notation, whether the variables involved are
latent or observed. Here, we have maximum likelihood estimates, standard errors, Z-tests
for whether the parameter equals zero, and two-sided p-values. The standard errors are
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what you would expect. They are square roots of the diagonal elements of the inverse of
the Hessian of the minus log likelihood. If this does not make sense, see the maximum
likelihood review in Appendix A. Also, observe that in the summary display, the parameter
names are abbreviated to four characters.

The last section of the summary is Variances. Covariances would go here too, if any
had been specified in the model. We have maximum likelihood estimates of the variance
parameters, standard errors, and two-sided Z-tests for whether the parameter equals zero.
When the variance in question is the variance of an error term rather than of the variable
itself, the variable name is preceded by a dot, as in .Y, .W1 and .W2.

Testing whether variances equal zero It might seem strange to test whether vari-
ances equal zero, when they are automatically greater than zero according to the model.
It’s not as silly as you might think. Look at Equation (41) on page 64, which gives the
covariance matrix of the observable variables for this model, in terms of the model param-
eters. The covariance oy 2 equals ¢, which is a variance. That means that the covariance
between W; and W5 must be greater than zero if the model is correct; this would not
necessarily be true for an arbitrary covariance matrix.

The other variance parameters, because they are identifiable, can also be written as
functions of the variances and covariances o; ;. This means that they also correspond to
functions of the variances and covariances — functions that must be greater than zero if
the model is correct. In this way, we see that the model also imposes inequality constraints
on the covariance matrix ¥. The most obvious of these constraints®* can be tested by
looking at the estimates of the variance parameters in the model. If the variance estimates
are less than zero, particularly if they are significantly less than zero, the model is thrown
into question.

The conclusion is that testing whether variances equal zero is another way to test
model fit. A good practice is to check the equality constraint first with the likelihood
ratio test for goodness of fit, and then worry about inequality constraints provided that
the first test is non-significant. It is quite common for inequality violations to disappear
once the equality violations have been fixed.

The R object created by the lavaan function contains a large amount of additional
information. The parameterEstimates function returns a data frame that gives more
detail about the parameter estimates, including confidence intervals.

> parameterEstimates(dfitl)

lhs op rhs 1label est se z pvalue ci.lower ci.upper
1 Y 7 X Dbetal 0.707 0.290 2.442 0.015 0.140 1.275
2 X=" W 1.000 0.000 NA NA 1.000 1.000
3 X =" W2 1.000 0.000 NA NA 1.000 1.000
4 X7 X phi 1.104 0.181 6.104 0.000 0.750 1.459
5 Y7 Y psi 9.775 1.153 8.481 0.000 7.516 12.034
6 W1 °" W1l omegal 0.834 0.158 5.265 0.000 0.524 1.145

331t can be challenging to obtain all the inequality constraints in a useful form. See Chapter 7.
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7 W2 77 W2 omega2 0.800 0.156 5.123 0.000 0.494 1.105

The parTable function yields details about the model fitting, including the starting values
for the numerical search.

> parTable(dfitl)
id lhs op rhs user block group free ustart exo 1label plabel start est

1 1 Y X 1 1 1 1 NA O betal .pl. 0.000 0.707
2 2 X=" Wl 1 1 1 0 0 .p2. 1.000 1.000
3 3 X =" W2 1 1 1 0 1 0 .p3. 1.000 1.000
4 4 X7 X 1 1 1 2 NA O phi .p4. 0.050 1.104
5 5 Y™ Y 1 1 1 3 NA O psi .p5. 5.164 9.775
6 6 W1 ™" Wi 1 1 1 4 NA O omegal .p6. 0.968 0.834
7T 7T W2 7T W2 1 1 1 5 NA O omega2 .p7. 0.953 0.800

A vector containing the parameter estimates may be obtained with the coef function.
This is useful when the parameter estimates are to be used in further calculations.

> coef(dfitl) # A vector of MLEs
betal phi psi omegal omega2
0.707 1.104 9.775 0.834 0.800

The fitted function returns a list of two matrices. The first element is the reproduced

covariance matrix 3(@). The second element is what might be called the “reproduced
mean vector” p(@). It will be nonzero if means are specified in the model.

> fitted(dfitl) # Sigma(thetahat) and mu(thetahat)
$cov
Wi W2 Y
Wl 1.939
W2 1.104 1.904
Y 0.781 0.781 10.327

$mean
Wi W2 Y
0O 0 O

As usual with R, the vcov function returns the estimated asymptotic covariance matrix,
the inverse of the observed Fisher information (Hessian).

> vcov(dfitl)
betal phi psi omegal omega2
betal 0.084
phi -0.007 0.033
psi -0.035 0.002 1.328
omegal 0.003 -0.004 -0.002 0.025
omega2 0.003 -0.005 -0.002 -0.007 0.024

O O, O O O O

se

.290
.000
.000
.181
.153
.158
.156
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Even though the upper triangular entries are not shown, that’s just a display method.
The whole symmetric matrix is available for furter calculation.
The logLik function returns the log likelihood evaluated at the MLE.

> logLik(dfit1)
’log Lik.’ -878.512 (df=5)

It would be possible to use logLik to compute likelihood ratio tests, but the anova
function is more convenient. One can fit a restricted model by specifying the constraints
in the lavaan statement.

> # Fit a restricted model (restricted by HO)

> dfitlr = lavaan(dmodell, data=babydouble, constraints = ’omegal==omega?2’)
> anova(dfitir,dfitl)

Chi Square Difference Test

Df AIC BIC Chisq Chisq diff Df diff Pr(>Chisq)
dfitl 1 1767 1782.1 0.0071
dfitlr 2 1765 1777.1 0.0262 0.019189 1 0.8898

To test a null hypothesis with multiple constraints, put the constraints on separate lines.
This is the code for testing Hy : w1 = we, ¢ = 1.

> # Put multiple constraints on separate lines.

> dfitlr2 = lavaan(dmodell, data=babydouble, constraints = ’omegal==omega2
+ phi==1’)

> anova(dfitir2,dfitl)

Ilustrating a Wald test3* of Hy : w; = wy, we first define the publicly available Wtest
function, and then enter the L matrix and do the calculation.

> # For Wald tests: Wtest = function(L,Tn,Vn,h=0) # HO: L theta = h
> source("http://www.utstat.utoronto.ca/ brunner/Rfunctions/Wtest.txt")
> LL = ¢bind(0,0,0,1,-1); LL
(,11 [,2] [,3] [,4] [,5]
[1,] 0o 0 0 1 -1

> Wtest(LL,coef(dfitl),vcov(dfitl))
W df p-value
0.01918586 1.00000000 0.88983498

It is only a little surprising that the Wald and likelihood ratio test statistics are so close.
The two tests are asymptotically equivalent under the null hypothesis, meaning that the

34The Wald test of the linear null hypothesis L& = h is given in Section A.6.7 of Appendix A, Equa-
tion (A.37) on page 600.
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difference between the two test statistic values goes to zero in probability when Hj is
true. In this case, the null hypothesis is exactly true (these are simulated data), and the
sample size of n = 150 is fairly large.

The lavaan software makes it remarkably convenient to estimate non-linear functions
of the parameters, along with standard errors calculated using the multivariate delta
method (see the end of Section A.5 in Appendix A). This is accomplished with the :=
operator, as shown below. In this example, two functions of the parameter vector are
specified. The first function is w; — wy. Because this function is linear, the Z-test for
whether it equals zero is equivalent to the Wald test of Hy : w; = wy directly abovi. The

second function is the reliability of ;. Using Equation (29) on page 41, this is P

> # Non-linear functions of the parameters with :=
> dmodellb = ’Y 7 betalxX # Latent variable model

+ X =7 1xWl + 1xW2 # Measurement model
+ # Variances (covariances would go here too)
+ X" "phix*X # Var(X) = phi
+ Y™ psixY # Var(epsilon) = psi
+ W1~ ~omegal*Wl # Var(el) = omegal
+ W2~ "omega2*W2 # Var(e2) = omega?2
+ diff := omegal-omega2
+ rell := phi/(omegal+phi)
+ )
> dfitlb = lavaan(dmodellb, data=babydouble)
> parameterEstimates(dfitlb)

lhs op rhs 1label  est se z pvalue ci.lower ci.upper
1 Yy -~ X betal 0.707 0.290 2.442 0.015 0.140 1.275
2 X =" Wi 1.000 0.000 NA NA 1.000 1.000
3 X =" W2 1.000 0.000 NA NA 1.000 1.000
4 X 7 X phi 1.104 0.181 6.104 0.000 0.750 1.459
5 Yy °~ Y psi 9.775 1.1563 8.481 0.000 7.516 12.034
6 Wi ™~ W1l omegal 0.834 0.158 5.265 0.000 0.524 1.145
7T W2 "7 W2 omega2 0.800 0.156 5.123 0.000 0.494 1.105
8 diff := omegal-omega2 diff 0.035 0.252 0.139 0.890 -0.458 0.528
9 rell := phi/(omegal+phi) rell 0.570 0.066 8.657 0.000 0.441 0.699

Apart from rounding error, the Z statistic of 0.139 for the null hypothesis w; — ws = 0
matches the Wald test of the same null hypothesis, with W = Z2.

> 0.13972
[1] 0.019321

Trying to fit models with non-identifiable parameters This sub-section contains
more details about how lavaan works, and also some valuable material on the connec-
tion of identifiability to maximum likelihood estimation. The account of how double
measurement can help with identifiability is continued on page 83.
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Trying to estimate the parameters of a structural equation model without first checking
identifiability is like jumping out of an airplane without checking that your backpack
contains a parachute and not just a sleeping bag. You shouldn’t do it. Unfortunately,
people do it all the time. Sometimes it’s because they have little or no idea what parameter
identifiability is. Sometimes it’s because the model is a little non-standard, and checking
identifiability is too much work®®. Sometimes, it’s because of coding errors. Typos in
the model string can easily specify a model that’s non-identifiable, because a mis-spelled
parameter name is assumed to represent a different parameter. Anyway, it’s interesting
to see how lavaan deals with models you know are not identified. The main lesson is
that sometimes it complains, and sometimes it just returns a meaningless answer with
no obvious indication that anything is wrong. This is not a criticism of lavaan. It’s a
reminder that you need to know what you are doing.

Example 0.10.2

In this first example, non-identifiability causes lavaan to complain loudly. The model is
obtained by taking dmodell (that’s the model of Example 0.10.1 on page 63) and adding
unknown coefficients \; and A\, linking X to W; and W, respectively®®. The result is that
there are now two more parameters, for a total of seven. There are still only six variances
and covariances, so the model fails the parameter count rule, and we know the parameters
can be identifiable on at most a set of volume zero in the parameter space.

> dmodel2 = ’Y 7 betalx*X # Latent variable model

+ X =7 lambdal*Wl + lambda2x*W2 # Measurement model
+ # Variances (covariances would go here too)

+ X~ "phi*X # Var(X) = phi

+ Y~ psixY # Var(epsilon) = psi

+ W1"“omegal*Wl # Var(el) = omegal

+ W2"~omega2+W2 # Var(e2) = omega2

+ )

When we try to fit the model, it’s clear that something is wrong.

> dfit2 = lavaan(dmodel2, data=babydouble)

Warning message:

In lav_model_vcov(lavmodel = lavmodel, lavsamplestats = lavsamplestats,
lavaan WARNING: could not compute standard errors!
lavaan NOTE: this may be a symptom that the model is not identified.

In this case, lavaan correctly guessed that the parameters were not identifiable. Here’s
what happened.

35In later chapters, we will use Sage to ease the burden of symbolic calculation. See Appendix B.
36This is surely a more believable model.
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When lavaan does maximum likelihood estimation, it is minimizing a function propor-
tional to the minus log likelihood plus a constant®”. If the parameter vector is massively
non-identifiable as in the present case, the typical parameter vector belongs to an infinite,
connected set whose members all yield exactly the same covariance matrix and hence the
same value of the function being minimized. The graph of the function does not look
like a high-dimensional bowl. Instead, it resembles a high-dimensional river valley. The
non-unique minimum is on the flat surface of the water at the bottom of the valley. The
numerical search starts somewhere up in the hills, and then trickles downhill, usually until
it comes to the river. Then it stops. The stopping place (the MLE) depends entirely on
where the search began.

The surface is not strictly concave up at the stopping point, so the Hessian matrix
(see Expression A.29 in Appendix A) is not positive definite. However, the valley func-
tion is convex, so that the Hessian has to be non-negative definite. Consequently all its
eigenvalues are greater than or equal to zero. They can’t all be positive, or the Hessian
would be positive definite. This means there must be at least one zero eigenvalue. Hence,
the determinant of the Hessian is zero and its inverse does not exist.

The standard errors of the MLEs are the square roots of the diagonal elements of the
estimated asymptotic variance-covariance matrix. This matrix is obtained by inverting
the Hessian of the minus log likelihood; see Expression (A.35) in Appendix A. Since the
inverse does not exist, the standard errors can’t be computed, and lavaan issues a warning
about it. This whole scenario is so common that lavaan also speculates — correctly in
this case — that the problem arises from lack of parameter identifiability.

This is not an error; it’s just a warning. A model fit object is created.

> summary (dfit2)
lavaan 0.6-7 ended normally after 26 iterations

Estimator ML
Optimization method NLMINB
Number of free parameters 7
Number of observations 150

Model Test User Model:

Test statistic NA
Degrees of freedom -1
P-value (Unknown) NA

Parameter Estimates:

3"The constant is L(D, i), the multivariate normal likelihood evaluated at the unrestricted MLE of
p and 3. The function is also divided by n, which can help with numerical accuracy. When the search
finds a minimum, multiplication by 2n yields the test statistic given in Equation (44).
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Standard errors Standard
Information Expected
Information saturated (hl) model Structured

Latent Variables:
Estimate Std.Err z-value P(C|zl)

X =
Wi (1mb1) 0.962 NA
w2 (1mb2) 0.998 NA
Regressions:
Estimate Std.Err z-value P(|zl)
y -
X (bet1) 0.693 NA
Variances:
Estimate Std.Err z-value P(|zl)
X (phi)  1.151 NA
Y (psi)  9.776 NA
Wi (omgl)  0.871 NA
W2 (omg2) 0.761 NA

After “normal” convergence (hummm), the Minimum Function Test Statistic is NA,
or missing even though it could be computed. The degrees of freedom are -1, impossible
for a chi-squared statistic. The degrees of freedom are calculated as number of unique
variances and covariances minus number of parameters. When it’s negative, this is a sure
sign the model has failed the parameter count rule, and the parameter vector can’t be
identifiable. The software could check this and inform the user, but as of this writing it
does not. Parameter estimates (corresponding to the point where the search stopped) are
given, but standard errors are NA and there are no significance tests.

Example 0.10.3

In this next example, we modify the model of Example 0.10.1 again, keeping the unknown
factor loadings A; and Ay that connect the latent explanatory variable F' to its indicators
Wiy and W,, but making the two measurement error variances equal: w; = ws = w.
Everything else remains the same. The model has six unknown parameters and six unique
variances and covariances, so it passes the test of the parameter count rule. This means
identifiability is possible, but not guaranteed.

> # dmodel3 passes the parameter count rule, but its parameters are not identifiable.
> dmodel3 = ’Y 7 betal*X # Latent variable model

+ X =7 lambdal*Wl + lambda2x*W2 # Measurement model

+ X~ "phi*X # Var(X) = phi
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Y™ psixY # Var(epsilon) = psi
W1”~omega*Wl # Var(el) = omega
W2~ "omega*W2 # Var(e2) = omega

)

dfit3 = lavaan(dmodel3, data=babydouble)

VoV o+ o+ o+ o+

lavaan fits the model and generates a useful warning.

Warning message:
In lav_model_vcov(lavmodel = lavmodel, lavsamplestats = lavsamplestats,
lavaan WARNING:
The variance-covariance matrix of the estimated parameters (vcov)
does not appear to be positive definite! The smallest eigenvalue
(= 1.121048e-18) is close to zero. This may be a symptom that the
model is not identified.

So, even though lavaan is able to numerically invert the Fisher information to get an
asymptotic covariance matrix of the MLEs, it correctly speculates that there is a problem
with identifiability, and the answer should not be trusted. Looking at summary,

> summary (dfit3)
lavaan 0.6-7 ended normally after 19 iterations

Estimator ML
Optimization method NLMINB
Number of free parameters 7
Number of equality constraints 1
Number of observations 150

Model Test User Model:

Test statistic 0.014
Degrees of freedom 0

Parameter Estimates:

Standard errors Standard
Information Expected
Information saturated (hl) model Structured

Latent Variables:
Estimate Std.Err z-value P(C|zl)
X ="
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w1l (1mbl) 0.987 0.085 11.575 0.000
W2 (1mb2) 0.975 0.085 11.443 0.000
Regressions:
Estimate Std.Err z-value P(O|z])
y -
X (betl) 0.693 0.264 2.624 0.009
Variances:
Estimate Std.Err z-value P(O|z])
X (phi) 1.148 0.078 14 .757 0.000
Y (psi) 9.776 1.153 8.481 0.000
Wl (omeg) 0.817 0.094 8.660 0.000
W2 (omeg) 0.817 0.094 8.660 0.000

Except for the warning message, everything seems to be fine. However, it’s not fine! The
parameters of this model are not identifiable, and as in the previous example (Exam-
ple 0.10.2), the MLE is not unique. At first glance, it’s not obvious why.

The matrix equation (45) gives the covariance matrix of (W1, W;,Y;)", expressing
the six covariance structure equations in six unknowns, in a compact form.

011 012 013 )\%Qﬁ +w A MBig
0922 023 = )\%(ﬁ 4+ w )\2/61¢ . (45)
033 Bio +

First, it is clear that if just one of \;y = 0, Ay = 0 or #; = 0, the zero value would be
detectable from the covariance matrix, making that parameter identifiable. However, the
remaining four equations in five unknowns would fail the parameter count rule, so that
the other parameters would not be identifiable. If two or three of A\;, Ay and 3, were equal
to zero, it would be impossible to tell which ones they were. Solving the remaining three
equations in six unknowns is a hopeless task, and the entire parameter vector would be
non-identifiable.

All these identifiability problems are local, and would have no effect on numerical
maximum likelihood unless the true parameter values in question were zero. So consider
points in the parameter space where A\;, Ay and ; are all non-zero. In this case, w and ¥
are identifiable, because

013023
and ’QD = 033 — .
023 012

012013

W =011 —

In fact, w is over-identified, and this imposes the testable constraint o;; = o099 on the
covariance matrix, even though the Model Test degrees of freedom equal zero in the
output. As for the other parameters, let 8; be an arbitrary point in the parameter space.
Letting ¢ # 0, consider the two parameter vectors

0| M N B 9w
O.|c\i chy cf ;% w Y

(46)
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It is clear that 6, and 6. both yield the same covariance matrix (45), and hence the same
value of the likelihood function. In fact, every point in the parameter space belongs to
an infinite family {60, : ¢ # 0} whose members all have the same the same likelihood.
This means that if a numerical search locates a minimum, that point is just one of an
infinite number of points in the parameter space where that same minimum value is
attained. Furthermore the set is connected, and we are back to the river valley picture of
Example 0.10.2.

A good way to confirm this account of what’s happening is to choose a different set of
starting values. Then, the numerical search should trickle downhill into the valley until
it reaches a different point on the likelihood river. The estimated parameters should be
very different (except for ¢ and w), but the value of the likelihood function (the height of
the point on the river) should be the same. In the first test, I will try to start the search
exactly in the river, at a point fairly distant from the first MLE. If the map provided by
the table in (46) is correct, this should work.

To specify starting value of a regression coefficient in lavaan, one replaces the co-
efficient with start(number), where number is a numeric starting value. A generic
example is Y~start(4.2)*X. This is excellent when you are letting lavaan name pa-
rameters automatically, but what if you want to also name the regression coefficient?
Somewhat oddly, you specify the connection between X and Y twice, and lavaan picks
up the information in two passes through the syntax. The generic example would look
like this: Y~beta*X + start(4.2)*X. A similar syntax works for variances, like this:
Y~r~sigmasg*Y + start(1.0)*Y.

Since the estimated (3; for model dmodel3 was positive, we will make it negative this
time. As far as I can tell, the starting values have to be literal numbers, and not R
variables.

>c=-2
> thetac = coef(dfit3); thetac
betal lambdal lambda2 phi psi omega  omega

0.693 0.987 0.975 1.148 9.776 0.817 0.817

\%

cxthetac[1]; thetac[2] = c*thetac[2]; thetac[3] = cx*thetac[3]
thetac[4]/c"2

thetac[1]
thetac[4]
> cat(thetac)

-1.386474 -1.974219 -1.949046 0.2870302 9.775661 0.816833 0.816833

\4

The cat function was used to get more decimal places in the output, because I needed to
copy and paste the numbers into the model string. To start right in the river, we need as
much accuracy as possible.

> dmodel3b = ’Y ~ betal*X + start(-1.386474)x*X

+ X =7 lambdal*W1l + start(-1.974219)*W1 +

+ lambda2+W2 + start(-1.949046)*W2

+ # Variances (covariances would go here too)
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+ X""phi*X + start(0.2870302)*X # Var(X) = phi

+ Y™ "psixY + start(9.775661)*Y # Var(epsilon) = psi
+ W1~ "omega*Wl + start(0.816833)*W1 # Var(el) = omega

+ W2™~"omega*W2 + start(0.816833)*W2 # Var(e2) = omega

+ )

> dfit3b = lavaan(dmodel3b, data=babydouble)

There is a warning about a near-zero eigenvalue, similar to the last one. Then,

> show(dfit3b)
lavaan 0.6-7 ended normally after 2 iterations

Estimator ML
Optimization method NLMINB
Number of free parameters 7
Number of equality constraints 1
Number of observations 150

Model Test User Model:

Test statistic 0.014
Degrees of freedom 0

This time the search found a minimum in two iterations rather than 19. The value of
Test Statistic is the same as last time, suggesting that the height of the minus log
likelihood function is the same with the new starting values.

Binding the starting and ending values into a matrix for easy inspection, we see that
they are identical, at least to R’s accuracy of display. This means that essentially, we
started the numerical search at one of the infinitely many MLEs — as planned.

> rbind(thetac,coef (dfit3b))

betal lambdal  lambda2 phi psi omega omega
thetac -1.386474 -1.974219 -1.949046 0.2870302 9.775661 0.816833 0.816833
-1.386474 -1.974219 -1.949046 0.2870302 9.775661 0.816833 0.816833

Also as expected, the parameter estimates are quite different from the first set we located,
except for the estimates of the identifiable parameters ¢ and w.

> rbind(coef (dfit3),coef (dfit3b))

betal lambdal lambda2 phi psi omega omega
[1,] 0.6932368 0.9871093 0.9745232 1.1481206 9.775661 0.816833 0.816833
[2,] -1.3864740 -1.9742186 -1.9490464 0.2870302 9.775661 0.816833 0.816833
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Though the locations of the MLEs are different, the log likelihood at those points is the
same. Again, the theoretical analysis is confirmed.

> c( logLik(dfit3), logLik(dfit3b) )
[1] -878.5155 -878.5155

In one last variation, the search starts fairly close to the river®® but not exactly on target,
and finds its way to yet another MLE. Here, starting values are provided for A\;, Ao, 51
and ¢. lavaan provides starting values for ¢ and w.

> dmodel3c = ’Y ~ betal*X + start(6)*X
X =7 lambdal*Wl + start(8)*W1l +
lambda2xW2 + start(8)*W2
# Variances (covariances would go here too)
X""phi*X + start(1/64)*X # Var(X) = phi
Y~ psi*Y # Var(epsilon) = psi
W1”“omega*Wl # Var(el) = omega
W2""omega*W2  # Var(e2) = omega
> dfit3c = lavaan(dmodel3c, data=babydouble)
Warning message:
In lav_model_vcov(lavmodel = lavmodel, lavsamplestats = lavsamplestats,
lavaan WARNING:
The variance-covariance matrix of the estimated parameters (vcov)
does not appear to be positive definite! The smallest eigenvalue
(= 1.285532e-12) is close to zero. This may be a symptom that the
model is not identified.

> c( logLik(dfit3), logLik(dfit3b), logLik(dfit3b) )
[1] -878.5155 -878.5155 -878.5155

> rbind( coef(dfit3), coef(dfit3b), coef(dfit3c) )

betal lambdal lambda2 phi psi omega omega
[1,] 0.6932368 0.9871093 0.9745232 1.1481206 9.775661 0.816833 0.816833
[2,] -1.3864740 -1.9742186 -1.9490464 0.2870302 9.775661 0.816833 0.816833
[3,] 5.7803725 8.2307505 8.1258046 0.0165135 9.775661 0.816833 0.816833

So the search located another point with the same maximum log likelihood, fairly far from
the other two. For the parameters that are not identifiable, the answer depends on the
starting value.

When the parameters of a model are all identifiable, the minus log likelihood should
have a unique global minimum, and lavaan’s default starting values should be adequate

38To find a point that is “fairly close,” observe from (46) that the product A\; Aa¢ must be constant for
all points on the river. The constant is pretty close to 1, and 1 should be around 3/4 of A;. So 81 = 6,
A1 = A2 =8 and ¢ = 1/64 should do it.
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most of the time. However even when the parameters are identifiable, local maxima
and minima are possible. If you suspect the search may have located a local minimum
(perhaps because some of the MLEs are extremely large), you may need to specify your
own starting values. Try several sets. The parTable function can be used to verify that
the starting values were the ones you intended. In the display below, ustart are the
starting values given by the user, some of which are NA because they were not specified.
The start column are the starting values used by the software, and the est column
(estimates) is where the search ended — at the parameter estimates.

> parTable(dfit3c)

id 1hs op rhs user block group free ustart exo  label plabel start
1 1 Yy -° X 1 1 1 1 6.000 0O Dbetal .pl. 6.000 5
2 2 X=" W 1 1 1 2 8.000 O lambdal .p2. 8.000 8
3 3 X=" W2 1 1 1 3 8.000 O lambda2 .p3. 8.000 8
4 4 X " X 1 1 1 4 0.016 O phi .p4. 0.016 O
5 5 Yy °” Y 1 1 1 5 NA O psi .p5. 5.164 9
6 6 W1 "™ W1 1 1 1 6 NA O omega .p6. 0.968 O
7T 7 W2 7T W2 1 1 1 7 NA O omega .p7. 0.953 0
8 8 .p6. == .p7. 2 0 0 0 NA O 0.000 O

0.10.3 The Double Measurement Design in Matrix Form

Consider the general case of regression with measurement error in both the explanatory

variables and the response variables. Independently for i =1,...,n, let
Wil = Vi1+X;+e€ (47)
Vii = VatYy;+e€p.
W;2 = V3 +Xx; + €;3
Vio = UVa+Yy;+e€y,

yi = a+Bx +¢€
where

y; is a ¢ X 1 random vector of latent response variables. Because ¢ can be greater
than one, the regression is multivariate.

B is a ¢ X p matrix of unknown constants. These are the regression coefficients, with
one row for each response variable and one column for each explanatory variable.

x; is a p x 1 random vector of latent explanatory variables, with expected value zero
and variance-covariance matrix ®, a p X p symmetric and positive definite matrix
of unknown constants.

€; is the error term of the latent regression. It is a ¢ x 1 random vector with expected
value zero and variance-covariance matrix W, a ¢ X ¢ symmetric and positive definite
matrix of unknown constants.

est

.780
.231
.126
.017
.7T76
.817
.817
.000

O OO OO O -

se

.895
.822
.819
.004
.153
.094
.094
.000
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w; 1 and w; o are p X 1 observable random vectors, each consisting of x; plus random
error and a set of constant terms that represent measurement bias*’.

v;1 and v; 9 are g x 1 observable random vectors, each consisting of y; plus random
error and measurement bias.

€i1,...,€;1 are the measurement errors in w; 1, v; 1, W; » and v; o respectively. Join-
ing the vectors of measurement errors into a single long vector e;, its covariance
matrix may be written as a partitioned matrix

€1 Qll 912 0 0
T
N €2 - le 922 0 0 .
cov(e;) = cov s | = 010 [ 2 | Q.
€4 0 0 Q;l 944

The matrices of covariances between X;, €; and e; are all zero.

«a, V1, Vg, 3 and v, are vectors of constants.

The main idea of the Double Measurement Design is that every variable is measured
by two different methods. Errors of measurement may be correlated within measurement
methods, but not between methods. So for example, farmers who overestimate their
number of pigs may also overestimate their number of cows. On the other hand, if
the number of pigs is counted once by the farm manager at feeding time and on another
occasion by a research assistant from an areal photograph, then it would be fair to assume
that the errors of measurement for the different methods are uncorrelated. In general,
correlation within measurement methods is almost unavoidable. The ability of the double
measurement model to admit the existence of correlated measurement error and still be
identifiable is a real advantage.

In symbolic terms, e;; is error in measuring the explanatory variables by method one,
and e; 5 is error in measuring the response variables by method one. cov(e;;) = €241 need
not be diagonal, so method one’s errors of measurement for the explanatory variables
may be correlated with one another. Similarly, cov(e;2) = €22 need not be diagonal, so
method one’s errors of measurement for the response variables may be correlated with one
another. And, errors of measurement using the same method may be correlated between
the explanatory and response variables. For method one, this is represented by the matrix
cov(e;1,€;2) = 42. The same pattern holds for method two. On the other hand, e;;
and e; 5 are each uncorrelated with both e; 3 and e; 4.

To emphasize an important practical point, the matrices €2; and €233 must be of
the same dimension, just as €295 and 244 must be of the same dimension — but none of
the corresponding elements have to be equal. In particular, the corresponding diagonal

39For example, if one of the elements of w; 1 is reported amount of exercise, the corresponding element
of v, would be the average amount by which people exaggerate how much they exercise.
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Figure 15: The Double Measurement Model
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elements may be unequal. This means that measurements of a variable by two different
methods do not need to be equally precise.

The model is depicted in Figure 15. It follows the usual conventions for path diagrams
of structural equation models. Straight arrows go from exogenous variables (that is,
explanatory variables, those on the right-hand side of equations) to endogenous varables
(response variables, those on the left side). Correlations among exogenous variables are
represented by two-headed curved arrows. Observable variables are enclosed by rectangles
or squares, while latent variables are enclosed by ellipses or circles. Error terms are not
enclosed by anything.

Parameter identifiability As usual in structural equation models, the moments (specif-
ically, the expected values and variance-covariance matrix) of the observable data are
functions of the model parameters. If the model parameters are also functions of the
moments, then they are identifiable*’. For the double measurement model, the parame-
ters appearing in the covariance matrix of the observable variables are identifiable, but
the parameters appearing only in the mean vector are not. Accordingly, we split the job

40Meaning identifiable from the moments. For multivariate normal models and also in general practice,
a parameter is identifiable from the mean vector and covariance matrix, or not at all.



86 CHAPTER 0. REGRESSION WITH MEASUREMENT ERROR

into two parts, starting with the covariance matrix. The first part is typical of easier
proofs for structural equation models. The goal is to solve for the model parameters in
terms of elements of the variance-covariance matrix of the observable data. This shows
the parameters are functions of the distribution, so that no two distinct parameter values
could yield the same distribution of the observed data.

Collecting w; 1, v; 1, W; 2 and v; o into a single long data vector d;, we write its variance-
covariance matrix as a partitioned matrix:

211 212 213 214

Y — 222 E23 224
253 234 7

Z]44

where the covariance matrix of w; ; is 35, the covariance matrix of v; ; is X9, the matrix
of covariances between w;; and v;; is X9, and so on.

Now we express all the X;; sub-matrices in terms of the parameter matrices of Model (47)
by straightforward variance-covariance calculations. Students may be reminded that
things go smoothly if one substitutes for everything in terms of explanatory variables
and error terms before actually starting to calculate covariances. For example,

Y = COU(WM, Vz',l)
= cov(V1+X;+e1, vatyi+epo)
= cov(v1+x+e1, vata+Px,+e€+e,)
= cov(x;+e€1, Bxi+€+ep)
= cov(x;, B%;) + cov(x;, €;) + cov(X;, €;2) + cov(e; 1, BX;) + cov(e; 1, €;) + cov(e;1,€;2)
= cov(x;,x)B +0+0+0+0+ Qi
= ‘I’IBT + Q5.

In this manner, we obtain the partitioned covariance matrix of the observable data d; =

T T T TH\T
(Wi,h Vi1 Wi, Vi,2> as

211 E12 E13 214
222 Z23 224
>y = 48
S | Zan (48)
E44
d+ QO 3" + Qs ® 3"
_ BB+ ¥ +Qy| [P pes’ + v
D + Q33 ‘I’BT + 3y
B8B83 + ¥ + Qyy

The equality (48) corresponds to a system of ten matrix equations in nine matrix un-
knowns. The unknowns are the parameter matrices of Model (47): ®, 3, ¥, Q;, O,
Qs3, Qyq, Q1o, and 234. In the solution below, notice that once a parameter has been
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identified, it may be used to solve for other parameters without explicitly substituting in
terms of 3;; quantities. Sometimes a full explicit solution is useful, but to show identifi-
ability all you need to do is show that the moment structure equations can be solved.

& = X (49)
B = Zpd =3 0"

T = 3y -pes’

Q = ;- @

Dy = Bp—pEB -

Q33 = 233 - (I)

Quy = Xy-— 5‘1’5T -v

Q, = Zp- 247

Qi = Ty — 28"

The solution (49) shows that the parameters appearing in the covariance matrix ¥ are
identifiable. This includes the critical parameter matrix 3, which determines the connec-
tion between explanatory variables and response variables.

Intercepts

In Model (47), let p = E(d;). This vector of expected values may be written as a
partitioned vector, as follows.

My E(wiq) v+,
(a2 E(vii) v+ a+ Bp,
— — ) = . 50
K s E(wiz) v+ p, 50
ey E(vi») vit+a+Bu,

The parameters that appear in g but not 3 are contained in vy, vy, vs, vy, p, and
a. To identify these parameters, one would need to solve the equations in (50) uniquely
for these six parameter vectors. Even with 3 considered known and fixed because it is
identified in (49), this is impossible in most of the parameter space, because (50) specifies
2m + 2p equations in 3m + 3p unknowns.

It is tempting to assume the measuremant bias terms v, ..., vy to be zero; this would
allow identification of @ and p,. Unfortunately, it is doubtful that such an assumption
could be justified very often in practice. Most of the time, all we can do is identify the
parameter matrices that appear in the covariance matrix, and also the functions py ..., pa
of the parameters as given in equation (50). This can be viewed as a re-parameterization
of the model. In practice, the functions p; ..., 4 of the parameters are usually not
of much interest. They are estimated by the corresponding sample means, conveniently
forgotten, and almost never mentioned.
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To summarize, the parameters appearing in the covariance matrix are identifiable.
This includes B, the quantity of primary interest. Means and intercepts are not identi-
fiable, but they are absorbed in a re-parameterization and set aside. It’s no great loss.
In practice, if data are collected following the double measurement recipe, then the data
analysis may proceed with no worries about parameter identifiability.

For the double measurement model, there are more covariance structure equations
than unknowns. Thus the model is over-identified, and testable. Notice in the covariance
structure equations (48), that X4 = 3,,. As in the scalar Example 0.10.1 (see page 63),
this constraint on the covariance matrix 3 arises from the model, and provides a way to
test whether the model is correct. These pg equalities are not the only ones implied by
the model. Because 313 = ®, the p X p matrix of covariances X3 is actually a covariance
matrix, so it is symmetric. This implies p(p — 1)/2 more equalities.

Estimation and testing

Normal model As in Example 0.10.1, the (collapsed) expected values are estimated
by the corresponding vector of sample means, and then set aside. Under a multivari-
ate normal model, these terms literally disappear from the likelihood function (42) on
page 65. The resulting likelihood is (43) on page 65. The full range of large-sample likeli-
hood methods is available. Maximum likelihood estimates are asymptotically normal, and
asymptotic standard errors are convenient by-products of the numerical minimization as
described in Section A.6.3 of Appendix A; most software produces them by default. Di-
viding an estimated regression coefficient by its standard error gives a Z-test for whether
the coefficient is different from zero. My experience is that likelihood ratio tests can sub-
stantially outperform both these Z-tests and the Wald tests that are their generalizations,
especially when there is a lot of measurement error, the explanatory variables are strongly
related to one another, and the sample size is not huge.

Distribution-free In presenting models for regression with measurement error, it is
often convenient to assume that everything is multivariate normal. This is especially true
when giving examples of models where the parameters are not identifiable. But normality
is not necessary. Suppose Model (47) holds, and that the distributions of of the latent
explanatory variables and error terms are unknown, except that they possess covariance
matrices, with e;; and e; o having zero covariance with e; 3 and e;4. In this case the
parameter of the model could be expressed as 0 = (8, ®, ¥, Q, Iy, F., F,), where F,
F. and F, are the (joint) cumulative distribution functions of x;, €; and e; respectively.

Note that the parameter in this “non-parametric” problem is of infinite dimension,
but that presents no conceptual difficulty. The probability distribution of the observed
data is still a function of the parameter vector, and to show identifiability, we would have
to be able to recover the parameter vector from the probability distribution of the data.
While in general we cannot recover the whole thing, we certainly can recover a useful
function of the parameter vector, namely 3. In fact, B is the only quantity of interest;
the remainder of the parameter vector consists only of nuisance parameters, whether it is
of finite dimension or not.
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To make the reasoning explicit, the covariance matrix X is a function of the probability
distribution of the observed data, whether that probability distribution is normal or not.
The calculations leading to (49) still hold, showing that 3 is a function of 3, and hence
of the probability distribution of the data. Therefore, 3 is identifiable.

This is all very well, but can we actually do anything without knowing what the dis-
tributions are? Certainly! Looking at (49), one is tempted to just put hats on everything
to obtain Method-of-Moments estimators. However, we can do a little better. Note that
while ® = 35 is a symmetric matrix in the population and 315 converges to a symmetric
matrix, 35 will be non-symmetric for any finite sample size (with probability one if the
distributions involved are continuous). A better estimator is obtained by averaging pairs
of off-diagonal elements:

~ 1 ~ ~T
P, = 5(213 + X13), (51)

where the subscript M indicates a Method-of-Moments estimator. Using the second line
of (49), a reasonable though non-standard estimator of 3 is

~ 1l /a7 ~ ~—1
By = 5 (214 + 223) P, (52)

Consistency follows from the Law of Large Numbers and a continuity argument. All this
assumes the existence only of second moments and cross-moments. With the assumption
of fourth moments (so that sample variances possess variances), Theorem A.1 in Ap-
pendix A, combined with the multivariate delta method, provides a basis for large-sample
interval estimation and testing.

However, there is no need to bother. As described in Chapter 5, the normal-theory
tests and confidence intervals for 3 can be trusted when the data are not normal. Note
that this does not extend to the other model parameters. For example, if the vector of
latent variables x; is not normal, then normal-theory inference about its covariance matrix
will be flawed. In any event, the estimation method of choice will maximum likelihood,
with interpretive focus on the regression coefficients in 3 rather than on the other model
parameters.

0.10.4 The BMI Health Study

Body mass index (BMI) is defined as weight in kilograms divided by height in meters
squared. It represents weight relative to height, and is a measure of how thick, or hefty
a person is. People with a BMI less than 18 are described as underweight, those over 25
are described as overweight, and those over 30 are described as obese. However, many
professional athletes have BMI numbers in the overweight range.

High BMI tends to be associated with poor health, and with indicators such as high
blood pressure and high cholesterol. However, people with high BMI also tend to be older
and fatter. Perhaps age and physical condition are responsible for the association of BMI
to health. The natural idea is to look at the connection of BMI to health indicators,
controlling for age and some indicator of physical condition like percent body fat. The
problem is that percent body fat (and to a lesser extent, age) are measured with error. As
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discussed in Section 0.7, standard ways of controlling for them with ordinary regression
are highly suspect. The solution is double measurement regression.

Example 0.10.4 The BMI health study™

In this study, there are five latent variables. Each one was were measured twice, by
different personnel at different locations and mostly by different methods. The variables
are age, BMI, percent body fat, cholesterol level, and diastolic blood pressure.

e In measurement set one, age was self report. In measurement set two, age was based
on a passport or birth certificate.

e In measurement set one, the height and weight measurements making up BMI were
conducted in a doctor’s office, following no special procedures. In measurement set
two, they were conducted by a lab technician. Patients had to remove their shoes,
and wore a hospital gown.

e In measurement set one, estimated percent body fat was based on measurements
with tape and calipers, conducted in the doctor’s office. In measurement set two,
percent body fat was estimated by submerging the participant in a water tank
(hydrostatic weighing).

e In measurement set one, serum (blood) cholesterol level was measured in lab 1.
In measurement set two, it was measured in lab 2. There is no known difference
between the labs in quality.

e In measurement set one, diastolic blood pressure was measured in the doctor’s
office using a standard manual blood pressure cuff. In measurement set two, blood
pressure was measured in the lab by a digital device, and was mostly automatic.

Measurement set two was of generally higher quality than measurement set one. Corre-
lation of measurement errors is possible within sets, but unlikely between sets.

Figure 16 shows a regression model for the latent variables. Because all the vari-
ables are latent, they are enclosed in ovals. There are two response variables, so this is
multivariate regression.

First, we read the data and take a look. The variables are self-explanatory. There are
500 cases.

> bmidata = read.table("http://www.utstat.toronto.edu/ brunner/openSEM/data/bmi.data.txt")
> head(bmidata)
agel bmil fatl cholestl diastoll age2 bmi2 fat2 cholest2 diastol2

1 63 24.5 16.5 195.4 38 60 23.9 20.1 203.5 66
2 42 13.0 1.9 184.3 86 44 14.8 2.6 197.3 78
3 32 22.5 14.6 354.1 104 33 21.7 20.4 374.3 73

#1This study is fictitious, and the data come from a combination of random number generation and
manual editing. As far as I know, nothing like this has actually been done. I believe it should be.
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Figure 16: Latent variable model for the BMI health study

age
cholest <4—— ¢
bmi
diastol 4—— ¢,
fat
4 59 25.5 19.0 214.6 93 58 28.5 20.0 203.7 106
5 45 26.5 17.8 324.8 97 43 25.0 12.3 329.7 92
6 31 19.4 17.1 280.7 92 42 19.9 19.9 276.7 87

The standard, naive approach to analyzing these data is to ignore the possibility of mea-
surement error, and use ordinary linear regression. One could either use just the better
set of measurements (set 2), or average them. Averaging is a little better, because it
improves reliability.

> age = (agel+age2)/2; bmi = (bmil+bmi2)/2; fat = (fatil+fat2)/2
> cholest = (cholestl+cholest2)/2; diastol = (diastoll+diastol2)/2

There are two response variables (cholesterol level and diastolic blood pressure), so we
fit a conventional multivariate linear model, and look at the multivariate test of BMI
controlling for age and percent body fat. The full model has age, percent body fat and
BMI, while the restricted model has just age and percent body fat.

> fullmod = 1m( cbind(cholest,diastol) ~ age + fat + bmi)

> restrictedmod = update(fullmod, . ~ . - bmi) # Remove var(s) being tested
> anova(fullmod,restrictedmod) # Gives multivariate test.

Analysis of Variance Table

Model 1: cbind(cholest, diastol) ~ age + fat + bmi
Model 2: cbind(cholest, diastol) ~ age + fat
Res.Df Df Gen.var. Pillai approx F num Df den Df Pr (>F)
1 496 591.89
2 497 1 599.36 0.02869 7.3106 2 495 0.0007431 *xxx

Signif. codes: 0 *%x 0.001 *x 0.01 * 0.05 . 0.1 1
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The conclusion is that controlling for age and percent body fat, BMI is related to choles-
terol, or diastolic blood pressure, or both. The summary function gives two sets of uni-
variate output. Primary interest is in the ¢-tests for bmi.

> summary (fullmod) # Two sets of univariate output
Response cholest :

Call:
Im(formula = cholest ~ age + fat + bmi)

Residuals:
Min 1Q Median 3Q Max
-148.550 -34.243 2.626 33.661 165.582

Coefficients:

Estimate Std. Error t value Pr(>ltl)
(Intercept) 220.0610 21.0109 10.474 < 0.0000000000000002 =*x**
age -0.2714 0.2002 -1.356 0.17578
fat 2.2334 0.5792 3.856 0.00013 =*x*x
bmi 0.5164 1.0154 0.509 0.61128

Signif. codes: 0 *%*x 0.001 *x 0.01 * 0.05 . 0.1 1

Residual standard error: 52.43 on 496 degrees of freedom
Multiple R-squared: 0.09701,Adjusted R-squared: 0.09155
F-statistic: 17.76 on 3 and 496 DF, p-value: 0.00000000005762

Response diastol :

Call:
Im(formula = diastol ~ age + fat + bmi)

Residuals:
Min 1Q Median 3Q Max
-44.841 -7.140 -0.408 7.612 41.377

Coefficients:

Estimate Std. Error t value Pr(>ltl)
(Intercept) 49.69194 4.52512 10.981 < 0.0000000000000002 x**x*
age 0.12648 0.04311 2.934 0.003504 x*x*
fat 0.64056 0.12474 5.135 0.000000406 *x*x*

*

bmi 0.82627 0.21869 3.778 0.000177 *xx
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Signif. codes: 0 *%*x 0.001 *x 0.01 * 0.05 . 0.1 1

Residual standard error: 11.29 on 496 degrees of freedom
Multiple R-squared: 0.3333,Adjusted R-squared: 0.3293
F-statistic: 82.67 on 3 and 496 DF, p-value: < 0.00000000000000022

For cholesterol, we have t = 0.509 and p = 0.61128. The conclusion is that controlling for
age and percent body fat, there is no evidence of a connection between body mass index
and serum cholesterol level.

For diastolic blood pressure, the test of BMI controlling for age and percent body fat is
t =3.778 and p = 0.000177. This time the conclusion is that even controlling for age and
percent body fat, higher BMI is associated with higher average diastolic blood pressure
— a bad sign for health. However, this “even controlling for” conclusion is exactly the
kind of mistake that is often caused by ignoring measurement error; see Section 0.7. So,
we specify a proper double measurement regression model. The names of latent variables
begin with L. I did this because I'd already used the natural names like age, bmi and
cholest earlier, and I wanted to avoid accidental conflicts.

bmimodell =
HEH S R
# Latent variable model

’Lcholest ~ betall*Lage + betal2*Lbmi + betal3*Lfat
Ldiastol ~ beta2lx*Lage + beta22*Lbmi + beta23*Lfat
#

# Measurement model

Lage =" 1xagel + 1l*age2

Lbmi =" 1xbmil + 1*bmi2

Lfat =" 1xfatl +1xfat?2

Lcholest =" 1*cholestl + 1*cholest2
Ldiastol =" 1*diastoll + 1*diastol2
#

# Variances and covariances

# 0f latent explanatory variables
Lage "7 phillxLage; Lage "~ phil2*Lbmi; Lage "~ phil3xLfat
Lbmi % phi22*Lbmi; Lbmi ~~ phi23*Lfat
Lfat “~ phi33*Lfat
# Of error terms in latent the regression (epsilon_ij)
Lcholest ™7 psillxLcholest; Lcholest “~ psil2*Ldiastol
Ldiastol "~ psi22xLdiastol
# Of measurement errors (e_ijk) for measurement set 1
agel "7 wlllxagel; agel "~ wll2xbmil; agel "7 wlil3*fatl;
agel 77 wll4x*cholestl; agel "~ wllb*diastoll
bmil 7 wi22%bmil; bmil 7 wl23*fatl; bmil ~~ wl24*cholestl; bmil 7 wl25xdiastoll
fatl 77 wi133xfatl; fatl 7 wil34*cholestl; fatl “~ wl35*diastoll
cholestl 7 wil44x*cholestl; cholestl " wl45*diastoll
diastoll "~ wlbb*diastoll
# Of measurement errors (e_ijk) for measurement set 2
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age2 "7 w2llxage2; age2 "7 w212xbmi2; age2 "~ w213xfat2;
age2 77 w2l4x*cholest2; age2 "7 w2lb5*diastol2
bmi2 7 w222*%xbmi2; bmi2 “7 w223xfat2; bmi2 7 w224*cholest2; bmi2 7 w22b*diastol2
fat2 77 w233*fat2; fat2 7 w234*cholest2; fat2 "~ w235*diastol2
cholest2 7~ w244*cholest2; cholest2 "~ w24b5*diastol2
diastol2 "~ w2bbxdiastol2
DR EE End of bmimodell ######HAHHHHHHHHE

When we try to fit this perfectly nice model, there is trouble.

> # install.packages("lavaan", dependencies = TRUE) # Only need to do this once
> library(lavaan)
This is lavaan 0.6-7
lavaan is BETA software! Please report any bugs.
> fitl = lavaan(bmimodell, data=bmidata)
Warning message:
Warning messages:
1: In lav_model_estimate(lavmodel = lavmodel, lavpartable = lavpartable,
lavaan WARNING: the optimizer warns that a solution has NOT been found!
2: In lav_model_estimate(lavmodel = lavmodel, lavpartable = lavpartable,
lavaan WARNING: the optimizer warns that a solution has NOT been found!
3: In lav_model_vcov(lavmodel = lavmodel, lavsamplestats = lavsamplestats,
lavaan WARNING:
Could not compute standard errors! The information matrix could
not be inverted. This may be a symptom that the model is not
identified.
4: In lav_object_post_check(object)
lavaan WARNING: some estimated 1lv variances are negative

We are warned that a numerical solution has not been found, and that the information
matrix (that’s the Fisher Information, the Hessian of the minus log likelihood) could
not be inverted. This means that the minus log likelihood is not strictly concave up in
every direction at the point where the search stopped, so the search has not located a
local minimum. lavaan speculates that “this may be a symptom that the model is not
identified,” but the guess is wrong. This is standard double measurement regression, and
we have proved that all the parameters are identifiable. At the end of the red warnings,
we are also informed that some estimated latent variable variances are negative. This
means that the numerical search for the MLE has left the parameter space.

The output of summary(fitl) is quite voluminous. There are 45 parameters, and
everything we do will generate a lot of output. It starts like this.

lavaan 0.6-7 ended normally after 4241 iterations

Estimator ML
Optimization method NLMINB
Number of free parameters 45
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Number of observations 500

Model Test User Model:

Test statistic 89.369
Degrees of freedom 10
P-value (Chi-square) 0.000

That’s a lot of iterations, and the criteria for “normal” convergence appear to be quite
forgiving. The output goes on. The last section gives variance estimates; as the warning
message said, one of them is negative.

Variances:
Estimate Std.Err z-value P(lzl)
Lage  (phil)  146.720 NA
Lbmi (ph22) 12.318 NA
Lfat (ph33) 42.615 NA
.Lcholst (psil) 169.820 NA
.Ldiastl (ps22) -2785.532 NA
.agel (wi11) 18.767 NA
.bmil (w122) 9.177 NA
.fat1 (w133) 18.669 NA
.cholstl (w144) 200.123 NA
.diastll (w155) 204.316 NA
.age2 (w211) 8.326 NA
.bmi2 (w222) 2.460 NA
.fat?2 (w233) 9.975 NA
.cholst2 (w244) 344.031 NA
.diastl2 (w255) 59.441 NA

Besides being negative, the value of {D\gg is very large in absolute value compared to the
other variances. This, combined with the large number of iterations, suggests that the
numerical search wandered off and gotten lost somewhere far from the actual MLE.

The minus log likelihood functions for structural equation models are characterized by
hills and valleys. There can be lots of local maxima and minima. While there will be a deep
hole somehere for a sufficiently large sample is the model is correct, the only guarantee of
finding it is to start the search close to the hole, where the surface is already sloping down
in the right direction. Otherwise, what happens will depend on the detailed topography
of the minus log likelihood, and finding the correct MLE is far from guaranteed.

Here, it seems that that lavaan’s default starting values, which often work quite well,
were fairly far from the global minimum. The search proceeded downhill, but only slightly
downhill after a while??, off into the distance in an almost featureless plain. It was never

42The verbose = TRUE option on the lavaan statement generated thousands of lines of output, not
shown here. The decrease in the minus log likelihood was more and more gradual near the end.
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going to arrive anywhere meaningful.

I tried setting boundaries to prevent variances from becoming negative, hoping the
search would bounce off the barrier into a better region of the parameter space. I added
the following to the model string bmimodell,

# Bounds (Variances are positive)

phill > O; phi22 > 0 ; phi33 > 0

psill > 0; psi22 > O

wlll > 0; w122 > 0; wi133 > 0; w144 > 0; wilb5 > 0;
w211 > 0; w222 > 0; w233 > 0; w244 > 0; w255 > O

and then re-ran lavaan. The search converged “normally” after 1,196 iterations. This
time 19 was (just barely) positive, but we get this warning.

lavaan WARNING: covariance matrix of latent variables
is not positive definite;
use lavInspect(fit, "cov.lv") to investigate.

The lavInspect function is very useful and powerful. See help(lavInspect) for details.
Following their suggestion,

> lavInspect(fitl, "cov.lv")

Lage Lbmi Lfat Lchlst  Ldistl
Lage 146.667
Lbmi 3.021 11.672
Lfat 24.479  21.887  43.473

Lcholest 21.588 65.420 121.015 2893.067
Ldiastol 37.581 26.730 54.471 109.211 140.689

That’s the estimated covariance matrix of the latent variables — very nice! It does not
really tell me much, except that the estimated variance of latent cholesterol level is sus-
piciously large compared to the other numbers in the matrix. To see that the matrix not
positive definite, one can look at the eigenvalues.

lvcov = lavInspect(fitl, "cov.lv"); eigen(lvcov)$values
[1] 2904.4720798211 198.2045328588 111.6623591169  21.2286105008 -0.0003796765

Sure enough, there’s a negative eigenvlue, so the matrix is not positive definite.

The only cure for this disease is better starting values. Commercial software for struc-
tural equation modeling uses a deep and sophisticated bag of tricks to pick starting values,
and SAS proc calis has no trouble with this model and these data model. However, as
of this writing, lavaan’s automatic starting values work okay only most of the time*?.

43I'm not complaining. I am deeply grateful for lavaan, and if I want better starting values I should
develop the software myself. To me, this is not the most interesting project in the world, so it is on the

back burner.
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Here is a way to obtain good starting values for any structural equation model, pro-
vided the parameters are identifiable. Recall how the proof of identifiability goes. For
any model, the covariance matrix is a function of the model parameters: 3 = ¢(8).
This equality represents the covariance structure equations. The parameters that ap-
pear in X are identifiable if the covariance structure equations can be solved to yield
0=g 1(2) Provided the solution is available explicitly**, a method of moments estima-
tor is HM =g (E) where 3 denotes the sample variance-covariance matrix. Typically,
the function ¢g~! is continuous in most of the parameter space. In this case, the method
of moments estimator is guaranteed to be consistent by the Law of Large Numbers and
continuous mapping. Since the MLE is also consistent, it will be close to 6, for large
samples, and @,; should provide an excellent set of starting values.

For double measurement regression, the solution (49) represents 8 = g~ 1(X). One
may start with Expression (51) for ®,, and Expression (52) for B v (see page 89), and
then use (49) for the rest of the parameters. This is done in the R work below.

> # Obtain the MOM estimates to use as starting values.
> head(bmidata)
agel bmil fatl cholestl diastoll age2 bmi2 fat2 cholest2 diastol2

1 63 24.5 16.5 195.4 38 60 23.9 20.1 203.5 66
2 42 13.0 1.9 184.3 86 44 14.8 2.6 197.3 78
3 32 22.5 14.6 354.1 104 33 21.7 20.4 374.3 73
4 59 25.5 19.0 214.6 93 58 28.5 20.0 203.7 106
5 45 26.5 17.8 324.8 97 43 25.0 12.3 329.7 92
6 31 19.4 17.1 280.7 92 42 19.9 19.9 276.7 87
> W1l = as.matrix(bmidatal,1:3]) # agel bmil fatl

> V1 = as.matrix(bmidatal[,4:5]) # cholestl diastoll

> W2 = as.matrix(bmidatal,6:8]) # age2 bmi2 fat2

> V2 = as.matrix(bmidatal[,9:10]) # cholest2 diastol2

> var(W1,W2) # Matrix of sample covariances

age?2 bmi2 fat2
agel 148.220782 3.621581 25.29808
bmil  5.035726 13.194016 21.42201
fatl 23.542289 20.613490 45.13296

> # Using S as short for Sigmahat, and not worrying about n vs. n-1,
> 811 = var(W1); S12 = var(W1,V1); S13 = var(W1,W2); S14 = var(W1i,V2)

> 822 = var(V1); 823 = var(V1i,w2); S24 = var(Vi,v2)

> S33 = var(W2); S34 = var(W2,V2)

> S44 = var(V2)

> # The matrices below should all have "hat" in the name, because they are estimates

44For some models, an explicit solution is hard to obtain, even if you can prove it exists. That’s the
main obstacle to automating this process.
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> Phi = (813+t(813))/2

> rownames(Phi) = colnames(Phi) = c(’Lage’,’Lbmi’,’Lfat’); Phi
Lage Lbmi Lfat

Lage 148.220782 4.328654 24.42019

Lbmi 4.,328654 13.194016 21.01775

Lfat 24.420185 21.017749 45.13296

> Beta = 0.5%(t(S14)+823) ¥%*% solve(Phi)

> rownames (Beta) = c(’Lcholest’,’Ldiastol’)

> colnames(Beta) = c(’Lage’,’Lbmi’,’Lfat’); Beta
Lage Lbmi Lfat

Lcholest -0.3851327 -0.1885072 2.968322

Ldiastol 0.0224190 -0.3556138 1.407425

> Psi = S24 - Beta %*% Phi %) t(Beta)
> rownames(Psi) = colnames(Psi) = c(’Lcholest’,’Ldiastol’) # epsilonl, epsilon2
> Psi
Lcholest Ldiastol
Lcholest 2548.17303 -44.56069
Ldiastol -28.70087 57.64153

> # Oops, it should be symmetric.
> Psi = ( Psi+t(Psi) )/2; Psi
Lcholest Ldiastol
Lcholest 2548.17303 -36.63078
Ldiastol -36.63078 57.64153

> Omegall = S11 - Phi; Omegall
agel bmil fatl
agel 19.640040 4.610807 1.634183
bmil 4.610807 8.699533 8.754484
fatl 1.634183 8.754484 15.033932

> Omegal2 = S12 - ( S14+t(S23) )/2; Omegal2
cholestl diastoll

agel 4.499017 12.164192

bmil -1.517733 10.671443

fatl 3.888565 -2.196681

> Omega22 = 522-524 # A little rough but consistent
> Omega22 = (Omega22 + t(Omega22) )/2
> Omega22

cholestl diastoll
cholestl 213.76117 11.24971
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diastoll 11.24971 196.44520

> Omega33 = S33 - Phi; Omega33
age?2 bmi2 fat2
age2 5.862661 -1.219843 -2.155736
bmi2 -1.219843 1.146991 -1.714769
fat2 -2.155736 -1.714769 10.033984

> Omega34 = S34 - ( S14+t(823) )/2; Omega34d
cholest2 diastol2

age2 -2.978041 0.7795992

bmi2 -1.206256 2.1081739

fat2 -6.422983 -4.9125882

> Omegad4d = S44 - S24 ; Omegad4d = ( Omegad4d + t(Omegad4d) )/2
> Omegad4
cholest2 diastol2
cholest2 333.45335 -21.65923
diastol2 -21.65923 47.23065

> round(Beta, 3)

Lage Lbmi Lfat
Lcholest -0.385 -0.189 2.968
Ldiastol 0.022 -0.356 1.407

Please look at the last set of numbers. It is worth noting how far these method-of-moments
estimates are from the stopping place of the first numerical search. Here is a piece of the
output from the first summary(£fit1), not shown before.

Estimate Std.Err z-value P(|zl)

Lcholest ~
Lage (bt11) -26.391 NA
Lbmi (bt12) -354.932 NA
Lfat (bt13) 203.432 NA
Ldiastol ~
Lage (bt21)  -28.583 NA
Lbmi (bt22) -390.464 NA
Lfat (bt23) 221.685 NA

While the method-of-moments estimates are promising as starting values, there is no
doubt that entering them all manually is a major pain. I was motivated and I was
confident it would work, so I did it. The model string is given below. Asin Example 0.10.3,
variables appear twice, once to specify the parameter name and a second time to specify
the starting value.

> bmimodel2 =
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#
# Latent variable model
# _____________________
’Lcholest ~ betallxLage + betal2*xLbmi + betal3xLfat +
start(-0.385)*Lage + start(-0.189)*Lbmi + start(2.968)*Lfat
Ldiastol ~ beta2lxLage + beta22xLbmi + beta23xLfat +
start(0.022)*Lage + start(-0.356)*Lbmi + start(1.407)*Lfat
#
# Measurement model
# _________________
Lage =" 1xagel + 1lxage?2
Lbmi =" 1xbmil + 1xbmi2
Lfat =7 1xfatl +1xfat2
Lcholest =" 1xcholestl + 1*cholest2
Ldiastol =" 1xdiastoll + 1*diastol2
#
# Variances and covariances
# _________________________
# 0f latent explanatory variables

Lage phillxLage + start(148.220782)*Lage

Lage "~ phil2#Lbmi + start(4.328654)*Lbmi

Lage "~ phil3*Lfat + start(24.42019)*Lfat

Lbmi ~~ phi22*Lbmi + start(13.194016)*Lbmi

Lbmi ~~ phi23*Lfat + start(21.01775)*Lfat
Lfat ”~ phi33*Lfat + start(45.13296)x*Lfat

# 0f error terms in latent the regression (epsilon_ij)
Lcholest 7 psilixLcholest + start(2548.17303)*Lcholest
Lcholest 7 psil2+Ldiastol + start(-36.63078)*Ldiastol
Ldiastol ~~ psi22xLdiastol + start(57.64153)*Ldiastol

# 0f measurement errors (e_ijk) for measurement set 1
agel "7 wlllxagel + start(19.640040)x*agel
agel "7 w112#bmil + start(4.610807)*bmil
agel "7 will3xfatl + start(1.634183)x*fatl
agel "7 wll4xcholestl + start(4.499017)*cholestl
agel “~ wllb*diastoll + start(12.164192)*diastoll
bmil 7 w122*bmil + start(8.699533)*bmil
bmil ~7 wi123*fatl + start(8.754484)*fatl
bmil 7 wl24*cholestl + start(-1.517733)*cholestl
bmil 7 wil2b5*xdiastoll + start(10.671443)*diastoll
fatl “7 wi133xfatl + start(15.033932)*fatl
fatl 7 wil34*cholestl + start(3.888565)*cholestl
fatl "~ wil3b*diastoll + start(-2.196681)*diastoll
cholestl "~ wl4d4xcholestl + start(213.76117)*cholestl
cholestl "~ wil4bxdiastoll + start(11.24971)*diastoll

+ + + + + + + A+ o+ A+ A+ A+ A+ A+ 4
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age2 ~7
age?2
age?2
age?2
age?2
bmi2 ~~
bmi2 ~~
bmi2 ~~
bmi2 ~~
fat2 7~
fat2 7~
fat2 7"

phill >
psill >

+ + + + + + + A+ o+ A+ o+ ++

diastoll ~~ wilbb*diastoll + start(196.44520)*diastoll
# 0f measurement errors (e_ijk) for measurement set 2

w21ll*xage2 + start(5.862661)*age2
w212*xbmi2 + start(-1.219843)*xbmi2
w213*xfat2 + start(-2.155736)*fat2
w214*cholest2 + start(-2.978041)*cholest2
w215*xdiastol2 + start(0.7795992)*diastol2
w222*bmi2 + start(1.146991)*bmi2
w223*fat2 + start(-1.714769)*fat2
w224*cholest2 + start(-1.206256)*cholest2
w225*diastol2 + start(2.1081739)*diastol2
w233*xfat2 + start(10.033984)*fat2
w234*cholest2 + start(-6.422983)*cholest?2
w235*diastol2 + start(-4.9125882)*diastol2

cholest2 ~~ w244x*cholest2 + start(333.45335)*cholest?2

cholest2 ~~ w245*diastol2 + start(-21.65923)*diastol2

diastol2 ~~ w255*diastol2 + start(47.23065)*diastol?2
# Bounds (Variances are positive)

0; phi22 > 0 ; phi33 > 0
0; psi22 > O

wlll > 0; w122 > 0; w133 > 0; wi144 > 0; wilb5 > 0;
w211 > 0; w222 > 0; w233 > 0; w244 > 0; w255 > O

+ Y i S EE End of bmimodel2 #t#####HHHHHHHHIHS
> fit2 = lavaan(bmimodel2, data=bmidata)

> summary (fit2)

lavaan 0.6-7 ended normally after 327 iterations

Estimator ML

Optimization method NLMINB

Number of free parameters 45

Number of inequality constraints 15

Number of observations 500
Model Test User Model:

Test statistic 4.654

Degrees of freedom 10

P-value (Chi-square) 0.913
Parameter Estimates:

Standard errors Standard

101
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Information Expected
Information saturated (hl) model Structured

Latent Variables:
Estimate Std.Err z-value P(O|z])

Lage ="

agel 1.000

age2 1.000
Lbmi =~

bmil 1.000

bmi2 1.000
Lfat =~

fati 1.000

fat2 1.000
Lcholest =~

cholestl 1.000

cholest2 1.000
Ldiastol ="

diastoll 1.000

diastol?2 1.000

Regressions:
Estimate Std.Err z-value P(|zl)

Lcholest ~

Lage (bt11) -0.320 0.228 -1.404 0.160

Lbmi (bt12) 0.393 .708 0.230 .818

Lfat (bt13) 2.774 0.980 2.829 0.005
Ldiastol ~

Lage (bt21) 0.020 0.050 0.407 0.684

Lbmi (bt22) -0.480 .419 -1.145 .252

Lfat (bt23) 1.480 0.235 6.312 0.000

[
o

o
o

Covariances:
Estimate Std.Err z-value P(|zl)
Lage ™~
Lbmi (ph12) 4.161 2.141 1.944 0.052
Lfat (ph13) 23.321 3.986 5.851 0.000

Lbmi =~

Lfat (ph23) 20.976 1.584 13.244 0.000
.Lcholest ™~

.Ldiastl (ps12) -45.870 24.969 -1.837 0.066
.agel 7~

.bmil (w112) 3.998 0.945 4.231 0.000
.fatl (w113) 2.389 1.505 1.587 0.112
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.cholstl (w114) 2.705 9.091 0.297 0.766

.diastll (wi115) 10.562 3.824 2.762 0.006
.bmil ~~

.fat1 (w123) 8.968 0.956 9.382 0.000

.cholstl (w124) -0.888 4.178 -0.212 0.832

.diastll (w125) 10.060 2.274 4.424 0.000
.fatl 7~

.cholstl (w134) 7.916 6.741 1.174 0.240

.diastll (w135) -2.928 3.409 -0.859 0.390

.cholestl 7~
.diastll (w145) -0.107 16.907 -0.006 0.995
.age2 77
.bmi2 (w212) -0.661 0.735 -0.899 0.369
.fat2 (w213) -2.703 1.369 -1.974 0.048
.cholst2 (w214) -1.964 8.962 -0.219 0.827
.diastl2 (w215) 2.274 2.710 0.839 0.401
.bmi2 ~~
.fat2 (w223) -1.849 0.705 -2.624 0.009
.cholst2 (w224) -2.650 3.476 -0.762 0.446

.diastl2 (w225) 2.652 1.487 1.784 0.074
.fat2 =~

.cholst2 (w234) -11.370 6.546 -1.737 0.082

.diastl2 (w235) -4.839 2.536 -1.908 0.056
.cholest2 ™~

.diastl2 (w245) -8.964 12.605 -0.711 0.477

Variances:
Estimate Std.Err z-value P(C|zl)
Lage (ph11) 147.330 9.699 15.190 0.000

Lbmi (ph22) 13.341 0.986 13.528 0.000
Lfat (ph33) 44.485 3.101 14.345 0.000
.Lcholst (ps11l) 2534.507 171.258 14.799 0.000
.Ldiastl (ps22) 56.169 9.221 6.092 0.000
.agel (wil1) 18.584 2.914 6.378 0.000
.bmil (w122) 8.665 0.708 12.239 0.000
.fatl (w133) 16.124 1.659 9.717 0.000
.cholstl (wl144) 200.103 57.422 3.485 0.000
.diastll (w1b55) 195.040 14.323 13.617 0.000
.age?2 (w211) 6.861 2.701 2.540 0.011
.bmi2 (w222) 1.089 0.491 2.220 0.026
.fat2 (w233) 9.332 1.539 6.065 0.000
.cholst2 (w244) 344.454 60.290 5.713 0.000
.diastl2 (w255) 48.350 8.246 5.864 0.000



104 CHAPTER 0. REGRESSION WITH MEASUREMENT ERROR
Constraints:
|Slack]|
phill 0 147.330
phi22 0 13.341
phi33 0 44 .485
psill 0 2534.507
psi22 - 0 56.169
willl - 0 18.584
wl22 - 0 8.665
wl33 - 0 16.124
wldd - 0 200.103
wlbb - 0 195.040
w211 - 0 6.861
w222 - 0 1.089
w233 - 0 9.332
w244 - 0 344 .454
w255 - 0 48.350

With these starting values, the maximum likelihood search converged after 327 iterations.
The likelihood ratio chi-squared test of model fit indicated no problems: G? = 4.654, df =
10,p = 0.913. Primary interest is in the relationship of latent (true) BMI to latent
cholesterol level and latent blood pressure, controlling for latent age and latent percent
body fat. When measurement error was taken into account using double measurement,
neither relationship was statistically significant at the 0.05 level. For cholesterol, Z =
0.230 and p = 0.818. For diastolic blood pressure, Z = —1.145 and p = 0.252. This is in
contrast to the conclusion from naive ordinary least squarees regression, which was that
controlling for age and percent body fat, higher BMI was associated with higher average
diastolic blood pressure. Brunner and Austin (1992; also see Section 0.7) have shown how
this kind of “even controlling for” conclusion is the kind of error that tends to creep in
with ordinary regression, when the explanatory variables are measured with error. Double
measurement regression has more credibility.

Plenty more tests based on this model are possible and worthwhile, but BMI controlling
for age and percent body fat is the main issue. Just as a demonstration, let’s look
at one more test, a likelihood ratio test of BMI controlling for age and percent body
fat, for cholesterol and diastolic blood pressure simultaneously. The null hypothesis is
Hy : Bo1 = P22 = 0. We begin by fitting a restricted model*®. Note that each constraint
has to go on a separate line.

> nobmi = lavaan(bmimodel2, data=bmidata,
+ constraints = ’betal2 == 0
+ beta22 == 0’)

45Tt is a relief that the non-zero starting values for 2, and B in bmimodel2 do not conflict with the
constraint that sets them equal to zero.
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>
> anova(nobmi,fit2)
Chi Square Difference Test

Df AIC BIC Chisq Chisq diff Df diff Pr(>Chisq)
fit2 10 35758 35947 4.6537
nobmi 12 35755 35936 6.1457 1.492 2 0.4743

Again, the conclusion is that allowing for age and percent body fat, there is no evidence
of a connection between BMI and either health indicator.

0.11 Extra Response Variables

Sometimes, double measurement is not a practical alternative. Perhaps the data are
already collected, and the study was designed without planning for a latent variable
analysis. The guilty parties might be academic or private sector researchers who do not
know what a parameter is, much less parameter identifiability. Or, the data might have
been collected for some purpose other than research. For example, a paper mill might
report the amount and concentrations of poisonous chemicals they dump into a nearby
river. They take the measurements because they have agreed to do so, or because they
are required to do it by law — but they certainly are not going to do it twice. Much
economic data and public health data is of this kind.

In such situations, all one can do is to use what information happens to be available.
While most research studies will not contain multiple measurements of the explanatory
variables, they often will have quite a few possible response variables. These variables
might already be part of the data set, or possibly the researchers could go back and collect
them without an unbearable amount of effort. It helps if these extra response variables
are from a different domain than the response variable of interest, so one can make a case
that the extra variables and the response variables of interest are not affected by common
omitted variables. In the path diagrams, this is represented by the absence of curved,
double-headed arrows connecting error terms. It is a critical part of the recipe.

One explanatory variable

In a simple measurement error regression model like the one in Example 0.8.1, suppose
that we have access to data for a second response variable that depends on the latent
explanatory variable X;. Our main interest is still in the response variable Y;. The other
response variable may or may not be interesting in its own right; it is included as a way
of getting around the identifiability problem.

Example 0.11.1 One Ezxtra Response Variable
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Figure 17: Y, is an extra response variable

€ E1 E.:2

Here is the expanded version of the model. The original response variable Y; is now called
Y;1. Independently for ¢ =1,... n.

Yi1 ap + 51X + €1
Yio = oo+ BoX; +e€n

where e;, €;1 and €5 are all independent, Var(X;) = ¢, Var(e;1) = 1, Var(e2) = o,
Var(e;) = w, E(X;) = i, and the expected values of all error terms are zero. Figure 17
shows a path diagram of this model.

It is usually helpful to check the parameter count rule (Rule 1) before doing detailed
calculations. For this model, there are ten parameters: 6 = (v, oy, o, B1, B2, fla, @, w, 1, U2).
Writing the vector of observable data for case i as D; = (Wr“}/;"l,}/i’Q)T, we see that
p = E(D;) has three elements and ¥ = cov(D;) has 3(3 + 1)/2 = 6 unique elements.
Thus identifiability of the entire parameter vector is ruled out in most of the parameter
space. However, it turns out that useful functions of the parameter vector are identifiable,
and this includes i, the parameter of primary interest.

Based on our experience with the double measurement model, we are pessimistic
about identifying expected values and intercepts. So consider first the covariance matrix.
Elements of ¥ = cov(D;) may be obtained by elementary one-variable calculations, like
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Var(W;) =Var(v+ X; +e;) = Var(X;) + Var(e;) = ¢ + w, and

COU(WZ‘, Y;,z) = COU(Xi + e, 51XZ + 61'71)
= [1Cou(X;, X;) + Cov(Xi, €1) + B1Cov(e;, X;) + Cov(e;, €1)
= [iVar(X)+0+0+0

= pi¢
In this way we obtain
011 012 013 ¢+ w Bio Batp
Y= 022 023 | = Bo+r G129 ;

033 B30+ 1y

which is a nice compact way to look at the six covariance structure equations in six
unknown parameters. The fact that there are the same number of equations and unknowns
does not guarantee the existence of a unique solution; it merely tells us that a unique
solution is possible. It turns out that for this model, identifiability depends on where
in the parameter space the true parameter is located. In the following, please bear in
mind that the only parameter we really care about is 31, which represents the connection
between X and Y;. All the other parameters are just nuisance parameters.

Since 015 = 0 if and only if 5; = 0, the parameter (; is identifiable whenever it equals
zero. But then both 015 = 0 and 093 = 0, reducing the six equations in six unknowns to
four equations in five unknowns, meaning the other parameters in the covariance matrix
can’t all be recovered.

But what if 51 does not equal zero? At those points in the parameter space where 5
is non-zero, 51 = o2 . This means that adding Y5 to the model bought us what we need,
which is the p0581b111ty of correct estimation and inference about ;. Note that stipulating
B2 # 0 is not a lot to ask, because it just means that the extra variable is related to the
response variable. Otherwise, why include it*6?

If both £ # 0 and By # 0, all six parameters in the covariance matrix can be recovered

46Moreover, one can rule out 82 = 0 by a routine test of the correlation between W and Y. This kind
of test is very helpful (assuming the data are in hand), because for successful inference it’s not necessary
for the entire parameter to be identifiable everywhere in the parameter space. It’s only necessary for the
interesting part of the parameter vector to be identifiable in the region of the parameter space where the
true parameter is located.
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by simple substitutions as follows:

023
pr = — (54)
013
023
B = —
012
o = 012013
023
012013
W = 011 —
023
. 012023
wl = 022 —
013
- 013023
1/’2 = 033 —
012

This is a success, but actually the job is not done yet. Four additional parameters appear
only in the expected value of the data vector; they are the expected value and intercepts:
U, lg, 1, and as. We have

7 (55)
fo = a1+ By
ps = oo+ PBopiy

Even treating 8, and (s as known because they can be identified from the covariance
matrix, this system of three linear equations in four unknowns does not have a unique
solution.

As in the double measurement case, this lack of identifiability is really not too serious,
because our primary interest is in 3. So we re-parameterize, absorbing the expected value
and intercepts into p exactly as defined in the mean structure equations (55). The new
parameters f1, (2 and gz may not be very interesting in their own right, but they can be
safely estimated by the vector of sample means and then disregarded.

To clarify, the original parameter was

0 = (V> Mzaal,abﬁlaﬁb ¢,W,¢1,¢2)-

Now it’s
0= (/’l’lau271u37617527¢7w7w17¢2>‘

The dimension of the parameter space is now one less, and we haven’t lost anything that is
either accessible or important. This is all the more true because the model pretends that
the response variables are measured without error. Actually, the equations for Y;; and Y; -
should be viewed as re-parameterizations like the one in Expression (32) on page 46, and
the intercepts a; and as are already the original intercepts plus un-knowable measurement
bias terms.

To an important degree, this is the story of structural equation models. The mod-
els usually used in practice are not what the scientist or statistician originally had in



0.11. EXTRA RESPONSE VARIABLES 109

mind. Instead, they are the result of judicious re-parameterizations, in which the original
parameter vector is collapsed into a vector of functions of the parameters that are identi-
fiable, and at the same time allow valid inference about the original parameters that are
of primary interest.

Example 0.11.1 is interesting for another reason. The purpose of all this is to test
Hy : 51 = 0, but even if an assumption of normality is justified, the usual normal theory
tests will break down if the null hypothesis is true. Though (; is identifiable when
the null hypothesis is true, the entire parameter vector is not. There will be trouble
fitting the restricted model needed for a likelihood ratio test, because infinitely many sets
(B2, ¢, 19, w) yield the same covariance matrix when g; = 0.

The Wald test will suffer too, even though it requires fitting only the unrestricted
model. For one thing, local identifiability at the true parameter value is assumed in the
proof of asymptotic normality of the MLE, and I don’t see a way of getting around it; see
for example Davison [20], p. 119 and Wald [66]. Even setting theoretical considerations
aside, the experience of fitting the unrestricted model and trying to test Hy : §; = 0 is
likely to be unpleasant. This is illustrated in a small-scale simulation study.

A little simulation study

Using R, n sets of independent (W}, Y; 1,Y; 2) triples were generated from Model (53), with
B =0, 08,=1,and ¢ =w = 1; = ¥ = 1. Note that this makes Hy : 51 = 0 true, and
the entire parameter vector is not identifiable. The expected values and intercepts were
all zero, and all the variables were normally distributed. This was carried out 1,000 times
for n = 50,100,500 and 1000, and lavaan was used to fit the model to each simulated
data set. Here is the code.

S s s

# Run n = 50, 100, 500, 1000 separately

FHEH R R R

rm(list=1s()); options(scipen=999)

# install.packages("lavaan", dependencies = TRUE) # Only need to do this once
library(lavaan)

n = 50 # Set the sample size here

# Parameters

betal = 0; beta2 = 1; phi = 1; omega = 1; psil = 1; psi2 =1

# Initialize

M = 1000
converged = logical(M) # Did the numerical search converge?
posvar = logical (M) # Are all the estimated variances positive?

# Only have to define the model once.
modl = ’Y1l 7 betal*X # Latent variable model
Y2 7 beta2xX
X =" 1.0%xW # Measurement model
# Variances (covariances would go here too)
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X~ ~phi*X # Var(X) = phi

W ~7 omegaxW # Var(e) = omega

Y1 77 psil*Y1 # Var(epsilonl) = psil
Y2 ~7 psi2*Y2 # Var(epsilon2) = psi2

)

# Simulate: Random number seed is sample size
set.seed(n)
for(sim in 1:M)
{
x = rnorm(n,0,sqrt(phi)); e = rnorm(n,0,sqrt(omega))
epsilonl = rnorm(n,0,sqrt(psil)); epsilon2 = rnorm(n,0,sqrt(psi2))
W=x+e
Y1 = betal*x + epsilonl
Y2 = beta2*x + epsilon2
simdat = data.frame( cbind(W,Y1,Y2) ) # Data must be in a data frame
fitl = lavaan(modl, data = simdat) # Fit the model
# Gather data on this simulation
converged[sim] = lavInspect(fitl,"converged") # Checking convergence

posvar[sim] = lavInspect(fitl,"post.check") # All estimated variances positive?

} # Next sim
addmargins(table(converged,posvar)) # Look at results

Table 3 shows that the numerical maximum likelihood search converged to a point in the
parameter space only about one third of the time. For about one third of the simulations,

Table 3: Simulation from Model (53)

Sample Size
n=>50 n=100 n=>500 n=1,000

Did not converge 366 310 327 355
Converged, but at least one

negative variance estimate 322 336 315 302
Converged, variance estimates

all positive 312 354 358 343
Total 1,000 1,000 1,000 1,000

the search failed to converge, and for one third the search converged, but to an answer

with negative variance estimates®’. 1 expected the problems to be worse with larger

4TYou might be thinking that convergence to a solution with negative variance estimates could be
caused by poor starting values. This was not the case. When the numerical search converged, it was
almost always to the correct MLE; this happened 2,614 times out of 2,642. How do we know what the
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sample sizes, but this did not happen. In any case, fitting the unrestricted model will be
confusing and frustrating about two-thirds of the time for this example.

There is a general lesson here, and a way out in this particular case. The general
lesson is to re-verify parameter identifiability when the null hypothesis is true, bearing in
mind that likelihood methods depend on identifiability of the entire parameter vector. It
is better to anticipate trouble and avoid it than to be confused by it once it happens.

As for the way out of the haunted house, note that if Sy # 0, the null hypothesis 5; = 0
is true if and only if 019 = 093 = 0. This null hypothesis can be tested using a generic,
unstructured multivariate normal model for the observable data. The likelihood ratio
test, like the Wald test, will have two degrees of freedom. If the normal assumption is a
source of discomfort, try testing a couple of Spearman rank correlations with a Bonferroni
correction. More generally, we will see shortly that having more than one extra response
variable can yield identifiability whether or not Hy : 81 = 0 is true. This is a better
solution if it’s possible, because it makes the analysis more routine.

Example 0.11.2 Correlation between explanatory variables and error terms

Recalling Section 0.4 on omitted variables in regression, it is remarkable that while the
explanatory variable X; must not be correlated with the error term ¢;,, the error term
€;2 (corresponding to the extra variable Y;2) is allowed to be correlated with X;, perhaps
reflecting the operation of omitted explanatory variables that affect Y » and have non-zero
covariance with X;. Figure 18 shows a path diagram of this model.

Figure 18: Error term correlated with the explanatory variable

|

M

correct MLE was? By invariance. This is a saturated model, in which the number of parameters equals
the number of unique variances and covariances. Thus, putting hats on the solution (54) yields the exact
maximum likelihood estimates. Note that under the normal model, the joint distribution of the unique
elements of 3 is continuous, so that with probability one there will be no division by zero.
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Suppose Cov(Xj, €;2) = &, which might be non-zero. This means that seven unknown
parameters appear in the six covariance structure equations, and the parameter count
rule warns us that it will be impossible to identify them all. Proceeding anyway, the
covariance matrix of D; becomes

011 012 013 o +w B¢ P29 + K
022 023 | = BEo + 1y B1B2¢ + Bik
033 B¢+ o + 20ak

Assuming as before that Y3 is a useful extra variable so that (s # 0,

o33 _ P1(Be¢ + K)

o3 Btk = A (56)

In fact, if Kk # 0, we don’t even need [y # 0 to identify ;. That is, the extra response
variable does not need be influenced by the latent explanatory variable. It need only be
influenced by some unknown variable or variables that are correlated with the explanatory
variable. Far from being a problem in this case, the omitted variables made it easier to
get at [;. In Figure 18, Y5 is an instrumental variable, a point to which we will return in
Section 0.12.

As in Example 0.11.1, testing Hy : #; = 0 is non-standard because while 3; is identifi-
able, the entre parameter vector is not. We can deal with this kind of complication if we
need to, but everything is much easier with more than one extra variable.

Example 0.11.3 More Than One Extra Response Variable

Suppose that the data set contains another two variables that depend on the latent ex-
planatory variable X;. Our main interest is still in the response variable Y;;; the other
two are just to help with identifiability. Now the model is, independently for i =1, ..., n,

W, = v+X,+e (57)
Yii. = o+ 5Xi+e€n
Yio = oo+ X, +e€pn
Yis = o3+ 33X+ €3,

where e;, e;, €1, €2 and €; 3 are all independent, Var(X;) = ¢, Var(e;1) = ¢, Var(e2) =
Wy, Var(e;3) = 3, Var(e;) = w, E(X;) = p, and the expected values of all error terms
are zero.

Writing the vector of observable data for case i as D; = (W}, Y1, Yia, Yi3) ", we have

Wi v+ Moo
Yia oy + Bipiy
pr— E ’ p—
® Yio ag + Bofly

Yis a3 + By
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and

¢+ w B9 P2 P3¢

_ Bio+11  PiPag B153¢
= Bo+n  fubsd | (58)
B30+ s

As before, it is impossible to identify the intercepts and expected values, so we re-
parameterize, absorbing them into a vector of expected values which we estimate with
the corresponding vector of sample means; we never mention them again.

To establish identifiability of the parameters that appear in the covariance matrix, the
task is to solve the following ten equations for the eight unknown parameters ¢, w, i,

B2, B3, 1, o, and s:

ol = ¢tw (59)
o1 = (o

o13 = (a0

oy = (39

o2 = fio+ 1

023 = [15e0

o = (1530

o33 = B30+ 1

031 = [of30

o = B3d+s

Assuming the extra variables are well-chosen so that both 85 and (3 are both non-zero,

013014 _ 5253<Z52 _
034 5253¢

®. (60)

Then, simple substitutions allow us to solve for the rest of the parameters, yielding the
complete solution
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6 = 013014 (61)
034
013014
W = 011 —
034
8 = 012034
, = —=
013014
034
By = —
014
_ 034
B3 = —
013
0750
12Y 34
wl = 022 —
013014
. 013034
% = 033 —
014
- 014034
¢3 = 044 —
013

This proves identifiability at all points in the parameter space where 5 # 0 and (3 # 0.
The extra variables Y5 and Y3 have been chosen so as to guarantee this, and in any case
the assumption is testable.

The solution (61) is thorough but somewhat tedious, even for this simple example.
The student may wonder how much work really needs to be shown. I would suggest
showing the calculations leading to the covariance matrix (58), saying “Denote the i, j
element of ¥ by 0;;,” skipping the system of equations (59) because they are present
in (58), and showing the solution for ¢ in (60), including the stipulation that £y and fs
are both non-zero. Then, instead of the explicit solution (61), write something like this:

w = o931 —¢
o= =2
b=
Bo=

@/)1 = 022—512¢
Py = 033—522¢
Py = 044—B§¢

Notice how once we have solved for a model parameter, we use it to solve for other
parameters without explicitly substituting in terms of ;;. The objective is to prove that
a unique solution exists by showing how to get it. A full statement of the solution is not
necessary unless you need it for some other purpose, like method of moments estimation.
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With two (or more) extra variables, the identifiability argument does not need to
be as fussy about the locations in the parameter space where different functions of the
parameter vector are identifiable. In particular, there is no loss of identifiability under the
natural null hypothesis that §; = 0, and testing that null hypothesis presents no special
difficulties.

Constraints on the covariance matrix Like the double measurement model, the
model of Example 0.11.3 imposes equality constraints on the covariance matrix of the
observable data. In the solution given by (61), the critical parameter f3; is recovered by
pr = 2224 Dbut a look at the covariance structure equations (59) shows that 5, = o

and 3, = g—ﬁ are also correct. These seemingly different ways of solving for the parameter
must be the same. That is,

012034 023 012034 024
= —and —— = —

013014 013 013014 014

Simplifying a bit yields

012034 = 014023 = 013024. (62)

Since all three products equal [3;3283¢?, the model clearly implies the equality con-
straints (62) even where the identifiability conditions 5y # 0 and 3 # 0 do not hold.

What is happening geometrically is that the covariance structure equations are map-
ping a parameter space*® of dimension eight into a moment space of dimension ten. The
image of the parameter space is an eight-dimensional surface in the moment space, con-
tained in the set defined by the relations (62). Ten minus eight equals two, the number
of over-identifying restrictions.

We will see later that even models with non-identifiable parameters can imply equality
constraints. Also, models usually imply inequality constraints on the variances and covari-
ances, whether the parameters are identifiable or not. For example, in (61), ¢ = %
Because ¢ is a variance, we have the inequality restriction e > 0, something that is
not automatically true of covariance matrices in general. Inequalities like this are testable,
and provide a valuable way of challenging, or disconfirming a model.

Multiple explanatory variables

Most real-life models have more than one explanatory variable. No special difficulties arise
for the device of introducing extra response variables. In fact, the presence of multiple
explanatory variables only provides more ways to identify the parameters and more over-
identifying restrictions.

Example 0.11.4 Two explanatory variables and two extra response variables

48 Actually it’s a subset of the parameter space, containing just those parameters that appear in the
covariance matrix,
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Here is an example with two explanatory variables and a single extra response variable
for each one. Independently for ¢ =1,...,n,

Wii = n+X1+e (63)

)

Yii = o +581Xi1+ 6

)

Yio = aa+ BXii+ 6o
Wis = a4+ X,2+e€i2
Yis = a3+ 33X;2+ €3

Yia g+ BaXio+€a

where E(X; ;) = pj, e;; and ¢; j are independent of one another and of X; ;, Var(e; ;) = wj,

Var(e; ;) = 1;, and
Xin P11 P12
cov ' = .
< Xin > ( P12 P22
As usual, intercepts and expected values can’t be recovered individually. Eight parameters
are intercepts and expected values of latent variables that appear in the expressions for
only six expected values of the observable variables. So we re-parameterize, absorbing
them into py, ..., ug. Then we estimate p with the vector of 6 sample means and set it
aside, forever.
Denoting the data vectors by D; = (W1, Y1, Yia, Wio, Yis, Yi,4)T, the covariance ma-
trix ¥ = cov(D;) is

11+ wi Brdn Bad11 P12 B3P12 Bapr2
Bion + 1 Bifadn Brd12 B1B3¢12 B1B4012
Badi1 + 12 Loz BaB3P12 Bafabr2

03] = Go2 +wy P30 Badaz
Bidaz +1bs  P3Badae
B3 oz + by

Disregarding the expected values, the parameter®® is

0 = (ﬁ1752753>54,</511,¢12,¢22,w1,w2,¢1,¢271/137¢4)~

Since 0 has 13 elements and X has @ = 21 variances and non-redundant covariances,
this problem easily passes the test of the parameter count rule. Provided the parameter
vector is identifiable, the model will impose 21 — 13 = 8 over-identifying restrictions on
3.

First notice that if ¢15 # 0, all the regression coefficients are immediately identifiable.

Since the extra variables Y5 and Y, are presumably well-chosen, it may be assumed that

49Gince the distributions of the random variables in the model are unspecified, one could say that they
are also unknown parameters. In this case, the quantity 0 is really a function of the full parameter vector,
even after the re-parameterization of intercepts and expected values.
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P2 # 0 and B4 # 0. In that case, the entire parameter vector is identifiable — for example
identifying ¢1; from 015 and then w; from oy . ...

Since it is very common for explanatory variables to be related to one another in non-
experimental studies, assumptions like ¢15 # 0 are very reasonable, and in any case are
testable as part of an exploratory data analysis. So, extension of this design to data sets
with more than two explanatory variables is straightforward, and identifiability follows
without detailed calculations.

Example 0.11.5 Two explanatory variables, one response variable of primary interest,
and one extra response variable for each explanatory variable.

In this example, each explanatory variable has its own extra response variable, but they
share a response variable of primary interest. This is more interesting, because now one
can speak of one explanatory variable controlling for the other, as in ordinary regression.
Figure 19 shows the path diagram.

Figure 19: Two explanatory variables with one extra response variable each, plus a single
response variable of interest

The formal statement of this model dispenses with intercepts and expected values.
They are really present, but because they are not identifiable separately, they are not
even mentioned. This is common in structural equation modeling. Independently for
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1=1,...,n,let

Wii = Xi1+ein

Wia = Xia+eio
Yii = BiXi1+e€n
Yio = BoXio+e€in

)

Yis = B3Xi1+BXio+ 63
where

e The X;; variables are latent, while the W; ; and Y; ; variables are observable.

ei1~ N(0,w;) and ;5 ~ N(0,ws).

€ij ™~ N(O,’QD]) for j = 1,2,3.

e;; and ¢; ; are independent of each other and of X ;.

e X, ; have covariance matrix

Xip \ _ [ o1 o2
o < Xio ) B ( P12 P22 )
Denote the vector of observable data by D; = (W1, Yi1, Wi, Yia, Yis) ", with cov(D;) =
Y = [Uij]-

Among other things, this example illustrates how the search for identifiability can
be supported by exploratory data analysis. Hypotheses about single covariances, like
Hy : 0;; = 0 can be tested by looking at tests of the corresponding correlations. These
tests, including non-parametric tests based on the Spearman rank correlation, are easily
obtained using R’s cor.test function.

The parameter VGCtOI'50 for this problem is@ = (gbu, ¢12, ¢22, w1, Wy, Blv /827 /637 64, 'lbl, ¢2, 1/13)T.
There are 12 parameters and 5 observable variables, so that the covariance matrix has
5(5+1)/2 = 15 unique variances and covariances. Thus there are 15 covariance structure
equations in 12 unknowns, and the parameter count rule tells us that identifiability in
most of the parameter space is possible but not guaranteed.

The matrix equation 64 shows the covariance structure equations in a compact form.

011 012 013 014 O15
022 023 024 025

033 034 O35 | = (64)
044 045
055

50That is, the vector of parameters appearing in ¥ = cov(D;).
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w1 + P11 P11 ®12 Ba12
Bion + Br1¢12 B1B2012

Wy + Pa2 Baaz

53@522 +

In our study of identifiability for this example,
of the parameter space where 8; # 0 and (3, #

119

B3p11 + Badi2

B1(B3¢11 + Badi2)

Bspr2 + Badaz

Ba(B3012 + Baaz)

(B3011 + Ba12)Bs + (Bsp12 + Badaz)Ba + 13

we will confine our attention to that part
0. After all, the variables Y; and Y5 were

introduced only to help with identifiability, and they are useless unless they are related to
the explanatory variables. The issue may be resolved empirically by testing Hy : 093 = 0

and Hy : 014 = 0 with cor.test. One should

proceed to model fitting only if both null

hypotheses are comfortably rejected. In any case, the rest of this discussion assumes that

(1 and Py are both non-zero.
The parameter ¢ is identifiable, since ¢

= 013. Consider two cases. The first case

is ¢12 # 0. In this region of the parameter space, ; is identified from f; = g93/¢12, and
Bo is identified from By = 014/¢12. Then, ¢11 = 012/01 and ¢eg = 034/ Fa.

With ¢11, ¢12 and ¢y identified, they may

be treated as known. Then, 3 and (, are

identified from 014 and o34 by solving two linear equations in two unknowns. Writing the

equations in matrix form,

b11
P12

P12
P22

P
B

(& )l

014
034

)=(2)

There is a unique solution if and only if the covariance matrix of the latent explanatory
variables has an inverse, which is not much to ask. At this point, all parameters have
been identified except the variances of the e;; and €;;. Accordingly, wy, ¥1, we, ¥ and 13

are obtained from the diagonal elements of 3,

by subtraction. The conclusion is that all

parameters are identifiable provided ¢15 # 0. In most observational studies, explanatory
variables will be correlated. That means the parameters of this model are identifiable for

most applications.

Now consider the case where ¢15 = 0; that is, the latent explanatory variables are
uncorrelated. This might apply in a designed experiment with random assignment. The

covariance structure equations are now

011 012 013
O22 023
033
w1 + on Bion 0
Biou + 0
Wy + P22
&5

O14 015
O24 025
034 035 = (65)
O44 O45
055
0 B3011
0 B1B3d1
Badaz Bap2z
P22 + o B2 Bag20

5§¢11 + 52@522 + 3
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The parameter ¢, is still identifiable from o3, but three equations are lost since ¢35 =0
also implies 014 = 093 = 094 = 0. Thus there are eleven equations in the eleven remaining
unknown parameters. The condition of the the parameter count rule is satisfied, and
identifiability of the entire parameter vector is still possible.

Using (65), B3 = 095/012 and 4 = 045/034. If B3 and (4 are non-zero, solution for
the rest of the parameters is routine. But if S5 = 0, then ; is no longer identifiable.
Similarly, if 4 = 0, then 5 is no longer identifiable. Since the whole point of this model
is likely to test something like Hy : 53 = 0, it’s important to examine the situation where
this null hypothesis is true.

Suppose one could be sure that Cov(X;, X3) = ¢12 = 0, and consider the problem of
testing Hy : B3 = 0. The first thought might be to just compare the likelihood ratio test
statistic to a chi-squared critical value with one degree of freedom. As in Example 0.11.1
(one extra response variable), this won’t work. In Wilks’ (1938) proof of the likelihood
ratio test [70], identifiability under the null hypothesis is regularity condition zero, and
we are in a situation that Davison [20] (pp. 144-48) would call non-regular. As a practical
matter, the numerical search for the restricted MLE (restricted by Hy) will not converge
except by a numerical fluke. As in the little simulation study on page 109, there is also
likely to be trouble fitting even the unrestricted model. If by chance the search for an
unrestricted MLE were to converge, the the theory behind Z-test of Hy : 3 = 0 fails,
because it is equivalent to a Wald test.

Instead, look at equality (65) and observe that 3 = 0 implies both o5 = 0 and
095 = 0. This hypothesis may be tested using a likelihood ratio or Wald test, with two
degrees of freedom. Again, the moral of this story is that the study of identifiability should
specifically consider those parts of the parameter space where important null hypotheses
are true.

Also, be aware that the models presented here are actually re-parameterizations of
models with measurement error in the response variables. One must carefully consider
the methods of data collection to rule out correlation between measurement error in the
explanatory variables and measurement error in the response variables. Such correlations
would appear as non-zero covariances between e;; and ¢;; terms in the models, and it will
be seen in homework how this can sink the ship on a technical level.

Just to be clear, when data are collected by a common method in a common setting,
errors of measurement will naturally be correlated with one another. For example, in a
study investigating the connection between diet and athletic accomplishment in children,
suppose the data all came from questionnaires filled out by parents. It would be very
natural for some parents to exaggerate the healthfulness of the food they serve and also
to exaggerate their children’s athletic achievements. On the other extreme, some parents
would immediately figure out the purpose of the study, and tell the interviewers what they
want to hear. “My kids eat junk (I can’t control them) and they are terrible in sports.”
Both these tendencies would produce a positive covariance between the measurement
errors in the explanatory and response variables. And in the absence of other information,
it would be impossible to tell whether a positive relationship between observable diet and
athletic performance came from this, or from an actual relationship between the latent
variables.
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0.12 Instrumental Variables Again

In Section 0.5, the method of instrumental variables was introduced as a solution to the
problems that arise when explanatory variables that are missing from the model cause
non-zero covariances between the error term and variables that are in the model. We will
now see that instrumental variables can help with measurement error too.

Recall Example 0.5.1 in Section 0.5; see page 36. The interest was in the relationship
of income to credit card debt. In the imaginary study, data were collected on real estate
agents in a variety of towns and cities. In addition to income (X;) and credit card debt
(Y;), we had an instrumental variable (Z;) — the median selling price of a home in
the agent’s region. With the instrumental variable, everything worked out beautifully.
The parameters were just identifiable, with nine covariance structure equations in nine
unknown parameters.

The problem is that both income and debt are undoubtedly measured with error, and
there are almost surely other unmeasured variables that affect them both. Figure 20
represents a more realistic model. Omitted variables affecting both true X and true Y
give rise to covariance 115 between the error terms €; and e;. Common omitted variables
are also affecting measurement of X and measurement of Y, which are both likely to be
self-report. This gives rise to the covariance wis between the measurement error terms
e; and ey. The regression coefficients A\; and Ay linking true income (7T'z) to observed
income (X) and true credit card debt (T'y) are positive, but unknown and unlikely to
equal one. We now have six covariance structure equations in eleven unkowns, and still
it’s not realistic enough, because housing prices are only estimated.

The model shown in Figure 21 is easier to defend, but impossible to estimate. By
a mysterious process possibly involving multiple variables, the publicly available median
resale price of a home is dynamically related to a latent variable or set of variables that
positively affect the real estate agent’s income.

Fortunately, an instrumental variable only has to be correlated with the explanatory
variable. As long as we are confident that the covariance between resale price and income
is positive (and we are) everything will be okay. Figure 22 acknowledges our ignorance of
the exact process by which which median resale price to connected to income, representing
the connection with an un-analyzed covariance represented by a curved, double-headed
arrow. Since the model no longer explicitly posits that true latent income is affected by
any variable in the model, the operation of common omitted variables on Tx and Ty is
now represented by a curved, double-headed arrow connecting T'x and e.

The model of Figure 22 is fairly realistic, but on first examination it does not look
promising. There are six covariance structure equations in 11 unknowns. This model fails
the parameter count rule, which is poison. The explanatory variable is correlated with
the error term, which is another flavour of poison. In addition, errors of measurement
are correlated, which is yet another form of poison. However, we have an instrumental
variable. Let’s calculate the covariance matrix of the observable variables, bearing in
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Figure 20: Z is median price of resale home, X is income, Y is credit card debt

w
12

mind that [ is the parameter of primary interest. Showing part of the calculation,

Cov(Z,)Y) = Cov(Z, Ty + e3)
= Cov(Z,Xo(BTx +€) + €3)
= XfCov(Z,Tx)+ XCouv(Z, €) + Cov(Z, ey)

= MfBd12+0+0
The full covariance matrix is
A o1 A1d12 BAagr2
Cov X = . )\%42522 + w11 ﬂ)\l)\g(ZﬁQQ + C)\l)\g —+ Wig
Y . . 62>\%¢22 + 2 ﬂC)\% + A%¢ —+ Wo9o

The primary parameter ( is not identifiable, but ¢y5 (the covariance between median home
price and real estate agent income) is positive, and As (the link between true income and
reported income) is also greater than zero. So the sign of § is identifiable from o3, the
null hypothesis Hy : 5 = 0 is testable by simply testing whether o3 is different from zero,
and it is possible to answer the basic question of the study.
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Figure 21: More realistic, but impossible to estimate

w
12

2R

It’s a miracle. Instrumental variables can help with measurement error and omitted
variables at the same time. If there is measurement error, the regression coefficients of
interest are not identifiable and cannot be estimated consistently, but their signs can.
Often, that’s all you really need to know. A matrix version is available. The usual rule
in Econometrics is at least one instrumental variable for each explanatory variable. As
you will see in homework, the main technical requirement is that the p x p matrix of
covariances between X and Z must have an inverse.

Zero covariance between the instrumental variable and error terms is critical. Since
non-zero covariances arise naturally from omitted variables, this means instrumental vari-
ables need to come from another world, and are related to to x for reasons that are
separate from why x is related to y. For example, consider the question of whether aca-
demic ability contributes to higher salary. Study adults who were adopted as children. x
is academic ability, y is salary at age 40, W is measured IQ at 40, and the instrumental
variable z is birth mother’s IQ score.

The method of instrumental variables is a solution to the problems of omitted variables
and measurement error, but it’s a partial solution. Good instrumental variables are not
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Figure 22: An improved model of income and credit card debt

w
12

easy to find. They will almost certainly not be in a data set casually collected for other
purposes. Advance planning is needed.

In many textbook examples of instrumental variables, the instrumental variable ar-
guably has a causal impact on the corresponding explanatory variable. That is, one can
argue for a straight arrow running from Z to X. Here is a nice example from the Wikipedia
article on “natural experiments” [|. The idea behind a natural experiment is that nature,
rather than the investigator, assigns the study participants to treatment conditions. And,
while the assignment may not be exactly random, it is at least unlikely to be connected
to plausible confounding variables. Here’s the story, quoted from the Wikipedia.

One of the best-known early natural experiments was the 1854 Broad Street
cholera outbreak in London, England. On 31 August 1854, a major outbreak
of cholera struck Soho. Over the next three days, 127 people near Broad Street
died. By the end of the outbreak 616 people died. The physician John Snow
identified the source of the outbreak as the nearest public water pump, using
a map of deaths and illness that revealed a cluster of cases around the pump.

In this example, Snow discovered a strong association between the use of the
water from the pump, and deaths and illnesses due to cholera. Snow found
that the Southwark and Vauxhall Waterworks Company, which supplied water
to districts with high attack rates, obtained the water from the Thames down-
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stream from where raw sewage was discharged into the river. By contrast, dis-
tricts that were supplied water by the Lambeth Waterworks Company, which
obtained water upstream from the points of sewage discharge, had low attack
rates. Given the near-haphazard patchwork development of the water sup-
ply in mid-nineteenth century London, Snow viewed the developments as ”an
experiment ...on the grandest scale.”

So, the explanatory variable x was drinking and otherwise using water containing raw
sewage, the response variable y was getting cholera, and the instrumental variable z was
the company that supplied the water. The critical fact that makes it a good instrumental
variable is the “...near-haphazard patchwork development of the water supply in mid-
nineteenth century London.” (We will gladly take their word for it.) Seemingly, the
configuration of the water supply was so chaotic that it was unlikely to be related to
other plausible influences on getting cholera, like social class and income. Thus, one can
argue for the absence of any curved arrows connecting the instrumental variable to the
error terms. From both a technical and common-sense viewpoint, that’s what makes the
whole thing work.

The Wikipedia article has several other good examples of natural experiments, and
they are also good examples of instrumental variables. In fact, one could say that the
ultimate instrumental variable is randomly assigned; in that case, it’s guaranteed to come
from another world, and if the experiment is otherwise well-controlled, connections be-
tween omitted variables and the treatment are entirely ruled out.

But for better or worse, we are concerned with cases where ethics or simple practical
considerations dictate that we cannot control the values of the explanatory variables.
Our data come from observational studies. If the data set contains good instrumental
variables, many of our difficulties will disappear, but we cannot just manufacture them.
We must discover and notice them as they naturally occur, and this requires a bit of good
luck, as well as a sharp eye and flexible thinking.

0.13 Exercises for Chapter 0

e Exercises 0.2: Conditional and unconditional regression

1. Everybody knows that Var(Y;) = o2 for a regression model, but that’s really
a conditional variance. Independently for : = 1,...,n, let

Yi =050+ 51Xi1 + BoXio+ €,

where €1, . .. €, are independent random variables with expected value zero and
common variance 02, E(X;1) = p1, Var(X;1) = o1, BE(Xi2) = pg, Var(X;2) =
o3, and Cov(X; 1, X;2) = 012. Calculate Var(Y;); show your work.

2. Suppose that the model (3) has an intercept. How many integral signs are
there in the second line of (6)7 The answer is a function of n and p.
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3. The usual univariate multiple regression model with independent normal errors

1S
y = X8+ €,

where X is an n X p matrix of known constants, 3 is a p x 1 vector of un-
known constants, and € is multivariate normal with mean zero and covariance
matrix oI, with ¢ > 0 an unknown constant. But of course in practice,
the explanatory variables are random, not fixed. Clearly, if the model holds
conditionally upon the values of the explanatory variables, then all the usual
results hold, again conditionally upon the particular values of the explanatory
variables. The probabilities (for example, p-values) are conditional probabili-
ties, and the F statistic does not have an I’ distribution, but a conditional F’
distribution, given X = x.

a) Show that the least-squares estimator [A‘i = (X’X)'X'y is conditionall
Yy
unbiased.

(b) Show that B is also unbiased unconditionally.

(c) A similar calculation applies to the significance level of a hypothesis test.
Let F be the test statistic (say for an extra-sum-of-squares F-test), and
fe be the critical value. If the null hypothesis is true, then the test is size
«, conditionally upon the explanatory variable values. That is, P(F >
felX'=x) = a. Find the unconditional probability of a Type I error.
Assume that the explanatory variables are discrete, so you can write a
multiple sum.

e Exercises 77: The Centering Rule

Maybe refer to some exercises from the Appendix.

e Fxercises 0.4: Omitted variables

1. In the following regression model, the independent variables X; and X, are

random variables. The true model is
Yi =060+ 5iXi1 + B X2+ €,

independently for i = 1,...,n, where ¢; ~ N(0,0?).
The mean and covariance matrix of the independent variables are given by

Xi,l - M1 Xi,l . o1 b2
E(Xz‘,Q)_(m) and Var(Xi,z)_(lez ¢22>

Unfortunately X;,, which has an impact on Y; and is correlated with Xj 1,
is not part of the data set. Since X; o is not observed, it is absorbed by the
intercept and error term, as follows.

Yi = Bo+biXii+ FoXio+¢€
= (Bo+ Bapz) + 1 X1 + (B2 Xio — PBapio + €;)
= By + i Xi1+e€.
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The primes just denote a new [y and a new ¢;. It was necessary to add and
subtract [ap9 in order to obtain E(€;) = 0. And of course there could be more
than one omitted variable. They would all get swallowed by the intercept and
error term, the garbage bins of regression analysis.

(a) What is Cov(X;1,€)?
(b) Calculate the variance-covariance matrix of (X; 1, Y;) under the true model.

(¢) Suppose we want to estimate [3;. The usual least squares estimator is

5, = i (Xip = X)(Y; - Y)
2im(Xin — X4)?

You may just use this formula; you don’t have to derive it. Is Bl a consistent
estimator of 3 for all points in the parameter space if the true model holds?
Answer Yes or no and show your work. Remember, X, is not available,
so you are doing a regression with one independent variable. You may use
the consistency of the sample variance and covariance without proof.

(d) Are there any points in the parameter space for which 31 is a consistent
estimator when the true model holds?

2. Ordinary least squares is often applied to data sets where the independent
variables are best modeled as random variables. In what way does the usual
conditional linear regression model imply that (random) independent variables
have zero covariance with the error term? Hint: Assume X; as well as ¢;
continuous. What is the conditional distribution of ¢; given X; = x;) = 07

3. Show that E(¢|X; = z;) = 0 for all z; implies Cov(X;,¢;) = 0, so that a
standard regression model without the normality assumption still implies zero

covariance (though not necessarily independence) between the error term and
explanatory variables.

e Exercises 0.6: Measurement error

1. Calculate expression (29) for the reliability, showing the details that were
skipped. The point of this question (besides exercising your variance-covariance
muscles and keeping you busy so you don’t have a personal life) is to see whether
you feel comfortable assuming pu = 0 even though it may not be.

2. In a study of diet and health, suppose we want to know how much snack food
each person eats, and we “measure” it by asking a question on a questionnaire.
Surely there will be measurement error, and suppose it is of a simple additive
nature. But we are pretty sure people under-report how much snack food they
cat, so a model like W = X + e with E(e) = 0 is hard to defend. Instead, let

W=v+ X +e,

where E(X) = u, E(e) =0, Var(X) = o2, Var(e) = 02, and Cov(X,e) = 0
The unknown constant v could be called measurement bias. Calculate the
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reliability of W for this model. Is it the same as (29), or does v # 0 make a
difference?

3. Continuing Exercise 2, suppose that two measurements of W are available.

W1 = V1+X+61
Wy = 1+ X +ey,

where E(X) = pu, Var(X) = 02, E(e1) = E(e3) = 0, Var(ey) = Var(es) = 02,
and X, e; and ey are all independent. Calculate Corr(W;, Ws). Does this
correlation still equal the reliability?

4. Let X be a latent variable, W = X + e; be the usual measurement of X with
error, and G = X + e be a measurement of X that is deemed “gold standard,”
but of course it’s not completely free of measurement error. It’s better than
W in the sense that 0 < Var(es) < Var(ey), but that’s all you can really say.
This is a realistic scenario, because nothing is perfect. Accordingly, let

W = X+€1
G = X+62,

where E(X) = p, Var(X) = 02, E(e;) = E(es) =0, Var(e)) = 0%, Var(ey) =
o5 and that X, e; and e, are all independent of one another. Prove that the
squared correlation between W and G is strictly less than the reliability of WW.
Show your work.

The idea here is that the squared population correlation®® between an ordinary
measurement and an imperfect gold standard measurement is strictly less than
the actual reliability of the ordinary measurement. If we were to estimate such
a squared correlation by the corresponding squared sample correlation, all we
would be doing is estimating a quantity that is not the reliability. On the
other hand, we would be estimating a lower bound for the reliability — and
this could be reassuring if it is a high number.

5. In this continuation of Exercise 4, show what happens when you calculate the
squared sample correlation between a usual measurement and an imperfect
gold standard, and let n — oco. It’s just what you would think.

6. Suppose we have two equivalent measurements with uncorrelated measurement
error:
W1 = X + (&)
W2 = X + €2,

51When we do Greek-letter calculations, we are figuring out what is happening in the population from
which a data set might be a random sample.
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where E(X) = p, Var(X) = 02, E(e;) = E(es) = 0, Var(e;) = Var(es) = o2,

and X, e; and ey are all independent. What if we were to measure the true

score X by adding the two imperfect measurements together? Would the result

be more reliable?

(a) Let S = Wj + Wy, Calculate the reliability of S. Is there any harm in
assuming p = 07

(b) Suppose you take k independent measurements (in psychometric theory,
these would be called equivalent test items). What is the reliability of
S =% | W;? Show your work.

(¢) What happens as the number of measurements k — oo?

This exercise establishes the well-known principle that longer tests tend to be
more reliable. The measurement of practically anything can be improved by
measuring it independently several times and then averaging the results —
assuming this is possible.

7. Suppose we have two equivalent measurements with correlated measurement
error:

W1 = X+€1
W2 = X+€2,

where E(X) = pu, Var(X) = 02, E(e;) = E(es) = 0, Var(e;) = Var(ey) =
02, and e; and ey are all independent of X but Cov(e;,e;) = k. Calculate
Corr(Wy,Ws); show your work. What is the relationship of your answer to
the reliability if £ > 0 (which is typical of correlated measurement error)? The
point of this question is that correlated measurement errors are more the rule

than the exception in practice, and it’s poison.
e [xercises 0.7: Ignoring measurement error

1. The following is perhaps the simplest example of what happens to regression
when there is measurement error in the explanatory variable. Independently
fori=1,...,n, let

Y, = Xif+e
VVi - Xz + €i,
where E(X;) = E(¢;) =0, Var(X;) = 02, Var(e;) = o2, Var(e;) = 02, and X,

€; and e; are all independent. Notice that W; is just X; plus a piece of random
noise. This is a simple additive model of measuremnt error.

Unfortunately, we cannot observe the X; values. All we can see are the pairs
(X;,W;) for i = 1,...,n. So we do what everybody does, and fit the naive
(mis-specified, wrong) model

Yi=Wib+e
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and estimate [ with the usual formula for regression through the origin. Where
does 3, go as n — oco? Show your work.

2. Recall the simulation study of inflated Type I error when independent variables
are measured with error but one ignores it and uses ordinary regression anyway.
We needed to produce correlated (latent, that is unobservable) independent
variables from different distributions. Here’s how we did it.

(a)

It is easy to simulate a collection of independent random variables from
any distribution, and then standardize them to have expected value zero
and variance one. Let E(X) = p and Var(X) = 2. Now define Z = 22
Find

i. E(Z)

ii. Var(2)
Okay, now let Ry, Ry and R3 be independent random variables from any
distribution you like, but standardized to have expected value zero and
variance one. Now let

W, = /1—¢R;++/¢R;and
Wy = /1—¢Ry+\/oR;.

Find
1. COU(Wl,WQ)
ii. Corr(Wy, Ws)

This one is more efficient. Let R; and Ry be independent random variables
with expected value zero and variance one. Now let

1+ 1-—
LLl = Tgle‘i‘ TgbRQ

1+ 1-
Wy = R R

Find
1. COU(Wl,WQ)
ii. Corr(Wy, Ws)

(d) Briefly state how you know the following. No proof is required.

— If the R variables are normal and ¢ = 0, both methods yield X; and
X, independent.

— But if the Rs are non-normal, then ¢ = 0 only implies independence
for the first method.

e Exercises 0.8: Modeling measurement error



0.13. EXERCISES FOR CHAPTER 0 131

1. Let Xq,...,X, be a random sample from a normal distribution with mean
f, and variance 0 + 03, where —oo < 6; < 00, 6 > 0 and #3 > 0. Are the
prameters of this model identifiable? Answer Yes or No and prove your answer.
This is fast.

2. Let Xi,...,X, be a random sample from a normal distribution with mean ¢
and variance 02, where —oco < 6 < oo. Is @ identifiable? Answer Yes or No and
justify your answer. This is even faster than the last one.

3. For this problem you may want to read about the invariance principle of max-
imum likelihood estimation in Appendix A. Consider the simple regression
model

}/;' = /BX’L + €
where ( is an unknown constant, X; ~ N(0,¢), ¢; ~ N(0,7) and the random
variables X; and ¢; are independent. X; and Y; are observable variables.

(a) What is the parameter vector @ for this model? It has three elements.

(b) What is the distribution of the data vector (X;,Y;)"? Of course the ex-
pected value is zero; obtain the covariance matrix in terms of @ values.
Show your work.

(¢) Now solve three equations in three unknowns to express the three elements
of @ in terms of o, ; values.

(d) Are the parameters of this model identifiable? Answer Yes or No and state
how you know.

(e) For a sample of size n, give the MLE 3. Your answer is a matrix containing
three scalar formulas (or four formulas, if you write down the same thing
for o1 2 and 75 1). Write your answer in terms of X; and Y; quantities. You
are not being asked to derive anything. Just translate the matrix MLE
into scalar form.

(f) Use the invariance principle to obtain the formula for B and simplify. Show
your work.

(g) Give the formula for ¢. Use the invariance principle.

(h) Obtain the formula for QZ and simplify. Use the invariance principle. Show
your work.

4. Consider the regression model

Yii. = BiXi+e

Yio = [BoXi+e€o,

where X; ~ N(0, ¢), and X; is independent of ¢; ; and ¢; 5. The error terms ¢;
and €; 9 are bivariate normal, with mean zero and covariance matrix

_ wl,l 1/}1,2
V= ( Yrz oo > '

The variables X;, Y;; and Y; » are observable; there is no measurement error.



132

CHAPTER 0. REGRESSION WITH MEASUREMENT ERROR

(a) What is the parameter vector @ for this model? It has six elements.

(b) Calculate the covariance matrix of the observable variables; show your
work.

(c¢) Are the parameters of this model identifiable? Answer Yes or No and
justify your answer.

. Here is a multivariate regression model with no intercept and no measurement

error. Independently for i =1,... n,
yi =BX;+¢€

where

y; is an ¢ x 1 random vector of observable response variables, so the re-
gression can be multivariate; there are g response variables.

X; is a p x 1 observable random vector; there are p explanatory variables.
X, has expected value zero and variance-covariance matrix ®, a p x p
symmetric and positive definite matrix of unknown constants.

B is a ¢ X p matrix of unknown constants. These are the regression coef-
ficients, with one row for each response variable and one column for each
explanatory variable.

€; is the error term of the latent regression. It is an ¢x 1 random vector with
expected value zero and variance-covariance matrix ¥, a ¢ X ¢ symmetric

and positive definite matrix of unknown constants. €; is independent of
X;.

Are the parameters of this model identifiable? Answer Yes or No and show
your work.

. Consider the following simple regression through the origin with measurement

error in both the explanatory and response variables. Independently for i =
1,...,n,

Y; = BXi+e
Wipn = Xi+ein
Wis = Xitep
Vi = Yi+es

where X; and Y] are latent variables, €;, €; 1, €;.2, €; 3 and X; and are independent
normal random variables with expected value zero, Var(X;) = ¢, Var(e;) = 1,
and Var(e;1) = Var(e;2) = Var(e;3) = w. The regression coefficient g is a
fixed constant. The observable variables are W;, W, and V;.

(a) Calculate the variance-covariance matrix of the observable variables. Show
your work.

(b) Write down the moment structure equations.



0.13. EXERCISES FOR CHAPTER 0 133

(c) Are the parameters of this model identifiable? Answer Yes or No and prove
your answer.

7. Independently for : =1,...,n, let

i = fXi+e
VVi - Xi+ei7

where E(X;) = p # 0, E(e;) = E(e;) = 0, Var(X;) = ¢, Var(e;) = 1,
Var(e;) = w, and X;, e; ande; are all independent. The variables X; is latent,
while W, and Y; are observable.

(a) Does this model pass the test of the parameter count rule? Answer Yes or
No and give the numbers.

(b) Is the parameter vector identifiable? Answer Yes or No and prove your
answer. If the answer is No, give a simple example of two different sets
of parameter values that yield the same (bivariate normal) distribution of
the observable data.

(c) Let
B _ Z?:l WiY;
XL
Is Bl a consistent estimator of 57 Answer Yes or No and prove your answer.
(d) Let

B\Q _ Z?:l Y
2 i Wi
—Is 32 a consistent estimator of 37 Answer Yes or No and justify your

answer.

— We know from Theorem 0.1 that consistent estimation is impossible
when the parameter is not identifiable. Does this example contradict
Theorem 0.17

8. Independently for i =1,...,n, let

i = fXi+e
Wipn = Xi+ein
Wia = Xi+eio,

where

— X, is a normally distributed latent variable with mean zero and variance

¢ >0
— ¢; is normally distributed with mean zero and variance 1 > 0
— ¢;1 is normally distributed with mean zero and variance w; > 0
— €;2 is normally distributed with mean zero and variance wy; > 0



134

CHAPTER 0. REGRESSION WITH MEASUREMENT ERROR

— Xi, €, €;1 and ¢, o are all independent of one another.

(a) What is the parameter vector @ for this model?

(b) Does this problem pass the test of the parameter count rule? Answer Yes
or No and give the numbers.

(c) Calculate the variance-covariance matrix of the observable variables. Show
your work.

(d) Is the parameter vector identifiable? Answer Yes or No and prove your
answer.

(e) Propose a consistent estimator of the parameter 3, and show it is consis-
tent.

e Exercises 0.9



Chapter 1

Introduction to Structural Equation
Models

The design of this book is for Chapter 0 to be a self-contained discussion of regression with
measurement error, while this chapter introduces the classical structural equation models
in their full generality. So, this chapter may serve as a starting point for advanced read-
ers. These advanced readers may belong to two species — quantitatively oriented social
scientists who are already familiar with structural equation modeling, and statisticians
looking for a quick introduction to the topic at an appropriate level.

Also, readers of Chapter 0 will have noticed that the study of a particular model
typically involves a fair amount of symbolic calculation, particularly the calculation of
covariance matrices in terms of model parameters. While these calculations often yield
valuable insights, they become increasingly burdensome as the number of variables in-
creases, particularly when more than one model must be considered.

The solution is to let a computer do it. So starting with this chapter, many calculations
will be illustrated using Sage, an open source computer algebra package described in
Appendix B. The Sage parts will be interleaved with the rest of the text rather than fully
integrated. Typically, an example will include the result of a calculation without giving
a lot of detail, and then at an appropriate place for a pause, the Sage code will be given.
This will allow readers who are primarily interested in the ideas to skip material they
may find tedious.

1.1 Overview

Structural equation models may be viewed as an extension of multiple regression. They
generalize multiple regression in three main ways: there is usually more than one equa-
tion, a response variable in one equation can be an explanatory variable in another, and
structural equation models can include latent variables.

Multiple equations: Structural equation models are usually based upon more
than one regression-like equation. Having more than one equation is not really

135
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unique; multivariate regression already does that. But you will see that structural
equation models are more flexible than the usual multivariate linear model.

Variables can be both explanatory and response: This is an attractive feature.
Consider a study of arthritis patients, in which joint pain and mobility are measured
at several time points. Joint pain at one time period can lead to decreased physical
activity during the same period, which then leads to more pain at the next time
period. Level of physical activity at time ¢ is both a response variable and a response
variable. Structural equation models are also capable of representing the back-and-
forth nature of supply and demand in Economics. Many other examples will be
given

Latent variables: Structural equation models may include random variables that
cannot be directly observed, and also are not error terms. This capability (combined
with relative simplicity) is their biggest advantage. It allows the statistican to admit
that measurement error exists, and to incorporate it directly into the statistical
model. The regression models with latent variables in Chapter 0 are special cases
of structural equation models.

There are some ways that structural equation models are different from ordinary linear
regression. These include random (rather than fixed) explanatory variable values, a bit
of specialized vocabulary, and some modest changes in notation. Tests and confidence
intervals are based on large-sample theory, even when normal distributions are assumed.
Also, structural equation models have a substantive! as well as a statistical compontent;
closely associated with this is the use of path diagrams to represent the connections
between variables.

To the statistician, perhaps the most curious feature of structural equation mod-
els is that usually, the regression-like equations lack intercepts and the expected values
of all random variables equal zero. This happens because the models have been re-
parameterized in search of parameter identifiability. Details are given in the next section

(Section A.6.1).

Random explanatory variables Chapter 0 discusses the advantages of the traditional
regression model in which values of the explanatory variables are treated as fixed con-
stants, and the model is considered to be conditional on those values. But once we admit
that the variables we observe are contaminated by random measurement error, the virtues
of a conditional model mostly disappear. So in the standard structural equation models,
all variables are random variables.

Vocabulary Structural equation modeling has developed a specialized vocabulary, and
except for the term “latent variable,” much of it is not seen elsewhere in Statistics. But
the terminology can help clarify things once you know it, and also it appears in software
manuals and on computer output. Here are some terms and their definitions.

ISubstantive means having to do with the subject matter. A good substantive model of water pollution
would depend on concepts from Chemistry and Hydrodynamics.
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e Latent variable: A random variable that cannot be directly observed, and also is
not an error term.

e Manifest variable: An observable variable. An actual data set contains only
values of the manifest variables. This book will mostly use the term “observable.”

e Exogenous variable: In the regression-like equations of a structural equation
model, the exogenous variabes are ones that appear only on the right side of the
equals sign, and never on the left side in any equation. If you think of Y being a
function of X, this is one way to remember the meaning of exogenous. All error
terms are exogenous variables.

e Endogenous variable: Endogenous variables are those that appear on the left
side of at least one equals sign. Endogenous variables depend on the exogenous
varables, and possibly other endogenous variables. Think of an arrow from an
exogenous variable to an endogenous variable. The end of the arrow is pointing at
the endogenous variable.

e Factor: This term has a meaning that actually conflicts with its meaning in main-
stream Statistics, particularly in experimental design. Factor analysis (not “facto-
rial” analysis of variance!) is a set of statistical concepts and methods that grew
up in Psychology. Factor analysis models are special cases of the general structural
equation model. A factor is an underlying trait or characteristic that cannot be
measured directly, like intelligence. It is a latent variable, period.

Notation Several different but overlapping models and accompanying notation systems
are to be found in the many books and articles on structural equation modeling. The
present book introduces a sort of hybrid notation system, in which the symbols for param-
eters are mosly taken from the structural equation modeling literature, while the symbols
for random variables are based on common statistical usage. This is to make it easier
for statisticians to follow. The biggest change from Chapter 0 is that the symbol 3 is
no longer used for just any regression coefficient. It is reserved for links between latent
endgenous variables and other latent endgenous variables.

1.2 A general two-stage model
Independently for i =1,...,n, let
yi = a+By;+Ix; +e€ (1.1)

F o= (3)
y:

di = I/—|—AFZ‘+ei,

where
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e y; is a ¢ X 1 random vector.

e «is a g x 1 vector of constants.

e (3 is a ¢ x ¢ matrix of constants with zeros on the main diagonal.
e I' is a ¢ X p matrix of constants.

e X; is a p x 1 random vector with expected value p, and positive definite covariance
matrix ®,,.

e ¢;is a ¢ x 1 random vector with expected value zero and positive definite covariance
matrix W.

e F, (F for Factor) is a partitioned vector with x; stacked on top of y;. It is a
(p + ¢q) x 1 random vector whose expected value is denoted by pp, and whose
variance-covariance matrix is denoted by ®.

e d; is a k£ x 1 random vector. The expected value of d; will be denoted by u, and
the covariance matrix of d; will be denoted by 3.

e vis ak x 1 vector of constants.

e Aisak x (p+ ¢) matrix of constants.

e ¢; is a k x 1 random vector with expected value zero and covariance matrix €2.
e X;, € and e; are independent.

Only dy,...,d, are observable. All the other random vectors are latent. But because
Q = cov(e;) need not be strictly positive definite, error variances of zero are permitted.
This way, it is possible for a variable to be both exogenous and observable.

The distributions of x;, €; and e; are either assumed to be independent and multivariate
normal, or independent and unknown. When the distributions are normal, the parameter
vector @ consists of the unique elements of the parmeter matrices o, 3, I', ., ®,, ¥, v,
A and 2. When the distributions are unknown, the parameter vector also includes the
three unknown probability distributions.

The two parts of Model (1.1) are called the Latent Variable Model and the Measure-
ment Model. The latent variable part is y; = a + By; + I'x; + €;, and the measurement
part is d; = v + AF; + e;. The bridge between the two parts is the process of collecting
the latent exogenous vector x; and the latent endogenous vector y; into a “factor” F.
This is not a categorical explanatory variable, the usual meaning of factor in experimental
design. The terminology comes from factor analysis, a popular multivariate method in
the social sciences. Factor analysis is discussed in Chapters 2 and 3.

Example 1.2.1 The Brand Awareness study
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A major Canadian coffee shop chain is trying to break into the U.S. Market. They assess
the following variables twice on a random sample of coffee-drinking adults. Each variable
is measured first in an in-person interview, and then in a telephone call-back several days
later, conducted by a different interviewer. Thus, errors of measurement for the two
measurements of each variable are assumed to be independent. The variables are

e Brand Awareness (X;): Familiarity with the coffee shop chain
e Advertising Awareness (X5): Recall for advertising of the coffee shop chain

e Interest in the product category (X3): Mostly this was how much they say
they like coffee and doughnuts.

e Purchase Intention (Y7): Expressed willingness to go to an outlet of the coffeeshop
chain and make an order.

e Purchase behaviour (Y3): Reported dollars spent at the chain during the 2 months
following the interview.

All variables were measured on a scale from 0 to 100 except purchase behaviour, which is
in dollars.

Figure 1.1 shows a path diagram for these data. It is a picture of how some variables
are thought to influence other variables. The notation is standard. Straight arrows go
from exogenous variables to endogenous variables, and possibly from endogenous variables
to other endogenous variables. Correlations among exogenous variables are represented
by two-headed curved arrows. Observable variables are enclosed by rectangles or squares,
while latent variables are enclosed by ellipses or circles. Error terms are not enclosed by
anything.

The path diagram in Figure 1.1 expresses some very definite assertions about consumer
behaviour. For example, it says that brand awareness and advertising awareness affect
actual purchase only through purchase intention, while interest in the product may have a
direct effect on purchase behaviour, as well as an indirect effect through purchase intention
— perhaps reflecting impulse purchases. Such claims may be right or they may be wrong,
and some are testable. But the point is that the statistical model corresponding to the
typical path diagram has a strong subject matter component, and actually is a sort of
hybrid, occupying a position somewhere between the typical statistical model and an
actual theory about the data.

It is always possible to argue about how the path diagram should look, and it is
usually valuable as well. The more subject matter expertise that can be brought to the
discussion, the better. Often, the contest between two or more competing pictures will
be traceable to unresolved theoretical issues in the field. Will the data at hand allow a
formal statistical test to decide between the models? If not, is it possible to design a
study that will make such a comparison possible? Thus, the more technical statistical
expertise that can be brought to the discussion, the better.

The measurement model — that is, the part relating the latent variables to the ob-
servable variables — should not escape scrutiny. The processes it represents are usually
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Figure 1.1: The Brand Awareness Study
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not the reason the data were collected, but high quality measurement is a key to the
success of structural equation modeling.

Continuing with the Brand Awareness example, the model corresponding to Figure 1.1
may be written in scalar form as a system of simultaneous regression-like equations.
Independently for i =1,...,n, let

Yii = ar + X +7Xi2 +13Xi3+ 61 (1.2)
Yio as+ Y1+ 71Xz + €9

Wii vi + M X1 +ein

Wio = a4+ XX;1+ €2

Wiz = v3+ A3Xip+ei3
Wis = va+MXio+ea
Wis = vs+AXi3+¢€i5
Wie = U+ XeXiz+eig

Viin. = v+ MY +eir
Vi vg + AgYi1 +eig
Vis Vg + AgYia + €ig
Via = vio+ MoYiz + €0,

where E(X;1 = pz1), E(Xi2 = pa2), E(Xi3 = pas), the expected values of all error
terms equal zero, Var(X, ;) = ¢;; for j =1,2,3, Cov(X, ;, X; 1) = ¢k, Var(e; ;) = w; for
j=1,...,10, Var(e;1) = ¢1, Var(e;2) = 1, and all the error terms are independent of
one another and of the X ; variables.

If the two measurements of each variable were deemed similar enough, it would be
possible to reduce the parameter space quite a bit, for example setting vy = 9, Ay = A,
and w; = wy. The same kind of thing could be done for the other latent variables. Also,
the distributions could be assumed normal, or they could be left unspecified; in practice,
those are the two choices.

Setting up the problem in matrix form, we have p = 3 latent exogenous variables, ¢ = 2
latent endogenous variables, and k& = 10 observable variables, all of which are endogenous
in this example. Using parameter symbols from the scalar version, the equations of the
latent variable model are

Vi = o + B Vi + r X + €
Xin
Yia aq 00 Yii MoV V3 ’ €1
’ = + ’ + Xi + ’
<Yz‘,2> (042) (/3 0) (Yzy?) ( 0 0 7 P €i,2
i3
with

o1 Q12 P13 U0
D, =cov(x;)) = | P12 P22 o3 and ¥ = cov(e;) = ( é " ) )
$13 P23 P33 2
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Collecting x; and y; into a single vector of “factors,”

Xin
Xio

F, = ( X% ) = Xigs
Yi Y,

Yio

Finally, the equations of the measurement model are

d; = v + A F,; + e;
I/V,L"l 141 )\1 0 0 0 0 €1
VV@Q %) )\2 0 0 0 0 €i,2
VV@;; Vs 0 /\3 0 0 0 X, €3
I/Vi,4 Vy 0 )\4 0 0 0 Xl"l €4
Wis Vs 0 0 X 0 0 n2 eis
Wie | = w | T 0o 0 x 0 o0 Xig |+ o)
2,6 6 6 Y. 2,6
Via vy 0 0 0 X\ O Yl-’l eir
Vio Vg 0 0 0 X O b2 eig
‘/z‘,?) Vg 0 0 0 0 )\9 €i,9
Via V10 0 0 0 0 Xpo €i,10
with

wi 0 0 O O 0 0 0 0 0

0O wp O O O O O O O 0

0O 0 wg O O O O O O 0

0O 0 0 wge O O O O O 0

0 0 0 0 ws O O O O 0

D=covle) =1 5 0 0 0 0w 0 0 0 0

0O 0 0 0 0 0 wy O O 0

0O 0 0 0 0 0 0 wg O 0

0O 0 0 0 0 0 0 0 wg 0

0O 0 0 O 0 0 0 0 0 wp

Given a verbal description of a data set, the student should be able to write down a path
diagram, and translate freely between the path diagram, the model in scalar form and
the model in matrix form. Three three ways of expressing the model are equivalent, and
some software? will allow a model to be specified using only a built-in drawing program.
This can be appealing to users who don'’t like equations and Greek letters, but for larger
models the process can be very tedious.

1.3 Review of identifiability

The general two-stage model (1.1) of Section 1.2 is very general indeed — so much so,
that its parameters are seldom identifiable without additional restrictions. Choosing these

2The ones I know of are Amos and JMP.
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restrictions wisely is an essential part of structural equation modeling. In fact, it turns
out that almost everything that makes structural equation modeling distinct from other
large-sample statistical methods can be traced to issue of parameter identifiability. For
the convenience of readers who are starting with Chapter 1, this section collects material
on identifiability from Chapter 0. Readers of Chapter 0 are also encouraged to look it
over. The presentation is intended to be terse. For more detail, please see Chapter 0.

Definition 0.5 (Page 59) Suppose a statistical model implies d ~ Pp,0 € ©. If no
two points in © yield the same probability distribution, then the parameter 0 is said to
be identifiable. On the other hand, if there exist 8; and 0, in © with Py, = Pp,, the
parameter 0 is not identifiable.

Theorem 0.1 (Page 59) If the parameter vector is not identifiable, consistent estimation
for all points in the parameter space is impossible.

Definition 0.6 (Page 60) The parameter is said to be identifiable at a point @y if no
other point in © yields the same probability distribution as 6.

Definition 0.7 (Page 60) The parameter is said to be locally identifiable at a point
0, if there is a neighbourhood of points surrounding 6y, none of which yields the same
probability distribution as 6.

Definition 0.8 (Page 60) Let (@) be a function of the parameter vector. If g(6y) # ¢(0)
implies Py, # Py for all @ € O, then the function g(0) is said to be identifiable at the
point 6.

Theorem 0.2 (Page 61) Let

vy = fl(l‘l,...,l'p)
Yoz = f2($1,...,$p)

vy = folz, .. xp),

If the functions f1,. .., f, are analytic (posessing a Taylor expansion) and p > ¢, the set of
points (z1, ..., z,) where the system of equations has a unique solution occupies at most
a set of volume zero in RP.

Moment structure equations give moments of the distribution of the observable data in
terms of model parameters. In this course, moments are limited to expected values, vari-
ances and covariances. If it is possible to solve uniquely for the parameter vector in terms
of the these quantities, then the parameter vector is identifiable. Even when a multivari-
ate normal distribution is not assumed, in practice “identifiable” means identifiable from
the moments — usually the variances and covariances.
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Rule 1 (The Parameter Count Rule, page 61) Suppose identifiability is to be decided
based on a set of moment structure equations. If there are more parameters than equa-
tions, the parameter vector is identifiable on at most a set of volume zero in the parameter
space.

1.4 Models: Original and Surrogate

1.4.1 Overview

It is taken for granted that even the best scientific models are not “true” in any ultimate
sense. At best, they are approximations of how nature really works. And this is even
more true of statistical models. As Box and Draper (1987, p. 424) put it, “Essentially
all models are wrong, but some are useful.” [11] In structural equation modeling, the
models used in practice are usually not even the approximate versions that the scientist
or statistician has in mind. Instead, they are re-parameterized versions of the intended
models. This explains some features that may seem odd at first.

Figure 1.2: A sequence of re-parameterizations
Truth ~ Original Model — Surrogate Model 1 — Surrogate Model 2 —

Figure 1.2 is a picture of the process®. Underlying everything is the true state of

nature, the real process that gave rise to the observable data in our possession. We can
scarcely even imagine what it is, but undoubtedly it’s non-linear, and involves a great
many unmeasured variables. So we start with a model based on the general two-stage
model (1.1) of Section 1.2. It is not the truth and we know it’s not the truth, but maybe it’s
not too bad. It’s basically a collection of regression equations, complete with intercepts.
Based on the usefulness of ordinary multiple regression, there is reason to hope it roughly
approximates the truth in a useful way, at least within the range of the observed data.

As primitive as the original model may be compared to the real truth, its parameters
are still not identifiable. So we re-parameterize, producing a new model whose parameters
are functions of the parameters of the original model. Such a model will be called a
surrogate model because it stands for the original model, and tries to do the job of the
original model. Like a surrogate mother, it may not be as good as a the real thing, but
it will have to do.

As indicated in Figure 1.2, re-parameterization may happen in more than one step. For
the classical structural equation models presented in this book, the first re-parameterization
results in a centered surrogate model with no intercepts, and all expected values equal to
zero. The model equations may look a bit strange at first glance, but it is much more

3Thanks to Michael Li for this way of expressing the idea.
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convenient if we even don’t even have to look at symbols for vectors of parameters that
we can’t estimate uniquely anyway.

Typically, the parameters of the centered surrogate model are still not identifiable,
and there is another re-parameterization, leading to a second level surrogate model. The
process can continue. At each step, the parameter vector of the new model is a function
of of the parameters of the preceding model, and typically the function is not one-to-one.
Otherwise, identifiability would not change. At each stage, the dimension of the new
parameter space is less, so the re-parameterization represents a restriction, or collapsing
of the original parameter space. The end result is a model whose parameters are identi-
fiable functions of the original parameter vector. The goal is for those functions to be as
informative as possible about the parameters of the original model.

Two features of the original model deserve special mention. The first is that usually,
the original model is already a restricted version of Model (1.1), even before it is re-
parameterized to produce a surrogate model. The restrictions in question arise from
substantive modeling considerations rather than from a search for identifiability. So, in
the Brand Awareness example of Section 1.2, the parameter matrices have many elements
fixed at zero. These represent theoretical assertions about consumer psychology. They
may be helpful in making the remaining free parameters identifiable, but that is not their
justification.

A second notable feature of the original model is that expected values are non-zero
in general, and all the equations are regression-like equations with intercepts, and with
slopes that do not necessarily equal one. Any deviation from this standard needs to be
justified on substantive grounds, not on grounds of simplicity or convenience. Otherwise,
it’s a surrogate model and not an original model. The distinction is important, because
most structural equation models used in practice are surrogate models, and a good way to
understand them is to trace the connection between their parameters and the parameters
of the original models from which they are are derived.

Consider a simple additive model for measurement error, like (28) on page 40:

W =X +e.

Immediately it is revealed as a surrogate model, because there is no intercept and the
slope is set to one — a choice that would be hard to justify on modeling grounds most of
the time. For example, X might be actual calories consumed during the past week, and W
might be number of reported calories based on answers to a questionnaire. Undoubtedly,
the true relationship between these variables is non-linear. In an original (though not
exactly true) model, the relationship would be approximated by

W=v+2AX +e.

With this example in mind, it is clear that most of the models given in Chapter 0 (and
all the models in Chapter 0 with identifiable parameters) are actually surrogate models.
This might be a bit unsettling because you did not realize that you were being tricked, or
it might be reassuring because some models that struck you as unrealistic may actually
be better than they seem.
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1.4.2 The centered surrogate model

The first stage of re-parameterization may be done in full generality. The argument
begins with a demonstration that the means and intercepts of the original model are not
identifiable. Please bear in mind that as a practical consideration, “identifiable” means
identifiable from the moments — the expected values and variance-covariance matrix of
the observable data.

Starting with the latent variable part of the two-stage original model (1.1), it is helpful
to write the endogenous variables solely as functions of the exogenous variables, and not
of each other.

yi=a+By;i+Ix; +¢€

yi—Byi=oa+Ix +¢€

Iy, - Byi=a+TIx; +¢

I-Byi=a+TIx; +e

(I=8)"1=B)y:=([I-B)" (a+Tx; +e)
yi=(I-08)"(a+Tx; +¢€) (1.3)

S I R

The preceding calculation assumes that the matrix I — 3 has an inverse. Surprisingly, the
existence of (I — 3)~! is guaranteed by the model. The proof hinges on the specifications
that x; and €; are independent, and that ¥ = cov(€;) is positive definite.

Theorem 1.1 Model (1.1) implies the existence of (I —3)7".

Proof y;=a+By;+Ix;+e¢; yields (I-03)y; = a+I'x; +¢€;. Suppose (I—3)~! does
not exist. Then the rows of I — 3 are linearly dependent, and there is a ¢ x 1 non-zero
vector of constants a with a’ (I — 3) = 0. So,

0 = a'(I-B)y;=a'a+a'I'x;+a'e
= Var(0) = Var(a'T'x;)+ Var(a'e;)
=0 = aTl'®JT ata Pa

But the quantity on the right side is strictly positive, because while T®,I'" = cov(I'x;)
is only guaranteed to be non-negative definite, W is strictly positive definite according to
the model. Thus, the assumption that I — 3 is singular leads to a contradiction. This
shows that (I — 3)~! must exist if the model holds. W

Sometimes, the surface defined by |I — 3| = 0 is interior to the parameter space, and
yet cannot belong to the parameter space because of the other model specifications. Thus
it forms an unexpected hole in the parameter space. The pinwheel Model () on page
whatever provides an example.

Now that the existence of (I — 3)~! is established, Expression (1.3) may be used to
calculate expected values, variances and covariances. Expressing the results of routine
calculations as partitioned matrices,
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(1.4)

_ Vo (BB I,
v+Apup = E(Fz) - ( E(Yz) ) - ( (I_ﬁ)—l (Oé—l-Fum) )
p = Ed)=v+App
® = cou(F;) = < cov(x;) ‘ cov(X;,yi) ) _ ( b, ‘ ‘ﬁxI‘T(I _B)IT )
Z | coulys) (T-p) ' (Te,I" +¥)1-6)'7
Y = cou(d) = A®AT +Q

The parameter matrices may be divided into three categories: those appearing only in
p = E(d;), those appearing only in 3 = cov(d;), and those appearing in both g and X.

Appearing only in p W, O,V
Appearing only in X b, U O
Appearing in both B, T A

Clearly, the parameters appearing only in g must be identified from the k& mean
structure equations or not at all. Even assuming the best case scenario in which 3, T" and
A can be identified from ¥ and thus may be considered known, this requires the solution
of k equations in k + p + ¢ unknowns. Since the equations are linear, there is no need
to invoke the parameter count rule. For every fixed set of (3,T, A) values, infinitely
many sets (u,,a, ) yield the same vector of expected values p. Thus, the means and
intercepts in the model are not identifiable.

Not much is lost, because usually the matrices 3, I' and A are of primary interest, and
these (or useful functions of them) may potentially be recovered from 3. So the standard
solution is to re-parameterize, replacing the parameter set (®,, ¥, Q, 8, T A, u,, o, v)
with (®,, ¥, Q,3,T',A, k), where Kk = p = v + App. Then k is treated as a nuisance
parameter to be estimated with the vector of sample means where technically necessary,
but otherwise ignored.

A useful way to express the re-parameterization is to re-write the equations of Model (1.1),
centering all the random vectors. Starting with the latent variable part,

yi = (I — ﬁ)_l (OL + I‘Xi + 61')
= I-8)'"a+Ix;—Tu, +Tu, +€)
& yi—(I=-8)" (a+lTy,) = I-8)7"(T(xi—p,)+e)
& i = (I-0)7(I% +e)
= 30’1 = ﬂi‘ +T'x; +e;,

4A system of linear equations with more unknowns than equations has either infinitely many solutions
or none at all. The option of no solutions is ruled out because the pair (u,X) is actually the image of
one particular set of parameter matrices in the parameter space. More details about mappings between
the parameter space and the moment space are given in Chapter 6.
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where putting a ¢ above a random vector means it has been centered by subtracting off
its expected value. Automatically we have

Fi=F, —pp= (c) .
Y;

For the measurement part of the model,

di = V—l—AFz—'—el
& di—W+App) = AF; —pp)+e

Thus, a centered version of Model (1.1) is 100% equivalent to the original. A surrogate

for Model (1.1) is obtained by simply dropping the letter ¢ over the random vectors, and
writing

yi = Byi+Ixi+e€ (1.5)
- (5)

yi
d; = AF;+e;,

where E(x;) = 0, and all other specifications are as in Model (1.1). This will be called
the Centered Surrogate Model. 1t is a good substitute for the original because

e It hides the nuisance parameters p,, a and v, which can’t be identified anyway,
and are essentially discarded by a re-parameterization.

e The remaining parameter matrices are identical to those of the original model.

e The covariance matrix X of the observable data (given in Expression 1.4) is identical
to that of the original model.

e Special cases of X that are used in applications easier to calculate.

It must be emphasized that (1.5) is not a realistic model for almost any actual data set,
because most variables don’t have zero expected value®. Rather, it’s a substitute for a
re-parameterized version of the original Model (1.1), one that’s more convenient to work
with. This explains why structural equation models are usually written in centered form,
with zero means and no intercepts, and why some structural equation modeling software
does not even allow for models with means and intercepts.

5Some authors suggest that the observable data have been centered by subtracting off sample means,
so that they do have expected value zero. That would explain why v + Apr = 0, but not why pp is
necessarily equal to zero.
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1.4.3 An additional re-parameterization

In general, the parameters of the centered surrogate model are still not identifiable. In
most cases, even after restricting the parameters based on modeling considerations, further
technical restrictions are necessary to obtain a model whose parameters are identifiable.
Like centering, these restrictions should be viewed as re-parameterizations, and the models
that result should be viewed as surrogates for the original model. But unlike centering,
which does not affect the parameters appearing in the covariance matrix, the second
level of re-parameterization affects the meaning of the remaining parameters. General
principles will be developed in later chapters, but here is a simple example to illustrate
the idea.

Example 1.4.1 Blood Pressure

Patients with high blood pressure are randomly assigned to different dosages of a blood
pressure medication. There are many different dosages, so dosage may be treated as
a continuous variable. Because the exact dosage is known, this exogenous variable is
observed without error. After one month of taking the medication, the level of the drug
in the patient’s bloodstream is measured once (with error, of course), by an independent
lab. Then, two measurements of the patient’s blood pressure are taken in the doctor’s
office. The measurements are taken on different days and by different technicians, but
with exacly the same equipment and following exactly the same measurement protocol.
Thus, the two blood pressure readings are thought to be equivalent as well as having
independent measurement errors.

Figure 1.3 shows a path diagram of the model, with X representing drug dosage, Y;
representing true blood level of the drug, and Y, representing the patient’s average resting
blood pressure.

Figure 1.3: Blood pressure path model

€1 €2 €3

€1 €9

The original model for this problem may be written in scalar form as follows. Inde-
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pendently for i =1,...,n,

Yiin = ar+7Xi+en (1.6)
Yio = oo+ BY1+¢€0o
Vii = mi+MYii+e
Vie = va+AYio+eo

Vis = 1+ XY +eis,

where E(X;) = g, Var(X;) = ¢, all error terms are independent with expected values
equal to zero, Var(e;1) = o1, Var(e;2) = ¢a, Var(e;1) = wy, and Var(e;2) = Var(e;3) =
ws. The equal intercepts, slopes and intercepts for V5 and V3 are modeling restrictions,
based on the belief that V5 and V3 really are equivalent measurements.

Again, this is the original model. In a typical application, a surrogate model would be
presented, both to the reader and to the software. It would be in centered form, with the
coefficients A\; and Ay both set equal to one. There might be a brief reference to “setting
the scales” of the latent variables®. Here is a more detailed account of what is going on.

How does the surrogte model arise from the original model? The first step is to
re-parameterize by a change of variables in which each variable is transformed by sub-
tracting off its expected value, and then any notational evidence if the transformation
is suppressed. The result is a centered surrogate model like (1.5). Before further re-
parameterization, let us verify that the parameters of the centered model are not iden-
tifiable. It passes the test of the parameter count rule, because the covariance matrix
contains ten parameters and has ten unique elements. So there are ten covariance struc-

ture equations in ten unknowns.
The covariance matrix ¥ = [0;;] of the observable variables d; = (X;,V; 1, Vi, V;:,)T
is
¢ YALP By ByA2¢
(V2 + 1) AT+ wr (V20 + 1) BAL s (V20 + 1) BAL A (1.7)
(8292 + 821 + 1h2) A} + wa (82720 + B2 +102) A |- '
(5272425 + 8%y + 1/12))\5 + w2

The model imposes three three equality constraints on the covariance matrix: o153 = 014,
093 = 094 and o33 = o034. This effectively reduces the number of covariance structure
equations by three, so that to show identifiability it would be necessary to solve seven
equations in ten unknowns’. By the parameter count rule, a unique solution is impossible
except possibly on a set of volume zero in the parameter space. So the parameter vector
is not identifiable.

6See for example Bollen, get reference from language paper.

"This idea is a bit subtle. The o;; quantities should be viewed as images of a single, fized point 6y in
the parameter space. So if the model implies 013 = 014 because they both equal Sy\3¢, it means that o3
and o4 both represent the same real number. At this point, parameter symbols like 8 and ~ represent
fixed constants too, because they are elements of 8y. But then when the attempt is made to recover 6
from 3(6) by solving equations, parameter symbols like 5 and ~ are treated as variables, while the o;;
quantities remain fixed constants. Chapter 6 discusses mappings back and forth between the parameter
space and the moment space.
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If this argument is not entirely convincing, the table below gives a numerical example
of two different parameter vectors (with v, 5, A; and A all non-zero) that yield the same
covariance matrix.

vOB A A U Y 9w wo
0,12 4 1 1 4 16 1 1 1
0,11 2 2 4 1 1 1 1 1

Both parameter vectors yield the covariance matrix

1 2 8 8
2 9 32 32
8§ 32 145 144
8 32 144 145

E:

By Definition 0.5, the parameter vector is not identifiable.
The next step is to re-examine the model equations in (surrogate) centered form,

Yii = 7Xiten (1.8)
Yio = BYii+ep

Viin = AMYii+ein

Vie = AYia+ein

Vis = XYiat+es

and carry out the standard re-parameterization that yields Ay = Ay = 1, purchasing
identifiability. Expressing the re-parameterization as a change of variables will make it
easier to trace the connection between the parameters of the original model and those
of the re-parameterized model. First note that on modeling grounds, we are sure that
/\1>0811d)\2>0.

Let Y, = A\Yi1 and Y/, = AYj». The primes just denote a new (transformed)
random variable. Then from the first equation of (1.8),

YZl = (M) Xi + M€
= YXite,

From the second equation of (1.8),

Yy = MfYii+ doeio
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Using Y/} = M Yi1 and Y/, = AYj, and putting it all together, the equations of the
second level surrogate model are

@.:
~
—_

= YXi+e, (1.9)
Y;/Q = B/Yif1 + 6;,2

Vii = Y +en

Vie = Y;lg + €2

Vis = Yiy+eis,

where
Y = A (1.10)
wi = Vm’(d,l) = A%Qﬁl
Ao f3

A [

g = N
wé = Var(e;ﬂ) = )\31/12
No— 1
Ay, = 1

The only parameters of the original model that are unaffected are w; and ws.

The primes are now suppressed, resulting in a model that looks like (1.8) with A\; =
A2 = 1. The parameters of this model have the same names as some parameters of the
original model, but actually they are functions of those parameters and other parameters
(A1 and Ay, in this case) that have been made invisible by the re-parameterization. In
terms of the new parameters, the covariance matrix X is

¢ oL Brye Bryo
Yo Y+ w4+ P (Vo +11)p (Vo +11)B (1.11)
Bye  (Vo+v)B BP0+ [P+ wa + s B2+ B2+ |
Bye  (Vo+1)p B2y20 + B2Ur + e BP0+ BPy + wa + 1o

It is easy to solve for the new parameters in terms of the variances and covariances o;;,
showing that the functions of the original parameters given in (1.7) are identifiable.
Moreover, because the covariance matrix (1.11) is just the covariance matrix (1.7)
written in a different notation, the second level surrogate model (1.9) imposes the same
constraints on the covariance matrix that the original and centered surrogate models do.
These include the equality constraints 13 = 014, 023 = 024 and 033 = 034. As described in
Chapter 7, treating these constraints as a null hypothesis provides a way of testing model
correctness. Rejection of that null hypothesis would cast doubt on the original model.
The meanings of the parameters of the surrogate model are clear from the identities
in (1.10). The crucial parameters v and § are multiplied by constants that are not just
unknown, they are un-knowable except for being positive. Thus, it will be possible to make
reasonable inference about whether these regression coefficients are positive, negative or
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zero. But parameter estimation as such is a meaningless exercise. It is useful only as an
intermediate step in the construction of hypothesis tests.

Actually, not much is lost here. It may be impossible to estimate the the parameters
of interest®, but recall Figure 1.2. The straight-line relationships of the original model
are at best approximations of the non-linear functions that occur in nature. So one may
hope that conclusions about the signs of regression coefficients will apply to whether the
true relationship is monotone increasing or monotone decreasing. By the way, this hope
is all you ever have with linear regression, as well.

So on the surface, setting \; = Ay = 1 looks like either an arbitrary restriction of the
parameter space, or a measurement model that is very difficult to defend. But in fact
it is a very good re-parameterization, resulting in a surrogate model whose parameters
are not only identifiable, but also reflect what can be known about the parameters of the
original model. It is very helpful to express the re-parameterization in terms of a change
of variables, because that reveals how the apparent suppression of A\; and Ay caused them
to appear in the remaining model parameters. This was not at all obvious.

Fortunately, re-parameterizations like this usually do not need to be carried out ex-
plicitly. It is common practice to write the model in centered form from the beginning, set
one factor loading” for each latent variable equal to one, and then check parameter iden-
tifiability. This is fine, provided that the process is understood as a re-parameterization
with cascading effects on the coefficients linking the latent variables to one another and
to the other observable variables in the model.

As alternative to setting factor loadings equal to one, the centered surrogate model
may be re-parameterized so that the variances of transformed latent variables are equal
to one. That is, if F} is a latent variable with variance ¢;;, the change of variables
is I} = \/gb_]]FJ This device has advantages and disadvantages. Further discussion is
deferred until Chapter 3, which focuses upon the measurement model that links latent to
observable variables.

1.4.4 The blood pressure example with Sage

Sage is an open source symbolic mathematics software package. Use of such software
can greatly ease the computational burden of structural equation modeling. This section
assumes the introduction to Sage in Appendix B. Like all the Sage material, it may be
skipped without loss of continuity. Since this is the first example in the textbook proper,
it contains quite a bit of extra detail.

Writing the equations of the centered surrogate model in matrix form, the latent

80ne might hope that in a different re-parameterization,  and 3 might appear unaltered as parameters
in the new model. But the numerical example shows that v and [ are not identifiable, and hence by
Theorem 0.1, consistent estimation of them is out of the question.

9This terminology anticipates Chapters 2 and 3. A factor loading is a coefficient linking a latent
variable to an observable variable.
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variable part is

Yi = B Yi + r X;  * €
Yia B 0 0 Yia Y A €1
(i) = (50) i) = (3) o+ ()

and the measurement part of the model is

d; = A F; + e
Xz' 1 0 0 Xz €i,1
Vm . 0N O Y;‘,l €2
Vi N 0 0 X Yio + €i3
‘/;,3 0 0 A Xi,3 €ia

For the measurement model equations to make sense, it is necessary for the distribution
of e;1 to be degenerate at zero; that is, Pr{e;; = 0} = 1. This will be accomplished by
setting Var(e;1) = 0.

The covariance matrix ¥ = cov(d;) is the same under the original model and the
centered surrugate model. To calculate it, first download the sem package.

sem = ’http://www.utstat.toronto.edu/ brunner/openSEM/sage/sem.sage’
load(sem)

evaluate

Then set up the parameter matrices ®, I', B, ¥, A and 2. Because these matrices contain
so many zeros, the ZeroMatrix function is used quite a bit to create symbolic matrices
that initially contain nothing but zeros. Then, non-zero elements are assigned using var
statements. First comes ®, which is 1 x 1.

# Set up matrices: p =1, q=2, k=14
# Remember, matrix indices start with zero
PHIx = ZeroMatrix(1,1); PHIx[0,0] = var(’phi’); show(PHIx)

evaluate
(¢)

The matrix I' is 2 x 1.
GAMMA = ZeroMatrix(2,1); GAMMA[O,0] = var(’gamma’); show(GAMMA)

evaluate

(5)

The matrix B is 2 x 2.
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BETA = ZeroMatrix(2,2); BETA[1,0] = var(’beta’); show(BETA)

evaluate
00
5 0

The 2 x2 matrix ¥ can be created directly with the DiagonalMatrix function; the default
symbol is a .

PST = DiagonalMatrix(2); show(PSI)

evaluate
Yy 0
0 9y
The matrix A is 4 x 3.

LAMBDA = ZeroMatrix(4,3); LAMBDA[O0,0] = 1 ; LAMBDA[1,1] = var(’lambdal’
LAMBDA[2,2] = var(’lambda2’) ; LAMBDA[3,2] = var(’lambda2’)
show (LAMBDA)

evaluate
1 0 0
0 XN O
0 0 X
0 0 X

The matrix £ = cov(e;) has Var(e;;) = 0, so that the observable variable X; can also
appear in the latent variable model.

OMEGA = ZeroMatrix(4,4); OMEGA[1,1] = var(’omegal’)
OMEGA[2,2] = var(’omega2’); OMEGA[3,3] = var(’omega2’)

show (OMEGA)
evaluate
0O 0 0 0
0wy 0 O
0 0 wy O
0 0 0 wy

Following the two-stage model formulation, the next step is to calculate ® = cov(F;).
Then ® will be used as an ingredient in the calculation of 3.
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# Calculate PHI = cov(F)
PHI = PathCov(Phi=PHIx,Beta=BETA, Gamma=GAMMA,6Psi=PSI)

show (PHI)
evaluate
¢ Yo Byo
Yo Yo+ (V2o +11)B

Byo (Vo+n)B B+ B2 + s

Now, X is calculated from ®, A and €2, yielding Expression (1.7). T used Sage to generate
the I¥TEXcode for the matrix by double-clicking on the object in the Sage worksheet, and
then manually deleted the lower triangular part of the matrix so it would fit better on
the page. It was still a lot better than typesetting the matrix myself.

# Calculate SIGMA = cov(D)
SIGMA = FactorAnalysisCov(Lambda=LAMBDA,Phi=PHI,Omega=0MEGA)
show (SIGMA)

evaluate

¢ YA ByAag By A2
YAP (VPP +U1)A] + wy (V) 4 1) BA1 A (V20 + 1) BA1 A2
Brded (Vo +Y1)BMA (82770 + B2 + Y2) A + wo (B*72) + B2 + Y2) A5
Byt (V2P + 1) BAiA (82720 + 821 + o) A3 (82720 + BP1 + 1h2) A3 + wo

To generate the example of two numerically different parameter sets that yield the same
3., I looked at the equations in (1.10) to find distinct @ vectors corresponding to the
same @'. There was a bit of trial and error, and Sage made it really convenient to do the
numerical calculations. A Sage object like a matrix may be treated as a function of the
symbolic variables that appear in it.

SIGMA (gamma=2,beta=4,lambdal=1,lambda2=1,psil=4,psi2=16,
phi=1,omegal=1,omega2=1)

evaluate

1 2 8 8
2 9 32 32
8 32 145 144
8 32 144 145

SIGMA (gamma=1,beta=2,lambdal=2,lambda2=4,psil=1,psi2=1,
phi=1,omegal=1,omega2=1)
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evaluate

1 2 8 8
2 9 32 32
8 32 145 144
8 32 144 145

The same Sage capability was used to generate Expression (1.11), the re-parameterized X
matrix under the second-level surrogate model. Rather than starting from the surrogate
model equations (1.9) and re-doing the whole calculation, I just evaluated the ¥ of (1.7)
at )\1 = )\2 =1.

SIGMA (1lambdal=1,lambda2=1)

evaluate

¢ Yo pyé By
Yo Vi +wr + (Vo +11)B (V¢ +11)p
Byd (Vo +1v)B B0+ B2+ wr + 4y BP92¢ + B2y + 1y
Bye  (Yo+ )P B2 P+ B + by [PyPh + [Py + wa + 1y

The covariance structure equations may now be solved by inspection, verifying identifi-
ability of the parameters in the re-parameterized model. But it is instructive to solve
the equations using Sage. The necessary ingredients are a list of equations and a list of
unknown parameters for which to solve.

The sem package has the specialized function Parameters for extracting parameters
from matrices, so they don’t all need to be re-typed. It works on the original parameter
matrices, not on computed matrices like ® or 3. For example, the 4 x 3 matrix A contains
just two parameters, A\; and \,.

Parameters(LAMBDA) # Don’t need these - just an example

evaluate

(A1, A2)

param = [phi,beta,gamma] # Start with this
param.extend (Parameters (PSI))

param.extend (Parameters (OMEGA))

param

evaluate

((#5757%%01,%,@1,@2)
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Notice how the list param has been extended by adding the contents of ¥ and €2. For
big matrices with lots of parameters, this is a real convenience.

The next step is to set up the equations to solve. The Sage solve function needs the same
number of equations as unknowns, so giving it the full set of 10 equations in 7 unknowns
will not work. But we’ll set up all 10 equations anyway to see what happens.

# Now set up equations to solve

S = SIGMA(lambdal=1,lambda2=1) # Sigma under surrogate model
S2 = SymmetricMatrix(4,’sigma’)

eqns = [] # Empty list

for i in range(4): # 1 goes from 0 to 3
for j in range(i+1): # j goes from O to i
item = S[i,j]==S2[i,j] # An equation
eqns . append (item) # Append to list of equations

eqns # Not easy to look at, but there is a scroll bar

evaluate

(¢ = 011,70 = 012,720 + w1 + Y1 = 029, ByP = 013, (V2 + V1) B = 023, 5772 P + %1 + wa + o = 033,

The object eqns is a list of equations; you can tell it’s a list because it’s enclosed in
brackets. As the comment statement says, it’s not very easy to look at, but there is
a scroll bar. So in a Sage environment, you can examine the output that runs off the
page in this document. Here’s a more convenient way to look at the covariance structure
equations.

for item in eqns: item

evaluate

¢ =011

YO =012

Y2p + wy + Py = 099

By¢ = 013

(V¢ + 1) = 093

B2y + 21 + wo + g = 033
Byp =014

(V2o +11)f = om

B2 p + (21 + 1y = o34
B2y + 211 + wo + g = o

It would seem easy to ask Sage to solve these ten equations in seven unknowns. It’s easy
to ask, but the answer is not what we’re looking for.

solve(eqns,param)




1.4. MODELS: ORIGINAL AND SURROGATE 159

evaluate

[

That little rectangle is a left square bracket followed by a right square bracket; that is, it’s
an empty list (empty set), meaning that the system of equations has no general solution.
This happens because, for example, the fourth equation in the list says Sv¢ = 013, while
the seventh equation says fv¢ = 014. To Sage, 013 and 014 are just numbers, and there
is no reason to assume they are equal. Thus there is no general solution.

Actually, because we think of the o;; values as arising from a single, fixed point in the
parameter space, we recognize o3 = 014 (and also 093 = 094 and o33 = 044) as realities —
distinctive features that the model imposes on the covariance matrix 3. But Sage can’t
know this unless we tell it, and I don’t know how to do that. It’s easiest to just eliminate
the redundant equations.

extra = [9,7,6] # Redundant equations, starting with index zero
for item in extra: show(eqns[item])

evaluate

B2+ B*1 + wo + o = o
(Vo +11)B = 0o
Byo = 014

Removing the the extra equations from the list and then taking a look ...

for item in extra: eqns.remove(eqns[item])
for item in eqns: item

evaluate

¢ =on

Yo =012

Y2+ wi + P = 029

By = 013

(V2h + 1) = 023

B2y + 211 + wo + g = 033
B22p + 21 + 1y = o

Now it is possible to solve the remaining seven equations in seven unknowns. The solution
will be easier to use in later calculations if it is obtained in the form of a dictionary. To
see if the solution is unique, first check the length of the list of dictionaries returned by
solve.
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# Return solution as l1ist of dictionaries
solist = solve(eqns,param,solution_dict=True)
len(solist)

evaluate
1

There is only one item in the list of dictionaries; it’s item zero. The key of the dictionary
is the parameter, and the value is the solution, which for us will be some function of
the o;; quantities. Dictionary entries take the form Key-Colon-Value. Dictionaries are
inherently unordered.

sol = solist[0]; sol # Item O of the list; there’s just one.

evaluate

011012023 — 012013 013 g12 012023—013022 012034013023
o S ,Wo 1 033 — O, LW L —
{¢ 1, Y 011013 B g1p7 72 0 33 34,7 - g W 013 yPa 012

The dictionary format makes it convenient to refer to the solution for a parameter — for
example, the solution for 1),.

sol[psi2]

evaluate

012034—013023
012

Dictionaries are hard to look at when they have a lot of items. Here is one way to take a
quick look at a solution. Dictionary entries are expressed as tuples of the form (Parameter,
Solution). Since the for loop below is going through the list of parameters, the output is
in that order.

for item in param:
item, sol[item]

evaluate

,011
U_

)
v.55)

¢ 011012023 — 0%2 013
1 011013

¢2 012034 — 0'13023>
Y

|Q

012

Wi, —

/-\/\/—\/—\/—\/—\

012023—013022
013

w2,0'33 - 034)
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That’s okay for a quick look, and the syntax is intuitive. Equations are nicer, though.
In the following, realize that nothing is getting assigned. Rather, item==sol[item] just
causes that equation to be displayed.

for item in param: item==sol[item]

evaluate
¢ =011
B = 2
g12
v = 012
g11 5
w _ 011012023—075013
1 011013
,l/} — 012034—013023
2 g12
012023—01302¢
wl —— 12023 13022

J13
Wo = 033 — 034

The dictionary sol gives parameters in terms of the o;; values. It can also be useful to
have a dictionary that goes in the other direction, where the input is in terms o;; and
the output is in terms of the model parameters. The function SigmaOfTheta sets up such
a dictionary; see Appendix B or try SigmaOfTheta? in a Sage environment for more
detail. In the following, the dictionary is in terms of the original (not surrogate) model
parameters.

# Original covariance matrix as a function of theta
theta = SigmaOfTheta(SIGMA)

# theta is a dictionary

# For example, sigmal2 = gamma lambdal phi
sigmal2(theta)

evaluate

YLD

Such a dictionary can be used to evaluate big, messy functions of 3, including the solutions
in the dictionary sol.

# What is the solution for psi2 (that’s psi2-prime) in terms of
# ORIGINAL model parameters?
sol[psi2] (theta)

evaluate

(Vo411 ) B2y M A30— (822 ¢+ B +4b2 )y M Ao
VA1
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Simplify(_) # Underscore refers to the last item

evaluate
N3¢

Where in the original parameter space is v} identifiable? These are the points in the
parameter space where the denominator of the solution (that’s o11013) is non-zero. Eval-
uating the denominator as a function of the model parameters 6,

# Where is psil-prime identifiable?
denominator(sol[psi2]) (theta)

evaluate

57)\%252

Thus, 3, v and Ay must all be non-zero in order for ¥, = A4, to be identifiable. This is
the end of the Sage example.

1.4.5 Yet another type of surrogate model

In some structural equation models, variables that are obviously measured with error are
assumed to be observable. Invariably, the assumption is adopted so that the parameters
of the resulting model will be identifiable. Since it is practically impossible to measure
anything without error, almost every model that assumes error-free measurement is either
dangerously'® unrealistic, or a surrogate for some model that is more reasonable.

For an example, we will turn to Section 0.11 of Chapter 0, where extra response
variables were used to identify the parameters of regression models with measurement
error in the explanatory variables. Consider a centered version of model (53) on page 106.

W, = Xi+e (1.12)
Yii. = B/iXi+en
Yio = [BoXi+ep

The path diagram is shown in Figure ??7. To give this some content, consider the question
of whether smoking cigarettes can help you lose weight. We will limit the study to young
adults who smoke at least occasionally, and who do not exercise regularly. Suppose that
the latent variable X; is amount of smoking, W; is reported number of cigarettes smoked
daily, Y;; is body mass index'!, and Y is resting heart rate. Interest is in the connection

10Gection 0.7 in Chapter 0 points out the disastrous effects of ignoring measurement error in multiple
regression, and it is natural to expect similar things to happen in a more general setting. Except possibly
for experimentally manipulated exogenous variables, assuming perfect measurement is not something to
be done lightly.

1Weight in kilograms divided by squared height in meters. Big numbers mean you are heavier for your
height.
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Figure 1.4: Path diagram of the surrogate model for credit card debt

e € ] 82
W Y1 Yz
B, B,

between amount of smoking and body mass index (BMI), represented by ;. Heart rate
(known to be increased by smoking) is an extra response variable.

Notice that in W; = X; + e;, the factor loading for equals one; this means that it’s
a surrogate model. As described starting on page 106, the parameters of this model are
identifiable — but it’s far from realistic. Body mass index surely cannot be measured
without error, because height and weight are measured with error. As for resting heart
rate, it will vary over the time of day, and also with things like ambient noise level and
recent exertion.

Figure 1.5 depicts a somewhat more reasonable model for the smoking example, and
it is proposed as the original model. In this model, Y;; is true body mass index, while V; ;
is the measured version. Y; 5 is true average resting heart rate, while V; 5 is the snapshot
measured with error that appears in the data file. The equations of the proposed original
model are

Wi = n+MXi+en (1.13)
Yii. = o +5Xi+e€n

Yio = oo+ X, +e€pn

Vit = va+ XY +en

Vie = 3+ A3Yi2+es,

where Var(X;) = ¢, Var(e;1) = wi, Var(e;2) = wq, Var(e;s) = ws, Var(e;1) = ¢ and
Var(e;2) = 5. As the path diagram indicates, all error terms are independent of X; and
of one another. Because W;, V;; and V; 5 are direct measurements of the corresponding
latent variables, it is safe to assume that the factor loadings A;, Ay and A3 are all positive.

Centering the variables and setting all three factor loadings to one yields a second
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Figure 1.5: Path diagram of the original model for credit card debt

level surrogate model that preserves the signs of f; and [, though not their actual
values. There are now eight parameters, but still only six covariance structure equations.
By the parameter count rule, the parameters of this model cannot be identified. However,

Viin = Yii+eio
= (1Xi+e€)+eir
= BiXi+ (€1 +ei2)
= /X, + 6;71.

Re-labelling Vi, as Y}, we have the model equation Y, = 81 X; + € ;, with Var(e; ;) =
Y1 = Y1 +wy. The same procedure yields Y/, = B2 Xj+¢€} ,, with Var(e],) = ¥4 = o +ws.

Dropping the primes as usual to hide the evidence of our strange activities, we arrive
once more at the model equations (1.12). All along, this model was a surrogate for the
original model of Figure 1.5 and Equations (1.13). It never really assumed that credit card
debt and vehicle value were observable. Rather, the change of variables e;’l = €1+ €io
was carried out to obtain the re-parameterization ¢, = ; + wy, and the change of
variables 6272 =€, 2+ €;3 was carried out to obtain the re-parameterization 14 = 19 + ws.
Notationally, the result looks like a model with error-free measurement of Y;; and Y,
— but in this case appearances are deceiving. Surrogate models are never to be taken
literally.

The beginning of Section 0.7 of Chapter 0 suggested that in multiple regression, mea-
surement error in response variables may be safely ignored, and the result was a useful
surrogate model. The same principle applies here. In general, suppose that an endogenous
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variable Y; ; in the latent variable model is a purely endogenous variable, in the sense that
there are no arrows from Y; ; to any other latent variable. In addition, suppose that Y; ;
is measured with error in a single observable variable V; ;, so that after centering,

_ T
Yij = 1;Xi+e6;
Vii = AYij+ ey,

where r; = r;(3,T') denotes row j of the matrix (I — 3)7'T"; see Expression (1.3) on
page 146. In addition, suppose that ¢; ; and e; ; are independent of one another and of all
other exogenous variables in the model, with Var(e; ;) = ¢; and Var(e; ;) = wj.

At this point it would be possible and legitimate to implicitly re-parameterize by
setting A\; = 1 as in the Credit Card Debt example. As an alternative, the absorption
of the un-knowable factor loading will be accomplished by the re-parameterization that
combines 1; and wj, all in one step.

Vij = NYijte
)\j(roXi + Ei’j) + ez',j
= (\ry) "X+ (Ve + €i)

a

!/
j .

= T ij

X; + €
with Var(e} ;) = ¢} = )\?wj + w;. The B and v parameters in r; are also re-expressed in
this step. Now V; ; may be called Y}, without doing any harm. The result is a new model
in which

e The parameters are functions of the parameters in the original model.

e The dimension of the parameter space is two less, so the new parameter vector
should be easier to identify.

e The meaning of the new parameters is clear. The [ and v parameters in r; are
positive multiples of what they were before, while any separate meaning that ),
and w; may have had is lost. They were probably not knowable anyway.

e After dropping the primes, it looks like Y ; is measured without error, but that is
an illusion. No such claim was ever intended.

The situation is shown graphically in Figure 1.6. When a latent endogenous variable does
not affect any other latent variables and is expressed by only one observable variable, it
is acceptable to drop the latent variable from the model, and run all the arrows directly
to the observable variable.

Comments Virtually all structural equation models used in practice are surrogate mod-
els, and most of them have the features described here. While the re-parameterizations
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Figure 1.6: Direct path to the observed variable
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are very standard, the terms “original model” and “surrogate model” are not. I made
them up, and they will not be found elsewhere!2.

Experts in the field undoubtedly know that what’s happening is a series of re-parameterizations,

but this is often not acknowledged in textbooks. Instead, the process is presented as a
harmless restriction of the parameter space, adopted in order to identify the parameters.
I think it’s really helpful to point out how the re-parameterizations are accomplished by
change-of-variable operations. This reveals effects on other parameters in the model (not
just the ones that seem to be restricted), and makes it possible to specify the meanings
of the new parameters in terms of the parameters of the original model.

1.5 Maximum likelihood

In most structural equation modeling software, the default method of parameter estima-
tion is numerical maximum likelihood®. The exogenous variables and error terms are
assumed multivariate normal, and consequently the joint distribution of the observable
variables is multivariate normal too. It will be seen in theorem ?? that when the nor-
mal assumption is clearly wrong, maximum likelihood estimates based on normality are
still consistent. They are also asymptotically normal under conditions that are widely
accepted. This makes bootstrap standard errors potentially very useful when the as-
sumption of normality is questionable. Bootstrapping in lavaan is easy, and theoretically
based robust standard errors are also available.

12That is, unless others find the terminology useful and it catches on. It’s always possible, I suppose.
13The reader is referred to Section A.6.3 in Appendix A for material on maximum likelihood and related
concepts.
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1.5.1 Estimation

Let dq,...,d,, be a random sample from a k-dimensional multivariate normal distribution
with expected value g and varance-covariance matrix 3. The likelihood is

L(p,X) = H

i=1

= |Z|7v2(27) "2 exp {_% Z(di —p) ' 27(d - “’)}

i=1

rzﬁ exp{—§<d W)

= B en) T e~ {#(E ) + (@ - p) B - )}

where 3 = L3~ (d; —d)(d; —d) " is the sample variance-covariance matrix.

Let 8 € © be a vector of parameters from a structural equation model; © is the
parameter space. For example, 8 could be the the unique elements in the parameter
matrices in the original Model (1.1), restricted only by modeling considerations. Then the
likelihood is a function of @ through p = 1(0) and 3 = 3(0), as given in Expressions (1.4).

Maximizing the likelihood over @ is equivalent to minimizing the minus log likelihood

—0(0) = glog|2(0)]+%klog(27r)+gtr(f32(0)1) (1.14)

0 (@ u(6) 2(6) (@ o))

For any set of observed data values, the minus log likelihood defines a high-dimensional
surface floating over the parameter space ®. The maximum likelihood estimate 6 is the
point in ® where the surface is lowest. One might try the calculus approach, partially
differentiating the log likelihood and setting all the derivates to zero. This ypically yields
a system of equations that nobody can solve, so it really does not help us locate the point
where the minimum value ofccurs. To find the point numerically, choose a starting value
as close to the answer as possible and move downhill. Choice of good starting values is
important, because the likelihood surface can have many local maxima and minima, and
other topological features that are “interesting,” but not in a good way.

Ideally, the numerical search will terminate at the unique minimum of the function.
Geometrically, the surface at that point will be level and concave up. Analytically, the
gradient will be zero, and the eigenvalues of the Hessian matrix will all be positive. As
described in Appendix A, the Hessian is the observed Fisher information matrix evaluated
at 9 and its inverse is the approximate asymptotic covariance matrix of 0.

When the parameters are not identifiable, this procedure fails. The likelihood is con-
stant on collections of functions of @ that are identifiable. Typically, the numerical search
reaches the bottom of a high-dimensional valley, and at the bottom of that valley is a
contour (think of a winding, invisibly thin river) where the minus log likelihood is con-
stant. The gradient is zero at any point on the surface of the river, but the surface is
not concave up in every direction. It follows that the Hessian matrix has one or more
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eigenvalues equal to zero. The determinant of the Hessian equals zero, and inverting it to
approximate the asymptotic covariance matrix of € is impossible. In this situation, good
software complains loudly**.

Re-parameterization Since the parameters of the original Model (1.1) are not identifi-
able, directly fitting it by maximum likelihood is out of the question. Re-parameterization
is necessary. Following Section A.6.1, the first step is to lose the expected values and in-
tercepts. Let kK = v + Ay, where the partitioned matrix

Hp = ( i _5)1M(Z+Fux) ) '

Under this re-parameterization, the new parameter vector @’ consists of &, plus all the
parameters that appear in 3 — that is, the unique elements of ®,, ¥, Q, 3,T" and A.

Because the new parameter k is exactly p(8), the minus log likelihood is minimal
when k = d, regardless of the values of the remaining parameters. The second line of
Expression (1.14) disappears, and the task is now to minimize the first line with respect
to the parameters that appear in the covariance matrix.

The remaining parameters are still not identifiable in general. Further re-parameterization
is necessary, and the re-parameterizations corresponding to standard surrogate models
are often very helpful. The parameters of a good surrogate model are identifiable func-
tions of the original model’s parameters. After the centering step, re-parameterization
is carried out by a set of change-of-variables operations involving only latent variables.
As a result, the parameters of the original model appear in the covariance matrix only
through functions of @ that correspond to the parameters of the surrogate model. If the
re-parameterizations are well chosen, the maximum of the likelihood under the surrogate
model is identical to the maximum of the likelihood under the original model. If in addi-
tion, the likelihood function achieves its maximum at a point where the parameters of the
surrogate model are identifiable, then the maximum will be unique. The minus log likeli-
hod will be nicely concave up at this point in the parameter space of the re-parameterized
model. The Hessian matrix (observed Fisher Information) will be positive definite, and its
inverse will provide an approximate asymptotic covariance for the estimated parameters
of the surrogate model. This is the main ingredient for Z-tests and Wald tests. The
height of the minus log likelihood at the MLE is used in likelihood ratio tests.

Once the expected values and intercepts have been absorbed into k, we implicitly
estimate the identifiable function x with the vector of sample means d, and then forget
about it, basing all inference upon the sample variance-covariance matrix. This is standard
practice, but it raises a few issues. First, note that while k is a function of the un-knowable
parameters v, a and p,, it is also a function of 3,I' and A. These last three matrices

14This encourages some naive users to simply run their structural equation modeling software without
thinking very hard about identifiability, trusting that if the parameters are not identifiable, the search
will blow up. Unfortunately, the search can blow up numerically for other reasons, and sometimes the
symptoms can be very similar to those arising from lack of identifiability. It is much better to check
identifiability mathematically, before trying to fit the model.
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are often of primary interest. Might d contain some information about them? Are we are
throwing this information away?

The answer is no, provided that the intercept term v is not restricted by modeling
considerations. Suppose that the first line of the minus log likelihood (1.14) is minimized,
regardless of whether that minimum is unique. Now consider the effect of adjusting 3,
I’ or A. The value of the first line will increase or remain the same. Now look at the
second line, recalling that (@) = v + App. Regardless of how the values of the other
parameters change, v can always be adjusted so that d — p(0) = 0. This makes the
second line equal to zero, which is as low as it can be. Therefore, the second line of (1.14)
makes no contribution to the MLEs of parameters appearing in the covariance matrix 3
— that is, provided that v is unrestricted.

Since inference is to be be based on the covariance matrix, it saves mental effort to
employ the centered surrogate model. But we never actually fit the centered surrogate
model. We cannot, because the change of variables involves subtracting expected values
from the observed data, and those expected values (elements of p(6) = k) are unknown.
On the other hand, it is possible to fit an approximate centered model by using the vector
of sample means in place of p(8). That is,

c _
by the Law of Large Numbers. The approximation will be very good for large samples.

Letting dl refer to d; — d for now, the model is that d1, .. dn are a random sample
from a multivariate normal distribution with expected value zero and covariance matrix
3(@). The observations are not quite independent because the same random quantity d
is subtracted from each one, but the covariances go to zero as n — oo. The likelihood
function is

L(®) = H |E\% B exp{ (i.TEﬂ él}

1=1
1o ~ ~
= |3|TV?(2m) k2 ) (d;—d)'=d, —-d
|37 (2m) " exp 2;} ) )
_ —n/2 —nk/2 n Sy L
= |X|7*(2n) exp — 5 tr(EX )¢,
The minus log likelihood is just the first line of (1.14). So, estimating x = p(@) with

d and setting it aside is the same as fitting the approximate centered surrogate model.
Either way, the intercepts and expected values disappear.

1.5.2 Hypothesis testing

z-tests The maximum likelihood estimates are asymptotically normal under general
conditions, so that for a scalar parameter ¢;,

_ 0,0,

ng

P (1.15)
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has an approximate standard normal distribution for large samples, where sy, is the

standard error (estimated standard deviation) of é\j, obtained by taking the square root
of a diagonal element the estimated asymptotic covariance matrix. There are various
good ways to estimate the asymptotic covariance matrix'®. Squaring the z statistic yields
a Wald chi-square statistic with one degree of freedom. Wald tests are the topic of the
next brief section.

Wald tests As described in Section A.6.7 of Appendix A, a linear null hypothesis of
the form Hj : LO = h can be tested using the statistic

W, = (L8, —h)"(LV,LT)" (L6, — h). (1.16)

Under the null hypothesis, W, has an approximate chi-squared distribution with r degrees
of freedom, where r is the number of rows in the matrix L. In the formula, V,, is the
estimated asymptotic covariance matrix of 0; see footnote 15.

Likelihood ratio tests As described more fully in Section A.6.8 of Appendix A, a
large-sample likelihood ratio test of a linear (or under some circumstances, non-linear)
null hypothesis may be based on the test statistic

G? = —2log <L@>> (1.17)

L(0)
— 2(U®) - 1(8y)).

where L(-) is the likelihood function, ¢(-) is the log likelihood, @ is the unrestricted max-
imum likelihood estimate, and 50 is the maximum likelihood estimate restricted by the
null hypothesis. The second line says that the test statistic is just the difference between
two log likelihoods. If the null hypothesis is true, then the approximate large-sample
distribution of G? is chi-squared with 7 degrees of freedom, where 7 is the number of
equalities specified by the null hypothesis.

1.5.3 Testing model correctness

The typical structural equation model implies a covariance matrix 3(6) with properties
that are not necessarily true of covariance matrices in general. For example, the original
and surrogate model for the Blood Pressure example yields the covariance matrix (1.7)
on page 150. In this matrix, 13 = 014, 023 = 094 and o33 = 034; these same constraints
are implied by the surrogate model. The double measurement regression Model (47) and

I5For a classical estimate that depends on multivariate normality of the data, one can use the inverse
of the estimated Fisher information — either Z(6) or J(0) from Section A.6.6 in Appendix A. Robust
estimators like the ones described in Section 5 provide alternatives that do not assume multivariate
normality.



1.5. MAXIMUM LIKELIHOOD 171

the instrumental variables Model (57) also induce equality constraints on their covariance
matrices; see pages 87 and 115 respectively for details.

In all such cases, the model implies that certain polynomials in o;; are equal to zero.
These constraints are satisfied by 33(8) for any 6 in the parameter space, including 6. This
means that the matrix 3(6) (the reproduced covariance matrix) automatically satisfies
the constraints as well. R

With probability one, 3(8) will not be exactly equal to g, but if the model is correct
it should be fairly close. This is the idea behind Joreskog’s (1967) classical likelihood ratio
test for goodness of model fit [35]. The null hypothesis is that the equality constraints
implied by the model are true'®, and the alternative is that ¥ is completely unconstrained
except for being symmetric and positive definite. Note that since a well-chosen surrogate
model implies the same constraints as the original model, this test of model correctness
applies equally to the original and the surrogate model. It is far more convenient to carry
out model fitting using the surrogate model.

Assuming that substantive modeling considerations do not restrict the intercept pa-
rameter v in the general Model (1.1)'7, the likelihood ratio test statistic is written

G* = —2log M

L(S)
=) m) 2 exp—2 {tr(E2(9) ) }

= —2log — ——
Sln2(2m) -z exp 3 {r(857) ]

= n (1og 12(0)] + tr(EX(0) ) — log |&] — k)
— n(tr(f:z(é)—l)—1og|§:2(§)—1|—k;) (1.18)

This statistic is quite easy to compute given 6. In fact, it is common for software to
directly minimize the “objective function” or “loss function”

b(8) = tr(EX(0)™") — k — log |E3(6) | (1.19)

instead of the minus log likelihood!®, and then just multiply the final result by n to get the
likelihood ratio test statistic G2. An advantage of doing it this way is that the numerical
performance of the minimization is not affected by the sample size.

16This is not what he says, but it clarifies what he does say.

17This might not be a completely safe assumption. For example, if two measurements of a latent
variable are truly equivalent, they will have the same means as well as the same variances and the same
covariances with other variables. Overlooking this kind of thing would result in a modest loss of power
in the goodness of fit test.

181f you are a history buff, compare (1.19) to formula (6) on p. 446 in Joreskog’s (1978) classic article [37]
in Psychometrika. Astonishingly, this is almost the same as Formula (6) (same equation number) on p. 446
(same page number) in [35], another classic article by Joreskog in Psychometrika (Joreskog, 1967). The
1967 paper is limited to the special case of factor analysis.
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The test statistic G? is referred to a chi-squared distribution with degrees of freedom
equal to the number of model-induced equality constraints on 3. When G? is larger than
the critical value, the null hypothesis that the constraints hold is rejected, casting doubt
on the model.

To count the constraints, first assume that the parameter vector is identifiable, and
that there are more moment structure equations than unknown parameters. If the number
of parameters is equal to the number of moment structure equations, the model is called
saturated, and this way of testing model fit does not work.

Suppose there are m moments (typically covariances or correlations), and r unknown
parameters in the vector @, with m > r. The degrees of freedom are m — r. To see why
this might hold, suppose that exactly r of the the moment structure equations can be
solved for the » unknown parameters. Substituting the solution into the m — r unused
equations gives m — r equalities involving only o;; quantities. These correspond to the
constraints. Notice that while this is a test of the constraints that the model induces on
the covariance matrix 3, the test statistic can be calculated and degrees of freedom can
be determined without knowing exactly what the constraints are.

If a model fails the G? goodness of fit test, it is common to search for a model that does
fit. Sometimes, the reason for lack of fit can be revealed by residuals formed by subtracting
the elements of ¥ from those of ¥(@). Approximate formulas for standardization are
available. Once the model fits, likelihood ratio tests for full versus reduced models can
be obtained by subtracting G? statistics, with degrees of freedom equal to the number of
additional constraints implied by the reduced model.

The likelihood ratio test for goodness of fit is useful, but as a test of model correctness it
is incomplete. This is because structural equation models imply two types of constraint on
3. equality constraints and inequality constraints. For example, in proving identifiability
for the instrumental variables Model (57) on page 112, the solution (61) includes w =
o11 — ”?;14. Because w is a variance, this means o7 > ‘”;’—3‘;14 =—> 011034 > 013014, an
inequality constraint that is obviously not true of 4 x 4 covariance matrices in general. The
typical structural equation model imposes many inequality constraints on the covariance
matrix.

In general, moment structure equations map the parameter space into a moment space,
which for the classical surrogate models is a space of k X k positive definite matrices. As
the numerical maximum likelihood search moves @ through the parameter space, 3(8)
moves along through a lower-dimensional subset of the moment space where the equality
constraints are satisfied, generally behaving as if it were attracted to 3.

While ¥(80) is forced to obey the equality constraints, it need not obey the inequality
constraints. If the true value of 3 is such that an inequality constraint is not satisfied
(which means the model is wrong), then it is quite possible for 3(0) to cross the boundary
of an inequality constraint. This means that @ leaves the parameter space. Maximum
likelihood estimates that are outside the parameter space make everyone uncomfortable,
if they are noticed. In factor analysis, this phenomenon is called a “Heywood case;” see
page 226.

Example 1.5.1 A negative variance estimate
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Here is a very simple example. Suppose we have two measurements of a latent variable,
like academic ability. The surrogate model equations are, independently for ¢ = 1,...,n,

Wii = Xi+ein
Wio X+ €9,

where all expected values are zero, Var(X;) = ¢, Var(e;1) = wi, and Var(e;2) = ws.
According to the model, the exogenous variables e;;, ;2 and X; are all independent.
A path diagram is shown in the left panel of Figure 1.7. The covariance matrix of the

Figure 1.7: Two measurements of a latent variable

Measurement errors independent | Measurement errors dependent
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N
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observable variables (W; 1, W;5)" is

wi + ¢ ¢ _ [ ou 012
¢ wy + ¢ O12 O )
The model is saturated, with three linear covariance structure equations in three unknown
parameters. The solutions are

¢ = 012
Wi = 011 — 012 (1.20)

W = 0922 — 012,
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so that the parameters are just identifiable. The model imposes no equality constraints on
3., and it is untestable with the classical test of fit. However, since the model parameters
are all variances, the equations (1.20) reveal three inequality constraints: o2 > 0, 017 >
o012 and g9y > 09.

By the invariance principle, explicit formulas for the maximum likelihood estimates
¢, Wy and Wy are obtained by simply putting hats on the Greek letters in (1.20). To see
what could go wrong, suppose that the observable variables W;; and W, 2 have other,
unmeasured common influences in addition to X;, like test anxiety or something. As
discussed in Section 0.4 on omitted variables in regression, the result would be a positive
covariance between e;; and e; 5. We will denote cov(e; 1, €;2) by wiz. The resulting path
diagram is shown in the right panel of Figure 1.7. The covariance matrix of the observable

variables is now
wit+¢ ¢+uwi _ ([ o1 0w
d+wiy wet o o2 O3 )

This second model could well be more realistic than the first, even though the parameters
are not identifiable. There is no doubt that it’s easier to assume zero covariance between
error terms than to guarantee it in practice.

Let’s say that the second model is correct, but we fit the first model anyway. The
model we are fitting says that 015 = ¢, when in fact 015 = ¢ +wi2. Assuming the incorrect
model, the maximum likelihood estimate of w; is W; = 011 — 012. But under the correct
model,

~

w1 011 — 012

a.s.
— 011 — 012

= (w1+9¢)—(¢+wi)

= W — Wi2.

Recall that w; = Var(e;;). For the estimate of this variance to be negative for large
samples, all that’s required is wis > w;. Is this possible (while keeping the covariance
matrix of (e;1,e;2)" positive definite)? Most assuredly. Here’s a numerical example.

w1 W12 . 1 2
W12 W2 N 2 5 '

The point here is that structural equation models imply inequality constraints on the
elements of 3, the covariance matrix of the observable variables. Model incorrectness
can result in violation of these constraints, and cause numerical maximum likelihood
to leave the parameter space. This is a valuable way to diagnose problems with the
model. Of course negative variance estimates are easiest to notice. Chapter 7 treats
model diagnostics in more detail.

1.6 The Brand Awareness Study Re-visted

We return to the Brand Awareness Example 1.2, given in Section 1.2. A major Canadian
coffee shop chain is trying to break into the U.S. Market. They assess the following vari-
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ables twice on a random sample of coffee-drinking adults. The two measurements of each
variable are conducted at different times by different interviewers asking somewhat differ-
ent questions, in such a way that the errors of measurement may be assumed independent.
The latent variables are

X;: Brand Awareness: True familiarity with the coffee shop chain.
X5: Advertising Awareness: Recall for advertising of the coffee shop chain.

X3: True interest in the product category: Mostly this is how much they really like
doughnuts.

Y1: Purchase Intention: True willingness to go to an outlet of the coffeeshop chain and
make an order.

Y5: Purchase behaviour: True number of dollars spent at the chain during the 2 months
following the interview.

There are two observed versions of each latent variable, all based on self-report. All
observed variables were measured on a scale from 0 to 100 except purchase behaviour,
which is in dollars.

Figure 1.8 shows the path diagram for a surrogate model. It is more detailed than
Figure 1.1 on page 140, in that symbols are indicted on the arrows. You can tell it’s
a surrogate model because of the symbol “1” on the arrows linking latent to observed
variables. The model asserts that all measurement here is double measurement.

The model equations in (1.2) on page 141 are the equations of the original model. The
equations of the centered surrogate model corresponding to Figure 1.8 are

Yii = mXiq+ 72X +1Xis+ € (1.21)
Yio = BYii+7uXiz+epe

VVz‘,l = Xi,1 + €1

Wi,2 = Xi,1 + €9

I/Vi,?) = Xi,z + €3

VVz‘,4 = Xi,g + €4

Wis = Xiz+es

I/Vi,(i = Xi,g + €6
Viin = Yii+er
Vie = Yii1+eig
Vis = Yiao+eig
Via = Yia+eio,

where all expected values equal zero, Var(X; ;) = ¢;; for j = 1,2,3, Cov(X, ;, Xix) = djk,

Var(e;;) = wj for j =1,...,10, Var(e;1) = 91, Var(e2) = ¢o. All the error terms are
independent of one another and of the X, ; variables.
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Figure 1.8: Brand Awareness Model One
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Before fitting any structural equation model, one should verify that the parameters
are identifiable. Later chapters this text develop a set of standard rules that would allow
us to do the check by just examining the path diagram in Figure 1.8. These rules are
summarized in (someplace; I have not written it yet). For now, we will do the job from
first principles.

The general two-stage model of Section 1.2 is designed to facilitate two-stage proofs of
identifiability. Disregarding intercepts and expected values as usual and assuming other
details in the model specification (1.1),

e The measurement model is d; = AF; + e;, with cov(F;) = ® and cov(e;) = Q.

e The latent variable model is y; = By; +I'x;+¢€;, with cov(x;) = ®, and cov(e;) = W.

e The models are linked by F; = ( Xi >

i
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Denoting the common covariance matrix of the data vectors by cov(d;) = X, the task is to
show that all the Greek-letter model parameters can be recovered from 3. The two-stage
strategy is

1. Referring to the measurement model, write ¥ as a function of the parameter matrices
A, ® and €. Then solve for A, ® and €2 in terms of ¥, showing they are identifiable.

2. Referring to the latent variable model, write ® = cov(F;) as a function of 3, T, ®,
and . Then solve for 8, I', ®, and ¥ in terms of ®. Since ® is already shown
to be a function of X in the first stage, this means that the latent variable model
parameters are also functions of 3, and they are identified.

Double Measurement For the brand awareness example, the measurement part of
the model is a special case of the measurement model for double measurement regression
in section 0.10.3 of Chapter 0. The measurements come in two independent sets, which
may be denoted d;; and d;3. The full set of observable data is the partitioned random
vector

Wi,l Wi,2

d. Wi,S Wz‘,4

;= (dl> , whered;; = | Wis | anddino = | Wig
v2 Via Vi

Vis Via

The double measurement model equations are
di,l = FZ + €1 (122)
dio = F;+ep,

where the vector of latent variables F; has zero covariance with e; ; and e; 5, cov(e; 1) = €24,
cov(e;z) = €2y and cov(e;,€;2) = O. Thus we have a partitioned covariance matrix for

the measurement errors:
_o_[ 1 O
cov(di)—ﬂ—( o 92).

For the model of Figure 1.8, the matrices £2; and €25 happen to be diagonal, but what’s
important is independence of measurement errors between sets, not within.

Using the notation ¥ ; = cov(d; 1), a2 = cov(d;1) and X4 5 = cov(d; 1, d; ) (so that
Y is also a partitioned matrix), we have

Y, = 2+
oo = 4+ QO
21 2 = ¢7

)

Solving for the parameter matrices is immediate, yielding

P = 3,

Ql = 2171 - 21’2 (123)
Q, = 22,2 - z31,2-
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That establishes identifiability for the double measurement model in general, including
this particular model for the brand awareness data. Identifiability of the double measure-
ment model is so useful that it will be documented as a formal parameter identifiability
rule.

Rule 2a: The Double Measurement Rule. The parameters of the double measurement
model (1.22) are identifiable. There are two sets of measurements. Each latent variable is
measured twice, and all factor loadings equal one. Measurement errors may be correlated
within sets, but not between sets.

For the current Brand Awareness model, the double measurement rule establishes stage
one of the two-stage proof. In the second stage, we recover the parameters of the latent
variable model from ®, which has already been identified. First of all, ®,, the covariance
matrix of the latent exogenous variables (X; 1, X o, Xiyg)T, is part of ® — so it’s identified.
Then, look at the first equation in (1.21), or at the path diagram. It’s just a regression,
so by (16) on page 26, all the parameters are identifiable from the covariance matrix
of (X;1,X;2,X;3,Yi1)". That is, we have identified v1,72,73 and ;. The second line
of (1.21) is also just a regression, and the parameters -4, 5 and 1, are identified from
the covariance matrix of the variables involved. This completes the second stage. All the
parameters in the model are identifiable.

We proceed to fit the model with lavaan. Familiarity with the material in sec-
tion 0.10.2 starting on page 66 is assumed. The R job begins by loading lavaan, and
then reading and documenting the data.

# Brand awareness

rm(list=1s()); options(scipen=999)

# install.packages("lavaan", dependencies = TRUE) # Only need to do this once
library(lavaan)

This is lavaan 0.6-7

lavaan is BETA software! Please report any bugs.

> coffee = read.table("http://www.utstat.toronto.edu/ brunner/openSEM/data/timmyl.data.txt")
> head(coffee)

wl w2 w3 w4 wb w6 vl v2 v3 v4

40 23 26 21 48 38 22 22 15 15

45 24 29 23 49 48 26 13 8 13

29 21 21 13 42 37 18 12 13 13

38 26 18 19 47 42 20 9 12 10

47 31 30 18 48 52 26 16 22 16

31 24 18 13 39 40 20 12 16 18

V V V V V

# Observed variables

# wl = Brand Awareness 1
# w2
#
#

Brand Awareness 2
w3
wi

Ad Awareness 1

V V.V V V VO OrLd WN+=

Ad Awareness 2
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w5 = Interest 1
w6 = Interest 2
vl = Purchase Intention
v2 = Purchase Intention
v3 = Purchase Behaviour

N = N =

v4 = Purchase Behaviour
Latent variables

V VV V V V V V V V V.YV
H OH H H HF H H HF H K H R

L_BrAw = True brand awareness

L_AdAw = True advertising awareness

L_Inter = True interest in the product category
L_PI = True purchase intention

L_PBeh = True purchase behaviour

Next, we define and fit the model. lavaan returns the R prompt without any complaints
or warnings.

> torusl =
+ J
+ # Latent variable model

+ L_PI © gammal*L_BrAw + gamma2*L_AdAw + gamma3*L_Inter

+ L_PBeh ” gamma4x*xL_Inter + betaxL_PI

+ # Measurement model (simple double measurement)

+ L_BrAw =" 1*xwl + 1xw2

+ L_AdAw =" 1xw3 + 1xw4d

+ L_Inter =" 1*wb + 1xw6

+ L_PI =7 1%vl + 1xv2

+ L_PBeh =" 1%v3 + 1xv4

+ # Variances and covariances

+ # Exogenous latent variables

+ L_BrAw ~~ phillxL_BrAw # Var(L_BrAw) = phill
+ L_BrAw ~~ phil2*L_AdAw # Cov(L_BrAw,L_AdAw) = phil2
+ L_BrAw ~~ phil3*L_Inter # Cov(L_BrAw,L_Inter) = phil3
+ L_AdAw =~ phi22*L_AdAw # Var(L_AdAw) = phi22
+ L_AdAw ~~ phi23#L_Inter # Cov(L_AdAw,L_Inter) = phi23
+ L_Inter ~~ phi33+*L_Inter # Var(L_Inter) = phi33
+ # Errors in the latent model (epsilons)

+ L_PI 77 psil*L_PI # Var(epsilonl) = psil

+ L_PBeh ~~ psi2*L_PBeh # Var(epsilon2) = psi2

+ # Measurement errors

+ wl 7 omegal*wl # Var(el) = omegal

+ w2 "7 omega2*w2 # Var(e2) = omega2

+ w3 ~~ omega3*w3 # Var(e3) = omega3

+ w4 ~7 omegad*wd # Var(e4) = omegad

+ w5 ~~ omegab*wb # Var(eb) = omegab

+ w6 ~7 omega6*w6 # Var(e6) = omegab

+ vl 7 omega7*vl # Var(e7) = omegaT?

+ v2 77 omega8*v2 # Var(e8) = omega8
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v3 7”7 omega9*v3 # Var(e9)
v4d "7 omegalO*v4d # Var(el10)
# Bounds (Variances are positive)
phill > 0; phi22 > 0; phi33 > 0
psil > 0; psi2 > O
omegal > O; omega2 > 0; omega3 > O; omegad > O; omegab > 0
omega6 > 0; omega7 > 0; omega8 > 0; omega9 > O; omegal0d > O
> # End of model torusi

omega9d
omegall

fitl = lavaan(torusl, data=coffee)

VVV + 4+ 4+ + + + + o+

Looking just at the fit of the model,

> show(fit1)
lavaan 0.6-7 ended normally after 113 iterations

Estimator ML
Optimization method NLMINB
Number of free parameters 23
Number of inequality constraints 15
Number of observations 200

Model Test User Model:

Test statistic 77.752
Degrees of freedom 32
P-value (Chi-square) 0.000

By the likelihood ratio test, the model does not fit'?. A close look at the output of
summary and partable reveals nothing out of the ordinary. We need determine why
the model did not fit, and fix it if possible. To do this, a divide and conquer strategy
can be helpful. We’ll split the problem into parts, and look first at the measurement
model. Figure 1.9 shows a model in which the structure in the latent variable model is
discarded, and the measurement model is preserved. Note the shorthand way of expressing
all possible covariances among the latent variables. By the first stage of the two-stage
proof of identifiability, all the parameters of this model are identifiable.

The model is fully specified in the model string torus2. It’s very explicit, but naming
all the variances and covariances makes it tedious to type.

> torus2 =
+ J

19Tn this example, I follow my usual practice of relying on the likelihood ratio test to determine whether
a model fits adequately. This choice is not very popular among practitioners of structural equation
modelling, because standard models so often fail the test when applied to real data. See Chapter 7.
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Figure 1.9: Brand Awareness Model Two
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# Measurement model (still simple double measurement)
L_BrAw =" 1x*xwl + 1*w2
L_AdAw =" 1*xw3 + 1*w4d
L_Inter =" 1*xw5 + 1*w6
L_PI =" 1*xvl + 1xv2
L_PBeh =" 1xv3 + 1x*v4
# Variances and covariances
# Latent variables
L_BrAw ~~ phillxL_BrAw # Var (L_BrAw) = phii1l
L_BrAw ~~ phil2*L_AdAw # Cov(L_BrAw, L_AdAw) = phiil2
L_BrAw ~~ phil3%*L_Inter # Cov(L_BrAw, L_Inter) = phil3
L_BrAw ~~ phil4xL_PI # Cov(L_BrAw, L_PI) = phil4
L_BrAw ~~ philb*L_PBeh # Cov(L_BrAw, L_PBeh) = philb
L_AdAw =~ phi22*L_AdAw # Var (L_AdAw) = phi22
L_AdAw "~ phi23*L_Inter # Cov(L_AdAw, L_Inter) = phi23
L_AdAw ~~ phi24xL_PI # Cov(L_AdAw, L_PI) = phi24
L_AdAw "~ phi2bxL_PBeh # Cov(L_AdAw, L_PBeh) = phi2b
L_Inter ~~ phi33*L_Inter # Var(L_Inter) = phi33
L_Inter ~~ phi34xL_PI # Cov(L_Inter, L_PI) = phi34
L_Inter ~~ phi3b5%L_PBeh # Cov(L_Inter, L_PBeh) = phi35
L_PI ~~ phi44xL_PI # Var (L_PI) = phi44
L_PI ~~ phi45xL_PBeh # Cov(L_PI, L_PBeh) = phi4b

181
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+ L_PBeh "~ phibb*L_PBeh # Var(L_PBeh) = phibb
+ # Measurement errors

+ wl 7 omegal*wl # Var(el) = omegal

+ w2 77 omegal2+*w2 # Var(e2) = omega2

+ w3 ~~ omega3*w3 # Var(e3) = omega3

+ w4 ~7 omegad*wd # Var(e4) = omega4d

+ wh ~~ omegab*wb # Var(eb) = omegab

+ w6 7 omegabxw6 # Var(e6) = omegab

+ vl ~~ omega7x*vl # Var(e7) = omega?

+ v2 77 omega8+*v2 # Var(e8) = omega8

+ v3 77 omega9*v3 # Var(e9) = omegad

+ v4d ~~ omegalO*v4d # Var(el0) = omegall

+ # Bounds (Variances are positive)

+ phill > 0; phi22 > 0; phi33 > 0; phi44 > 0; phi55 > 0

+ omegal > O; omega2 > 0; omega3 > O; omegad > 0; omegab > 0
+ omega6 > 0; omega7 > 0; omega8 > 0; omega9 > O; omegalld > 0O
+ ’ # End of model torus2

>

> fit2 = lavaan(torus2, data=coffee)

There has to be a better way, and there is. In the model torus2b, only the measurement
model is specified.

> torus2b =

+ )

+ # Measurement model (still simple double measurement)
+ L_BrAw =" 1x*xwl + 1*yw2

+ L_AdAw =" 1xw3 + 1xw4d

+ L_Inter =" 1*wb + 1*w6

+ L_PI =7 1%vl + 1xv2

+ L_PBeh =" 1*%v3 + 1x*v4

+ # Leave off everything else and see what happens.

+ ’ # End of model torus2b

The lavaan function chokes on this, because it requires more detail. However, the cfa
function (for confirmatory factor analysis — see Chapter 3) assumes by default that all the
latent variables have non-zero covariances, and does not require the user to name them?’.

> fit2b = cfa(torus2b, data=coffee)

That’s a lot better. The models torus2 and torus2b are 100% equivalent, except that
the parameters in torus2 have labels. The fit (that is, lack of fit) is identical.

20Actually, the lavaan function will name your parameters for you too. Syntax like L_PI ~
gammal*L BrAw + gamma2*L_AdAw + gamma3*L_Inter looks like you are transcribing a model equation,
but technically those Greek letter names are just optional labels for the regression parameters, which
have their own internal names.
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> show(fit2)
lavaan 0.6-7 ended normally after 124 iterations

Estimator ML
Optimization method NLMINB
Number of free parameters 25
Number of inequality constraints 15
Number of observations 200

Model Test User Model:

Test statistic 76.380
Degrees of freedom 30
P-value (Chi-square) 0.000

> show(fit2b)
lavaan 0.6-7 ended normally after 139 iterations

Estimator ML
Optimization method NLMINB
Number of free parameters 25
Number of observations 200

Model Test User Model:

Test statistic 76.380
Degrees of freedom 30
P-value (Chi-square) 0.000

The measurement model does not fit?!, and we need to fix it. Now, the model asserts
a kind of double measurement, but it’s a restricted kind in which all the measurement
errors are all independent. Maybe independence does not hold, and that’s causing the
lack of fit.

In the proof of identifiability for this example, the measurement model had two sets
of measurements, with errors of measurement potentially correlated within sets but not
between sets. The proposal here is just to put in the non-zero covariances between sets,
so identifiability has already been established. Figure 1.10 shows the resulting model.
Measurement set one is red, and measurement set two is blue.

In the model string torus3, the non-zero covariances among measurement error terms

21Tt’s a bit tempting to observe that the difference between the models torus1 and torus2 is that
torusl imposes some structure in the relationships among the latent variables. In fact, it can be shown
that the only difference between the two models is the lack of some arrows in torusl. So it would seem
that one could test the difference between the two models with a likelihood ratio test, and thereby assess
the fit of the latent variable model. That’s not a good idea, though. When a full model does not fit the
data, testing for difference between full and restricted models can be very misleading.
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Figure 1.10: Brand Awareness Model Three
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are specified without explicitly naming the parameters. This saves a fair amount of typing.

> torus3 =

+ )

+ # Measurement model (still simple double measurement)
+ L_BrAw =" 1xwl + 1xw2

+ L_AdAw =" 1*xw3 + 1x*w4d

+ L_Inter =" 1xwb + 1*w6

+ L_PI =7 1xvl + 1xv2

+ L_PBeh =" 1%v3 + 1xv4

+ # Add covariances between measurement error terms, without naming them
+ wl "7 w3; wi "7 wh; wi "7 vl; wi 77 v3

+ w3 77 wh; w3 77 vl; w3 77 v3
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wb 77 vl; wb 77 v3

vl 77 v3

w2 77 wd; w2 77 w6e; w2 77 v2; w2 77 v4
wd "7 w6; w4 77 v2; wd "7 v4

w6 77 v2; w6 7 v4

v2 77 v4

+ + 4+ + + + o+

> # End of model torus3

When we try to fit this nice model, there is trouble.

> fit3 = cfa(torus3, data=coffee)
Warning message:
In lav_object_post_check(object)
lavaan WARNING: the covariance matrix of the residuals of the observed
variables (theta) is not positive definite;
use lavInspect(fit, "theta") to investigate.

The phrase “residuals of the observed variables” refers to the measurement error terms.
These are denoted by e;1,...,¢€;10 in (1.21). Presumably they are called “residuals”
because of the analogy between residuals and error terms in regression. Following the
suggestion to try lavInspect,

> lavInspect(fit3, "theta")

wl w2 w3 wa wb w6 vl v2 v3 v4
wl 10.617
w2 0.000 10.477
w3 2.700 0.000 11.704
w4 0.000 -1.726 0.000 11.263
wb 1.246 0.000 0.475 0.000 8.786
w6 0.000 -3.239 0.000 -1.904 0.000 5.053
vli 3.208 0.000 2.999 0.000 3.933 0.000 13.013
v2 0.000 -2.484 0.000 -1.490 0.000 -3.382 0.000 6.854
v3 0.555 0.000 -0.485 0.000 1.049 0.000 0.875 0.000 4.699
v4 0.000 -1.408 0.000 -1.756 0.000 -0.663 0.000 -1.499 0.000 3.911

Note how the covariances between even-numbered variables and odd-numbered variables
are all zero. This is definitely the estimated covariance matrix of (e;1,...,€;10)". An
application of eigen(lavInspect(fit3, "theta"))$values reveals one negative eigen-
value, so the matrix is not positive definite, and the numerical search for the MLE has
left the parameter space. It is nice that lavaan checks for this.

It is possible that the numerical search left the parameter space because the model is
wrong, but it’s also possible that the problem was caused by sub-optimal starting values.
Method-of-moments estimates make excellent starting values. As usual, if identifiability
has been established by obtaining explicit solutions to the covariance structure equa-
tions, then putting hats on the solutions yields method-of-moments estimates. Using the
solution (1.23), estimates for the brand awareness data are calculated as follows.



186 CHAPTER 1. INTRODUCTION TO STRUCTURAL EQUATION MODELS

# Checking why torus3 left the parameter space.
# Obtain MOM estimates for use as starting values.

dl = as.matrix(coffeel[,c(1,3,5,7,9)]) # Measurement set one
d2 = as.matrix(coffeel,c(2,4,6,8,10)]) # Measurement set two
Phi_hat = cov(d1,d2); Phi_hat
w2 wa w6 v2 v4
wl 10.186131 6.670427 15.123116 11.928618 8.162688
w3 6.655075 8.684598 12.766332 11.339975 6.893844
wb 7.627940 6.536859 16.409548 10.881683 6.290829
vl 8.347940 7.563392 16.891960 15.024598 10.119975
v3 4.674573 3.738015 7.650754 6.998216 17.746859

V V V V VvV V

This matrix isn’t symmetric, so it’s not in the parameter space. That’s easy to fix.

> # Make it symmetric
> Phi_hat = (Phi_hat + t(Phi_hat) )/2; Phi_hat

w2 wé w6 v2 vé
wl 10.186131 6.662751 11.375528 10.138279 6.418631
w3 6.662751 8.684598 9.651595 9.451683 5.315930
w5 11.375528 9.651595 16.409548 13.886822 6.970791
vl 10.138279 9.451683 13.886822 15.024598 8.559095
v3 6.418631 5.315930 6.970791 8.559095 17.746859
> eigen(Phi_hat)$values # Is it positive definite?
[1] 50.164191 12.097980 2.925981 1.668071 1.195511

So @ is okay. Computing and testing the estimated covariance matrices of the error terms,

> Omegal_hat = cov(dl) - Phi_hat

> Omega2_hat = cov(d2) - Phi_hat

> eigen(Omegal_hat)$values # Is Omegal_hat positive definite?
[1] 26.402687 9.301147 8.288868 5.106178 2.868356

> eigen(Omega2_hat)$values # Is Omega2_hat positive definite?
[1] 12.867799 11.828405 9.847771 4.712254 -3.393667

The method-of-moments estimate ﬁg is not positive definite. If we used it as a source
of starting values, we would be starting the numerical search for the MLE outside of the
parameter space. This is not going to be helpful. My conclusion is that this model is
incompatible with the data, and it’s time to consider another one.

Recall that the two measurements of each latent variable are different. One of the
interviews is in-person, and the other is by telephone call-back. Maybe they’re not really
equivalent. Perhaps one in each set (say number two, the call-backs) should have a
coefficient not equal to one. Figure 1.11 illustrates the model. We are back to independent
error terms for the present. Proof of identifiability is deferred until (one of those two-
variable rules).

Fitting the model,
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Figure 1.11: Brand Awareness Model Four
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> torus4d =
+ J

+ # Measurement model (still simple double measurement)

+ L_BrAw =" 1xwl + lambda2*w2
+ L_AdAw =" 1xw3 + lambdadx*wd
+ L_Inter =" 1*wb + lambda6*w6
+ L_PI =" 1xvl + lambda8x%v2
+ L_PBeh =" 1xv3 + lambdalO*v4

+ ’ # End of model torus4

> fit4 = cfa(torus4, data=coffee)

> show(fit4)

lavaan 0.6-7 ended normally after 161 iteratiomns

Estimator ML
Optimization method NLMINB
Number of free parameters 30
Number of observations 200

Model Test User Model:

Test statistic 17.837
Degrees of freedom 25
P-value (Chi-square) 0.849

The measurement model fits! Now combine it with the latent variable model, as shown
in Figure 1.12.
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Figure 1.12: Brand Awareness Model Five
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It is easy to edit model string torusl to put the \; parameters in the measurement
model. Showing just the first part of the model string,

> torusb =

+ J

+ # Latent variable model

+ L_PI 7 gammal*L_BrAw + gamma2*L_AdAw + gamma3*L_Inter
+ L_PBeh ” gamma4x*L_Inter + beta*L_PI
+ # Measurement model

+ L_BrAw =" 1xwl + lambda2*w2

+ L_AdAw =" 1*w3 + lambdadx*w4d

+ L_Inter =" 1xwb + lambda6*w6

+ L_PI =" 1xvl + lambda8%v2

+ L_PBeh =" 1*%v3 + lambdalOxv4

Fitting the model,
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> fit5 = lavaan(torus5, data=coffee)
Warning messages:
1: In lav_model_vcov(lavmodel = lavmodel, lavsamplestats = lavsamplestats,
lavaan WARNING:
Could not compute standard errors! The information matrix could
not be inverted. This may be a symptom that the model is not
identified.
2: In lav_object_post_check(object)
lavaan WARNING: covariance matrix of latent variables
is not positive definite;
use lavInspect(fit, "cov.lv") to investigate.

189

The parameters of this model are definitely identifiable, so that’s not the problem. The
search has left the parameter space, and since the measurement model fits, the source
of the trouble must be in the fit of the latent variable model. The output of summary

contains some clues. Let us examine it one piece at a time.

> summary(fit5)
lavaan 0.6-7 ended normally after 2096 iterations

Estimator ML
Optimization method NLMINB
Number of free parameters 28
Number of inequality constraints 15
Number of observations 200

Model Test User Model:

Test statistic 31.127
Degrees of freedom 27
P-value (Chi-square) 0.266

Parameter Estimates:

Standard errors Standard
Information Expected
Information saturated (hl) model Structured

It used a lot of iterations (2,096), which can be an indication that the numerical search
wandered off into nowhere. For comparison, fit4 (the good measurement model with
A2y Ag, ..., Apg) found a good solution in 161 iterations, and £fit3 (the full double mea-
surement model) found a solution outside the parameter space in 193 iterations, when
the method-of-moments estimator was also outside the parameter space. The fit we are
considering (£fit5) actually passes the goodness of fit test, with G* = 31.127,p = 0.266.

It’s still unacceptable, though, because the solution is outside the parameter space.
Continuing to look at the output of summary,
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Latent Var

iables:

L_BrAw =~

wl

w2
L_AdAw =

w3

wa
L_Inter

wb

w6
L_PI =~

vl

v2
L_PBeh =

v3

véd

(1mb2)

(1mb4)

(1mb6)

(1mb8)

(1m10)

Estimate Std.Err
1.000
0.535 NA
1.000
0.552 NA
1.000
1.094 NA
1.000
0.708 NA
1.000
1.034 NA

z-value

P(>1zl)

Comparing the estimates from the good measurement model,

> coef (fit4)

lambda?2 lambda4d lambda6

0.530 0.543 1.090

wl™"wl w2" w2 w3” w3

5.106 12.955 7.034

w6~ w6 v1i®™ vl v27v2

6.134 8.322 10.301
L_BrAw™~"L_BrAw L_AdAw~"L_AdAw L_Inter™"L_Inter
19.135 15.914 14.980
L_BrAw™"L_AdAw L_BrAw™"L_Inter L_BrAw™"L_PI
12.297 13.502 16.248
L_AdAw~"L_PI L_AdAw~"L_PBeh L_Inter™"L_PI
15.070 6.144 15.564

lambda8

0.708

wid~ "wad

13.401

v3~"v3

4.440
L_PI""L_PI
21.128
L_BrAw~~L_PBeh
7.883
L_Inter™"L_PBeh
6.533
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lambdal0

1.029

wb™"wh

6.205

v4~"v4

3.993
L_PBeh™"L_PBeh
17.155
L_AdAw~"L_Inter
11.306
L_PI""L_PBeh
9.619

Lodﬂngzﬂ(ﬁwtthefﬁﬁ:hna‘weseethatthe:%-ﬁon1fit5zﬂezﬂnnmtidmnkmltothe
ones from fit4, which means that they are above suspicion. Continuing to look at the
output of summary(£fit5),

Regressions:

L_PI ~
L_BrAw
L_AdAw
L_Inter

L_PBeh ~
L_Inter
L_PI

Estimate
(gmm1) 47.719
(gmm2) -156.406
(gmm3) 80.361
(gmm4)  -0.156
(beta) 0.570

Std.Err

NA
NA
NA

NA
NA

z-value

P(>lzl)
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Now we see a problem. The estimates of v;, 79 and 3 are very large in absolute value.
Consider that the observable versions of all the variables involved are on a scale from zero
to one hundred, and that one of the coefficients linking the latent version to the observable
version is set to one. This means that the latent variables are also approximately on a
scale from zero to one hundred. 7; = 47.719 means that a one-point change in brand
awareness is thought to produce a 47-point change in purchase intention. This is entirely
unbelievable. Furthermore, the extremely large negative value of 7, means that a very
small increase in advertising awareness produces produces a decrease in purchase intention
that is off the scale. This is even worse. The first three estimates are all extremely suspect.
In contrast, the next two, 74 and 3, seem unremarkable.

Looking at the estimated variances and covariances,

Covariances:
Estimate Std.Err z-value P(|zl)

L_BrAw =~
L_AdAw (ph12) 12.498 NA
L_Inter (ph13)  13.407 NA

L_AdAw ~~
L_Inter (ph23) 11.621 NA

Variances:
Estimate Std.Err z-value P(Clzl)

L_BrAw (phl1l) 18.730 NA
L_AdAw (ph22) 9.691 NA
L_Inter (ph33) 14.851 NA
.L_PI (psil) 260.320 NA
.L_PBeh (psi2) 12.623 NA
Wl (omg1) 5.511 NA
W2 (omg2)  12.959 NA
W3 (omg3)  13.263 NA
.wh (omg4)  15.139 NA
W5 (omgs)  6.335 NA
.w6 (omg6) 6.158 NA
.vi (omg7) 8.341 NA
.v2 (omg8) 10.301 NA
v3 (omg9)  4.524 NA
.va (om10) 3.903 NA

The only thing that jumps out is the large value of @1, the variance of the error term
feeding into latent purchase intention. Looking back at Figure 1.12, it is clear that all the
obvious signs of pathology are in the latent regression linking latent purchase intention
to latent brand awareness, advertising awareness, and interest in the product.

Following the suggestion in the warning message, we take a look at the estimated
variance-covariance matrix of the latent variables, which is not positive definite.

> lavInspect(fit5, "cov.1lv")
L_BrAw L_AdAw L_Intr L_PI L_PBeh
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L_BrAw 18.730

L_AdAw 12.498 9.691

L_Inter 13.407 11.621 14.851

L_PI 16.411 14.534 15.565 21.059

L_PBeh 7.261 6.469 6.554 9.572 17.054

At first, nothing seems obviously wrong; for example, all the estimated variances are
positive. It’s true that one of the eigenvalues is negative (I checked), but this is something
we can trust lavaan to get right.

Comparison with lavInspect(fit4, "cov.lv") is really helpful. Recall that fit4
was the successful fit of the measurement model, so this is the real MLE of the covariance
matrix of the latent variables. It’s shown in Table 1.1. The biggest difference between

Table 1.1: MLE of the covariance matrix of latent variables for Brand Awareness data

lavInspect(fit4, "cov.lv")
L_BrAw L_AdAw L_Intr L_PI L_PBeh
L_BrAw 19.135
L_AdAw 12.297 15.914
L_Inter 13.502 11.306 14.980
L_PI 16.248 15.070 15.564 21.128
L_PBeh 7.883 6.144 6.533 9.619 17.155

these two matrices is in the estimated variance for L_AdAw, latent advertising awareness.
The value in £it5 is 9.691, while the value in fit4 is 15.914. The fit4 value is the real
MLE of the variance of this latent exogenous variable, and has a lot more credibility.

In fact, the low variance in question causes the estimated variance-covariance matrix of
just the exogenous latent variables to not be positive definite??. Again, we see a problem
with estimation in the same part of the latent variable model. It’s in the first stage, the
latent regression linking latent purchase intention to latent brand awareness, advertising
awareness, and interest in the product.

In general, when a numerical search leaves the parameter space, it could be either
because of the starting values, or because the model is wrong. Here, it seems very likely
to be the starting values. The reason is that this is just a regression, and its parameters
are one-to-one with a set of variances and covariances that have already been estimated
successfully. This point will become clear as we work to obtain better starting values,
based on the estimated variances and covariances in fit4. Again, fit4 comes from the
successful measurement model represented in Figure 1.11, the one with Ao, A4, ..., Aqo.

It would be possible to accomplish our goal by translating the regression notation
of (16), but it is more informative to derive the starting values using the current notation.
Let x; denote the vector of latent exogenous variables (X1, X; 2, Xi,g)T. There was trouble
estimating ®, = cov(x;), but we already have a good estimate: the first three rows and
columns of Table 1.1. So we’ll use that.

221 played around with it.
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Write the sub-model we're considering as y;1 = v'x; + €1, where v = (71,72,73) .
We need estimates of v and ¢y = var(e; 1) to use as starting values. Basic variance and
covariance calculations yield

cov(x;,yi1) = Poy
var(yi1) = v B,y +

Use ®,,, to denote cov(x;,y;1), the vector of three covariances between the exogenous
variables and purchase intention. Estimates are directly available from Table 1.1. Starting

~—l~

values for the estimate of v will be the very respectable estimate ¥y = ®, ®,,,. Using the
estimated variance of purchase intention from Table 1.1, we get 11 = ¢4y4—§T<I>3ﬁ = Q44—

T

1~

AT~
@, . P, P, . These estimates are one-to-one functions of the MLE from a closely related
model for these data, so they should be very good starting values for the parameters of
the model in Figure 1.12. Calculating,

> # The names of all these quantities should include "hat."
> Phi = lavInspect(fit4, "cov.lv")
> Phix = Phi[1:3,1:3]; Phix
L_BrAw L_AdAw L_Inter
L_BrAw 19.13510 12.29660 13.50213
L_AdAw 12.29660 15.91372 11.30579
L_Inter 13.50213 11.30579 14.98033
> Phixy = as.matrix(Phi[1:3,4]); Phixy
[,1]
L_BrAw 16.24761
L_AdAw 15.07005
L_Inter 15.56443
> gamma = t(Phixy) %*% solve(Phix); gamma
L_BrAw L_AdAw L_Inter
[1,] 0.1996458 0.3932861 0.5622287
> psil = Phi[4,4] - as.numeric(gamma %*% Phix %x*J, t(gamma)); psil
[1] 3.206661

These numbers are much more reasonable than the ones from fit5. Let’s see if we can
get away with specifying just 10 starting values. We’ll drop the inequality constraints
too, since lavaan will issue a warning if any variance estimate is negative.

> torus6 =

+ J

+ # Latent variable model

+ L_PI ~ gammal*L_BrAw + start(0.1996458)*L_BrAw +
+ gamma2*L_AdAw + start(0.3932861)*L_AdAw +
+ gamma3*L_Inter + start(0.5622287)*L_Inter
+ L_PBeh ” gamma4x*L_Inter + beta*L_PI

+ # Measurement model

+ L_BrAw =" 1xwl + lambda2*w2

+ L_AdAw =" 1*w3 + lambda4dx*w4d
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wl 77
w2 ~”
w3 77
w4 "~
wb 77
w6 ~7
vl
v2 77
v3 77
vd 77

VV + + 4+ + + 4+ + 4+ + + + ++ + A+ + + + + + + + + + A+ o+

L_Inter =" 1*wb + lambda6*w6

L_PI =" 1xv1l + lambda8%v2

L_PBeh =" 1xv3 + lambdalO*v4

# Variances and covariances

# Exogenous latent variables
L_BrAw 7 phillxL_BrAw
L_BrAw "~ phil2xL_AdAw
L_BrAw "7 phil3*L_Inter
L_AdAw "~ phi22xL_AdAw
L_AdAw "~ phi23*L_Inter
L_Inter "~ phi33*L_Inter

# Errors in the latent model
L_PI "~ psil*L_PI + start(3.206661)*L_PI
L_PBeh "~ psi2*L_PBeh

# Measurement errors

omegal*xwl
omega2*w2
omega3*w3
omegad*xwéd
omegab*wb
omegab*w6
omega7*vl
omega8*v2
omega9*v3
omegalOxv4

> # End of model torus6
fit6 = lavaan(torus6, data=coffee)

+ + 4+ o+ o+

+

start(19.
start (12.
start(13.
start (15.
start(11.
start (14.

(epsilons)

H OH HF OH OHF H OH OHF H H

Var(el)
Var (e2)
Var(e3)
Var (e4)
Var (e5)
Var (e6)
Var (e7)
Var(e8)
Var(e9)
Var(el10)

13510) *L_BrAw
29660) *L._AdAw
50213) *L_Inter
91372) *L_AdAw
30579) *L_Inter
98033) *L_Inter

= omegal
= omega?2

= omega3

= omegad

= omegab

= omegab

= omega’

= omega8
= omega9
= omegall

#
#
#
#
#
#

# Var(epsilonl)
# Var(epsilon2)

Var (L_BrAw)
Cov(L_BrAw,L_AdAw)
Cov(L_BrAw,L_Inter)
Var (L_AdAw)
Cov(L_AdAw,L_Inter)
Var (L_Inter)

psil
psi2

lavaan returns the R prompt with minimal time lag and no warning messages, which is

a good sign.

> fit6

lavaan 0.6-7 ended normally after 108 iterations

Estimator

Optimization method

Number of free parameters
Number of inequality constraints

Number of obse
Model Test User
Test statistic

Degrees of fre
P-value (Chi-s

rvations

Model:

edom
quare)

ML
NLMINB
28
15

200

18.962
27
0.871

phill
phil2
phil3
phi22
phi23
phi33
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Finally, the model fits! summary gives numerical estimates of all the parameters, along
with standard errors (square roots of the diagonal elements of the inverse of the observed
Fisher information matrix), and large-sample z-tests of the null hypothesis that the pa-

rameter equals zero.

> summary(fit6)

lavaan 0.6-7 ended normally after 108 iteratiomns

Estimator

Optimization method

Number of free parameters

Number of observations
Model Test User Model:

Test statistic

Degrees of freedom

P-value (Chi-square)

Parameter Estimates:

Standard errors
Information

Information saturated (hl) model

Latent Variables:

Estimate Std.
L_BrAw =~
wl 1.000
w2 (1mb2) 0.528 0.
L_AdAw =~
w3 1.000
wa (1mb4) 0.543 0.
L_Inter =~
wb 1.000
w6 (1mb6) 1.092 0.
L_PI =~
vl 1.000
v2 (1mb8) 0.707 0.
L_PBeh =~
v3 1.000
v4 (1m10) 1.040 0.
Regressions:
Estimate Std.

L_PI ©

Err

o077

090

081

066

110

Err

ML

NLMINB

28

200

18.962

27

0.871

Standard
Expected
Structured
z-value P(Olzl)
6.861 0.000
6.013 0.000
13.528 0.000
10.745 0.000
9.457 0.000
z-value P(C|zl|)
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L_BrAw (gmml) 0.229 0.145 1.581 0.114

L_AdAw (gmm2) 0.369 0.161 2.285 0.022

L_Inter (gmm3) 0.553 0.170 3.253 0.001
L_PBeh ~

L_Inter (gmm4) -0.129 0.257 -0.502 0.615

L_PI (beta) 0.546 0.224 2.438 0.015

Covariances:
Estimate Std.Err z-value P(lzl)

L_BrAw ~~
L_AdAw (ph12) 12.301 1.864 6.598 0.000
L_Inter (phl3) 13.480 1.831 7.360 0.000

L_AdAw ~~
L_Inter (ph23) 11.312 1.694 6.679 0.000

Variances:
Estimate Std.Err =z-value P(|zl)

L_BrAw (ph11) 19.200 3.110 6.174 0.000
L_AdAw (ph22) 15.910 3.033 5.246 0.000
L_Inter (ph33) 14.961 2.153 6.949 0.000
L_PI (psil) 3.301 1.340 2.463 0.014
.L_PBeh (psi2) 12.620 2.097 6.019 0.000
.wl (omg1) 5.041 2.075 2.430 0.015
W2 (omg2) 12.974 1.413 9.179 0.000
w3 (omg3) 7.038 2.218 3.172 0.002
.wa (omg4) 13.400 1.477 9.074 0.000
.whb (omgb) 6.224 0.960 6.484 0.000
. w6 (omg6) 6.098 1.063 5.735 0.000
.vl (omg7) 8.280 1.479 5.598 0.000
.v2 (omg8) 10.299 1.215 8.477 0.000
.v3 (omg9) 4.612 1.682 2.742 0.006
.vd (om10) 3.809 1.789 2.129 0.033
The estimates of Ay, ..., Ao are essentially the same as the estimates from fit4, which is

good. Comparing other estimates to the starting values we supplied,

> parTable(fit6)

id 1lhs op rhs user block group free ustart exo label plabel start est
1 1 L_PI ~ L_BrAw 1 1 1 1 0.200 O gammal .pl. 0.200 0.229
2 2 L_PI ~ L_AdAw 1 1 1 2 0.393 0 gamma2 .p2. 0.393 0.369
3 3 L_PI 7~ L_Inter 1 1 1 3 0.562 0 gamma3 .p3. 0.562 0.553
4 4 L_PBeh ~ L_Inter 1 1 1 4 NA O gamma4d .p4. 0.000 -0.129
5 &5 L_PBeh ~ L_PI 1 1 1 5 NA O beta .p5. 0.000 0.546
6 6 L_BrAw =" wl 1 1 1 0 1.000 O .p6. 1.000 1.000
7 7 L_BrAw =" w2 1 1 1 6 NA O lambda2 .p7. 0.476 0.528
8 8 L_AdAw =" w3 1 1 1 0 1.000 O .p8. 1.000 1.000
9 9 L_AdAw =~ wé 1 1 1 7 NA O lambda4d .p9. 0.421 0.543
10 10 L_Inter =~ wh 1 1 1 0 1.000 O .p10. 1.000 1.000
11 11 L_Inter =~ w6 1 1 1 8 NA O lambda6 .pl1l. 0.724 1.092

O OO O OO OO OO Oo

se

.145
.161
.170
.257
.224
.000
077
.000
.090
.000
.081
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12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33

12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33

L_PI
L_PI
L_PBeh
L_PBeh
L_BrAw
L_BrAw
L_BrAw
L_AdAw
L_AdAw
L_Inter
L_PI
L_PBeh
wl

w2

w3

wa

wb

w6

vl

v2

v3

v4

=" vl

- v2

=" v3

- v4
“~ L_BrAw
“~ L_AdAw
"7 L_Inter
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.707
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10.
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200
301
480
910

961
301
620
041
974
038
400
224
098
280
299
612
809

The column ustart shows the user-supplied starting values, start shows all the starting
values, and est contains the parameter estimates (MLEs). It is clear that where starting
values were supplied, the search moved from them just a little bit, at most. They were
very good.
The output of summary, shows that that the coefficients linking the Set Two measure-
ments to the latent variables are all significantly different from zero; they’d better be!
But are they all significantly different from one? Starting with a likelihood ratio test of
the null hypothesis that all five coefficients equal one,

> # Likelihood ratio test of

> # HO: lambda2 = lambda4 = lambda6 = lambda8 = lambdalO = 1
> anova(fitl,fit6)

Chi-Squared Difference Test

Signif. codes:

Df

AIC

BIC Chisq Chisq diff Df diff Pr(>Chisq)
fit6 27 10947 11039 18.962
fitl 32 10996 11071 77.752

58.789

5 0.00000000002162 **x*

0 **xx 0.001 *x 0.01 * 0.05 .

0.1

1

For the corresponding Wald test, it is convenient to use the publicly available function
Wtest.

# For Wald tests: Wtest = function(L,Tn,Vn,h=0) # HO: L theta

h

source("http://www.utstat.utoronto.ca/ brunner/Rfunctions/Wtest.txt")

As the comment indicates, Wtest allows testing of the linear null hypothesis Hy : LO = h,
based on maximum likelihood. The argument Tn is the maximum likelihood estimate 8,

P PP P PRPORPNEFEPFNMNNMFRPNR,WOWR,RRP,WOOOO

.000
.066
.000
.110
.110
.864
.831
.033
.694
.153
.340
.097
.075
.413
.218
LATT
.960
.063
.479
.215
.682
.789
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and Vn is its asymptotic covariance matrix. It is helpful to display b\n, just to verify the
order of the parameters.

> thetahat = coef(fit6); thetahat

gammal gamma2 gamma3d  gamma4 beta lambda2 1lambda4 lambda6 lambda8
0.229 0.369 0.563 -0.129 0.546 0.528 0.543 1.092 0.707
lambdalO phill phil2 phil3 phi22 phi23 phi33 psil psi2

1.040 19.200 12.301 13.480 15.910 11.312 14.961 3.301 12.620
omegal omega2 omega3 omega4d omegab omegab6 omega7 omega8 omega9
5.041 12.974 7.038 13.400 6.224 6.098 8.280 10.299 4.612

omegall

3.809
> LL = rbind(c(0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0),
+ c(0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0),
+ c(0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0),
+ c(0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0),
+ c(0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0))

>hh = c(1,1,1,1,1)
> Wtest(LL,thetahat,vcov(fit6) ,hh)

W df p-value
84.5066737182521876547980 5.0000000000000000000000 0.0000000000000001110223

Both the likelihood ratio test and the Wald test confirm overwhelmingly that the coeffi-
cients in question are not all one. To test the individual coefficients, it’s convenient to use
the MLEs and standard errors from parTable. The next-to-last column is the parameter
estimate, and the last column is the standard error. The following code computes the z
statistics for Hy : 0; = 1 for all the parameters but then displays only the relevant ones.

> pt6 = parTable(fit6); dim(pt6)
[1] 33 15
> z = as.numeric( (pt6[,14]1-1)/pt6[,15] )
> # Extract only meaningful z statistics (lambda_j)
>z = 2z[c(7,9,11,13,15)]
> names(z) = c(’lambda2’, ’lambda4’, ’lambda6’, ’lambda8’, ’lambdal0’)
> z

lambda?2 lambda4 lambda6 lambda8 lambdalO
-6.1368432 -5.0581710 1.1367154 -4.4540676 0.3614714
> pt6[c(7,9,11,13,15),14] # Corresponding theta-hats
[1] 0.5278696 0.5431214 1.0917385 0.7069418 1.0397428

And we see that the 1.09 and the 1.04 are not significantly different from one.

1.7 Criticisms of structural equation modeling

Not everybody likes structural equation modeling. One objection is subjectivity. It’s true
that quite a lot of theoretical input is required to use this tool on a data set. One cannot
compose a path diagram (or equivalently, a system of model equations) without making
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some very definite assertions about the way the process works. Statisticians might object
that they are not subject matter experts, perhaps with the sub-text that they don’t want
to think too hard about it, and especially they don’t want to read books and articles in
a foreign discipline. The solution to this problem is either find a collaborator, or go do
something more theoretical.

Scientists, too, may feel uncomfortable. It’s not the math; they are already resigned
to the fact that they need to use statistical methods they do not understand all the way
down to the bedrock. The problem is that they see themselves as empiricists. They have
gone to a lot of trouble to collect the data, and now they want to hear what the data
have to say. They do not want to impose their conjectures on the data??; it strikes them
as unscientific.

One such scientist once said to a friend of mine (Lennon Li) something like “All
these variables are connected to each other. Why not just run arrows from everything
to everything else, and then test whether the coefficients are zero?” Lennon was faced
with the task of explaining parameter identifiability to a busy, impatient, sleep-deprived
physician who was already running late. In the end, Lennon wound up doing almost all
the modeling himself. He did the best he could, but it was not an optimal outcome.

Actually, I have a lot of sympathy for the empirically-oriented user who is reluctant
to engage in modeling. Frequently, the objection is not to modeling or theorizing per
se, but to mixing this enterprise with the statistical analysis. It’s a reasonable position,
but I do have a few questions. First of all, is the data set strictly observational, or
have some variables been manipulated by random assignment to treatment conditions?
In the latter case, causal inference is the objective, and surely arrows should be going
from the manipulated variables to others that could be deemed outcomes. Structural
equation methods may have some advantages over a traditional statistical analysis. See
Chapter ?7. If it’s a purely observational study, here is another question for the skeptical
user. Have you ever used ordinary linear regression on data like these? If so, you've had
to decide which were the explanatory variables, and which were the response variables.
How did you decide? It seems that you may have already been doing structural equation
modeling of a basic sort. Do you agree that in regression, most explanatory variables are
measured with error? If so, see Chapter 0. It’s a slippery slope.

Sometimes, the objection is not so much to constructing models that will be incorpo-
rated into the statistical method, but to the interpretation of those models as causal. To
be explicit about this, the objection is to drawing causal conclusions from observational
data. We are back to the correlation-causation issue. One response is that while of course
one cannot firmly establish cause and effect without random assignment, at least one can
propose a causal model, and reject it if it does not fit the data. That being said, frequently

231f this sounds like an objection to Bayesian statistics, I agree. There is no doubt that even strictly
frequentist structural equation modeling makes heavy use of prior information. Without some opinion
based on past data or experience, how can you draw a path diagram? As I see it, both Bayesians and
frequentists incorporate prior information into the statistical model, while Bayesians also have a prior
distribution on the parameters. In fact, one could say that for the Bayesian, the model is part of the
prior, though in simple applications that part of the prior distribution is degenerate. This statement
applies to statistical models in general, not just to structural equation models.
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(but not always), a model with causality flowing in one direction fits exactly as well as
another model with causality flowing in the opposite direction. Some theoretical input
is required. When one variable is collected at an earlier time period, it’s easy. Other
cases can be more challenging. As will be seen in Chapter 4, successful models of mutual
influence are also possible under some circumstances.

Unfortunately, it is not so easy to dispose of the correlation-causation issue. Consider
two variables that are both impacted by variables for which no observable measures are
available. These unmeasured variables are aptly named “confounding” variables, because
they really do confuse matters. Are x and y correlated because x influences y, or is
it because they are both influenced by the unmeasured variables? Or, are d; and ds
correlated because d; and dy are both influenced by a latent variable F' (that’s what the
model says), or is it because they are both influenced by the unmeasured variables?

Recalling that error terms represent “all other influences,” a path diagram that ac-
knowledges the unmeasured influencers would have an extra curved, double-headed arrow
— between an exogenous variable and an error term, as in Figure 6, or between two error
terms as in Figure 1.7. In such cases, parameter identifiability is likely to be lost?*.

It’s sometimes possible to model one’s way out of the problem, and come up with
another model that is both believable, and whose parameters are identifiable. If this is
not possible, the analyst is in an uncomfortable position. The choice may be between
proceeding ot fit a model that no thoughtful person could believe (hoping that it’s not
“too wrong”), and simply giving up. Even if one chooses to hold one’s nose and proceed,
it does not always work. As shown in Example 1.5.1, correlated error terms can lead to
an MLE that is firmly, reliably and significantly outside the parameter space. In such
a situation, one should not trust any of the estimates or tests associated with the fitted
model. To proceed is basically fraudulent. I was in this situation once, and I had to back
out of a project with a valued collaborator. I'm still sorry about that, Ana.

This is just one aspect of a larger problem that makes it difficult for some researchers
to embrace structural equation modeling. The problem is that sometimes, a superficially
reasonable model with identifiable parameters, simply do not fit. Then on further re-
flection, the analyst comes up with a model that is more believable. Unfortunately, the
parameters of this more believable model are not identifiable. The analyst may suspect
the problem with identifiability, without being able to confirm it mathematically. In any
case, he or she tries to fit the model, and it blows up. Maybe it’s the starting values.
As we saw in Section 0.10.2 lack of identifiability can produce numerical problems that
are hard to distinguish from the ones caused by bad starting values. So the analyst tries
different starting values, but it blows up every time. A few experiences like this with
different data sets are enough to turn anyone off.

I can see two possible remedies. The first is to know, not just guess, whether param-

24 A notable exception is the double measurement design of Section 0.10.3 in Chapter 0; also see
the calculations leading to (1.23) on page 177. There, the measurement error terms for each set of
measurements are allowed to be correlated, though they are not allowed to be correlated between sets.
The virtue of this is that it’s quite natural for the measurements in one set to be contaminated by common
influences. Minimizing such contamination between sets is something that can be accomplished by good
study design.
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eters are identifiable. I hope this book helps. The second remedy is better data — that
is, data from a study that was designed with a particular structural equation model in
mind. Identifiability issues are taken care of at the planning stage. Potential confounding
variables are included in the data set, with adequate measurements. Correlations between
measurement errors are minimized by carrying out some of the measurements in varying
ways. For example, ask farmers how may cows they have, but also count them from aerial
photographs.

This is an ideal state of affairs. Mostly, structural equation models are applied to data
that were collected with other considerations in mind. In such cases, we do the best we
can.

1.8 The rest of the book

In structural equation modeling, it is imperative to check parameter identifiability before
proceeding to model fitting. The most direct way to check is to solve the covariance
structure equations for the unknown parameters, but that can be a big job. Fortunately,
there is a set of rules that often allow one to verify identifiability simply by examining the
path diagram, without explicitly solving any equations. The next task is to derive these
rules.

We will follow the logic of proving identifiability in two steps, as in the Brand Aware-
ness example of Section 1.6. In the general two-stage model of Section 1.2, the parameters
of the measurement model (® and A) are first recovered from X, the variance-covariance
matrix of a vector of an observable data vector. Then, the parameters of the latent vari-
able model (®,T",3 and W) are recovered from ®. Since ® has already been shown to
be a function of X, this shows that all the parameters are a function of 3, and hence are
identifiable.

Chapters 2 and 3 treat the measurement model. This is also a major topic in its own
right, and goes by the name factor analysis. Chapter 4 is entitled path analysis. 1t treats
models in which a set of endogenous variables may be influenced by a set of exogenous
variables, and the endogenous variables may in turn influence other endogenous variables.
This is an accurate description of the latent variable model, and the principles developed
in Chapter 4 apply directly to the latent variable model. In Chapter 4, however, as in
traditional path analysis, the models are described as if all the variables were observable.
This makes the exposition easier, and in spite of the dangers of ignoring measurement
error (see Chapter 0), surface path models can occasionally be useful.

Though there is other discussion and a number of examples, the main task of chap-
ters 3 and 4 is develop a set of simple rules for parameter identifiability. These rules
are assembled and stated verbally at the beginning of Chapter 6. Illustrations are given.
Chapter 6 goes on to document a set of additional methods for dealing with identifiability
issues when the standard rules do not apply. The burden of computation is considerably
eased by the use of computer algebra.

When I apply structural equation models, I tend to decide whether a model fits by
simply applying the likelihood ratio test for goodness of fit. This is not a particularly
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popular choice, and Chapter 7 presents a wider range of options. The reader will not be
surprised to learn that in the end, I conclude that I am right.

At this point, the reader has the classical structural equation modeling toolkit, perhaps
with a deeper understanding of identifiability than usual. The remainder of the book will
cover topics including the following. This will be more complete once I have finished
writing it.

e True experimental studies (MIMIC)

Groebner basis

Categorical data

Multiple groups



Chapter 2

Exploratory Factor Analysis

In experimental design, the term “factor” refers to a categorical explanatory variable. In
structural equation modeling and in the sub-field of factor analysis, a factor is a latent
variable, period. Factor analysis may be said to originate with a 92-page article [60]
by Charles Spearman in the 1901 American Journal of Psychology, entitled “General
intelligence, objectively determined and measured.” If you believe that some people are
generally smarter than others, the basic idea is quite natural. True intelligence cannot
be directly observed, so it’s a latent variable. However, we can observe performance on
various tests and puzzles. Spearman proposed that the correlations among observable
variables arise from their connection to a common “g” factor — general intelligence.

The early history of factor analysis is described masterfully in Harman’s (1960, 1967,
1976) classic Modern factor analysis [28]. Though Harman brings relative clarity to this
murky literature, his book is almost guaranteed to be frustrating for a statistician to
read. Lawley and Maxwell’s (1971) Factor analysis as a statistical method is a welcome
antidote. Bastlevsky’s (1994) Statistical factor analysis and related methods [2] is a strong
and more recent treatment of the topic.

Factor analysis may be divided into two types, commonly called exploratory factor
analysis and confirmatory factor analysis. The books cited above are about exploratory
factor analysis, which came first historically. While both types of factor analysis are
special cases of structural equation models, it is confirmatory factor analysis that provides
a useful measurement model. Exploratory factor analysis is helpful for understanding
confirmatory factor analysis. Another good reason to learn about exploratory factor
analysis is that some people still do it, or may ask you to do it.

2.1 Principal Components Analysis

Before describing what factor analysis is, it will be helpful to describe what it is not.
Principal components analysis is not factor analysis. Factors are unobservable latent
variables. Principal components are linear combinations of the sample data. The very
existence of factors depends on one’s acceptance of a fairly elaborate statistical model,
while the statistical model underlying principal components is quite minimal, if there is

203
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one at all. Still, principal components analysis and factor analysis have a similar flavour,
and some of the ideas from principal components are used in factor analysis.

The main application of principal components analysis is data reduction. Suppose
you have a large number of variables that are correlated with one another. Principal
components analysis allows you to find a smaller set of linear combinations of the variables,
linear combinations that contain most of the variation in the original set. It may be that
little is lost by using the linear combinations in place of the original variables, and there
can be substantial advantages in terms of storage and processing.

In the most relevant version of principal components, there are k observable variables
that are standardized!, by subtracting off their means and dividing by their standard
deviations. Collect the variables into a k-dimensional random vector z = [z;], with E(z) =
0 and cov(z) = . Because of standardization, ¥ is a correlation matrix.

Recall the spectral decomposition ¥ = CDC' (see Section A.2 in Appendix A),
where D is a diagonal matrix containing the k eigenvalues of 3 in descending order, and
the columns of the k x k matrix C = [¢;;] contain the corresponding eigenvectors. The
eigenvectors are orthonormal, so CC' = C'C = 1.

Let y = CTz = [y;]. The transformed variables in y will be called the principal
components of z. Immediately, we have F(y) = 0 and

cov(y) = cov(C'z)
C'cov(z)C
= C'xC
c'cpc'cC
= D

(2.1)

Y

so that the elements of y are uncorrelated, and their variances are the eigenvalues of 3,
sorted from largest to smallest.

Since y = C'z, we can also write the original variables in terms of the principal
components as z = Cy. In scalar form,

Z1 = cuyr t+Cioy2 + -+ Clelk
Zo = Co1Y1 + CooYo + -+ CorYk

Zk = CpY1 + CralY2 + -+ Crrlk-

Because the elements of y are uncorrelated, the variance of variable j is

Var(z;)) = Var(cqiyr + cjoye + -+ + i)
= c?_lVar(yl) + c§2Var(y2) + et c?kVar(yk)
= M+ A+ N =1 (2.2)

'In the other main version of principal components, the variables are not standardized. The develop-
ment is very similar.
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Thus, the variance of z; is decomposed into the part explained by y;, the part explained
by y2, and so on. Specifically, y; explains 0?1)\1 of the variance, s explains c§2A2 of the
variance, etc.. Because z; is standardized, these are proportions of variance.

They are also squared correlations. Correlation is covariance divided by the product
of standard deviations. Using the fact that cov(y;,y;) = 0 for i # j,

Cov(z;,y;) = Cov(cay + cioyo + -+ cijy; + - + CjrYr.Y;)
= ¢;;Cov(y;, ;)
= Cij>\j-
Then,

Cov(zi,y;)
SD(%‘)SD(%)

Cz
= 1 i/— = Cij \/A_Jv (23)

and the squared correlation between z; and y; is c;;\;.
Looking at the variances of all the original variables,

Corr(z,y;) =

Var(z1) = A+ e+ +E N
Var(z) = cpAi+ oo+ + e (2.4)

Var(z) = M+ Gada+ -+ G

The pieces of variance being added up are the squared correlations between the original
variables and the principal components.

Imagine a k£ x k matrix of these squared correlations, with the original variables cor-
responding to rows, and the principal components corresponding to columns. The layout
is the same as the equations (2.4). If you add the entries in any row, you get one. If you
add the entries in a column, you get the total amount of variance in the original variables
that is explained by that principal component. The sum of entries in column j is

k k
E 2 _ E 2
=1 =1

— N l=A (2.5)

where the squared weights add to one because the eigenvectors are of unit length. This
means that the eigenvalues are both the variances of the principal components and the
amounts of variance in the original variables that are explained by the respective principal
components. The total variance in the original variables is the trace of ¥, which equals
k. The trace of a symmetric matrix is the sum of its eigenvalues, and everything adds up.

It’s actually even better than that. There is a well-known theorem saying that y; has
the greatest possible variance of any linear combination whose squared weights add up to
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one. In addition, g9 is the linear combination that has the greatest variance subject to
the constraints that it’s orthogonal to y; and its squared weights add to one. Continuing,
y3 is the linear combination that has the greatest variance subject to the constraints that
it’s orthogonal to y; and y,, and its squared weights add to one — and so on. This
means that the principal components are optimal in the sense that the first one explains
the greatest possible amount of variance, and all the succeeding components explain the
greatest possible amounts of the variance that remains unexplained by the earlier ones.

If the correlations among the original variables are substantial, the first few eigenvalues
will be relatively large. The data reduction idea is to retain only the first several principal
components, the ones that contain most of the variation in the original variables. The
expectation is that they will capture most of the meaningful variation.

To apply this method to actual data, suppose you have n observations on k variables.
First standardize all the variables, by subtracting off sample means and dividing by sam-
ple standard deviations. Assemble the standardized data into an n x k matrix Z = [z;;].
The true correlation matrix 3 is unknown, so use the sample correlation matrix 3. Based
upon the spectral decomposition s = CDCT, calculate Y = ZC. The rows of Z con-
tain standardized data vectors, and the rows of Y contain the corresponding vectors of
principal component values. Y has a hat because it is a matrix of the sample principal
components. It can be informative to look at a matrix of squared sample correlations
between the original variables and the components, because the entries are estimated
proportions of variance in each variable that are explained by each component.

A nice feature of principal components is that the formulas given earlier in this section
are exactly correct for sample principal components. This is because most of the rules for
variances and covariances are also true for the sample versions?. As a result, it is possi-
ble to present principal components analysis as a purely descriptive procedure, without
assuming any sampling model at all. Some textbooks do it this way; it’s a matter of taste.

In any case, the main application of principal components is data reduction. The
data reduction strategy is to retain just a few columns of Y, because those principal
components account for most of the variance in the original variables. But where do you
draw the line? How many principal components should you preserve? A standard answer
is to keep the components with eigenvalues greater than one, because one is the amount of
variance in a single original variable. After that point, the principal components explain
no more variance than the original variables.

Example 2.1.1 The Body-Mind Data

2This statement is true and it’s good enough, but here is an another way of thinking about it. The
formulas developed for principal components are true for any distribution of the observed data. In
particular, they are true for the rather peculiar discrete multivariate distribution that puts probability
% on each observed data vector. Think of the observed data vectors as strings of beads in an urn. We
are sampling from this urn with replacement. It’s the re-sampling model that is used in the bootstrap!
For this distribution, the population mean, variance, covariance and so on may be calculated using usual
formulas for the corresponding sample moments — provided that one uses the variance and covariance
formulas with n in the denominator rather than n — 1. Consequently, all the formulas derived here apply
directly to sample principal components.
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The Body-Mind data are a set of educational test scores and physical measurements for
a sample of high school students®. The variables are

e sex: F or M.

e progmat: Progressive matrices (puzzle) score.

e reason: Reasoning score.

e verbal: Verbal (reading and vocabulary) score.

e headlng: Head Length in mm.

e headbrd: Head Breadth in mm.

e headcir: Head Circumference in mm.

e bizyg: Bizygomatic breadth in mm, basically how far apart the eyes are.
e weight: In pounds.

e height: In cm.

These data will be used to illustrate true factor analysis as well as principal components.
We begin by reading the data, and looking at basic descriptive statistics and the correla-
tion matrix.

> rm(1ist=1s())
> bodymind = read.table(’http://www.utstat.toronto.edu/ brunner/openSEM/data/bodymind.data.txt’)
> head(bodymind)

sex progmat reason verbal headlng headbrd headcir bizyg weight height

1 M 108 128 136 182 162 553 140 144 1769
2 F 81 110 94 192 156 571 143 144 1633
3 F 110 134 132 186 145 549 131 135 1672
4 F 95 88 83 189 139 536 124 109 1700
5 M 83 94 100 180 163 549 141 124 1679
6 M 105 77 92 195 148 560 134 126 1651
> dim(bodymind) # Number of rows,columns

[1] 80 10

dat = as.matrix(bodymind[,2:10]) # Omit sex, make dat a matrix rather than a data frame.
> # summary(dat)
> Sigma_hat = cor(dat); round(Sigma_hat,3)
progmat reason verbal headlng headbrd headcir bizyg weight height
progmat 1.000 0.514 0.539 0.323 0.099 0.315 0.200 0.132 0.197
reason 0.514 1.000 0.728 0.203 0.053 0.322 0.291 0.171 0.207
verbal 0.539 0.728 1.000 0.260 0.139 0.354 0.337 0.236 0.199
headlng 0.323 0.203 0.260 1.000 0.255 0.821 0.475 0.506 0.554

3This is a modified subset of data reported in the journal Human Biology [17]. The data are used
here without permission, but I believe they have been sufficiently hacked so that the original copyright
no longer applies, and they can be protected under a Creative Commons license. Good luck trying to
recover the original data values.
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headbrd 0.099 0.053 0.139 0.255 1.000 0.604 0.692 0.368 0.362
headcir 0.315 0.322 0.354 0.821 0.604 1.000 0.713 0.641 0.591
bizyg 0.200 0.291 0.337 0.475 0.692 0.713 1.000 0.589 0.614
weight 0.132 0.171 0.236 0.506 0.368 0.641 0.589 1.000 0.599
height 0.197 0.207 0.199 0.554 0.362 0.591 0.614 0.599 1.000

The R functions princomp and prcomp will do principal components analysis, but we’ll
use spectral decomposition directly at first for illustrative purposes. The eigen function
returns a list with two elements. The first element is a vector of eigenvalues, and the

second element is the matrix C in A = CDC'. Column j of the matrix C is the
eigenvector corresponding to A;.

> eigenSigma = eigen(Sigma_hat); eigenSigma

eigen() decomposition

$values

[1] 4.28768216 1.77444482 0.87126975 0.64039055 0.47989427 0.40504511 0.26315906
[8] 0.21010253 0.06801175

$vectors

[,1] [,2] [,3] [,4] [,5] [,6] [,7]
[1,] -0.2274301 -0.47286949 0.10386693 -0.5037581 0.59758999 -0.29003259 -0.08152051
[2,] -0.2405745 -0.54632083 -0.12052776 0.2965707 -0.17975676 0.26454653 -0.63108107
[3,] -0.2665589 -0.51874379 -0.16430737 0.1996142 -0.24123089 -0.07990715 0.71935768
[4,] -0.3622340 0.08683821 0.53544154 -0.3586357 -0.34767275 0.16737858 0.08869681
[5,] -0.2933333 0.27697281 -0.66373737 -0.3094155 0.04112189 -0.03633303 -0.01019606
[6,] -0.4377198 0.12657178 0.08577647 -0.2525368 -0.33524350 0.01081660 -0.14979213
[7,] -0.4007471 0.17219323 -0.34669164 0.1054639 0.05971130 0.13277579 0.01297777
[8,] -0.3513037 0.20963075 0.18723810 0.4548388 0.02650610 -0.74034211 -0.13982797
[9,] -0.3556358 0.18698153 0.24048299 0 0

[,8] [,9]
[1,] 0.10288021 0.040581025
[2,] -0.11345554 -0.166563741
[3,] -0.09839457 0.035693597
[4,] 0.07347486 -0.532701450
[5,] -0.44524651 -0.315589722
[6,] -0.14639593 0.751580920
[7,] 0.81059576 -0.002188321
[8,]1 -0.07609981 -0.128655279
[9,] -0.28094584 0.067358086

.3351036 .556960504 0.49428994 0.16579073

Since only the first two eigenvalues are greater than one, the conventional choice for data
reduction would be to retain only the first two sample principal components. Dividing
the eigenvalues by the number of variables yields the proportions of the total variance
explained by each component.

> lambda_hat = eigenSigma$values

> lambda_hat/9 # Proportions of explained variance

[1] 0.476409129 0.197160535 0.096807750 0.071154506 0.053321586 0.045005012 0.029239896
[8] 0.023344726 0.007556861

> cumsum(lambda_hat/9) # Cumulative sum

[1] 0.4764091 0.6735697 0.7703774 0.8415319 0.8948535 0.9398585 0.9690984 0.9924431

[9] 1.0000000
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It seems that the first two components account for around 67% of the total variance in
the observed variables, and five components would account for about 90%.
Calculating Z and then Y = ZC, we verify (2.1), which says cov(y) = D.

> > Z = scale(dat) # Standardize

> C_hat = eigenSigma$vectors #$

> Y_hat = Z %x%, C_hat # Sample principal components

> # Looking at the variance-covariance matrix of the principal components,

> round(var(Y_hat), 4) # Should equal D

[,1] [,2] [,3] [,4] [,51 [,6] [,7] (.81 [,9]

[1,] 4.2877 0.0000 0.0000 0.0000 0.0000 0.000 0.0000 0.0000 0.000
[2,] 0.0000 1.7744 0.0000 0.0000 0.0000 0.000 0.0000 0.0000 0.000
[3,] 0.0000 0.0000 0.8713 0.0000 0.0000 0.000 0.0000 0.0000 0.000
[4,] 0.0000 0.0000 0.0000 0.6404 0.0000 0.000 0.0000 0.0000 0.000
[5,1 0.0000 0.0000 0.0000 0.0000 0.4799 0.000 0.0000 0.0000 0.000
[6,]1 0.0000 0.0000 0.0000 0.0000 0.0000 0.405 0.0000 0.0000 0.000
[7,] 0.0000 0.0000 0.0000 0.0000 0.0000 0.000 0.2632 0.0000 0.000
[8,] 0.0000 0.0000 0.0000 0.0000 0.0000 0.000 0.0000 0.2101 0.000
[9,] 0.0000 0.0000 0.0000 0.0000 0.0000 0.000 0.0000 0.0000 0.068

There it is: a diagonal matrix with the eigenvalues on the diagonal.
Based on the eigenvalues, let’s retain just the first two components and estimate how
much variance they explain. First, look at the correlations.

>y = Y_hat[,1:2] # Just the first two components
> zy = cor(Z,y); zy
[,1] [,2]
progmat -0.4709330 -0.6299014
reason -0.4981509 -0.7277446
verbal -0.5519561 -0.6910097
headlng -0.7500678 0.1156757

headbrd -0.6073970 0.3689507
headcir -0.9063741 0.1686041
bizyg -0.8298157 0.2293757
weight -0.7274347 0.2792455
height -0.7364050 0.2490749

All of the large correlations are negative, so they are a bit harder to look at. If this is
a problem, the signs of a principal component can be flipped, reversing the signs of the
correlation between that component and any variable. To see why this is true, recall
the definition of an eigenvalue and associated eigenvector: Ax = Ax. Clearly if x is
an eigenvector corresponding to A, so is —x. Since a principal component is a linear
combination of variables whose weights are the elements of an eigenvector, the sign is
arbitrary.

Now we will check Equation (2.3), which says Corr(z;,y;) = ¢;;/A;. We should be
able to reproduce the matrix of correlations between Z and the first two components by

N0

~

0 A2

multiplying the first two columns of C by the matrix

> A = rbind(c( sqrt(lambda_hat[1]), 0 ),
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+ c(0, sqrt(lambda_hat[2]) ) )
> C_hat[,1:2] %*% A
[,1] [,2]

[1,] -0.4709330 -0.6299014
[2,] -0.4981509 -0.7277446
[3,] -0.5519561 -0.6910097
[4,] -0.7500678 0.1156757

[5,] -0.6073970 0.3689507
[6,] -0.9063741 0.1686041
[7,] -0.8298157 0.2293757
[8,]1 -0.7274347 0.2792455
[9,] -0.7364050 0.2490749

Okay, it worked: Estimated Corr(z;,y;) is Eij\//)\\j.
The squared correlations are components of variance. The addmargins function is

used below to add row and column sums. It’s easier to look at the output rounded to
three decimal places.

> zy2 = zy~2
> round( addmargins(zy2, margin = c(1,2), FUN = sum) , 3)

Margins computed over dimensions
in the following order:
1:

2:

sum
progmat 0.222 0.397 0.619
reason 0.248 0.530 0.778
verbal 0.305 0.477 0.782
headlng 0.563 0.013 0.576
headbrd 0.369 0.136 0.505
headcir 0.822 0.028 0.850
bizyg 0.689 0.053 0.741
weight 0.529 0.078 0.607
height 0.542 0.062 0.604
sum 4.288 1.774 6.062

This shows, for example, that the first principal component explains 54.2% of the variance
in height, and the second principal component explains an additional 6.2%. The first two
principal components explain around 85% of the variance in head circumference, but only
about 50.5% of the variance in head breadth. Also, the column totals are the eigenvalues,
as in (2.5). These are all estimated values, of course.

Principal components the easy way It’s a bit easier to use a specialized R function
for principal components analysis, rather than relying on eigen. I prefer prcomp over
princomp, because princomp has some unfortunate features that have been retained for
compatibility with the defunct commercial software S-plus.

In the prcomp function, the scale = T option divides variables by their sample stan-
dard deviations. The option center is true by default, so the data are converted to
z-scores. This is what we want.
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> # Principal components the easy way
> # help(prcomp)
> pc = prcomp(dat, scale = T)

The object pc is a list. The 1s function shows its elements.

> 1s(pc)
[1] "center" "rotation" "scale" "sdev" "y

The element pc$center contains the sample means of the variables before standardization;
pc$scale contains the standard deviations. sdev has the standard deviations of the
components. Squaring the sdev vector yields the eigenvalues of the sample correlation

matrix.

> pc$sdev”2 # Eigenvalues
[1] 4.28768216 1.77444482 0.87126975 0.64039055 0.47989427 0.40504511 0.26315906
[8] 0.21010253 0.06801175

> lambda_hat # For comparison
[1] 4.28768216 1.77444482 0.87126975 0.64039055 0.47989427 0.40504511 0.26315906
[8] 0.21010253 0.06801175

~

The list element pc$rotation corresponds to the C matrix produced by the spectral
decomposition. Since C is an orthogonal matrix, it is indeed a rotation.

> pc$rotation

PC1 PC2 PC3 PC4 PC5 PC6 PC7
progmat -0.2274301 -0.47286949 0.10386693 -0.5037581 0.59758999 -0.29003259 0.08152051
reason -0.2405745 -0.54632083 -0.12052776 0.2965707 -0.17975676 0.26454653 0.63108107
verbal -0.2665589 -0.51874379 -0.16430737 0.1996142 -0.24123089 -0.07990715 -0.71935768
headlng -0.3622340 0.08683821 0.53544154 -0.3586357 -0.34767275 0.16737858 -0.08869681
headbrd -0.2933333 0.27697281 -0.66373737 -0.3094155 0.04112189 -0.03633303 0.01019606
headcir -0.4377198 0.12657178 0.08577647 -0.2525368 -0.33524350 0.01081660 0.14979213
bizyg -0.4007471 0.17219323 -0.34669164 0.1054639 0.05971130 0.13277579 -0.01297777
weight -0.3513037 0.20963075 0.18723810 0.4548388 0.02650610 -0.74034211 0.13982797
height -0.3556358 0.18698153 0.24048299 0.3351036 0.55960504 0.49428994 -0.16579073
PC8 PC9
progmat -0.10288021 0.040581025
reason 0.11345554 -0.166563741
verbal  0.09839457 0.035693597
headlng -0.07347486 -0.532701450
headbrd 0.44524651 -0.315589722
headcir 0.14639593 0.751580920
bizyg -0.81059576 -0.002188321
weight  0.07609981 -0.128655279
height 0.28094584 0.067358086
> C_hat # For comparison
[,1] [,2] [,3] [,4] [,5] [,6] [,7]
[1,] -0.2274301 -0.47286949 0.10386693 -0.5037581 0.59758999 -0.29003259 -0.08152051
[2,] -0.2405745 -0.54632083 -0.12052776 0.2965707 -0.17975676 0.26454653 -0.63108107
[3,] -0.2665589 -0.51874379 -0.16430737 0.1996142 -0.24123089 -0.07990715 0.71935768
[4,] -0.3622340 0.08683821 0.53544154 -0.3586357 -0.34767275 0.16737858 0.08869681
[5,]1 -0.2933333 0.27697281 -0.66373737 -0.3094155 0.04112189 -0.03633303 -0.01019606
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[6,] -0.4377198 0.12657178 0.08577647 -0.2525368 -0.33524350 0.01081660 -0.14979213

[7,] -0.4007471 0.17219323 -0.34669164 0.1054639 0.05971130 0.13277579 0.01297777

[8,] -0.3513037 0.20963075 0.18723810 0.4548388 0.02650610 -0.74034211 -0.13982797

[9,] -0.3556358 0.18698153 0.24048299 0.3351036 0.55960504 0.49428994 0.16579073
[,8] [,9]

[1,] 0.10288021 0.040581025

[2,] -0.11345554 -0.166563741

[3,] -0.09839457 0.035693597

[4,] 0.07347486 -0.532701450

[5,] -0.44524651 -0.315589722

[6,] -0.14639593 0.751580920

[7,] 0.81059576 -0.002188321

[8,] -0.07609981 -0.128655279

[9,] -0.28094584 0.067358086

Finally, pc$x has the principal components themselves.

> dim(pc$x) # x is a matrix of the principal components Y_hat = Z %xJ, C_hat
[11 80 9
> head(pc$x) # Just the first 6 rows
PC1 PC2 PC3 pPC4 PC5 pPC6 PC7

1 -2.9056790 -0.8163483 -2.05648959 0.89345100 1.0826163 0.09581676 0.09097201
2 -1.8420248 1.6868136 -1.11946332 0.61460425 -1.7388326 0.20651893 0.68366132
3 -1.1270571 -2.3088592 0.08809617 0.75714079 0.1575711 -0.19017485 0.51153249
4 1.6221315 0.2340440 1.62777485 0.07639917 0.3896938 0.65365783 -0.33948607
5 -0.6431189 1.8507668 -2.60883792 0.58933649 -0.1899104 0.47035165 -0.33536456
6 -0.5757390 0.9010777 0.79544134 -1.28687495 0.1150836 -0.39632242 -0.59876963
PC8 PC9
1 0.66523233 -0.13093412
2 -0.60878367 0.09346307
3 0.34061367 0.13503816
4 0.44387949 0.16416604
5 0.06955952 0.02486900
6 -0.48127952 0.34279834
> head(Y_hat) # For comparison
[,1] [,2] [,3] [,4] [,5] [,6] [,7]
1 -2.9056790 -0.8163483 -2.05648959 0.89345100 1.0826163 0.09581676 -0.09097201
2 -1.8420248 1.6868136 -1.11946332 0.61460425 -1.7388326 0.20651893 -0.68366132
3 -1.1270571 -2.3088592 0.08809617 0.75714079 0.1575711 -0.19017485 -0.51153249
4 1.6221315 0.2340440 1.62777485 0.07639917 0.3896938 0.65365783 0.33948607
5 -0.6431189 1.8507668 -2.60883792 0.58933649 -0.1899104 0.47035165 0.33536456
6 -0.5757390 0.9010777 0.79544134 -1.28687495 0.1150836 -0.39632242 0.59876963
[,8] [,9]
1 -0.66523233 -0.13093412
2 0.60878367 0.09346307
3 -0.34061367 0.13503816
4 -0.44387949 0.16416604
5 -0.06955952 0.02486900
6 0.48127952 0.34279834

A useful feature of prcomp is that it’s easy to specify the number of components you want
to extract. This is accomplished by specifying rank in the call to prcomp.

> pc2 = prcomp(dat, scale = T, rank = 2) # Retain two principal components
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> pc2$rotation

PC1 PC2
progmat -0.2274301 -0.47286949
reason -0.2405745 -0.54632083
verbal -0.2665589 -0.51874379
headlng -0.3622340 0.08683821
headbrd -0.2933333 0.27697281
headcir -0.4377198 0.12657178
bizyg -0.4007471 0.17219323
weight -0.3513037 0.20963075
height -0.3556358 0.18698153

Only the first two columns of C are returned. Post-multiplying this matrix by the matrix
of standardized data in Z yields an 80 x 2 matrix of just the first two principal components.

\4

head (pc2$x) # There should be 2 columns
PC1 PC2
-2.9056790 -0.8163483
-1.8420248 1.6868136
-1.1270571 -2.3088592
1.6221315 0.2340440
-0.6431189 1.8507668
-0.5757390 0.9010777

O WN -

This is all very nice, but it’s not factor analysis. Principal components analysis and factor
analysis are frequently confused, especially by social scientists. In a consulting situation,
suppose your client claims to have done a factor analysis. You should ask “What kind of
factor analysis?” If the client doesn’t know, ask “What software did you use?” If it’s SAS
or SPSS, ask “Did you use the default options?” If the answer is yes, it was a principal
components analysis. We now turn to true factor analysis.

2.2 True Factor Analysis

In exploratory factor analysis, the goal is to describe and summarize a data set by explain-
ing a set of observed variables in terms of a smaller number of latent variables (factors).
The factors are the reason the observable variables have the correlations they do. Fig-
ure 2.1 shows the path diagram of a model with two factors and eight observable variables.
A common rule is at least three observable variables for each factor. In general, the more
variables for each factor, the better.

The general factor analysis model may be written as follows. Independently for ¢ =
1,...,n, let
where d; is a k x 1 observable random vector, A is a k X p matrix of constants, and F; (F

for factor) is a p x 1 latent random vector with covariance matrix ®. The k x 1 vector of
error terms e; is independent of F;; it has expected value zero and covariance matrix €2,
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Figure 2.1: A Two-factor Model

which is almost always assumed to be diagonal®. There are no intercepts, and E(F;) = 0.
This is a centered surrogate model (see Section A.6.1). The notation here is consistent
with the general two-stage model of Section 1.2, except that there, the dimension of F;
would be (p+ ¢) x 1. A multivariate normal assumption for F; and e; is common.

4The assumption that Q is diagonal helps with identifiability, and may be traced to what Spear-
man [60] (1904, p. 273) calls the “Law of the Universal Unity of the Intellective Function,” to wit:
Whenever branches of intellectual activity are at all dis-similar, then their correlations with one another
appear wholly due to their being all variously saturated with some common fundamental Function (or
group of Functions as well as positive definite. Note that in Figure 2.1, € being diagonal corresponds
to a lack of any curved, double-headed arrows connecting eq,...,es. This means that any correlations
between observable variables must come from the factors.
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To clarify the notation, the model equations for Figure 2.1 are

di A1 Aig €i,1
di,Q Aa1 Ao €i2
di 3 )\31 )\32 €i3
b ’ 2.7
di,4 _ A1 A2 Fm + €i4 ( )
di,S As1 o As2 Fi,2 €i5
die A6t Ae2 €i,6
di7 A1 Aoz €i,7
dis As1 As2 €i,8

The \;; values will be called factor loadings. They are essentially regression coefficients
linking the factors to the observed variables®. The factors Fj; and F; 5 are sometimes
called common factors, because they influence all the observed variables; all the observed
variables have them in common. The error terms e; 1, ..., e; g are sometimes called unique
factors, because each one influences only a single observed variable.

The defining feature of exploratory factor analysis is that it tries to be as unconstrained
as possible. The method really wants the data to speak. In Figure 2.1 and in general,
there are arrows from all factors to all observed variables.

Number of factors The number of factors (symbolized here by p) is a fundamental
property of a factor analysis model. For example, it determines the number of parameters.
It’s typically very important to subject matter experts, too. You can always get their
attention by asking if something they are talking about is uni-dimensional. For example,
is creativity uni-dimensional? Are political attitudes uni-dimensional (primarily just left-
right)? In market research, how about attitudes toward a particular product category?
Is it just positive-negative? Their eyes will light up.

Of course, there can be lots of factors. For example, Cattell’s Sixteen Personality
Factor Questionnaire [16] (documented in a 1970 paper by Cattell, Eber and Tatsuoka) is
based on factor analyses of a large number of personality test items. They came up with
16 factors.

In a classical factor analysis, the number of common factors is generally not known in
advance; it is determined in an exploratory manner. The first guiding principle is a piece
of wisdom [39] from Kaiser (1960), who pointed out that for the typical problem involving
human behavior or any other complex system, there are probably hundreds of common
factors. Including them all in the model is out of the question. The objective should be
to come up with a model that includes the most important factors for the variables in
the study, and captures the essence of what is going on. Simplicity is important. Other
things being more or less equal, the fewer factors the better. I have already mentioned a

5In some books, the term “factor loading” is reserved for the correlations between factors and observed
variables. When the factors are uncorrelated, the \;; in (2.7) are indeed correlations, and the two common
uses of the term coincide.
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widely accepted rule of thumb® that says there should be at least three observed variables
per factor [25]. This sets practical soft upper bound for the number of factors.

To narrow the search for the number of factors, quite a few methods are available. If
the parameters are estimated by maximum likelihood, perhaps the most natural approach
is to test goodness of fit using the likelihood ratio test (1.18) on page 171, increasing the
number of factors until the model fits. This idea has quite a pedigree. It was essentially
proposed by Lawley [41] in 19407, though he derived a slightly different large-sample chi-
squared test. The reasoning is that if we really insist that the error terms are independent
of the factors and have a diagonal covariance matrix, the only way that the model can be
incorrect is that it does not have enough factors. Thus, any test for goodness of fit is also
a test for number of factors.

Hypothesis testing may be attractive, but one thing to bear in mind is Kaiser’s obser-
vation that in reality, there are probably hundreds of factors. Suppose the true number
of factors is very large. Because the power of the likelihood ratio test increases with the
sample size, significant lack of fit may be expected for any model with a modest number
of factors, even if that model explains most of the non-error variance in an elegant and
useful way. Statistically, rejecting the null hypothesis is a correct decision, because the
model is wrong. Scientifically, it would be unfortunate. This suggests that while formal
tests for lack of fit may be useful, one should not rely on them exclusively.

Another common method [39], and one that continues to be the default in some
popular statistical software, is due to Kaiser (1960). Kaiser proposed estimating number
of factors by the number of eigenvalues of the correlation matrix that are greater than
one. The idea is that even though factor analysis and principal components analysis
are different, still, if the correlations among the observed variables arise from p common
factors, then the optimality of principal components in explaining variance suggests that
p principal components will explain at least as much variance. And then, as in principal
components, adding an additional factor that explains less variance than a single variable
will not improve the model as a summary of the data.

A variation, called parallel analysis [31] is to test whether each eigenvalue is signifi-
cantly larger than one would expect by chance. The meaning of “chance” is the probability
distribution of an (ordered) eigenvalue under the null hypothesis that the variables are
uncorrelated. These distributions are approximated by randomly independently permut-
ing the observed data values a large number of times, and calculating the eigenvalues of
the correlation matrix for each permutation. A factor is retained if the corresponding
ordered eigenvalue is larger than the 95th percentile of the random values.

A graphical alternative called the scree plot [15] was proposed by Cattell (1966). Scree
is a term from geology. It refers to the pile of rock and debris often found at the foot of a

6A rule of thumb is a rule that comes from experience and expert opinion, but is not backed up by
hard evidence. The term apparently comes from brewing beer. In the early days before thermometers,
the master brewer would stick a thumb in the vat of fermenting hops and stuff, and if the temperature
felt right then it was on to the next stage.

"This is the same article where Lawley proposed estimating factor loadings by maximum likelihood.
Like many of the procedures that are now standard in multivariate analysis, maximum likelihood factor
analysis became practical for most real data sets only after the invention of electronic computers.
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mountain cliff or volcano. Scree slopes tend to be concave up, steepest near the cliff and
then tailing off. In factor analysis, a scree plot shows the eigenvalues of the correlation
matrix, sorted in order of magnitude. It has the numbers 1,... &k (k = the number of
principal components as well as variables) on the z axis, and the eigenvalues on the y
axis. The largest eigenvalue goes with 1, the second largest with 2, and so on. It is very
common for the graph to decrease rapidly at first, and then straighten out with a small
negative slope for the rest of the way. The point at which the linear trend begins is the
estimated number of factors.

Figure 2.2 show a scree plot for the Mind-body data, described in Example 2.1 on
page 207. Reading the data and creating the object pc with prcomp has already been
illustrated.

> Eigenvalue = pc$sdev~2
> plot(1:9,Eigenvalue,type=’b’,xlab="Principal Component’,xaxp=c(1,9,8))

Figure 2.2: Scree Plot for the Mind-Body Data

Eigenvalue

Principal Component

The linear part of decreasing trend appears to begin with the third eigenvalue, sug-
gesting three factors. There are only nine variables, so the rule of at least three variables
per factor would limit us to three factors at most, anyway. Two of the eigenvalues are
greater than one, suggesting two factors. There is no requirement that these any of these
criteria coincide, and in fact it is reassuring that they are this close.

A final criterion for number of factors is interpretability. What do the factors seem to
represent? Typically, the answer is more clear for models with fewer factors. With more
and more factors, explanation tends to become increasingly difficult, and the wise factor
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analyst will stop at a point where there is still a convincing story to tell. This process
is subjective, but reasonable and widely accepted. In a professional paper, one might
read something like “A maximum likelihood factor analysis extracted four interpretable
factors, accounting for an estimated 72% of the variance in the attitude scales. Table 3
shows the factor loadings ...”

Identifiability The parameters of the general factor analysis model are massively non-
identified. This is true even when, as in the example of Figure 2.1, the model passes the
test of the parameter count rule. To see this, first observe that the parameters are the
unique contents of the matrices ®, A and Q. If two distinct triples (®, A, Q) yield the
same covariance matrix ¥ = cov(d;), then the parameters cannot be identified from .
In practice, that means they can’t be identified at all. Calculating,

cov(d;) =¥ = cov(AF; +e;)
APAT +Q.

The square root matrix of a symmetric matrix is also symmetric, so

APAT +Q = ASPIPV2PAT 1+ Q
_ (A(I)1/2>I((I)1/2TAT) + Q
= (A®IASYY)T +Q
= AJA) +Q

Unless ® = cov(F;) was equal to the identity in the first place, the triple (I, Ay, €2) is
different from (®, A, Q), yet it yields the same ¥X. This shows that the parameters are
not identifiable.

Actually, 3 is produced by infinitely many parameter sets. Let Q be an arbitrary
positive definite covariance matrix for F;. Then

Y = AJA) +Q
A2Q7:QQ :A; + 0
= (AQH)QQTTA)) + 0
= (AQH)QAQ ) +Q
= A3QA] +Q (2.8)

No matter what the truth might be, one can make the covariance matrix of the factors
absolutely anything, and then adjust the factor loadings to yield exactly the same X that
is produced by the true parameter values. Note that for multivariate normal data with
expected value zero (the usual assumption), all one can ever get from increasing amounts
of data is a closer and closer approximation of 3. This means that empirical data cannot
help us learn the model parameters. It’s not a good situation.
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The classical way out of this dilemma is to regard the covariance matrix of the factors
as essentially arbitrary, and fix & = I. The factors are said to be “orthogonal” (at right
angles, uncorrelated). They are also standardized, meaning that the (scalar) expected
value of each factor is zero, and its variance equals one. This is justified on the grounds
of simplicity and ease of interpretation.

Of course, the assumption of uncorrelated factors may be difficult to justify. Further-
more, it is untestable given model (2.6), since all possible covariance matrices for the
factors are equally compatible with any set of data. In exploratory factor analysis, the
possibility of correlated factors is addressed by transforming the estimates from a model
with orthogonal factors into estimates for a model in which the factors are oblique — that
is, not at right angles. Accordingly, we will proceed with the orthogonal factor model for
the present.

Again, setting ® = I standardizes the factors as well as making them uncorrelated.

The observed variables are standardized as well. For j = 1,... k and (almost) inde-
dij—dj

pendently for ¢ = 1,...,n the data we work with are z;; = =-—. Thus, each observed
J

variable has variance one as well as mean zero.

In the revised exploratory factor analysis model below, the subscripts ¢ on z;, F;
and e; have been dropped to reduce notational clutter. Implicitly, everything applies
independently for ¢ = 1,...,n. The model is

z = AF + e, where (2.9)

e 7z is a k x 1 observable random vector. Each element of z has expected value zero
and variance one.

A is a k x p matrix of constants.

F (F for factor) is a p x 1 latent random vector with expected value zero and
covariance matrix L.

The k x 1 vector of error terms e has expected value zero and covariance matrix €2,
which is diagonal.

For this model, everything emerges in terms in terms of correlations rather than covari-
ances. This is a virtue, because correlations are easier to interpret. First, cov(z;) = X =
AAT +Q is a correlation matrix; correspondingly, estimation and inference will be based
on the sample correlation matrix.
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Factor Loadings Next, consider the matrix of correlations between the factors and the
observed variables. Because all the variables are standardized,

corr(z,F) = cov(z,F)
cov(AF + e, F)
= Acov(F,F) + cov(e, F)
= Acov(F)+0
= Al
- A (2.10)

Thus, the factor loadings are correlations between the observable variables and the factors.
In particular, the correlation between observed variable 7 and factor j is A;;. The square
of \;; is the reliability® of observed variable i as a measure of factor j.

Communality and Uniqueness Observed variable i (an element of z; the index i goes
from 1,..., k) may be written in scalar form as

zi = AaFi+- A F te
P
= Z Aij By + e,
j=1

so that
P
Var(z) = Var (Z NijFy + ei>

= Z )\2 Var(F;) + Var(e;)

= Z)\ + wj, (2.11)

where w; = Var(e;) is the ith diagonal element of €. Since the observed variables are
standardized, we have 1= 37" A%, + w;.

The variance of the observed variable has been split into two components. ?:1 )\fj is
the proportion of variance in observed variable i that comes from the common factors. It
is called the communality. To get the communality of a variable, add up the squares of the
factor loadings in the corresponding row of A. The other component is w; =1 — ?:1 /\?j.
It is is what’s left over, the part that comes from error. It is called the uniqueness of the
variable.

It may seem a bit peculiar for the variance of the error term to “know” about the
factor loadings, but that’s what you get when you standardize the observed variables.

8Psychometric reliability. See page 41.
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More important is that since the matrix €2 is diagonal and its diagonal elements are
functions of the \;;, the only parameters it contains are factor loadings that are already
in A. The role of €2 is to make the diagonal elements of 3 equal one — that is, to make X
a proper correlation matrix. In the standardized factor analysis model, the only unknown
parameters are the factor loadings.

This really is quite nice. Since factor loadings are the correlations between the ob-
servable variables and the factors, they could be very informative about the processes
driving the data. Squared factor loadings are reliabilities, another important feature of
the measurement model. One could also use estimated factor loadings to estimate how
much of the variance in each observable variable comes from each factor. All this could
reveal what the underlying factors are, and what they mean.

2.3 Orthogonal Rotations

Unfortunately, the factor loadings are still not identifiable, so meaningful estimation is
still out of the question. This part of the story depends on the idea of a rotation matrix.
In Figure 2.3, a basis for R? is provided by the unit vectors i and f, which are at right
angles. These basis vectors are rotated through an angle 0, yielding 7’ and j’. If a point

Figure 2.3: Rotation

on the plane is denoted in terms of i and ; by (x,y), its position in terms of the rotated
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basis vectors is

r = xcosf+ysinf

= —xsinf 4+ ycosb.

These are the well-known equations of rotation. They may be written in matrix form as

x cosf sind x T
(y’>_(—sin9 0089><y>_R<y>' (2.12)
Using the identities cos(—f) = cosf and sin(—#) = —sinf, one obtains a matrix that
rotates the axes back to their original position.

x cosf) —sinf x’ (2
= . = : 2.1
(y) (st COSH)(;g’) R(y’) (2.13)
As the notation indicates, the matrix that reverses the rotation is the transpose of the
original rotation matrix. Verifying that it’s also the inverse,

T cosf sinf cosf) —sinf

RR" = (—sin@ cos@) ( sinf  cos@
B cos?20 +sin?0 — cosfsin b + sinf cos
—sinfcos@ + cosfsinb sin? 6 + cos? 0

_ ((1) 2):1.

So in two dimensions, the transpose of a rotation matrix is also its inverse. This fact
holds in higher dimension as well. A p x p matrix R satisfying R™' = R is called an
orthogonal matriz, because the columns and rows are orthonormal vectors. Geometri-
cally, pre-multiplication by an orthogonal matrix corresponds to a rotation or possibly a
reflection in p-dimensional space. If you think of a set of factors F as a set of axes or
underlying dimensions, then RF is a rotation (or reflection) of the factors. Call it an
orthogonal rotation, because the factors remain uncorrelated — at right angles.

Rotation matrices are another source of non-identifiability. Returning to the stan-
dardized factor model, the covariance matrix of the observed data vector z is

AAT +Q

= AR'RAT +Q

= (AR")(AR")T +Q
= AA) +Q

b

That is, infinitely many rotation matrices produce the same 3, even though the factor
loadings in Ay = AR can be very different for different R matrices.
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Post-multiplication of A by RT is often called “rotation of the factors,” for the fol-
lowing reason.

z = AF +e
= (AR")(RF) +e
= AF fe. (2.14)

F’ = RF is a set of rotated factors. All rotations of the factors produce the same covariance
matrix of the observable data.

In addition, all sets of rotated factors account for the same proportion of variance.
To see this, recall that Z?Zl )\?j, the formula for the communality of observed variable 1,
instructs us to add up the squares of the factor loadings in row ¢ of A. This equals the
ith diagonal of element of AAT. Applying a rotation,

AsAy, = (AR (AR
= AR'RAT
AAT, (2.15)

so that rotation does not affect the proportions of variance explained by the common
factors.

Confronted with this unpleasant situation, the exploratory factor analyst asks a ques-
tion. Since all rotations of the factors explain the data equally well, why not just pick a
good one? Here’s an outline of the strategy.

1. Place some restrictions on the factor loadings, so that the only rotation matrix that
preserves the restrictions is the identity matrix”. For example, \;; = 0 for j > i.
There are other sets of restrictions that work — for example, forcing ATQ 1A to
be diagonal.

2. Generally, the restricted factor loadings may not make sense in terms of the data.
Don’t worry about it.

3. Estimate the loadings, perhaps by maximum likelihood. Other methods are avail-
able, but less commonly used than in the past.

4. Now apply a rotation, without any restriction on the resulting factor loadings. All
(orthogonal) rotations result in the same maximum value of the likelihood function.
That is, the maximum is not unique. Again, don’t worry about it.

5. Pick a rotation that results in a simple pattern in the factor loadings, one that is
easy to interpret.

The first and last steps require further discussion. The first step is to place restrictions on
the factor loadings. Consider the restriction \;; = 0 for j > ¢. This means that observed

9This statement will require a bit of qualification, but it’s the right idea.
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variable one comes only from factor one, observed variable two comes only from factors
one and two, observed variable three comes only from factors one, two and three — and so
on. This pattern might be plausible for some sets of variables, but not in general. Carry
on.

As an illustration, consider the case of two factors. In the path diagram of Figure 2.1,
the straight arrow from F5 to d; is missing. Also, the curved, double-headed arrow between
F) and Fy is missing, because the factors are orthogonal. In the model equations (2.7),
the only restriction is A;5 = 0. Maintaining that restriction under rotation means

All 0 /11 0
Ao1 Az 51 A
>\31 )\32 )‘gl )‘g’)Z
)\41 )\42 cosf sin6 . >\£11 )\212
/\51 )\52 — sin 9 COS 0 o /\’51 )\/52
/\61 )\62 )‘/61 )‘/62
Y Y / /
)\71 )\27 ,71 ,27
81 82 81 82

Focusing on the zero in the right-hand side, we have

A11sind 4+ 0cosf =0
= Apysinf =0
= sinf = 0 (provided A;; # 0).

Therefore, the angle of rotation 6 equals 0, or m, or 27, or 37, or .... For § = 0 or any
even multiple of 7, cosf = 1, and the rotation matrix is the identity. For § = 7 or any
odd multiple of 7, cos # = —1, and the rotation matrix is minus the identity. This reverses

the signs of all the factor loadings.
There are two more orthogonal matrices that preserve the constraint A\ = 0. They

are _(1) (1) ) and ( (1) _? ) The first matrix reverses the signs of the first column

of A, but leaves the second column alone. The second matrix reverses the signs of the
second column of A while leaving the first column alone. These represent reflections. The
set of orthogonal matrices corresponds to the set of all possible reflections and rotations
about the origin.

This shows that the restriction \j = 0 does not quite make the remaining factor
loadings identifiable from the correlation matrix. We have located four distinct sets of
parameter values that yield exactly the same correlation matrix for the observed data
vector. On the other hand, these multiple solutions will not produce trouble in the
numerical search for the MLE, because they are separated in the parameter space. The
search will find just one of them, or it will wander off into nowhere, depending on the
starting value and the topography of the likelihood function. It does not really matter
which one we find. The plan is to apply a rotation later to find a more interpretable set
of factor loadings, so the meaning of the parameter estimates is not an issue at this point.
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To see what happens in higher dimension, it is enough to examine the case of p = 3.
Denoting the orthogonal matrix by R = [r;;] and insisting that it preserve the constraints
Aij = 0 for j > i, we require

A1 00 N, 00
Xop Ay O 1 T2 T13 B )\/21 )\/22 0 016
A1 Asa Asz Tar Taz Tas LN N, N (2.16)

31 T32 733

Carrying out the row by column multiplications that yield the three zeros, conclude
T19 = T'13 = TI'eg = 0. Then use the fact that RRT = 0. Conclude that 91 = T31 = T3 = 0,
and that

20 0 100
0 73 0 |=[o010
0 0 r% 001

So, the off-diagonal elements of R are zero, and the diagonal elements are either plus
or minus one, with entries of minus one representing reflections. This is how it goes in
general, with 27 different orthogonal matrices preserving the restriction \;; = 0 for j > 1.
The result is 2P distinct minima of the minus log-likelihood function, all with the same
value at the local minimum. Again, no numerical difficulties are created, because the
multiple minima are separated in the parameter space, and the search for the MLE will
only go down one of the holes.

The restriction \;; = 0 for j > ¢ is fairly easy to understand, but the restriction most
used in practice is for J = ATQ'A to be diagonal. In Factor analysis as a statistical
method [42], Lawley and Maxwell (1971) show how this way of restricting A allows an
efficient iterative solution of the equations obtained by differentiating the log likelihood
and setting all the derivatives to zero.

Full details of Lawley’s method will not be given here, but a few remarks are in order.
First, since A is k x p, the matrix J is p x p. It is also symmetric, so insisting it be
diagonal places p(p —1)/2 restrictions on A. The restriction \;; = 0 for j > i also induces
a little triangle of zeros, as in (2.16); there are p(p — 1)/2 of them, so the two methods
impose the same number of restrictions. This is useful when it comes to counting degrees
of freedom.

Second, let the p x p matrix R be a restricted kind of orthogonal matrix, a diagonal
matrix, with values of plus or minus one on the diagonal. Any diagonal element of R
equal to minus one reverses the signs of all the loadings in the corresponding column of
A. That’s a reflection.

Replacing A with AR,

(AR)" QAR = R'ATQ!'AR
= R'JR
J,

since J is diagonal. Therefore, as in the simpler case of \;; = 0 for j > i, there are 27
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different A matrices that satisfy the constraint, and also produce the same ¥ = corr(z).
Again, there are 2P corresponding minima of the minus log likelihood function.

We need some notation. The initial (restricted) maximum likelihood estimates of the
factors will be denoted by Xij, while /):ij will be reserved for the final estimates after
applying a rotation. In matrix form, A=ART.

The Heywood case It is by no means guaranteed that the numerical search for the
MLE will stop at a point that is in the parameter space. In fact, it is surprisingly
common for the estimates to violate the inequality constraints of the model, as in the
negative variance Example 1.5.1. Because the observed variables are standardized, an
application of invariance to (2.11) yields Var(z) = 1 = 3%, A5+ @i A negative &;
would thus induce Z§:1 ij > 1, an estimated communality greater than one. Since the
communality is the proportion of variance that comes from the common factors, this is
a bit of a problem. It is sometimes called a Heywood case. Or sometimes, Z§:1 )\?j =1

is called a Heywood case, and > %, ij > 1 is called an wltra-Heywood case. You have
to feel sorry for the user, and also for Mr. Heywood, since his name has been so often
cursed'. Rotation will not solve this problem, because communality is unaffected by
rotation (2.15).

Provided that an acceptable MLE has been located, the result is a set of estimated
factor loadings that might be interpretable if the restrictions on A made sense in terms
of the problem, but not otherwise. With respect to the original parameter space (without
the restrictions), the set of estimated factor loadings we have found is only one of an
uncountable infinity, all with the same value of the (minus log) likelihood function. There
is one such set of factor loadings for every p x p orthogonal matrix. The last step in the
5-step recipe given earlier is to pick a good one, and go with that.

In the final step, the factors are rotated, so that A = AR has a “simple structure”
that is easy to interpret. The concept of simple structure is not precisely defined, which
in the past made factor analysis a bit subjective. There were many fruitless arguments
in which researchers came to different conclusions because they used different rotations,
even though they all claimed to have rotated to “simple structure.”

It is helpful to lift the criteria for simple structure from Harman [28], 1976, p. 98;
Harman takes them from Thurstone’s highly influential (1947) book [64], which I cannot
get my hands on right now!'!. Here are Thurstone’s criteria for simple structure, using
our notation.

1. Bach row of A should have at least one zero.

0 Heywood [29] gets the blame because of a 1931 paper in which he proves, among other things, that
there can be legitimate correlation matrices that would imply a communality greater than one. It’s one
of the “cases” he considers, so I assume that’s why they call it a Heywood case. From the perspective of
this book, the factor analysis model implies inequality constraints that are not true of all positive definite
correlation matrices. There is no mystery here.

1T am writing this in the Spring of 2021. The covid-19 pandemic is going strong, and the library is
closed. One could not ask for a better excuse.
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2. Each column of A should have at least p zeros, where p is the number of factors.

3. For every pair of columns of JAX, there should be several variables with loadings that
vanish in one column but not in the other.

4. For every pair of columns of ./AX, a large proportion of the variables should have
loadings in both columns that are small in absolute value, when there are four or
more factors.

5. For every pair of columns of K, there should be only a small number of variables
with non-vanishing loadings in both columns.

There are various ways of trying to approximate these goals in an objective manner. The
methods are all iterative, taking a number of steps to approach some criterion. The most
popular rotation method is varimaz rotation. As described by Harman [28], the initial
version of varimax was based on the following reasonable idea. To move the loadings in a
particular column of A toward zero or +1, maximize the sample variance of the squared
factor loadings. That is, maximize

1 e 1 ()
P (M) - (Z Vj)
=1 3

=1

for column j. Adding up the columns yields the criterion

1 - 34 1 ¢ - N2 2
SHREDNInIE
j=1 i=1 j=1 \i=1
In empirical tests, maximizing this criterion often yielded results that were less pleasing
than a subjective rotation. In particular, the loadings near plus and minus one tended
to be concentrated in just a few columns, which is inconsistent with properties three
through five of simple structure given above. Not bothering with the intuitive justification
(see Harman [28], p. 291), the work-around was to give somewhat less weight to factor
loadings from variables with higher communality. This is accomplished by dividing by
the communalities. The whole expression is also multiplied by k2, which does not affect
the point where the maximum occurs. The resulting criterion is

VAR S VAN
V:kzz<ﬁ—f> —Z(Z#) : (2.17)
Jj=1 =1 v j=1 \i=1 "%
where /ﬁf = 1;:1 ij That’s the communality of variable i, the proportion of variance
explained by the common factors. Another way to express (2.17) is to say the squared
(estimated) factor loadings are adjusted so that each row adds to one. This is sometimes
called “Kaiser normalization” after the guy who came up with the idea of varimax.
Expression (2.17) is not directly maximized over the factor loadings. Rather, the
process starts with an initial set of estimated loadings (say, from constrained maximum
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likelihood), and then rotates the factors two at a time as in Figure 2.3, picking the angle
of rotation € that maximizes V' at each step. An iteration consists of going through p — 1
steps, rotating factors 1 and 2, factors 2 and 3, and so on'?2. The process contines to
iterate until V' does not increase any more, to some specified number of decimal places.
You might see a message like “Varimax converged in 5 iterations.”

Varimax solutions are not unique. Suppose the rotation matrix R yields a solution
A = AR that minimizes the varimax criterion (2.17). Let M be a p x p diagonal matrix,
with each diagonal element equal to plus or minus one. M is an orthogonal matrix, and
so is RTM. Therefore, AM = ARTM is another orthogonal rotation/reflection. In AM,
the columns of A are multiplied by the corresponding diagonal elements of M. Potentially,
this reverses the signs of the coefficients in one or more columns of A. There is no effect
on the value of the varimax criterion (2.17), because the varimax criterion is based on
squared factor loadings. With p factors, the varimax criterion has 2P minima, as each
element of M switches between 1. The solution obtained from software will depend on
where the numerical search happens to start.

Perhaps surprisingly, this does not make interpretation of results more difficult.. Re-
flecting a factor (multiplying by minus one) reverses the signs of the correlations between
that factor and all the observable variables. It also directly reverses the meaning of the
factor. So for example (recalling that the factors are standardized), if a factor represents
wealth, then minus the factor represents poverty. After a varimax rotation, factors may
be reflected at will if that makes it easier to think about the results.

In practice, varimax rotation tends to maximize the squared loading of each observable
variable with just one underlying factor. In the typical varimax solution, each variable has
a big loading on (correlation with) just one of the factors, and small loadings on the rest.
It’s usually not hard to look at the loadings and decide what the factors mean. Naming
the factors is a fun game that is easy to play. In fact, the whole exercise is so satisfying
that many casual users of exploratory factor analysis do not go beyond an orthogonal
solution with a varimax rotation. Even the most casual class of users, who carry out a
principal components analysis thinking it’s factor analysis, often apply a varimax rotation
to the correlations between variables and components, and are very happy with the result.
Later, it will be seen that applying a rotation to principal components is really not such
a bad idea, since the rotated components explain the same total amount of variance as
the original set, and are easier to talk about.

Exploratory factor analysis of the Mind-body data We will start by re-reading
the Mind-body data for the described in Example 2.1.

# Factor analysis with orthogonal rotation

rm(list=1s())

bodymind = read.table(’http://www.utstat.toronto.edu/ brunner/openSEM/data/bodymind.data.txt’)
dat = as.matrix(bodymind[,2:10]) # Omit sex. dat is now a numeric matrix.

help(factanal)

V V V Vv V

12The result would seem to depend on the order in which the factors are sorted. I don’t know of any
proof that all orderings of factors yield the same varimax solution, but I expect that they are all pretty
similar.
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The built-in factanal function does maximum likelihood factor analysis with orthogonal
factors. The first argument is an input data matrix, covariance matrix or correlation
matrix. The second argument is the number of factors. How many factors should we have?
We know from the principal components analysis that two eigenvalues of the correlation
matrix are greater than two. That’s one reason to try fitting a two-factor model. Another
reason is that some of the variables are educational measurements (mental), while the rest
are physical measures. Since the input comes from two distinct domains, I would expect
two factors!®. We'll start with two factors. Because there are only nine variables, the
guideline of at least three variables per factor implies a maximum of three factors. The
scree plot in Figure 2.2 suggests three factors, so we’ll definitely consider a three-factor
model after this.

> # Maximum likelihood, varimax, 2 factors
> fit2 = factanal(dat,factors=2) # rotation=’varimax’ is the default
> fit2

Call:
factanal(x = dat, factors = 2)

Uniquenesses:
progmat reason verbal headlng headbrd headcir bizyg weight height
0.616 0.274 0.264 0.324 0.618 0.016 0.473 0.577 0.633

Loadings:

Factorl Factor2
progmat 0.181  0.592
reason 0.124 0.843
verbal 0.160 0.843
headlng 0.806 0.161
headbrd 0.618
headcir 0.963 0.238
bizyg 0.687 0.236
weight 0.638 0.129
height 0.588 0.144

Factorl Factor2
SS loadings 3.257 1.948
Proportion Var 0.362 0.216
Cumulative Var 0.362 0.578

Test of the hypothesis that 2 factors are sufficient.
The chi square statistic is 87.55 on 19 degrees of freedom.
The p-value is 8.97e-11

First, look at the (estimated) factor loadings. We'll go over other details later. Notice that
the loading for head breadth on Factor 2 appears to be missing. This happens because
the matrix of factor loadings is a special kind of R object with its own elaborate print

13This kind of reasoning often works. To steal a joke from Tom Lehrer, factor analysis is like a sewer.
What you get out of it depends on what you put into it.
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method. By default, loadings below 0.1 in absolute value are not displayed. The objective
is to make the loadings easier to understand by hiding trivial ones. As an SPSS jock in
a past life, I am more used to loadings under 0.3 being blanked out, which works better
in the present case. The cutoff is controlled by the cutoff option on print, as shown
below.

> L2 = fit2$loadings
> print (L2, cutoff=0.3)

Loadings:

Factorl Factor2
progmat 0.592
reason 0.843
verbal 0.843

headlng 0.806
headbrd 0.618
headcir 0.963
bizyg 0.687
weight 0.638
height 0.588

Factorl Factor2
SS loadings 3.2567 1.948
Proportion Var 0.362 0.216
Cumulative Var 0.362 0.578

Looking at this, it’s a little difficult to believe that L2 is just a matrix.

> is.matrix(L2)
(1] TRUE

> dim(L2)

[1] 9 2

So L2 really just a 9 x 2 matrix. The little table under the loadings is produced automat-
ically by the print method. It will be discussed presently.

With the small loadings hidden, it is easy to see that the mental measurements
(progmat, reason and verbal) load primarily on the second factor, while the other vari-
ables (all physical) load on the first factor. One could name Factor One “Physical” and
Factor Two “Mental.” Or perhaps they could me named “Size” and “Smarts.” This is a
typical case. Often, the meaning of the factors jumps out at you, and they are easy to
name. This is because of the varimax rotation. Unrotated factor loadings are often very
difficult to interpret.

At the bottom of the output displayed for the £it2 object, there is a chi-squared test
for goodness of fit. The p-value is very small, indicating that the model does not fit well
at all. For this reason and also for other reasons mentioned earlier, we need to look at a
three-factor model. First, however, let’s back up and look at some details, to clarify what
the software is doing.
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We will begin with an unrotated two-factor model, displaying all the factor loadings'*.
Note how the cutoff=0 option on print(fit2a) is passed down to the printing of the
factor loadings.

> fit2a = factanal(dat,factors=2,rotation=’none’)
> print(fit2a,cutoff=0)

Call:
factanal(x = dat, factors = 2, rotation = "none")

Uniquenesses:
progmat reason verbal headlng headbrd headcir bizyg weight height
0.616 0.274 0.264 0.324 0.618 0.016 0.473 0.577 0.633

Loadings:
Factorl Factor2
progmat 0.335 0.521

reason 0.348 0.778
verbal 0.383 0.768
headlng 0.820 -0.064
headbrd 0.600 -0.149
headcir 0.992 -0.033
bizyg 0.725 0.040
weight 0.649 -0.049
height 0.605 -0.021

Factorl Factor2
SS loadings 3.708  1.497
Proportion Var 0.412 0.166
Cumulative Var 0.412 0.578

Test of the hypothesis that 2 factors are sufficient.
The chi square statistic is 87.55 on 19 degrees of freedom.
The p-value is 8.97e-11

For an orthogonal factor model, squared factor loadings are components of explained
variance. If you square the factor loadings and add, the row totals are commonalities, or
proportions of variance explained by the common factors. The column totals are amounts
of variance explained by each factor. The addmargins function is a convenient way to
add row and column totals to a matrix.

> L2a = fit2a$loadings
> CompVar = addmargins(L2a~2) # Squared factor loadings are components of variance
> round(CompVar, 3)
Factorl Factor2 Sum
progmat 0.112 0.271 0.384
reason 0.121 0.605 0.726
verbal 0.147 0.589 0.736
headlng 0.672 0.004 0.676

4They are estimated factor loadings, of course. Everything here is an estimate.
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headbrd 0.360 0.022 0.382
headcir 0.983 0.001 0.984
bizyg 0.526 0.002 0.527
weight 0.421 0.002 0.423
height 0.366 0.000 0.367
Sum 3.708 1.497 5.205

Factor One explains a whopping 98.3% of the variance in head circumference, and 52.6%
of the variance head length. Maybe the unrotated version it could be called “Head size”
rather than just “Size.” Anyway, the last column of numbers contains the commonalities.
Checking that communality plus uniqueness equals one,

> fit2a$uniquenesses + CompVar[1:9,3] # Should equal ones
progmat reason verbal headlng headbrd headcir bizyg weight height
0.9999884 0.9999994 1.0000003 0.9999984 0.9999912 1.0000000 1.0000001 1.0000041 1.0000124

Close enough. The column totals of CompVar are the amounts of variance explained by
each factor, and indeed they match SS loadings in the display of fit2a. To convert these
amounts of explained variance to proportions, divide by the number of variables (since
the variables are standardized, the total amount of variance to explain is k, the number
of variables). This yields the Proportion Var line. Cumulative Var is self-explanatory.

Notice that the Proportion Var lines are different for £it2 (the rotated solution)
and fit2a (unrotated). Rotation affects the amounts of variance explained by the fac-
tors. However, rotation does not affect the commonalities. So, it does not affect the
uniquenesses or the total amount of variance explained.

To obtain the unrotated solution by maximum likelihood, factanal uses Lawley’s [41]

~T ~—1~
constraint that A @ A must be diagonal®®

this restriction,

. Checking that the unrotated solution obeys

> Omegahat = diag(fit2a$uniquenesses) # Diagonal matrix of uniquenesses little-omega-hat
> J = t(L2a) %*% solve(Omegahat) %x*}% L2a
> round(J,10)
Factorl Factor2
Factorl 69.10492 0.000000
Factor2 0.00000 5.002347

It’s diagonal, as advertised. There is no reason to expect the rotated loadings to obey
this constraint. Using the fact that €2 is unaffected by rotation,

> J = t(L2) %*% solve(Omegahat) %*% L2; round(J,10)
Factorl Factor2

Factorl 64.36786 16.769564

Factor2 16.76956 9.739412

I5Remember that A and Q are the initial estimates before rotation, obtained by constrained maximum
likelihood. Of course, Q= Q because rotation does not affect the uniquenesses.
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It is standard to specify the rotation when fitting the model, as in £it2. However, one
may also fit a model without rotation as we have done here, and then rotate the factors
as a separate step. R has a built-in varimax function (and also promax, which will not
be discussed).

> varimax(L2a)

$loadings
Loadings:

Factorl Factor2
progmat 0.181  0.592
reason 0.124 0.843
verbal 0.160 0.843
headlng 0.806 0.161
headbrd 0.618
headcir 0.963 0.238
bizyg 0.687 0.236
weight 0.638 0.129
height 0.588 0.144

Factorl Factor2
SS loadings 3.257 1.948
Proportion Var 0.362 0.216
Cumulative Var 0.362 0.578

$rotmat

[,1] [,2]
[1,] 0.9623418 0.2718422
[2,] -0.2718422 0.9623418

The loadings are identical to the rotated factor matrix from fit2 on page 229. The
varimax function returns a list with two items, the factor loadings and the rotation
matrix that maximizes the varimax criterion (2.17). The same matrix is also available as
fit2$rotmat. Note that in our notation, rotmat is R, not R.

More factors Next, we will try a model with three factors, as suggested by the scree plot
and the highly significant chi-squared test for the the two-factor model. The sort=TRUE
option re-orders the variables in the table of factor loadings, in an attempt to make the
output easier to read.

> # Try a 3-factor model
> fit3 = factanal(dat,factors=3)
> print (fit3,cutoff=0.30, sort=TRUE)

Call:
factanal (x = dat, factors = 3)

Uniquenesses:
progmat reason verbal headlng headbrd headcir bizyg weight height
0.606 0.215 0.309 0.005 0.268 0.094 0.256 0.560 0.565
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Loadings:

Factorl Factor2 Factor3
headbrd 0.852
bizyg 0.787

weight 0.523 0.387
progmat 0.583
reason 0.879
verbal 0.811
headlng 0.959
headcir 0.631 0.669
height 0.465 0.445

Factorl Factor2 Factor3
SS loadings 2.318 1.945 1.859
Proportion Var 0.258 0.216 0.207
Cumulative Var 0.258 0.474 0.680

Test of the hypothesis that 3 factors are sufficient.
The chi square statistic is 30.89 on 12 degrees of freedom.
The p-value is 0.00205

This is more challenging. Factor 2 still definitely represents the mental measurements,
while Factors 1 and 3 seem to reflect different aspects of head size. Factor 1 loads most
highly on head breadth, followed closely by bizygomatic breadth, which is basically how
far apart the eyes are. One could call Factor 1 “Face width.” Factor 3 loads primarily on
head length, and that’s what it appears to be. Head circumference, which includes both
face width and led length, loads about equally on the two factors. This makes pretty
good sense. Height and weight, aspects of overall body size, also load on both of the head
factors, though not as highly. We can live with this.

The chi-squared test for lack of fit is still significant, though the p-value of 0.00205 is
a lot closer to 0.05 than 8.97e-11 is. Strictly speaking, the model still does not fit. Let’s
check the degrees of freedom. There are nine observed variables, so the correlation matrix
3 has 9(9-1)/2 = 36 unique elements. There would be 36 covariance structure equations
in 9 x 3 = 27 unknown parameters, except that some of the unknown factor loadings are
functions of the others, because of the constraint that A" Q 'A is diagonal. There are
p(p — 1)/2 = 3 such functional connections among the factor loadings. Thus, the degrees
of freedom for the test of fit should be 36 — 27 + 3 = 12. That’s what the printout says;
okay.

Which model is better, the two-factor or the three-factor? The two-factor model
explains an estimated 58% of the total variance, while the three-factor model explains an
estimated 68%. Since there are nine observed variables, that 10% gain is worth about
one variable. It’s borderline. The two-factor model is a bit easier to talk about, but the
three-factor model makes sense too. The three-factor model fits better, but it still does
not fit in an absolute sense. How about a four-factor model? We would be violating the
reasonable rule of at least three variables per factor, and we are almost running out of
degrees of freedom, but it’s worth a try.
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> # A four-factor model?!
> print( factanal(dat,factors=4), cutoff=0.30, sort=TRUE)

Call:
factanal(x = dat, factors = 4)

Uniquenesses:
progmat reason verbal headlng headbrd headcir bizyg weight height
0.580 0.216 0.305 0.005 0.005 0.109 0.248 0.356  0.437

Loadings:
Factorl Factor2 Factor3 Factor4
bizyg 0.633 0.527
weight 0.761
height 0.672

progmat 0.599

reason 0.872

verbal 0.813

headbrd 0.957

headlng 0.423 0.886
headcir 0.555 0.418 0.582

Factorl Factor2 Factor3 Factor4
SS loadings 2.037 1.946 1.433 1.321
Proportion Var 0.226 0.216 0.159 0.147
Cumulative Var 0.226 0.443 0.602 0.749

Test of the hypothesis that 4 factors are sufficient.
The chi square statistic is 8.98 on 6 degrees of freedom.
The p-value is 0.175

Now it seems that Factor 1 is overall body size, Factor 2 is educational test performance
(or “intelligence,” if you want to walk down that dark path), Factor 3 is face width, and
Factor 4 is head length. Furthermore, the model technically fits. As for choice among the
models, it’s really a judgement call. As I see it, the clearest part of the picture is that
the mental measurements form one cluster, and the physical measurements form another
cluster, but one that may be more differentiated. I'm really torn between the two-factor
model (appealing because of its simplicty), and the four-factor model, which may reveal
the most detail. But is that detail real, or is it the result of over-fitting? If T had to
choose, I suppose I would choose the two-factor model. It does not fully fit the data, but
it tells a simple story that makes sense.

If you disagree, it does not mean that you are wrong. In the end, the choice of a model
is quite subjective, though the way these analyses are written up, the semi-arbitrary final
choice will probably seem like the only possibility. This is especially true because only one
set of factor loadings will be presented. If you were looking for the TRUTH here, I'm sorry
to disappoint you. This is in the nature of the beast called exploratory factor analysis.

In spite of all the uncertainty, this enterprise has been blessed with apparent success.
There are many hundreds of published factor analytic studies in the social sciences, es-
pecially in psychology. For example, in their book The measurement of meaning [50],
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Osgood Suci and Tannenbaum (1957) describe a series of investigation into how people
describe objects, using 7-point scales ranging from Ugly to Beautiful, Strong to Wealk,
Fast to Slow and so on. Exploratory factor analysis revealed the same three factors
across many different domains. One of the factors had high factor loadings for Good-Bad,
Beautiful-Ugly, and similar adjective pairs. The investigators named the factor evalua-
tive. Similar considerations led them to identify the other two main factors as potency
and activity. Osgood et al. proposed that these are the main dimensions of connotative
(as opposed to denotative) meaning in the English language.

In another famous application [24], Hans Eysenck'® (1947) factor analyzed questions
from a large number of personality scales, arriving at two factors, neuroticism and ez-
traversion. It’s a bit interesting that in order to get a high score on neuroticism, you have
to be willing to say bad things about yourself, while if you say mostly good things you will
get a low neuroticism score. Perhaps it’s just Osgood et al.’s evaluative factor, reversed.
In any case, there are hordes of other examples, including Cattell’s Sixteen Personality
Factor Questionnaire [16] mentioned earlier. The earlier work, including the examples
cited here, tended to use estimation methods that are less computationally demanding
than maximum likelihood. Varimax rotation also caught on gradually, as computing
equipment became more available. Rotation to a “simple structure” used to be graphical
and more than a little subjective.

2.4 Oblique Rotations

Correlated Factors Naturally, not everybody is comfortable with uncorrelated fac-
tors. The question of whether factors are correlated seems like something that should be
decided based on the data, and not simply assumed. The problem is that by the calcula-
tion (2.8), any correlation matrix of the factors is equally compatible with any data set.
This means that estimating ® = cov(F) is futile. However, there is almost no limit to
human ingenuity.

An early subjective method (as usual, see Harman [28]) for the history) is well adapted
to a setting in which there are several clusters of variables, highly correlated within sets,
and much less so between sets. Compare the formula for the sample correlation coefficient
to the formula for the cosine of the angle between two vectors.

i1 (@i—7)(yi—7) (2.18)
VI @i/ (vi—9)? '

Now consider the vector of n values for a variable as a point in R™. Suppose that the
data are centered by subtracting off sample means, as they are in the standardized case
we are considering. Then the correlation between two variables equals the cosine of the
angle between the two data vectors. This means that considered as points in R", a set of
highly correlated variables are physically clustered together. To estimate the factor that

81

-y
[y

cosf =

| "=

8y

16Eminent research psychologist, racist scum, running dog of the tobacco companies, fabricator of data
and student of Sir Cyril Burt, who was also racist scum and a fabricator of data. See the Wikipedia
article.
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gives rise to them, run a vector through the center of the cluster. The natural choice is to
have the estimated factor pass through the centroid — that is, through the multivariate
sample mean of the data vectors belonging to that particular cluster. Then the estimated
factor is normalized, giving it variance one.

Figure 2.4 shows a hypothetical example in two dimensions. Since the variables are
standardized, they all have length one. This means that in R"”, the data points lie on the
surface of a hyper-sphere of radius one, centered at the origin. Since Figure 2.4 is in two
dimensions, all the points are on the unit circle.

Figure 2.4: Correlated factors estimated by centroids

The estimated correlations between factors are the cosines of the angles between the
arrows, and the correlations of variables with factors are the cosines of the angles between
data points and the arrows. It all makes sense, and looking at this example, it is hard to
see why the parameters cannot be estimated successfully by this method. The trick is that
by calculating the arrows based only on the points in a single cluster, we are implicitly
assuming that the points in that cluster arise from only one common factor (plus random
error). Under this assumption, lots of the \;; values are zero, and in fact the remaining
factor loadings and the correlations between factors are uniquely identifiable — provided
there are at least three variables in each cluster. Chapter 3 treats confirmatory factor
analysis models in which the parameters are identifiable, including the one just indicated.

The informal centroid method just described does work under some circumstances, but
the big problem is cluster membership. When the variables form distinct, highly correlated
clusters then everything is fine. More often, it will not be really clear how many clusters
there are, and some variables will be difficult to classify. This uncertainty makes the
method subjective, and led the developers of factor analysis to look for something more
objective.
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Oblique Rotations An obligue rotation is one in which the axes'” need not remain at

right angles. Starting with an initial orthogonal solution, the axes are rotated separately
so as to achieve a simple structure in the factor loadings. There are various criteria for
what “simple” means, leading to various flavours of the method.

The following account leads to the classical results, by a route that statisticians should
be able to follow. The original explanations are much more complicated. Everything here
is based on a model with equations z = AF + e. The factors are standardized, and they
are potentially correlated. Because the variance of each factor equals one, cov(F) = ®
is a correlation matrix. All other model specifications are the same as in Model (2.9) on
page 219.

In an orthogonal factor model, the factor loadings in A are also the correlations be-
tween the observed variables and the factors. This is no longer true when the factors are
correlat