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Preface to Edition 0.10

This book is free and open source

From the perspective of the student, possibly the most important thing about this text-
book is that you don’t have to pay for it. You can read it either online or in hard copy,
and there are no restrictions on copying or printing. You may give a copy to anyone you
wish; you may even sell it without paying royalties. The point is not so much that the
book is free, but that you are free.

The plan for publishing this book is deliberately modeled on open source software.
The source code is LATEX (along with some modifiable graphics files in the OpenOffice
drawing format), and the compiled binary is a PDF or DjVu file. Everthing is available
at

http://www.utstat.toronto.edu/∼brunner/openSEM.

This document is distributed without any warranty. You are free to copy and distribute
it in its present form or in modified form, under the terms of the GNU Free Documentation
License as published by the Free Software Foundation. A copy of the license is included in
Appendix E. In case the appendix is missing, the Free Documentation License is available
at

http://www.gnu.org/copyleft/fdl.html.

Reconstructed data sets Structural equation modelling is a craft that is difficult to
learn without having realistic data to analyze. But most good good data sets belong
to somebody, and getting agreement to put them under copyleft protection can be a
challenge. One solution is to make the data up, using a combination of random number
generation and manual editing. Such a data set could be called constructed. I have
done this in a few cases, and it can be quite tedious to make the sample statistics seem
reasonable.

Another solution is to base the data upon the results of published studies. When I
do this, I try to never use the original raw data set, even if I can get my hands on it.
Instead, I start with a set of statistics derived directly or indirectly from the published
source, and then simulate data that yield roughly (but not exactly) the same values of
the statistics. I freely round the simulated data, change the sample size, and even add
variables that the investigators probably would have measured, given sufficient resources.

vii
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Finally, I modify the data in any other way I can think of to make the example more
instructive. I call such a data set reconstructed. I am not a lawyer, but it seems to me
that (especially when the simulation is done using open source and copy-left protected
software such as R) the specific raw data values generated in this manner can be protected
under the GNU Free Documentation License. Another advantage is that the analysis of a
reconstructed data set cannot necessarily be taken as a criticism of the way the data were
originally treated, and it is easy to deny that conclusions based on a reconstructed data
set have any clear scientific meaning. The purpose, of course, is to prepare the student
to do statistical analyses that do have scientific meaning.

All the statistical analyses described in this book are based on constructed or recon-
structed data sets. Appendix C contains a listing of the data sets used in examples and
homework problems. A Zipped archive will also be available. As of this writing, it is not
available yet.

Software Moderate familiarity with the R statistical computing environment [47] is
assumed. Calculations on numerical data will use the lavaan (latent variable analysis)
package described by Rossel [48]. In this text, computing also extends to symbolic cal-
culations that would ordinarily be done with paper and pencil. Symbolic calculations in
this area (primarily, calculation of covariance matrices) are important for understanding
particular models, but they are largely mechanical can get very tedious. The open source
symbolic math program SageMath [53] is used extensively for pushing symbols around,
starting with Chapter 1. Familiarity with the software is not assumed. An introduction
is provided in Appendix B.

This book is for Statistics students

This textbook is designed for third and fourth year undergraduate students in Statistics
and Mathematics. It assumes the usual calculus-based second year sequence in Probability
and Statistics and a basic course in linear algebra. Familiarity with linear regression is
very helpful. Appendix A contains reference material and exercises that remind students
of the necessary concepts. Some additional background material, especially on vector-
valued random variables and the multivariate normal distribution, is needed but cannot
be assumed. It is also covered in Appendix A.

This text is also appropriate (possibly as a supplemental text) for Masters level grad-
uate students in Statistics. Since requests for structural equation models come up from
time to time in consulting situations, it may also be useful to professional statisticians
who need a quick introduction to the topic, in language they can understand.

But the main audience is undergraduate. For this reason, comments that are likely to
be of interest to more advanced readers are often relegated to footnotes. These can be
safely skipped by students who are primarily interested in learning the main ideas and
getting a good mark.



ix

Message to the Instructor

It is common for textbook authors to claim that they decided to write a book because they
could not locate an appropriate text, and I find myself in exactly this situation. Many
introductions to structural equation models are available, but most of the ones I have
seen are written for graduate students and researchers in the social sciences. Compared
to most Statistics undergraduates, this audience has a very large English vocabulary and
virtually no background in mathematical statistics. What works for them does not work
as well for my students. So I have tried to write mainstream Statistics textboook on a
topic that is somewhat out of the statistical mainstream.

Why bother? The main reason is that in addition to being standard statistical practice,
ignoring measurement error is a disaster – and structural equation modeling is the simplest
way I know to start addressing the problem. It helps that a well-prepared undergraduate
is just a step away from having the necessary tools.

From a pedagogical viewpoint, structural equation modeling has another advantage.
While the usual statistical methods we teach are like analytical devices purchased off the
shelf, structural equation modeling methods are more like a kit which one can use to make
a semi-customized analytical device. So, they help bridge the gap between applications
of Statistics and genuine Applied Statistics. In particular, they force students to think
at the interface between subject matter and technical statistical issues. And perhaps this
is where the intellectual value of our discipline is most dense. Well, I said this was a
message to the instructor.

More details

The covariance review really is review and little else. Scalar covariance calculations are
important throughout the course.

The maximum likelihood section has some warmup problems that are really review,
but it also has some useful material on numerical maximum likelihood that students
may find unfamiliar – for example the connection between the Hessian and the Fisher
information. The main purpose is to build intuition about what can happen in more
complicated situations.
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Chapter -1

Overview

Structural equation models may be viewed as extensions of multiple regression. They
generalize multiple regression in three main ways. First, there is usually more than one
equation. Second, a response variable in one equation can be an explanatory variable in
another equation. Third, structural equation models can include latent variables.

Multiple equations Structural equation models are usually based upon more than one
regression-like equation. Having more than one equation is not really unique; multivariate
regression already does that. But structural equation models are more flexible than the
usual multivariate linear model.

Variables can be both explanatory and response This is an attractive feature.
Consider a political science study in which favourable information about a political party
contributes to a favourable impression among potential voters at time one. But people
often seek out information that supports their viewpoints, so that a favourable impression
at time one contributes to exposure to favourable information at time two, which in turn
contriutes to a favourable opinion at time two. Thus, opinion at time two is both a
response variable and a response variable. Structural equation models are also capable of
representing the back-and-forth nature of supply and demand in Economics. There are
many other examples.

Latent variables To a degree that is often not acknowledged, the data you can see and
record are not what you really are interested in. A latent variable is a random variable
whose values cannot be directly observed – for example, true family income last year.
Contrast this with an observable variable – for example, reported family income last year.
Usually, interest is in relationships between latent variables, but the data set by definition
includes only observable variables. Structural equation models may include latent as well
as observable random variables, along with the connections between them. This capability
(combined with relative simplicity) is their biggest advantage. It allows the statistican
to admit that measurement error exists, and to incorporate it directly into the statistical
model.

1



2 CHAPTER -1. OVERVIEW

There are some ways that structural equation models are different from ordinary linear
regression. These include random (rather than fixed) explanatory variable values, a bit
of specialized vocabulary, and some modest changes in notation. Also, while structural
equation models are definitely statistical models, they are also simple scientific models of
the phenomena being investigated.

This last point is best conveyed by an example. Consider a study of arthritis patients,
in which joint pain and exercise are assessed at more than one time point. Figure 1 is a
path diagram that represents a structural equation model for the data.

Figure 1: Arthritis Pain

X = Severity 
of Disease

Y
1
 = Pain 1 Y

3
 = Pain 2

Y
2
 = Exercise 1 Y

4
 = Exercise 2

D
1
 = Reported 

Pain 1
D

5
 = Judged 

Severity 2
D

4
 = Reported 

Pain 2

D
3
 = Reported
Exercise 1

D
6
 = Reported
Exercise 2

+

+ +

+++

-- -

D
2
 = Judged 

Severity 1

+

+ +

The notation is standard. Latent variables are in ovals, while observable variables are
in boxes. Error terms seem to come from nowhere; in many path diagrams they are not
shown at all. There is real modeling here, and plenty of theoretical input is required. The
plusses and minuses on some of the straight arrows are a bit non-standard. The represent
hypothesized positive and negative relationships.

As the directional arrows suggest, structural equation models are usually interpreted
as causal models. That is, they are models of influence. A→ B means A has an influence
on B. In the path diagram, reported pain at time one is influenced by true pain at time
one. There are other influences on reported pain, including the patient’s reading level,
interpretation of the questions on the questionnaire, self-presentation strategy, and so on.
These unmeasured influences are represented by an error term. The error term is not
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shown explicitly, but the arrow that seems to come from nowhere is coming from the
error term.

Structural equation models are causal models [9], but the data are usually observa-
tional. That is, explanatory variables are typically not manipulated or randomly assigned
by the investigator, as they would be in an experimental study. Instead, they are simply
measured or assessed. This brings up the classic correlation versus causation issue. The
point is often summarized by saying “correlation does not imply causation.” That is, if
the variables X and Y are related to one another (not independent), it could be that X is
influencing Y , or that Y is influencing X, or that a third variable, Z is influencing both
X and Y . In the absence of other information, it’s wise to be cautious. Practitioners
of applied regression are often warned not to claim that the x variables influence the y
variable unless the values of the x variables are randomly assigned.

Structural equation modeling adresses the correlation-causation problem by construct-
ing a model that is simultaneously a statistical model and a substantive theory of the
data. In this way, a great many details are decided on theoretical or at least common-
sense grounds, and the rest are left to statistical estimation and testing. In Figure 1, for
example, it is obvious that the arrows should run from Time One to Time Two and not
the other way around. Notice that in the path diagram, the severity of the disease is
essentially the same at Time One and Time Two. This is a theoretical assertion based on
the nature of the disease and the length of time involved. All such assertions are open to
healthy debate.

Not everybody likes this. Some statisticians, particularly students, don’t feel com-
fortable with theory construction in a scientific discipline outside their field. This is less
a problem than it seems. While it’s true that the ideal case is for the same person to
be expert in both the statistics and the subject matter (as in econometrics), frequently
the statistician works together with a scientist who wants to apply structural equation
models to his or her data. Most scientists get the idea of path diagrams very fast, and
the collaboration can go smoothly.

It must be admitted, though, that some scientists are uncomfortable with making the-
oretical commitments and incorporating them into the statistical analysis. To them, data
analysis is where evidence is assessed and weighed. Building theory into the statistical
model seems biased, like putting a finger on the scale1. One response to this is that the
generic statistical models in common use also carry assumptions with theoretical impli-
cations. Getting involved in the assembly of the statistical model just serves to make the
black box less mysterious, and that can only be a good thing.

Path diagrams correspond to systems of regression-like equations. Here are the equa-

1There is a distinctly Bayesian feel to the way structural equation models depend on prior information.
The objection of bias is also raised against Bayesian methods, for exactly the same reason. It is possible
to do structural equation modeling in a fully Bayesian way, but the approach in this book is strictly
frequentist.
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tions corresponding to Figure 1. Independently for i = 1, . . . , n,

Yi,1 = β0,1 + β1Xi + εi,1

Yi,2 = β0,2 + β2Yi,1 + εi,2

Yi,3 = β0,3 + β3Xi + β4Yi,2 + εi,3

Yi,4 = β0,4 + β5Yi,2 + β6Yi,3 + εi,4

Di,1 = λ0,1 + λ1Yi,1 + ei,1 (1)

Di,2 = λ0,2 + λ2Xi + ei,2

Di,3 = λ0,3 + λ3Yi,2 + ei,3

Di,4 = λ0,4 + λ4Yi,3 + ei,4

Di,5 = λ0,5 + λ2Xi + ei,5

Di,6 = λ0,6 + λ5Yi,4 + ei,6

Every variable that appears on the left side of an equation has at least one arrow pointing
to it, and the arrows pointing to the left-side variable originate from the variables on the
right side.

The path diagram contains some additional information. Note that there are no direct
connections between the error terms, or between the error terms and underlying disease
severity Xi. This represents an assertion that these quantities are independent. If they
were not independent, covariances would be represented by curved, double-headed arrows.
An example is given in Figure 2. Notice that all the variables are observable, the error term
is shown this time, and the straight arrows from x to y are labelled with the regression
coefficients. This is all within the range of standard notation for path diagrams.

Figure 2: Regression with Observable variables

Yi = β0 + β1Xi,1 + β2Xi,2 + β3Xi,3 + εi
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Returning to the example of Figure 1, the model as given is still not fully specified. It
is common to assume that everything is normal. In most software, the default method of
estimation is numerical maximum likelihood based on a multivariate normal distribution
for the observable data. There is considerable robustness to this assumption so it does
little harm. With the normal assumption and letting the expected values of the error
terms equal zero, we have 12 more model parameters, including the expected value and
variance of Xi, underlying disease severity. As usual in Statistics, the objective is to
estimate and draw inferences about the unknown parameters, with the goal of casting
light on the phenomena that gave rise to the data.

Parameter identifiability It is an uncomfortable truth that for the model given here,
maximum likelihood estimation will fail. The maximum of the likelihood function would
not be unique. Instead, infinitely many sets of parameter values would yield the same
maximum. Geometrically, the likelihood function would have a flat surface at the top.

Here’s why. Let θ denote the vetor of parameters we are trying to estimate. θ contains
all the Greek-letter parameters in the model equations (1), plus ten error variances, and
also the expected value and variance of Xi. Thus, θ has 34 elements.

Assume that the model is completely correct, and that disease severity and all the error
terms are normally distributed. This means the vector of six observable variables (there
are six boxes in the path diagram) have a joint distribution that is multivariate normal —
independently for i = 1, . . . , n, of course. All one can ever learn from a data set is the joint
distribution of the observable data, and a multivariate normal is completely characterized
by its mean vector and variance covariance matrix. Thus, with increasing sample sizes,
all you can ever know is a closer and closer approximations of the six expected values
(call them µ1, . . . , µ6) and the 21 unique values of the 6× 6 covariance matrix (call them
σij, i ≤ j). Suppose you knew the µj and σij values exactly (conceptually letting n→∞,
if that is an idea that helps). Would this tell you the values of all the model parameters
in θ?

The µj and σij are definitely functions of θ, and those functions may be obtained
by direct calculation of the expected values, variances and covariances using the model
equations (1). This yields 27 equations. To ask whether the 34 model parameters can
be recovered from the µj and σij is to ask whether it’s possible to solve the 27 equations
for 34 unknowns. As one might expect, the answer is no. More precisely, it is impossible
to solve uniquely. There are infinitely many solutions, so that infinitely many sets of
parameter values are equally compatible with any data set. This corresponds to the flat
place on the top of the likelihood surface.

In general, model parameters are said to be identifiable if their values can be recovered
from the probability distribution of the observable data. In structural equation modeling,
it is very easy to come up with reasonable models whose parameters are not identifiable
— like the arthritis pain and exercise example we are considering. When parameters
are not identifiable, estimation and inference can be a challenge, though in some cases
the problems can be overcome. In structural equation modeling, almost everything is
connected to the the issue of parameter identifiability, and on a technical level, this is
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what sets structural equation modeling apart from other applied statistical methods based
on large-sample maximum likelihood. One of the most important tools in the structural
equation modeling toolkit is a set of rules (based on theorems about solving systems
of equations) that often allow the identifiability of a model to be determined based on
visual inspection of a path diagram, without any calculations. The story begins with an
important special case: regression with measurement error.



Chapter 0

Regression with measurement error

Introduction

This chapter seeks to accomplish two things. First, it is a self-contained introduction
to linear regression with measurement error in the explanatory variables, suitable as a
supplement to an ordinary regression course. Second, it is an introduction to the study
of structural equation models. Without confronting the general formulation at first, the
student will learn why structural equation models are important and see what can be
done with them. Some of the ideas and definitions are repeated later in the book, so that
the theoretical treatment of structural equation modeling does not depend much on this
chapter. On the other hand, the material in this chapter will be used throughout the rest
of the book as a source of examples. It should not be skipped by most readers.

0.1 Covariance and Relationship

Most of the models we will consider are linear in the explanatory variables as well as the
regression parameters, and so relationships between explanatory variables and response
variables are represented by covariances. To clarify this fundamental point, first note that
saying two random variables are “related” really just means that they are not independent.
A non-zero covariance implies lack of independence, and therefore it implies a relationship
of some kind between the variables. Furthermore, if the random variables in question are
normally distributed (a common and very useful model), zero covariance is exactly the
same thing as independence.

More generally, consider two random variables X and Y whose joint distribution might
not be bivariate normal. Suppose there is a tendency for higher values of X to go with
higher values of Y , and for lower values of X to go with lower values of Y . This idea of
a “positive” relationship is pictured in the left panel of Figure 1. Since the probability of
an (x, y) pair is roughly proportional to the height of the surface, a large sample of points
will be most dense where the surface is highest1. On a scatterplot, the best-fitting line

1Presumably this is why it’s called a probability density function.

7
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relating X to Y will have a positive slope. The right panel of Figure 1 shows a negative
relationship. There, the best-fitting line will have a negative slope.

Figure 1: Relationship between X and Y

x

y

z

Positive Relationship

x

y

z

Negative Relationship

The word “covariance” suggests that it is a measure of how X and Y vary together. To
see that positive relationships yield positive covariances and negative relationships yield
negative covariances, look at Figure 2.

Figure 2 shows contour plots of the densities in Figure 1. Imagine you are looking
down at a density from directly above, and that the density has been cut into slices that
are parallel with the x, y plane. The ellipses are the cut marks. The outer ellipse is lowest,
the next one in is a bit higher, and so on. All the points on an ellipse (contour) are at
the same height. It’s like a topographic map of a mountainous region, except that the
contours on maps are not so regular.

The definition of covariance is

Cov(X, Y ) = E {(X − µx)(Y − µy)} =

∫ ∞
−∞

∫ ∞
−∞

(x− µx)(y − µy)f(x, y) dx dy

In the left panel of Figure 2, more of the probability is in the upper right and lower left,
and that is where (x − µx)(y − µy) is positive. The positive volume in these regions is
greater than the negative volume in the upper left and lower right, so that the integral
is positive. In the right-hand panel the opposite situation occurs, and the covariance is
negative. The pictures are just of one example, but the rule is general. Positive covariances
reflect positive relationships and negative covariances reflect negative relationships.



0.1. COVARIANCE AND RELATIONSHIP 9

Figure 2: Contour Plots
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In the study of linear structural equation models, one frequently needs to calculate
covariances and matrices of covariances. Covariances of linear combinations are frequently
required. The following rules are so useful that they are repeated from Sections A.1
and A.3 of Appendix A.

Let X1, . . . , Xn1 and Y1, . . . , Yn2 be scalar random variables, and define the linear
combinations L1 and L2 by

L1 = a1X1 + · · ·+ an1Xn1 =

n1∑
i=1

aiXi, and

L2 = b1Y1 + · · ·+ bn2Yn2 =

n2∑
i=1

biYi,

where the aj and bj are constants. Then

cov(L1, L2) =

n1∑
i=1

n2∑
j=1

aibjCov(Xi, Yj). (1)

In the matrix version, let x1, . . . ,xn1 and y1, . . . ,yn2 be random vectors, and define



10 CHAPTER 0. REGRESSION WITH MEASUREMENT ERROR

the linear combinations `1 and `2 by

`1 = A1x1 + · · ·+ An1xn1 =

n1∑
i=1

Aixi, and

`2 = B1y1 + · · ·+ Bn2yn2 =

n2∑
i=1

Biyi,

where the Aj and Bj are matrices of constants. Then

cov(`1, `2) =

n1∑
i=1

n2∑
j=1

Ai cov(xi,yj) B>j . (2)

Both these results say that to calculate the covariance of two linear combinations, just take
the covariance of each term in the first linear combination with each term in the second
linear combination, and add them up. When simplifying the results of calculations, it can
be helpful to recall that Cov(X,X) = V ar(X) and cov(x,x) = cov(x).

0.2 Regression: Conditional or Unconditional?

Consider the usual version of univariate multiple regression. For i = 1, . . . , n,

Yi = β0 + β1xi,1 + β2xi,2 + · · ·+ βp−1xi,p−1 + εi,

where ε1, . . . εn are independent random variables with expected value zero and common
variance σ2, and xi,1, . . . xi,p−1 are fixed constants. For testing and constructing confidence
intervals, ε1, . . . εn are typically assumed normal.

Alternatively, the regression model may be written in matrix notation, as follows:

y = Xβ + ε, (3)

where X is an n×p matrix of known constants, β is a p×1 vector of unknown constants,
and ε is multivariate normal with mean zero and covariance matrix σ2In; the variance
σ2 > 0 is a constant.

Now please take a step back and think about this model, rather than just accepting it
without question. In particular, think about why the x variables should be constants. It’s
true that if they are constants then all the calculations are easier, but in the typical appli-
cation of regression to observational2 data, it makes more sense to view the explanatory
variables as random variables rather than constants. Why? Because if you took repeated

2Observational data are just observed, rather than being controlled by the investigator. For example,
the average number of minutes per day spent outside could be recorded for a sample of dogs. In contrast
to observational data are experimental data, in which the values of the variable in question are controlled
by the investigator. In an experimental study, dogs could be randomly assigned to several different values
of the variable “time outside.”
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samples from the same population, the values of the explanatory variables would be dif-
ferent each time. Even for an experimental study with random assignment of cases (say
dogs) to experimental conditions, suppose that the data are recorded in the order they
were collected. Again, with high probability the values of the explanatory variables would
be different each time.

So, why are the x variables a set of constants in the formal model? One response is
that the regression model is a conditional one, and all the conclusions hold conditionally
upon the values of the explanatory variables. This is technically correct, but consider the
reaction of a zoologist using multiple regression, assuming he or she really appreciated
the point. She would be horrified at the idea that the conclusions of the study would be
limited to this particular configuration of explanatory variable values. No! The sample
was taken from a population, and the conclusions should apply to that population, not
to the subset of the population with these particular values of the explanatory variables.

At this point you might be a bit puzzled and perhaps uneasy, realizing that you have
accepted something uncritically from authorities you trusted, even though it seems to be
full of holes. In fact, everything is okay this time. It is perfectly all right to apply a
conditional regression model, even when the predictors are clearly random. But it’s not
so very obvious why it’s all right, or in what sense it’s all right. This section will give the
missing details. These are skipped in every regression textbook I have seen; I’m not sure
why.

Unbiased Estimation Under the standard conditional regression model (3), it is straight-

forward to show that the vector of least-squares regression coefficients β̂ is unbiased for
β (both of these are p × 1 vectors). This means that it’s unbiased conditionally upon
X = x. In symbols,

E{β̂|X = x} = β.

This applies to every fixed x matrix with linearly independent columns, a condition that
is necessary and sufficient for β̂ to exist. Assume that the joint probability distribution
of the random matrix X assigns zero probability to matrices with linearly dependent
columns (which is the case for continuous distributions). Using the double expectation
formula E{Y } = E{E{Y |X}},

E{β̂} = E{E{β̂|X}} = E{β] = β,

since the expected value of a constant is just the constant. This means that estimates
of the regression coefficients from the conditional model are still unbiased, even when the
explanatory variables are random.

The following calculation might make the double expectation a bit clearer. The outer
expected value is with respect to the joint probability distribution of the explanatory
variable values – all n vectors of them; think of the n× p matrix X. To avoid unfamiliar
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notation, suppose they are all continuous, with joint density f(x). Then

E{β̂} = E{E{β̂|X}}

=

∫
· · ·
∫
E{β̂|X = x} f(x) dx

=

∫
· · ·
∫
β f(x) dx

= β

∫
· · ·
∫
f(x) dx

= β · 1 = β.

Consistent Estimation It will now be shown that when the explanatory variable val-
ues are random, β̂n

p→ β; see Section A.5 in Appendix A for a brief discussion of con-
sistency. The demonstation is a bit lengthy, but the details are shown because one of
the intermediate results will be very useful later. The argument begins by establishing
an alternative formula for the ordinary least-squares estimates. The explanatory variable
values are fixed for now, but in the end, the formula will be applied to random X values.

A regression model can be “centered” by subtracting sample means from the values of
the explanatory variables. Geometrically, what this does is to shift the cloud of points in
a high-dimensional scatterplot left or right along each x axis – or equivalently, to adopt
a shifted set of co-ordinate axes. Clearly, this will not affect the tilt (slopes) of the best-
fitting hyperplane, but it will affect the intercept. Writing the regression model in scalar
form and then centering, . . .

yi = β0 + β1xi,1 + · · ·+ βpxi,p + εi

= β0 + β1x1 + · · ·+ βpxp

+β1(xi,1 − x1) + · · ·+ βp(xi,p − xp) + εi

= α0 + α1(xi,1 − x1) + · · ·+ αp(xi,p − xp) + εi,

where the α parameters are the regression coefficients of the centered model. We have
α0 = β0 +β1x1 + · · ·+βkxp, and αj = βj for j = 1, . . . , p. This re-parameterization is one-
to-one. Since the least-squares and maximum likelihood estimates coincide for multiple
regression with normal errors, the invariance principle of maximum likelihood estimation
(See Section A.6.3 in Appendix A) says that α̂j = β̂j for j = 1, . . . , p. That is, centering
does not change the estimated slopes. In addition, the MLE of the intercept for the
centered model is α̂0 = β̂0 + β̂1x1 + · · ·+ β̂pxp. Invoking once again the identity of least-
squares and maximum likelihood estimates for this case, we see that the α̂j quantities are
also the least-squares estimates for the centered model3.

3This argument uses the invariance principle for maximum likelihood estimation, but that’s not really
necessary. There is also an invariance principle for least-squares, which is proved in exactly the same way
as the invariance principle for maximum likelihood.
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For any regression model with an intercept, the sum of residuals is zero. Thus,

ȳ =
1

n

n∑
i=1

ŷi

=
1

n

n∑
i=1

(
β̂0 + β̂1xi,1 + · · ·+ β̂pxi,p

)
= β̂0 + β̂1x1 + · · ·+ β̂pxp

= α̂0

That is, the least-squares estimate of the intercept is ȳ for any centered regression model,
regardless of the data.

We already know how to calculate the β̂j, but we are working toward another formula
for them. Suppose we start with the centered model

yi = α0 + β1(xi,1 − x1) + · · ·+ βp(xi,p − xp) + εi.

Because this is a centered model, we know that α̂0 = y. To find the β̂j, first substitute
α̂0 = y and then minimize

Q(β) =
n∑
i=1

(yi − y − β1(xi,1 − x1)− · · · − βp(xi,p − xp) )2

over all β. This is the same as centering y as well as x, and then fitting a regression
through the origin. The usual formula β̂ = (X>X)−1X>y applies. We just need to
remember that the columns of the n× p matrix X are centered, and so is the n× 1 vector
y. For p = 3, the X matrix looks like this:

x11 − x̄1 x12 − x̄2 x13 − x̄3

x21 − x̄1 x22 − x̄2 x23 − x̄3

x31 − x̄1 x32 − x̄2 x33 − x̄3
...

...
...

xn1 − x̄1 xn2 − x̄2 xn3 − x̄3

 .

The X>X matrix, the so-called the “sums of squares and cross products” matrix, is

X>X =

 x11 − x̄1 x21 − x̄1 x31 − x̄1 · · · xn1 − x̄1

x12 − x̄2 x22 − x̄2 x32 − x̄2 · · · xn2 − x̄2

x13 − x̄3 x23 − x̄3 x33 − x̄3 · · · xn3 − x̄3




x11 − x̄1 x12 − x̄2 x13 − x̄3

x21 − x̄1 x22 − x̄2 x23 − x̄3

x31 − x̄1 x32 − x̄2 x33 − x̄3
...

...
...

xn1 − x̄1 xn2 − x̄2 xn3 − x̄3


=

 ∑n
i=1(xi1 − x1)2

∑n
i=1(xi1 − x1)(xi2 − x2)

∑n
i=1(xi1 − x1)(xi3 − x3)∑n

i=1(xi2 − x2)(xi1 − x1)
∑n

i=1(xi2 − x2)2
∑n

i=1(xi2 − x2)(xi3 − x3)∑n
i=1(xi3 − x3)(xi1 − x1)

∑n
i=1(xi3 − x3)(xi2 − x2)

∑n
i=1(xi3 − x3)2

 .
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It’s clear that larger examples would follow this same pattern. The entries in the matrix
look like sample variances and covariances, except that they are not divided by n. Dividing
and multiplying by n, we have X>X = nΣ̂x, where Σ̂x is the sample variance-covariance
matrix of the explanatory variables.

Still looking at the p = 3 case for simplicity,

X>y =


x11 − x̄1 x21 − x̄1 x31 − x̄1 · · · xn1 − x̄1

x12 − x̄2 x22 − x̄2 x32 − x̄2 · · · xn2 − x̄2

x13 − x̄3 x23 − x̄3 x33 − x̄3 · · · xn3 − x̄3





y1 − ȳ

y2 − ȳ

y3 − ȳ
...

yn − ȳ



=


∑n

i=1(xi1 − x1)(yi − y)∑n
i=1(xi1 − x1)(yi − y)∑n
i=1(xi1 − x1)(yi − y)



= n


1
n

∑n
i=1(xi1 − x1)(yi − y)

1
n

∑n
i=1(xi1 − x1)(yi − y)

1
n

∑n
i=1(xi1 − x1)(yi − y)


= nΣ̂xy,

where Σ̂xy is the k × 1 vector of sample covariances between the explanatory variables
and the response variable.

Putting the pieces together, the least squares estimator of β is

β̂n = (X>X)−1X>y

= (nΣ̂x)
−1nΣ̂xy

=
1

n
(Σ̂x)

−1nΣ̂xy

= Σ̂
−1

x Σ̂xy. (4)

Several comments are in order. First, recall that β̂n is a vector of least-squares slopes only.
It does not include the intercept. However, the intercept for a centered model is ȳ, and
is easily computed. Second, because the slopes are the same for the centered model and
the uncentered model, formula (4) applies equally to uncentered models. Third, in spite

of the suggestive Σ̂ notation, expression (4) is just a computational formula. It applies
whether the explanatory variable values are random or fixed. Only when the variables
are random do Σ̂x and Σ̂xy actually estimate variances and covariances.
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When the explanatory variables are random, the Strong Law of Large Numbers and
continuous mapping yield

β̂n
a.s.→ Σ−1

x Σxy. (5)

The only requirement for convergence is that Σ−1
x exist, which is equivalent to Σx being

positive definite.
The convergence (5) applies whether the regression model is correct or not. For this

reason, it can be a valuable tool for studying mis-specified regression models — that is,
models that are assumed, but are not actually correct. If you can calculate Σ̂x and Σ̂xy

under the true model, you can determine where the estimated regression coefficients are
going as the sample size increases. This will often indicate whether the mis-specification
is likely to cause mistaken conclusions.

For the present, suppose that the usual uncentered regression model is correct. Inde-
pendently for i = 1, . . . , n, let

yi = β0 + β>Xi + εi

where

β0 (the intercept) is an unknown scalar constant.

β is a p× 1 vector of unknown slope parameters.

xi is a p× 1 random vector with expected value µ and positive definite covariance
matrix Σx.

εi is a scalar random variable with E(εi) = 0 and V ar(εi) = σ2.

cov(xi, εi) = 0.

So,

Σxy = cov(xi, yi)

= cov(xi, β0 + β>xi + εi)

= cov(xi,β
>xi + εi)

= cov(xi,β
>xi) + cov(xi, εi)

= cov(xi,xi)β + 0

= Σxβ.

Then by (5)

β̂n
a.s.→ Σ−1

x Σxy

= Σ−1
x Σxβ

= β.

Since almost sure convergence implies convergence in probability (see Section A.5 in Ap-

pendix A), we have β̂n
p→ β. This is the standard definition of (weak) consistency. The
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meaning is that as the sample size increases, the probability that the usual least-squares
estimate β̂n is arbitrarily close to β approaches one. This holds even though the explana-

tory variable values are random variables, and β̂n was derived under the assumption that
they are fixed constants.

Size α Tests Suppose Model (3) is conditionally correct, and we plan to use an F test.
Conditionally upon the x values, the F statistic has an F distribution when the null
hypothesis is true, but unconditionally it does not. Rather, its probability distribution is
a mixture of F distributions, with

Pr{F ∈ A} =

∫
· · ·
∫
Pr{F ∈ A|X = x}f(x) dx.

If the null hypothesis is true and the set A is the critical region for an exact size α F -test,
then Pr{F ∈ A|X = x} = α for every fixed set of explanatory variable values x. In that
case,

Pr{F ∈ A} =

∫
· · ·
∫
αf(x) dx

= α

∫
· · ·
∫
f(x) dx (6)

= α.

Thus, the so-called F -test has the correct Type I error rate when the explanatory variables
are random (assuming the model is conditionally correct), even though the test statistic
does not have an F distribution.

It might be suspected that if the explanatory variables are random and we assume
they are fixed, the resulting estimators and tests might be of generally low quality, even
though the estimators are unbiased and the tests have the right Type I error probability.
Now we will see that given a fairly reasonable set of assumptions, this fear is unfounded.

Denoting the explanatory variable values by X and the response variable values by Y,
suppose the joint distribution of X and Y has the following structure. The distribution
of X depends on a parameter vector θ1. Conditionally on X = x, the distribution of
Y depends on a parameter vector θ2, and θ1 and θ2 are not functionally related. For a
standard regression model this means that the distribution of the explanatory variables
does not depend upon the values of β or σ2 in any way. This is surely not too hard to
believe.

Please notice that the model just described is not at all limited to linear regression. It
is very general, covering almost any conceivable regression-like method including logistic
regression and other forms of non-linear regression, generalized linear models and the like.

Because likelihoods are just joint densities or probability mass functions viewed as
functions of the parameter, the notation of Appendix A.6.8 may be stretched just a little
bit to write the likelihood function for the unconditional model (with X random) in terms
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of conditional densities as

L(θ1,θ2,x,y) = fθ1,θ2(x,y)

= fθ2(y|x) fθ1(x)

= L2(θ2,x,y)L1(θ1,x) (7)

Now, take the log and partially differentiate with respect to the elements of θ2. The
marginal likelihood L1(θ1,x) disappears, and θ̂2 is exactly what it would have been for a
conditional model.

In this setting, likelihood ratio tests are also identical under conditional and uncondi-
tional models. Suppose the null hypothesis concerns θ2, which is most natural. Note that
the structure of (7) guarantees that the MLE of θ1 is the same under the null and alter-

native hypotheses. Letting θ̂0,2 denote the restricted MLE of θ2 under H0, the likelihood
ratio for the unconditional model is

λ =
L2(θ̂0,2,x,y)L1(θ̂1,x)

L2(θ̂2,x,y)L1(θ̂1,x)

=
L2(θ̂0,2,x,y)

L2(θ̂2,x,y)
,

which again is exactly what it would have been under a conditional model. While this
holds only because the likelihood has the nice structure in (7), it’s a fairly reasonable set
of assumptions.

Thus in terms of both estimation and hypothesis testing, the fact that explanatory
variables are usually random variables presents no difficulty, regardless of what the distri-
bution of those explanatory variables may be. In fact, the conditional nature of the usual
regression model is a strength. In all the calculations above, the joint distribution of the
explanatory variables is written in a very general way. It really doesn’t matter what it is,
because it disappears. So one might say that with respect to the explanatory variables,
the usual linear regression model is distribution free.

In spite of the virtues of the conditional regression model, in this book we will focus
on unconditional regression models, in which the explanatory variables are random. The
reason is that ultimately, the explanatory variables themselves may be influenced by
other variables. The easiest way to represent this is to admit from the outset that they
are random variables.

0.3 Unconditional regression with observed variables

Example 0.3.1 Simple Regression

Suppose that the covariance between two random variables arises from a regression. In-
dependently for i = 1, . . . , n, let

Yi = β0 + β1Xi + εi (8)

where
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• Xi is has expected value µx and variance φ > 0

• εi has expected value zero and variance σ2 > 0

• Xi and εi are independent.

The pairs (Xi, Yi) have a joint distribution that is unspecified, except for the expected
value

E

(
Xi

Yi

)
= µ =

(
µ1

µ2

)
=

(
µx

β0 + β1µx

)
,

and variance-covariance matrix

cov

(
Xi

Yi

)
= Σ = [σi,j] =

(
φ β1φ
β1φ β2

1φ+ σ2

)
.

The linear property of the covariance (Expression 1 on page 9) is useful for calculating
the covariance between the explanatory and response variables.

Cov(Xi, Yi) = Cov(Xi, β0 + β1Xi + εi)

= Cov(Xi, β1Xi + εi)

= β1Cov(Xi, Xi) + Cov(Xi, εi)

= β1V ar(Xi) + 0

= β1φ

Since φ is a variance, it is greater than zero. Thus the sign of the covariance is the sign of
the regression coefficient. Positive regression coefficients produce positive relationships,
negative regression coefficients produce negative relationships, and zero corresponds to no
relationship as measured by the covariance.

While the sign of the covariance (and hence the direction of the relationship) is de-
termined by β1, the magnitude of the covariance is jointly determined by the magnitude
of β1 and the magnitude of φ, the variance of Xi. Consequently the covariance of Xi and
Yi depends on the scale of measurement of Xi. If Xi is measured in centimeters instead
of meters, its variance is 1002 = 10, 000 times as great, and Cov(Xi, Yi) is ten thousand
times as great, as well. This makes raw covariances difficult to interpret, except for the
sign.

A solution is to put the variables on a standard common scale by looking at correlations
instead of covariances. Denoting the correlation of any two random variables X and Y
by Greek letter “rho,” which is a common notation,

ρxy =
Cov(X, Y )

SD(X)SD(Y )
(9)

=
E {(X − µx)(Y − µy)}√

V ar(X)
√
V ar(Y )

= E

{(
X − µx
σx

)(
Y − µy
σy

)}
.
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That is, the correlation between two random variables is the covariance between versions of
the variables that have been standardized to have mean zero and variance one. Using (9),
the correlation for Example 0.3.1 is

ρ =
β1φ√

φ
√
β2

1φ+ σ2

=
β1

√
φ√

β2
1φ+ σ2

. (10)

This may not look like much, but consider the following. In any regression, the response
variable is likely to represent the phenomenon of primary interest, and explaining why
it varies from unit to unit is an important scientific goal. For example, if Yi is academic
performance, we want to know why some students do better than others. If Yi is the crime
rate in neighbourhood i, we want to know why there is more crime in some neighbourhoods
than in others. If there were no variation in some phenomenon (the sum rises in the East)
there might still be something to explain, but it would not be a statistical question.
Because Xi and εi are independent,

V ar(Yi) = V ar(β1Xi + εi)

= β2
1V ar(Xi) + V ar(εi)

= β2
1φ+ σ2.

Thus the variance of Yi is separated into two parts4, the part that comes from Xi and the
part that comes from εi. The part that comes from Xi is β2

1φ, and the part that comes
from εi (that is, everything else) is σ2. From (10) the squared correlation between Xi and
Yi is

ρ2 =
β2

1φ

β2
1φ+ σ2

, (11)

the proportion of the variance in Yi that comes from Xi. This quantity does not depend
on the scale of Xi or the scale of Yi, because both variables are standardized.

Example 0.3.2 Multiple Regression

Now consider multiple regression. In ordinary multiple regression (the conditional
model), one speaks of the relationship between and explanatory variable and the response
variable “controlling” for other variables in the model5. This really refers to the condi-
tional expectation of Y as a function of xj for fixed values of the other x variables, say
in the sense of a partial derivative. In unconditional regression with random explanatory
variables one talks about it in the same way, but the technical version is a bit different
and perhaps easier to understand. Here is an example with two explanatory variables.

4The word “analysis” means splitting into parts, so this is literally analysis of variance.
5One can also speak of “correcting” for the other variables, or “holding them constant,” or “allowing”

for them, or “taking them into account.” These are all ways of saying exactly the same thing.
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Independently for i = 1, . . . , n, let Yi = β0 + β1Xi,1 + β2Xi,2 + εi, where E(Xi,1) = µ1,
E(Xi,2) = µ2, E(εi) = 0, V ar(εi) = σ2, εi is independent of both Xi,1 and Xi,2, and

cov

(
Xi,1

Xi,2

)
=

(
φ11 φ12

φ12 φ22

)
.

Figure 3 shows a path diagram for this model. The explanatory and response variables are
all observed, so they are enclosed in boxes. The double-headed curved arrow between the
explanatory variables represents a possibly non-zero covariance. This covariance might
arises from interesting and important processes including common influences on the X
variables, but those processes are not part of the model. Curved double-headed arrows
represent unanalyzed covariances between explanatory variables.

The straight arrows from the explanatory to response variables represent direct influ-
ence, or at least that we are interested in predicting y from x rather than the other way
around. There is a regression coefficient β on each straight arrow, and a covariance φ12

on the curved double-headed arrow.

Figure 3: Unconditional multiple regression
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For this model, the covariance of Xi,1 and Yi is

Cov(Xi,1, Yi) = Cov(Xi,1, β0 + β1Xi,1 + β2Xi,2 + εi)

= Cov(Xi,1, β1Xi,1 + β2Xi,2 + εi)

= β1Cov(Xi,1, Xi,1) + β2Cov(Xi,1, Xi,2) + Cov(Xi,1, εi)

= β1V ar(Xi,1) + β2Cov(Xi,1, Xi,2) + 0

= β1φ11 + β2φ12

This means that the relationship between X1 and Y has two sources. One is the direct
link from X1 to Y through the straight arrow represented by β1, and the other is through
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the curved arrow between X1 and X2 and then through the straight arrow linking X2 to
Y . Even if β1 = 0, there still will be a relationship provided that X1 is related to X2 and
X2 is related to Y 6. Furthermore, β2φ12 may overwhelm β1φ11, so that the covariance
between X1 and Y may be positive even though β1 is negative.

All this is true of the unconditional relationship between X1 and Y , but what if you
“control” for X2 by holding it constant at some fixed value? When the explanatory
variables are all random, the relationship between X1 and Y controlling for X2 simply
refers to a conditional distribution — the joint distribution of X1 and Y given X2 = x2.
In this case the regression equation is

Yi = β0 + β1Xi,1 + β2xi,2 + εi

= (β0 + β2xi,2) + β1Xi,1 + εi

= β′0 + β1Xi,1 + εi

The constant is simply absorbed into the intercept. It’s a little strange in that the
intercept is potentially different for i = 1, . . . , n, but that doesn’t affect the covariance.
Following the calculations in Example 0.3.1, the conditional covariance between Xi,1 and
Yi is β1φ11. Thus to test whether X1 is connected to Y controlling for X2 (or correcting
for it, or allowing for it or some such term), it is appropriate to test H0 : β1 = 0. If
the null hypothesis is rejected, the sign of the estimated regression coefficient guides
your conclusion as to whether the conditional relationship is positive or negative. These
considerations extend immediately to multiple regression.

In terms of interpreting the regression coefficients, it is helpful to decompose (analyze)
the variance of Yi.

V ar(Yi) = V ar(β1Xi,1 + β2Xi,2 + εi)

= β2
1φ11 + β2

2φ22 + 2β1β2φ12 + σ2

The explanatory variables contribute to the variance of the response individually through
their variances and squared regression coefficients, and also jointly through their regression
coefficients and their covariance. This joint effect is not an interaction in the ordinary
sense of the term; the model of Example 0.3.2 has no product term. The null hypothesis
H0 : β1 = 0 means that X1 does not contribute at all to the variance of Y , either directly
or through its covariance with X2.

Estimation

Here is some useful terminology, repeated from Appendix A.

Definition 0.1 Moments of a distribution are quantities such E(X), E(Y 2), V ar(X),
E(X2Y 2), Cov(X, Y ), and so on.

6Yes, body weight may be positively related to income because men are bigger on average and they
tend to make more money for the same work.
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Definition 0.2 Moment structure equations are a set of equations expressing moments of
the distribution of the data in terms of the model parameters. If the moments involved are
limited to variances and covariances, the moment structure equations are called covariance
structure equations.

For the simple (one explanatory variable) regression model of Example 0.3.1, the moments

are the elements of the mean vector µ = E

(
Xi

Yi

)
, and the unique elements of the

covariance matrix Σ = cov

(
Xi

Yi

)
. The moments structure equations are

µ1 = µx (12)

µ2 = β0 + β1µx

σ1,1 = φ

σ1,2 = β1φ

σ2,2 = β2
1φ+ ψ.

In this model, the parameters are µx, φ, β0, β1, ψ, and also the unknown distribution
functions of Xi and εi. Our interest is in the Greek-letter parameters, especially β0 and
β1. Method of Moments estimates (See Section A.6.2 in Appendix A) can be obtained
by solving the moment structure equations (12) for the unknown parameters and putting
hats on the result. The moment structure equations form a system of 5 equations in five
unknowns, and may be readily be solved to yield

β0 = µ2 −
σ1,2

σ1,1

µ1 (13)

µx = µ1

φ = σ1,1

β1 =
σ1,2

σ1,1

ψ = σ2,2 −
σ2

1,2

σ1,1

.

Thus, even though the distributions of Xi and εi are unknown, we have nice consistent7

estimators of the interesting part of the unknown parameter. Putting hats on the param-

7By the Law of Large Numbers and continuous mapping
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eters in Expression 13,

β̂0 = y − σ̂1,2

σ̂1,1

x

µ̂x = µ̂1 = x

φ̂ = σ̂1,1

β̂1 =
σ̂1,2

σ̂1,1

ψ̂ = σ̂2,2 −
σ̂2

1,2

σ̂1,1

.

It is very standard to assume that Xi and εi are normally distributed. In this case, the
existence of the solution (13) tells us that the parameters of the normal version of this
regression model stand in a one-to-one-relationship with the mean and covariance matrix
of the bivariate normal distribution posessed by the observable data. In fact, the two
sets of parameter values are 100% equivalent; they are just different ways of expressing
the same thing. For some purposes, the parameterization represented by the regression
model may be more informative.

Furthermore, the Invariance Principle of maximum likelihood estimation (see Sec-
tion A.6.5 in Appendix A) says that the MLE of a one-to-one function is just that func-
tion of the MLE. So, the Method of Moments estimates are also the Maximum Likelihood
estimates in this case. Recognizing the formula for β̂1 as a special case of Expression 4 on
Page 14 (from the centered multiple regression model), we see that β̂1 is also the ordinary
least-squares estimate.

The calculations just shown are important, because they are an easy, clear example
of something that will be necessary again and again throughout the course. Here is the
process:

• Calculate the moments of the distribution (usually means, variances and covari-
ances) in terms of the model parameters, obtaining a system of moment structure
equations.

• Solve the moment structure equations for the parameters, expressing the parameters
in terms of the moments.

When the second step is successful, putting hats on all the parameters in the solution
yields Method of Moments estimators, even when these do not correspond to the MLEs8.

It turns out that for many reasonable models that go beyond ordinary multiple regres-
sion, a unique solution for the parameters is mathematically impossible. In such cases,
successful parameter estimation by any method is impossible as well. It is vitally im-
portant to verify the possibility of successful parameter estimation before trying it for a

8When there are the same number of moment structure equations and a unique sulution for the parame-
trers exists, the Mothod of Moments estimators and MLEs coincide. When there are more equations than
parameters they no longer coincide in general, but still the process of “putting hats on everything” yields
Method of Moments estimators.
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given data set (say, by maximum likelihood), and verification consists of a process like
the one you have just seen. Of course it is no surprise that estimating the parameters of
a regression model is technically possible.

Because the process is so important, let us take a look at the extension to multivariate
multiple regression — that is, to linear regression with multiple explanatory variables and
multiple response variables. This will illustrate the matrix versions of the calculations.

Example 0.3.3 Multivariate Regression

Independently for i = 1, . . . , n, let

yi = β0 + β>1 xi + εi (14)

where

yi is a q × 1 random vector of observable response variables, so the regression can
be multivariate; there are q response variables.

β0 is a q × 1 vector of unknown constants, the intercepts for the q regression equa-
tions. There is one for each response variable.

xi is a p × 1 observable random vector; there are p explanatory variables. xi has
expected value µx and variance-covariance matrix Φ, a p×p symmetric and positive
definite matrix of unknown constants.

β1 is a p×q matrix of unknown constants. These are the regression coefficients, with
one row for each explanatory variable and one column for each response variable.

εi is the error term of the latent regression. It is an q × 1 multivariate normal
random vector with expected value zero and variance-covariance matrix Ψ, a q × q
symmetric and positive definite matrix of unknown constants. εi is independent of
xi.

The parameter vector for this model could be written θ = (β0,µx,Φ,β1,Ψ, Fx, Fε), where
it is understood that the symbols for the matrices refer to their unique elements.

Figure 4 depicts a model with three explanatory variables and two response variables.
The explanatory and response variables are all observable, so they are enclosed in boxes.
Double-headed curved arrows between the explanatory variable represent possible non-
zero covariances. The straight arrows from the explanatory to response variables represent
direct influence, or at least that we are interested in predicting y from x rather than the
other way around. There is a regression coefficient βj,k on each arrow. The error terms
ε1 and ε2 represent all other influences on Y1 and Y2. Since there could be common
influences (omitted variables that affect both Y1 and Y2), the error terms are assumed to
be correlated. This is the reason for the curved double-headed arrow joining ε1 and ε2.
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Figure 4: Multivariate multiple regression
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There is one regression equation for each response variable. In scalar form, the model
equations are

Yi,1 = β0,1 + β1,1Xi,1 + β2,1Xi,2 + β3,1Xi,3 + εi,1

Yi,2 = β0.2 + β1,2Xi,1 + β2,2Xi,2 + β3,2Xi,3 + εi,2.

In matrix form,

yi = β0 + β>1 xi + εi

(
Yi,1
Yi,2

)
=

(
β1,0

β2,0

)
+

(
β1,1 β2,1 β3,1

β1,2 β2,2 β3,2

)  Xi,1

Xi,2

Xi,3

 +

(
εi,1
εi,2

)
Returning to the general case of Example 0.3.3, the observable data are the random

vectors Di =

(
xi
yi

)
, for i = 1, . . . , n. The notation indicates that Di is a partitioned

random vector, with xi stacked directly on top of yi. Using the notation E(Di) = µ and
cov(Di) = Σ, one may write µ and Σ as partitioned matrices (matrices of matrices).

µ =

(
E(xi)
E(yi)

)
=

(
µ1

µ2

)
and

Σ = cov

(
xi

yi

)
=

(
cov(xi) cov(xi,yi)

cov(xi,yi)
> cov(yi)

)
=

(
Σ11 Σ12

Σ>12 Σ22

)
As in the univariate case, the maximum likelihood estimators may be obtained by solving
the moment structure equations for the unknown parameters. The moment structure
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equations are obtained by calculating expected values and covariances in terms of the
model parameters. All the calculations are immediate except possibly

Σ12 = cov(xi,yi)

= cov
(
xi , β0 + β>1 xi + εi

)
= cov

(
xi , β

>
1 xi + εi

)
= cov (xi,xi)β1 + cov(xi, εi)

= cov(xi)β1 + 0

= Φβ1

Thus, the moment structure equations are

µ1 = µx (15)

µ2 = β0 + β>1 µx
Σ11 = Φ

Σ12 = Φβ1

Σ22 = β>1 Φβ1 + Ψ.

Solving for the parameter matrices is routine.

β0 = µ2 −Σ−1
11 Σ12µ1

µx = µ1

Φ = Σ11 (16)

β1 = Σ−1
11 Σ12

Ψ = Σ22 −Σ>12Σ
−1
11 Σ12

As in the univariate case, the Method of Moments estimates are obtained by putting hats
on all the parameters in Expression (16). If the distributions of xi and εi are multivariate
normal, the Invariance Principle implies that these Method of Moments estimates are also
the maximum likelihood estimates.

Least Squares Recall that in the proof of consistency for ordinary least squares with
random explanatory variables, we centered the explanatory variables and obtained For-

mula (4) on Page 14: β̂n = Σ̂
−1

x Σ̂xy. Compare this to the estimate of the slopes ob-

tained from the solution (16) above: β̂1 = Σ̂
−1

11 Σ̂12. The formulas are almost the same.

Σ̂11 = Σ̂x, the sample variance-covariance matrix of the explanatory variables. Σ̂12 and
Σ̂xy are both matrices of sample covariances between explanatory and response variables,

except that Σ̂12 is p × q while Σ̂xy is p × 1. Σ̂12 has one column for each response vari-
able. So, in addition to being a method of moments estimate and a maximum likelihood
estimate under normality β̂1 is a p× q matrix of least-squares estimates,
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0.4 Omitted Variables

Some very serious problems can arise when standard regression methods are applied to
non-experimental data. Note that regression methods are applied to non-experimental
data all the time, and we teach students how to do it in almost every statistics class where
regression is mentioned. Without an understanding of the technical issues involved, the
typical applications can be misleading.

The trouble is not the explanatory variables are random. As we saw in Section 0.2,
that’s fine. But when the random explanatory variables have non-zero correlations with
other explanatory variables that are missing from the regression equation and are related
to the response variable, things can get ugly. In this section, we will see how omitting
important explanatory variables from a regression equation can cause the error term to be
correlated with the explanatory variables that remain, and how that can produce incorrect
results.

To appreciate the issue, it is necessary to understand what the error term in a regres-
sion equation really represents. When we write something like

Yi = β0 + β1Xi,1 + εi, (17)

we are saying that Xi,1 contributes to Yi, but there are also other, unspecified influences.
Those other influences are all rolled together into εi.

The words “contributes” and “influences” are used deliberately. They should be setting
off alarm bells, because they imply a causal connection between Xi and Yi. Regression
models with random explanatory variables are applied mostly to observational data, in
which explanatory variables are merely recorded rather than being manipulated by the
investigator. The correlation-causation issue applies. That is, if X and Y are related,
there is in general no way to tell whether X is influencing Y , or Y is influencing X, or if
other variables are influencing both X and Y .

It could be argued that a conditional regression model (the usual model in which
the explanatory variable values are fixed constants) is just a convenient way to represent
dependence between X and Y by specifying a generic, more or less reasonable conditional
distribution for Y given X = x. In this case, the correlation-causation issue can be
set aside, and taken up when it is time to interpret the results. But if the explanatory
variables are explicitly random, it is harder to avoid the obvious. In the simple regression
model (17), the random variable Yi is a function of the random variables Xi and εi. It
is being directly produced by them. If this is taken seriously as a scientific model as
well as a statistical model9, it is inescapably causal; it is a model of what affects what.
That’s why the straight arrows in path diagrams are directional. The issue of whether X
is influencing Y , or Y is influencing X or both is a modelling issue that will mostly be
decided based on subject-matter theory.

It is natural to ask whether the data can be used to decide which way the arrows should
be pointing. The answer is usually no, but it can be yes with certain other restrictions

9In structural equation modelling, the models are both statistical models and primitive scientific
models of the data. Once the general linear structural model is introduced, you will see that regression
is a special case.
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on the model. We will return to this issue later in the book. In the meantime, regression
models with random explanatory variables, like the general structural equation models
that are their extensions, will be recognized as causal models.

Again, Equation (17) says that Xi is influencing Yi. All other influences are represented
by εi. It is common practice to assume that Xi,1 and εi are independent, or at least
uncorrelated. But that does not mean the assumption can be justified in practice. Prepare
yourself for a dose of reality.

Example 0.4.1 Omitted Explanatory Variables

Suppose that the variables X2 and X3 have an impact on Y and are correlated with X1,
but they are not part of the data set. The values of the response variable are generated
as follows:

Yi = β0 + β1Xi,1 + β2Xi,2 + β3Xi,3 + εi, (18)

independently for i = 1, . . . , n, where εi ∼ N(0, σ2). The explanatory variables are
random, with expected value and variance-covariance matrix

E

 Xi,1

Xi,2

Xi,3

 =

 µ1

µ2

µ3

 and cov

 Xi,1

Xi,2

Xi,3

 =

 φ11 φ12 φ13

φ22 φ23

φ33

 ,

where εi is independent of Xi,1, Xi,2 and Xi,3. Values of the variables Xi,2 and Xi,3 are
latent, and are not included in the data set.

Figure 5 shows a path diagram of this model. Because the explanatory variables Xi,2

and Xi,3 are not observable, they are latent variables, and so they are encolsed by ovals
in the path diagram. Their covariances with Xi,1 and each other are represented by
two-headed curved arrows.

Figure 5: Omitted explanatory variables
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Since X2 and X3 are not available, we use what we have, and consider a model with
X1 only. In this case X2 and X3 are absorbed by the intercept and error term, as follows.

Yi = β0 + β1Xi,1 + β2Xi,2 + β3Xi,3 + εi

= (β0 + β2µ2 + β3µ3) + β1Xi,1 + (β2Xi,2 + β3Xi,3 − β2µ2 − β3µ3 + εi)

= β′0 + β1Xi,1 + ε′i.

The primes just denote a new β0 and a new ε; the addition and subtraction of β2µ2 +
β3µ3 serve to make E(ε′i) = 0. And of course there could be any number of omitted
variables. They would all get swallowed by the intercept and error term, the garbage bins
of regression analysis.

Notice that although the original error term εi is independent of Xi,1, the new error
term ε′i is not.

Cov(Xi,1, ε
′
i) = Cov(Xi,1, β2Xi,2 + β3Xi,3 − β2µ2 − β3µ3 + εi)

= β1Cov(Xi,1, Xi,2) + β3Cov(Xi,1, Xi,3) + 0

= β2φ12 + β3φ13 (19)

So, when explanatory variables are omitted from the regression equation and those ex-
planatory variables have non-zero covariance with variables that are in the equation, the
result is non-zero covariance between the error term and the explanatory variables in the
equation10.

Response variables are almost always affected by more than one explanatory variable,
and in observational data, explanatory variables usually have non-zero covariances with
one another. So, the most realistic model for a regression with just one explanatory
variable should include a covariance between the error term and the explanatory variable.
The covariance comes from the regression coefficients and covariances of some unknown
number of omitted variables; it will be represented by a single quantity because there is
no hope of estimating all those parameters individually. We don’t even know how many
there are.

We have arrived at the following model, which will be called the true model in the
discussion that follows. It may not be the ultimate truth of course, but for observational
data it is almost always closer to the truth than the usual model. Independently for
i = 1, . . . , n,

Yi = β0 + β1Xi + εi, (20)

where E(Xi) = µx, V ar(Xi) = σ2
x, E(εi) = 0, V ar(εi) = σ2

ε , and Cov(Xi, εi) = c. A
path diagram of the true model is given in Figure 6. The covariance c is indicated on
the curved arrow connecting the explanatory variable and the error term. Consider a
data set consisting of pairs (X1, Y1), . . . , (Xn, Yn) coming from the true model, and the
interest is in the regression coefficent β1. Who will try to estimate the parameters of
the true model? Almost no one. Practically everyone will use ordinary least squares, as

10The effects of the omitted variables could offset each other. In this example, it is possible that
β2φ12 + β3φ13 = 0, but that is really too much to hope.
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Figure 6: Omitted explanatory variables have been swallowed by ε

X Y
β
1

c

ε

described in countless textbooks and implemented in countless computer programs and
even statistical calculators.

The model underlying ordinary least squares is Yi = β0 +β1xi+εi, where x1, . . . , xn are
fixed constants, and conditionally on x1, . . . , xn, the error terms ε1, . . . , εn are independent
normal random variables with mean zero and variance σ2. It may not be immediately
obvious, but this model implies independence of the explanatory variable and the error
term. It is a conditional model, and the distribution of the error terms is the same for
every fixed set of values x1, . . . , xn. Using a loose but understandable notation for densities
and conditional densities,

f(εi|xi) = f(εi)

⇔ f(εi, xi)

f(xi)
= f(εi)

⇔ f(εi, xi) = f(εi)f(xi),

which is the definition of independence. So, the usual regression model makes a hidden
assumption. It assumes that any explanatory variable that is omitted from the equation
has zero covariance with the variables that are in the equation.

Surprisingly, this does not depend on the assumption of any particular distribution for
the error terms. All you need is the stipulation E(εi) = 0 in a fixed-x regression model.
It’s worth doing this in generality, so consider the multivariate multiple regression model
of Example 0.3.3 on page 24:

Yi = β0 + β>1 Xi + εi.

If the Xi values are considered fixed constants, the statement E(εi) = 0 actually means
E(εi|Xi = xi) = 0 for all p× 1 constant vectors xi in the support of Xi. Then,

E(εi) = E{E(εi|Xi)} = E{0} = 0,
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and

cov(Xi, εi) = E(Xiε
>
i )− E(Xi)E(εi)

>

= E(Xiε
>
i )− 0

= E{E(Xiε
>
i |Xi)}.

The inner expected value is a multiple integral or sum with respect to the conditional
distribution of εi given Xi, so Xi may be moved through the inner expected value sign.
To see this, it may help to write the double expectation in terms of integrals of a general
kind11. Continuing the calculation,

E{E(Xiε
>
i |Xi)} =

∫ (∫
xε>dP

ε|X(ε)

)
dP

X
(x)

=

∫
x

(∫
ε>dP

ε|X(ε)

)
dP

X
(x)

= E{XiE(ε>i |Xi)}
= E{Xi0

>}
= E{0}
= 0

Unconditional (random X) regression models typically assume zero covariance between
error terms and explanatory variables. It is now clear that conditional (fixed x) regression
models smuggle this same assumption in by making the seemingly reasonable and harmless
assertion that E(εi) = 0.

Zero covariance between error terms and explanatory variables means that any poten-
tial explanatory variable not in the model must have zero covariance with the explanatory
variables that are in the model. Of course this is almost never realistic without random
assignment to experimental conditions, so that almost every application of regression
methods to non-experimental data makes an assumption that cannot be justified. Now
we will see the consequences.

For a simple regression, both ordinary least squares and an unconditional regression
model like the true model on Page 29 with c = 0 lead to the same standard formula:

β̂1 =

∑n
i=1(Xi −X)(Yi − Y )∑n

i=1(Xi −X)2

=
1
n

∑n
i=1(Xi −X)(Yi − Y )
1
n

∑n
i=1(Xi −X)2

=
σ̂x,y
σ̂2
x

,

11These are Lebesgue integrals with respect to probability measures and conditional probability mea-
sures. They include multiple sums and ordinary Reimann integrals as special cases.
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where σ̂x,y is the sample covariance between X and Y , and σ̂2
x is the sample variance of X.

These are maximum likelihood estimates of Cov(X, Y ) and V ar(X) respectively under
the assumption of normality. If the denominators were n− 1 instead of n, they would be
unbiased.

By the strong consistency of the sample variance and covariance (see Section A.5 in
Appendix A), σ̂x,y converges almost surely to Cov(X, Y ) and σ̂2

x converges almost surely
to V ar(X) as n→∞. Under the true model,

Cov(X, Y ) = Cov(Xi, β0 + β1Xi + εi)

= β1Cov(Xi, Xi) + Cov(Xi, εi)

= β1σ
2
x + c

So by continuity,

β̂1 =
σ̂x,y
σ̂2
x

a.s.→ β1 +
c

σ2
x

. (21)

Since the estimator is converging to quantity that is off by a fixed amount, it may be
called asymptotically biased. Thus, while the usual teaching is that sample regression
coefficients are unbiased estimators, we see here that β̂1 is biased as n→∞. Regardless
of the true value β1, the estimate β̂1 could be absolutely anything, depending on the value
of c, the covariance between Xi and εi. The only time β̂1 behaves properly is when c = 0.

What’s going on here is that the calculation of β̂1 is based on a model that is mis-
specified. That is, it’s not the right model. The right model is what we’ve been calling
the true model. And to repeat, the true model is the most reasonable model for simple
regression, at least for most non-experimental data.

The lesson is this. When a regression model fails to include all the explanatory variables
that contribute to the response variable, and those omitted explanatory variables have
non-zero covariance with variables that are in the model, the regression coefficients are
inconsistent. In other words, with more and more data they do not approach the right
answer. Instead, they get closer and closer to a specific wrong answer.

If you think about it, this fits with what happens frequently in practical regrssion
analysis. When you add a new explanatory variable to a regression equation, the coeffi-
cients of the variables that are already in the equation do not remain the same. Almost
anything can happen. Positive coefficients can turn negative, negative ones can turn posi-
tive, statistical significance can appear where it was previously absent or disappear where
it was previously present. Now you know why.

Notice that if the values of one or more explanatory variables are randomly assigned,
the random assignment guarantees that these variables are independent of any and all
variables that are omitted from the regression equation. Thus, the variables in the equa-
tion have zero covariance with those that are omitted, and all the trouble disappears. So,
well-controlled experimental studies are not subject to the kind of problems described here.

Actually, the calculations in this section support a familiar point, the correlation-
causation issue, which is often stated more or less as follows. If A and B are related to
one another, one cannot necessarily infer that A affects B. It could be that B affects A,
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or that some third variable C is affecting both A and B. To this we can now add the
possibility that the third variable C affects B and is merely correlated with A.

Variables like C are often called confounding variables, or more rarely, lurking vari-
ables. The usual advice is that the only way to completely rule out their action is to
randomly assign subjects in the study to the various values of A, and then assess the
relationship of A to B. Again, now you know why.

It should be pointed out that while the correlation-causation issue presents grave
obstacles to interpreting the results of observational studies, there is no problem with
pure prediction. If you have a data set with x and y values and your interest is predicting
y from the x values for a new set of data, a regression equation will be useful, provided
that there is a reasonably strong relationship between x and y. From the standpoint
of prediction, it does not really matter whether y is related to x directly, or indirectly
through unmeasured variables that are related to x. You have x and not the unmeasured
variables, so use it. An example would be an insurance company that seeks to predict
the amount of money that you will claim next year (so they can increase your premiums
accordingly now). If it turns out that this is predictable from the type of music you
download, they will cheerfully use the information, and not care why it works.

Also, the convergence of β̂1 to the wrong answer in (21) may be misleading, but it does
not necessarily yield the wrong conclusion. In much of the social and biological sciences,
the theories are not detailed and sophisticated enough to make predictions about the
actual values of regression coefficients, just whether they should be positive, negative or
zero. So, if the variable being tested and the omitted variables are pulling in the same
direction (that is, if β1 and c in Model (20) on Page 29 are either both positive or both
negative), the study will come to the “right” conclusion. The trouble is that you can’t
tell, because you don’t even know what the omitted variables are. All you can do is hope,
and that’s not a recipe for good science.

Trying to fit the true model We have seen that serious trouble arises from adopting
a mis-specified model with c = Cov(Xi, εi) = 0, when in fact because of omitted variables,
c 6= 0. It is natural, therefore, to attempt estimation and inference for the true model
Yi = β0 + β1Xi + εi (see Page 29) in the case where c = Cov(Xi, εi) need not equal
zero. For simplicity, assume that Xi and εi have a bivariate normal distribution, so that
the observable data pairs (Xi, Yi) for i = 1, . . . , n are a random sample from a bivariate
normal distribution with mean vector µ and variance-covariance matrix Σ.

It is straightforward to calculate µ and Σ from the equation and assumptions of the
true model (20). The result is

µ =

(
µ1

µ2

)
= E

(
Xi

Yi

)
=

(
µx

β0 + β1µx

)
(22)

and

Σ =

(
σ11 σ12

σ12 σ22

)
= cov

(
Xi

Yi

)
=

(
σ2
x β1σ

2
x + c

β1σ
2
x + c β2

1σ
2
x + 2β1c+ σ2

ε

)
. (23)

This shows the way in which the parameter vector θ = (µx, σ
2
x, β0, β1, σ

2
ε , c) determines µ

and Σ, and hence the probability distribution of the data.
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Our primary interest is in β1. Because the data pairs (Xi, Yi) come from a bivariate
normal distribution, all you can ever learn from the data are the approximate values of µ
and Σ. With larger and larger samples, all you get is better and better approximations
of µ and Σ. That’s all there is to know. But even if you knew µ and Σ exactly, could
you know β1? Formulas (22) and (23) yield a system of five equations in six unknown
parameters.

µ1 = µx

µ2 = β0 + β1µx

σ11 = σ2
x (24)

σ12 = β1σ
2
x + c

σ22 = β2
1σ

2
x + 2β1c+ σ2

ε

The problem of recovering the parameter values from µ and Σ is exactly the problem
of solving these five equations in six unknowns. µx = µ1 and σ2

x = σ11 are easy. The
remaining 3 equations in 4 unknowns have infinitely many solutions. That is, infinitely
many sets of parameter values yield exactly the same distribution of the sample data.
Distinguishing among them based on sample data is impossible in principle.

To see this in detail, substitute µ1 for µx and σ11 for σ2
x in (24), obtaining

µ2 = β0 + β1µ1

σ12 = β1σ11 + c (25)

σ22 = β2
1σ11 + 2β1c+ σ2

ε

Letting the moments µj and σij remain fixed, we will now write the other parameters as
functions of c, the covariance between Xi and εi. Then, moving c will move the other
parameters (except for µx = µ1 and σ2

x = σ11), tracing out a one-dimensional subset of
the 6-dimensional parameter space where

• All the equations in (24) are satisfied,

• The values of µ and Σ remain constant, and

• The distribution of (Xi, Yi)
> is N2(µ,Σ).

First solve for β1 in the second equation, obtaining β1 = σ12−c
σ11

. Substituting this expres-
sion for β1 and simplifying, we are able to write all the other model parameters in terms
of c, as follows.

µx = µ1

σ2
x = σ11

β0 = µ2 − µ1

(
σ12 − c
σ11

)
(26)

β1 =
σ12 − c
σ11

σ2
ε = σ22 +

c2 − σ2
12

σ11
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The parameters µx and σ2
x are constant functions of c, while β0 and β1 are linear functions,

and σ2
ε is a quadratic function. The equations (26) define a one-dimensional surface in

the six-dimensional parameter space, a kind of curved thread in R6. Moving c from −∞
to ∞ traces out the points on the thread. Importantly, as c ranges from −∞ to +∞ the
regression coefficient β1 ranges from +∞ to −∞. This means that β1 might be positive,
it might be negative, or it might be zero. But you really can’t tell, because all real values
of β1 on the surface yield the same population mean and population variance-covariance
matrix, and hence the same distribution of the sample data. There is no way to distinguish
between the possible values of β1 based on sample data.

One technical detail needs to be resolved. Can c really range from −∞ to ∞? If
not, the possible values of β1 would be restricted as well. Two conditions need to be
checked. First, the covariance matrix of (Xi, εi)

>, like all covariance matrices, has a non-
negative determinant. For the bivariate normal density to exist (not a bad assumption),
the determinant must be non-zero, and hence it must be strictly positive. Second, σ2

ε

must be greater than zero. For points on the thread, the first condition is

0 <

∣∣∣∣ σ2
x c
c σ2

ε

∣∣∣∣
= σ2

xσ
2
ε − c2

= σ11

(
σ22 +

c2 − σ2
12

σ11

)
− c2

= σ11σ22 + c2 − σ2
12 − c2

= σ11σ22 − σ2
12

= |Σ|.

This imposes no restriction on c at all. We also need to check whether σ2
ε > 0 places any

restriction on c — for points on the thread, of course.

σ2
ε > 0

⇔ σ22 +
c2 − σ2

12

σ11

> 0

⇔ σ11σ22 + c2 − σ2
12 > 0

⇔ |Σ|+ c2 > 0

which is true since |Σ| > 0. Again, the inequality places no restriction on c.
Let me beat this point into the ground a bit, because it is important. Since the

data are bivariate normal, their probability distribution corresponds uniquely to the pair
(µ,Σ). All you can ever learn from any set of sample data is the probability distribution
from which they come. So all you can ever get from bivariate normal data, no matter
what the sample size, is a closer and closer approximation of µ and Σ. If you cannot find
out whether β1 is positive, negative or zero from µ and Σ, you will never be able to make
reasonable estimates or inferences about β1 from any set of sample data.

What would happen if you tried to estimate the parameters by maximum likelihood?
For every µ ∈ R2 and every 2×2 symmetric positive definite Σ, there is a surface (thread)
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in R6 defined by (26). This includes (µ̂, Σ̂). On that particular thread, the likelihood is
highest. Picture a surface with a curvy ridge at the top. The surface has infinitely many
maxima, all at the same height, forming a connected set. If you take partial derivatives
of the log likelihood and set all six of them equal to zero, there will be infinitely many
solutions. If you do numerical maximum likelihood, good software will find a point on the
ridge, stop, detect that the surface is not fully concave down there, and complain. Less
sophisticated software will just find a point on the ridge, and stop. The stopping place,
that is, the maximum likelihood estimate, will depend entirely on where the numerical
search starts.

To summarize, if explanatory variables are omitted from a regression equation and
those variables have non-zero covariance c with explanatory variables that are not omitted,
the result is non-zero covariance between explanatory variables and the error term. And,
if there is a non-zero covariance between the error term an an explanatory variable in a
regression equation, the false assumption that c = 0 can easily lead to false results. But
allowing c to be non-zero means that infinitely many parameter estimates will be equally
plausible, given any set of sample data. In particular, no set of data will be able to
provide a basis for deciding whether regression coefficients are positive, negative or zero.
The problem is fatal if all you have is Xi and Yi.

The trouble here is lack of parameter identifiability. If a parameter is a function of
the distribution of the observable data, it is said to be identifiable. The idea is that the
parameter is potentially knowable if you knew the distribution of the observable data. If
the parameter is not knowable based on the data, they naturally there will be trouble
with estimation and inference. Parameter identifiability is a central theme of this book,
and will be taken up again in Section 0.9 on Page 58.

0.5 Instrumental Variables

The method of instrumental variables was introduced by the economist Phillip Wright in
the appendix a 1928 book The Tariff on Animal and Vegetable Oils [71]. Phillip Wright
was the father of Sewell Wright, the biologist whose work on path analysis led to modern
structural equation modeling as well as much of Econometrics. The story is told in a 2003
paper by Stock and Trebbi [62].

An instrumental variable for an explanatory is a variable that is correlated with that
explanatory variable, but is not correlated with any error terms or other explanatory
variables, and has no direct connection to the response variable. In Econometrics, the in-
strumental variable usually influences the explanatory variable. An instrumental variable
is usually not the main focus of attention; it’s just a tool.

Example 0.5.1 Credit Card Debt

Suppose we want to know the contribution of income to credit card debt. Because of
omitted variables, the model

Yi = α + βXi + εi,



0.5. INSTRUMENTAL VARIABLES 37

is guaranteed to fail. Many things influence both income and credit card debt, such as
personal style of money management, education, number of children, expenses caused by
illness . . . . The list goes on. As a result, Xi and εi have non-zero covariance. The least
squares estimate of β is inconsistent, and so is every other possible estimate12. We can’t
possibly measure all the variables that affect both income and debt; we don’t even know
what they all are. Instead, let’s add an instrumental variable.

Definition 0.3 An instrumental variable for an explanatory variable is another random
variable that has non-zero covariance with the explanatory variable, and no direct con-
nection with any other variable in the model.

Focus the study on real estate agents in many cities, and include median price of resale
home for each agent along with income and credit card debt. Median price of resale home
qualifies an an instrumental variable according to the definition. Since real estate agents
typically receive a percentage of the selling price, it is definitely related to income. Also,
housing prices are determined by external economic forces that have little to do with all
the personal, individual-level variables that affect the income and debt of individual real
estate agents. So, we have the following:

• Wi is median price of resale home in agent i’s district.

• Xi is annual income of real estate agent i.

• Yi is agent i’s credit card debt.

The model equations are

Xi = α1 + β1Wi + εi1

Yi = α2 + β2Xi + εi2,

and Figure 7 shows the path diagram. The main interest is in β2, the link between income
and credit card debt. The covariance between ε1 and ε2 represents all the omitted variables
that affect both income and credit card debt.

Denoting the expected value of the data vector Di = (Wi, Xi, Yi)
> by µ = [µj] and its

covariance matrix by Σ = [σij], we have

Σ =

W X Y

W σ2
w β1σ

2
w β1β2σ

2
w

X · β2
1σ

2
w + σ2

1 β2(β2
1σ

2
w + σ2

1) + c

Y · · β2
1β

2
2σ

2
w + β2

2σ
2
1 + 2β2c+ σ2

2

(27)

The lower triangle of the covariance matrix is omitted to make it less cluttered. The
notation in (27) is self-explanatory except possibly for V ar(εi1) = σ2

1 and V ar(εi2) = σ2
2.

12This is strictly true if the data are normal. For non-normal data consistent estimation might be
possible, but one would have to know the specific non-normal distribution(s).
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Figure 7: W is median price of resale home, X is income, Y is credit card debt
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It is immediately apparent that the critical parameter β2 can be recovered from Σ by
β2 = σ13

σ12
, provided β1 6= 0. A nice Method of Moments estimator in terms of the sample

covariances is β̂2 = σ̂13
σ̂12

.

The requirement that β1 6= 0 can be verified, by testing H0 : σ12 = 0 with an elemen-
tary test of the correlation between housing prices and income. We expect no problem,
because W is a good instrumental variable. Median resale price certainly should be re-
lated to the income of real estate agents, and furthermore the relationship is practically
guaranteed to be positive. This is a feature of good a instrumental variable. Its rela-
tionship to the explanatory variable should be clear, and so obvious that it is hardly
worth investigating. The usefulness of the instrumental variable is in the light it casts on
relationships that are not so obvious.

In this example, the instrumental variable works beautifully. All the model parame-
ters that appear in Σ can be recovered by simple substitution, µz = µ1, and then α1 and
α2 can be recovered from µ2 = E(Xi) and µ3 = E(Yi) respectively. The function from
(α1, α2, β1, β2, µw, σ

2
w, σ

2
1, σ

2
2, c) to (µ,Σ) is one-to one. Method of Moments estimates

are readily available, and they are consistent by the continuity of the functions involved.
Under the additional assumption of multivariate normality, the Method of Moments esti-
mates are also maximum likelihood by the invariance principle.

To test the central null hypothesis H0 : β2 = 0, fancy software is not required. Since
we have concluded with high confidence that β1 > 0, the covariance σ13 equals zero if
and only if β2 = 0, and the sign of σ13 is the same as the sign of β2. So it is necessary
only to test the correlation between housing price and real estate agents’ credit card
debt. Under the normal assumption, the usual test is exact, and a large sample is not
required. If the normal assumption is worrisome, the non-parametric test associated with
the Spearman rank correlation coefficient is a permutation test carried out on ranks, and
an exact small-sample p-value is available even though some software produces a large-
sample approximation by default.

The instrumental variable method saved the day in this example, but it does not solve
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the problem of omitted variables in every case, or even in most cases. This is because
good instrumental variables are not easy to find. They will not just happen to be in the
data set, except by a miracle. They really have to come from another universe, and still
have a strong, clear connection to the explanatory variable. Data collection has to be
planned, with a model that admits the existence of omitted variables explicitly in mind.

Measurement Error All models are inexact representations of reality, but I must
admit that the model in Figure 7 is seriously wrong. Our interest is in how true income
affects true credit card debt. But these variables are not observed. What we have in
the data file are reported income and reported credit card debt. For various reasons that
the reader can easily supply, what people report about financial details is not the same
thing as the truth. When we record median price of a resale home, that’s unlikely to
be perfectly accurate either. As we will see later in this chapter, measurement error in
the explanatory variables presents serious problems for regression analysis in general. We
will also see that instrumental variables can help with measurement error as well as with
omitted variables, but first it is helpful to introduce the topic of measurement error in an
organized way.

0.6 The Idea of Measurement Error

In a survey, suppose that a respondent’s annual income is “measured” by simply asking
how much he or she earned last year. Will this measurement be completely accurate?
Of course not. Some people will lie, some will forget and give a reasonable guess, and
still others will suffer from legitimate confusion about what constitutes income. Even
physical variables like height, weight and blood pressure are subject to some inexactness
of measurement, no matter how skilled the personnel doing the measuring. In fact, very
few of the variables in the typical data set are measured completely without error.

One might think that for experimentally manipulated variables like the amount of drug
administered in a biological experiment, laboratory procedures would guarantee that for
all practical purposes, the amount of drug a subject receives is exactly what you think
it is. But Alison Fleming (University of Toronto Psychology department) pointed out to
me that when hormones are injected into a laboratory rat, the amount injected is exactly
right, but due to tiny variations in needle placement, the amount actually reaching the
animal’s bloodstream can vary quite a bit. The same thing applies to clinical trials of drugs
with humans. We will see later, though, that the statistical consequences of measurement
error are not nearly as severe with experimentally manipulated variables, assuming the
study is well-controlled in other respects.

Random variables that cannot be directly observed are called latent variables. The ones
we can observe are sometimes called “manifest,” but here they will be called “observed”
or “observable,” which is also a common usage. Upon reflection, it is clear that most of
the time, we are interested in relationships among latent variables, but at best our data
consist only of their imperfect, observable counterparts. One is reminded of the allegory
of the cave in Plato’s Republic [46], where human beings are compared to prisoners in a
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cave, with their heads chained so that they can only look at a wall. Behind them is a fire,
which casts flickering shadows on the wall. They cannot observe reality directly; all they
can see are the shadows.

A simple additive model for measurement error

Measurement error can take many forms. For categorical variables, there is classification
error. Suppose a data file indicates whether or not each subject in a study has ever had
a heart attack. Clearly, the latent Yes-No variable (whether the person has truly had a
heart attack) does not correspond perfectly to what is in the data file, no matter how
careful the assessment is. Mis-classification can and does occur, in both directions.

Here, we will put classification error aside for now because it is technically difficult,
and focus on a very simple form of measurement error that applies to continuous variables.
There is a latent random variable X that cannot be observed, and a little random shock
e that pushes X up or down, producing an observable random variable W . That is,

W = X + e (28)

Let’s say E(X) = µx, E(e) = 0, V ar(X) = σ2
x, V ar(e) = σ2

e , and Cov(X, e) = 0. Figure 8
is a path diagram of this model.

Figure 8: Additive Measurement Error
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Because X and e are uncorrelated,

V ar(W ) = V ar(X) + V ar(e) = σ2
x + σ2

e .

Variance is an index of unit-to unit variation in a measurement. The simple calculation
above reveals that variation in the observable variable has two sources: variation in the
actual quantity of interest, and variation in the magnitude of the random shocks that
create error in measurement. To judge the quality of a measurement W , it is important
to assess how much of its variance comes from variation in the true quantity of interest,
and how much comes from random noise.
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In psychometric theory13, the reliability14 of a measurement is defined as the squared
correlation of the true score with the observed score. Here the “true score” is X and the
“observed score” is W . The reliability of the measurement W is

ρ2 =

(
Cov(X,W )

SD(X)SD(W )

)2

=

(
σ2
x√

σ2
x

√
σ2
x + σ2

e

)2

=
σ4
x

σ2
x(σ

2
x + σ2

e)

=
σ2
x

σ2
x + σ2

e

. (29)

That is, the reliability of a measurement is the proportion of the measurement’s variance
that comes from the true quantity being measured, rather than from measurement error15.

A reliability of one means there is no measurement error at all, while a reliability of zero
means the measurement is pure noise. In the social sciences, reliabilities above 0.9 could be
called excellent, from 0.8 to 0.9 good, and from 0.7 to 0.8 acceptable. Frequently, responses
to single questions have reliabilities that are much less than this. To see why reliability
depends on the number of questions that measure the latent variable, see Exercise 6 at
the end of this section.

Since reliability represents quality of measurement, estimating it is an important goal.
Using the definition directly is seldom possible. Reliability is the squared correlation
between a latent variable and its observable counterpart, but by definition, values of the
latent variable cannot be observed. On rare occasions and perhaps with great expense,
it may be possible to obtain perfect or near-perfect measurements on a subset of the
sample; the term gold standard is sometimes applied to such measurements. In that
case, the reliability of the usual measurement can be estimated by a squared sample
correlation between the usual measurement and the gold standard measurement. But even
measurements that are called gold standard are seldom truly free of measurement error.
Consequently, reliabilities that are estimated by correlating imperfect gold standards and
ordinary measurements are biased downward: See Exercise 4 at the end of this section.
It is clear that another approach is needed.

13Psychometric theory is the statistical theory of psychological measurement. The bible of psychometric
theory is Lord and Novick’s (1968) classic Statistical theories of mental test scores [44]. It is not too
surprising that measurement error would be acknowledged and studied by psychologists. A large sector
of psychological research employs “measures” of hypothetical constructs like neuroticism or intelligence
(mostly paper-and-pencil tests), but no sensible person would claim that true value of such a trait is
exactly the score on the test. It’s true there is a famous quote “Intelligence is whatever an intelligence
test measures.” I have tried unsuccessfully to track down the source of this quote, and I now suspect that
it is just an illustration of a philosophic viewpoint called Logical Positivism (which is how I first heard
it), and not a serious statement about intelligence measurement.

14In survival analysis and statistical quality control, reliability means something entirely different.
15It’s like the proportion of variance in the response variable explained by a regression, except that

here the explanatory variable is the latent true score. Compare Expression (11) on Page 19.
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Figure 9: Two independent measurements of a latent variable
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Test-retest reliability Suppose that it is possible to make the measurement of W
twice, in such a way that the errors of measurement are independent on the two occasions.
We have

W1 = X + e1

W2 = X + e2,

where E(X) = µx, V ar(X) = σ2
x, E(e1) = E(e2) = 0, V ar(e1) = V ar(e2) = σ2

e , and X, e1

and e2 are all independent. Because V ar(e1) = V ar(e2), W1 and W2 are called equivalent
measurements. That is, they are contaminated by error to the same degree. Figure 9 is a
path diagram of this model.
It turns out that the correlation between W1 and W2 is exactly equal to the reliability, and
this opens the door to reasonable methods of estimation. The calculation (like many in
this book) is greatly simplified by using the rule for covariances of linear combinations (1)
on Page 9.

Corr(W1,W2) =
Cov(W1,W2)

SD(W1)SD(W2)

=
Cov(X + e1, X + e2)√
σ2
x + σ2

e

√
σ2
x + σ2

e

=
Cov(X,X) + Cov(X, e2) + Cov(e1, X) + Cov(E1, e2))

σ2
x + σ2

e

=
V ar(X) + 0 + 0 + 0

σ2
x + σ2

e

=
σ2
x

σ2
x + σ2

e

, (30)

which is the reliability.
The calculation above is the basis of test-retest reliability16, in which the reliability of

a measurement such as an educational or psychological test is estimated by the sample

16Closely related to test-retest reliability is alternate forms reliability, in which you correlate two
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correlation between two independent administrations of the test. That is, the test is given
twice to the same sample of individuals, ideally with a short enough time between tests
so that the trait does not really change, but long enough apart so they forget how they
answered the first time.

Correlated measurement error Suppose participants remembered their wrong an-
swers or lucky guesses from the first time they took a test, and mostly gave the same
answer the second time. The result would be a positive correlation between the measure-
ment errors e1 and e2. Omitted variables (see Section 0.4) like level of test anxiety for
educational tests or desire to make a favourable impression for attitude questionnaires can
also produce a positive covariance between errors of measurement. Whatever the source,
positive covariance between e1 and e2 is an additional source of positive covariance be-
tween W1 and W2 that does not come from the latent variable X being measured. The
result is an inflated estimate of reliability and an unduly rosy picture of the quality of
measurement. Figure 10 shows this situation.

Figure 10: Correlated Measurement Error
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We will return more than once to the issue of correlated errors of measurement. For
now, just notice how careful planning of the data collection (in this case, the time lag
between the two administrations of the test) can eliminate or at least reduce the correla-
tion between errors of measurement. In general, the best way to take care of correlated
measurement error is with good research design17.

Sample Test-retest Reliability Again, suppose it is possible to measure a variable of
interest twice, in such a way that the errors of measurement are uncorrelated and have

equivalent versions of the test. In split-half reliability, you split the items of the test into two equivalent
subsets and correlate them. There are also internal consistency estimates of reliability based on corre-
lations among items. Assuming independent errors of measurement for split half reliability and internal
consistency reliability is largely a fantasy, because both measurements are affected in the same way by
short-term situational influences like mood, amount of sleep the night before, noise level, behaviour of
the person administering the test, and so on.

17Indeed, one could argue that most principles of good research design are methods for minimizing the
variance and covariance of measurement errors.
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equal variance. Then the reliability may be estimated by doing this for a random sample
of individuals. Let X1, . . . , Xn be a random sample of latent variables (true scores), with
E(Xi) = µ and V ar(Xi) = σ2

x. Independently for i = 1, . . . , n, let

Wi,1 = Xi + ei,1

Wi,2 = Xi + ei,2,

where E(ei,1) = E(ei,2) = 0, V ar(ei,1) = V ar(ei,2) = σ2
e , and Xi, ei,1 and ei,2 are all inde-

pendent for i = 1, . . . , n. Then the sample correlation between the pairs of measurements
is

Rn =

∑n
i=1(Wi,1 −W 1)(Wi,2 −W 2)√∑n

i=1(Wi,1 −W 1)2

√∑n
i=1(Wi,2 −W 2)2

=
1
n

∑n
i=1(Wi,1 −W 1)(Wi,2 −W 2)√

1
n

∑n
i=1(Wi,1 −W 1)2

√
1
n

∑n
i=1(Wi,2 −W 2)2

a.s.→ Cov(Wi,1,Wi,2)√
V ar(Wi,1)

√
V ar(Wi,2)

=
σ2
x

σ2
x + σ2

e

= ρ2,

where the convergence follows from continuous mapping and the fact that sample vari-
ances and covariances are strongly consistent estimators of the corresponding population
quantities; see Section A.5.2 in Appendix A. The conclusion is that Rn is a strongly con-
sistent estimator of the reliability. That is, for a large enough sample size, Rn will get
arbitrarily close to the true reliability, and this happens with probability one.

0.7 Ignoring measurement error

Standard regression models make no provision at all for measurement error, so when we
apply such models to real data, we are effectively ignoring any measurement error that
may be present; we are pretending it’s not there. This section will show that the result
can be a real disaster, featuring incorrect estimates of regression parameters and Type I
error probabilities approaching one as the sample size increases. Much of this material,
including the history of the topic (warnings go back to at least 1936) can be found in a
2009 paper by Brunner and Austin [14].

Measurement error in the response variable

While ignoring measurement error in the explanatory variables can have very bad con-
sequences, it turns out that under some conditions, measurement error in the response
variable is a less serious problem.
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Example 0.7.1 Measurement Error in Y Only

Independently for i = 1, . . . , n, let

Yi = β0 + β1Xi + εi

Vi = ν + Yi + ei,

where V ar(Xi) = σ2
x, V ar(ei) = σ2

e , V ar(εi) = σ2
ε , and Xi, ei, εi are all independent.

Figure 11 is a path diagram of this model.

Figure 11: Measurement error in the response variable
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In Example 0.7.1, the explanatory variable Xi is observable, but the response variable
Yi is latent. Instead of Yi, we can see Vi, which is Yi plus a piece of random noise, and also
plus a constant ν that represents the difference between the expected value of the latent
random variable and the expected value of its observable counterpart. This constant term
could be called measurement bias. For example, if Y is true amount of exercise in minutes
and V is reported exercise, the measurement bias ν is population mean exaggeration, in
minutes.

Since Yi cannot be observed, Vi is used in its place, and the data analyst fits the naive
model

Vi = β0 + β1Xi + εi.

Studying Mis-specified Models The “naive model” above is an example of a model
that is mis-specified. That is, the model says that the data are being generated in a
particular way, but this is not how the data are actually being produced. Generally
speaking, correct models will usually yield better results than incorrect models, but it’s
not that simple. In reality, most statistical models are imperfect. The real question is
how much any given imperfection really matters. As Box and Draper (1987, p. 424) put
it, “Essentially all models are wrong, but some are useful.” [11]

So, it is not enough to complain that a statistical model is incorrect, or unrealistic.
To make the point convincingly, one must show that being wrong in a particular way
causes the model to yield misleading results. To do this, it is necessary to have a specific
true model in mind; typically the so-called true model is one that is obviously more
believable than the model being challenged. Then, one can examine estimators or test
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statistics based on the mis-specified model, and see how they behave when the true model
holds. We have already done this in Section 0.4 in connection with omitted variables; see
Example 0.4.1 starting on Page 28.

Under the true model of Example 0.7.1 (measurement error in the response variable
only), we have Cov(Xi, Vi) = β1σ

2
x and V ar(Xi) = σ2

x. Then,

β̂1 =

∑n
i=1(Xi −X)(Vi − V )∑n

i=1(Xi −X)2

=
σ̂x,v
σ̂2
x

a.s.→ Cov(Xi, Vi)

V ar(Xi)
(31)

=
β1σ

2
x

σ2
x

= β1.

Even when the model is mis-specified by assuming that the response variable is measured
without error, the ordinary least squares estimate of the slope is consistent. There is a
general lesson here about mis-specified models. Mis-specification (using the wrong model)
is not always a problem; sometimes everything works out fine.

Let’s see why the naive model works so well here. The response variable under the
true model may be re-written

Vi = ν + Yi + ei

= ν + (β0 + β1Xi + εi) + ei

= (ν + β0) + β1Xi + (εi + ei)

= β′0 + β1Xi + ε′i (32)

What has happened here is a re-parameterization (not a one-to-one re-parameterization),
in which the pair (ν, β0) is absorbed into β′0, and V ar(εi + ei) = σ2

ε + σ2
e is absorbed into

a single unknown variance that will probably be called σ2. It is true that ν and β0 will
never be knowable separately, and also σ2

ε and σ2
e will never be knowable separately. But

that really doesn’t matter, because the true interest is in β1.
In this book and in standard statistical practice, there are many models where the

response variable appears to be measured without error. But error-free measurement
is a rarity at best, so these models should be viewed as re-parameterized versions of
models that do acknowledge the reality of measurement error in the response variable. A
critical feature of these re-parameterized models is that the measurement error is assumed
independent of everything else in the model. When this fails, there is usually trouble.

Measurement error in the explanatory variables

Example 0.7.2 Measurement error in a single explanatory variable
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Independently for i = 1, . . . , n, let

Yi = β0 + β1Xi + εi

Wi = Xi + ei,

where V ar(Xi) = σ2
x, V ar(ei) = σ2

e , V ar(εi) = σ2
ε , and Xi, ei, εi are all independent.

Figure 12 is a path diagram of the model.

Figure 12: Measurement error in the explanatory variable
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Unfortunately, the explanatory variable Xi cannot be observed; it is a latent variable.
So instead Wi is used in its place, and the data analyst fits the naive model

Yi = β0 + β1Wi + εi.

Under the naive model of Example 0.7.2, the ordinary least squares estimate of β1 is

β̂1 =

∑n
i=1(Wi −W )(Yi − Y )∑n

i=1(Wi −W )2
=
σ̂w,y
σ̂2
w

.

Regardless of what model is correct, σ̂w,y
a.s.→ Cov(W,Y ) and σ̂2

w
a.s.→ V ar(W )18, so that by

the continuous mapping property of ordinary limits19, β̂1
a.s.→ Cov(W,Y )

V ar(W )
.

Let us assume that the true model holds. In that case,

Cov(W,Y ) = β1σ
2
x and V ar(W ) = σ2

x + σ2
e .

18This is true because sample variances and covariances are strongly consistent estimators of the cor-
responding population quantities; see Section A.5.2 in Appendix A.

19Almost sure convergence acts like an ordinary limit, applying to all points in the underlying sample
space, except possibly a set of probability zero. If you wanted to do this problem strictly in terms of
convergence in probability, you could use the Weak Law of Large Numbers and then use Slutsky Lemma 7a
of Appendix A.5.
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Consequently,

β̂1 =

∑n
i=1(Wi −W )(Yi − Y )∑n

i=1(Wi −W )2

=
σ̂w,y
σ̂2
w

a.s.→ Cov(W,Y )

V ar(W )

= β1

(
σ2
x

σ2
x + σ2

e

)
. (33)

So when the fuzzy explanatory variable Wi is used instead of the real thing, β̂1 con-
verges not to the true regression coefficient, but to the true regression coefficient multiplied
by the reliability of Wi. That is, it’s biased, even as the sample size approaches infin-
ity. It is biased toward zero, because reliability is between zero and one. The worse the
measurement of X, the more the asymptotic bias.

What happens to β̂1 in (33) is sometimes called attenuation, or weakening, and in
this case that’s what happens. The measurement error weakens the apparent relationship
between X1 and Y . If the reliability of W can be estimated from other data (and psychol-
ogists are always trying to estimate reliability), then the sample regression coefficient can
be “corrected for attentuation.” Sample correlation coefficients are sometimes corrected
for attenuation too.

Now typically, social and biological sientists are not really interested in point estimates
of regression coefficients. They only need to know whether the coefficients are positive,
negative or zero. So the idea of attenuation sometimes leads to a false sense of security.
It’s natural to over-generalize from the case of one explanatory variables, and think that
measurement error just weakens what’s really there. Therefore, the reasoning goes, if you
can reject the null hypothesis and conclude that a relationship is present even with mea-
surement error, you would have reached the same conclusion if the explanatory variables
had not been measured with error.

Unfortunately, it’s not so simple. With two or more explanatory variables the effects
of measurement error are far more serious and potentially misleading.

Measurement error in more than one explanatory variable

In this example, there are two explanatory variables, both measured with error.

Example 0.7.3 Measurement Error in Two Explanatory Variables

Independently for i = 1, . . . , n,

Yi = β0 + β1Xi,1 + β2Xi,2 + εi

Wi,1 = Xi,1 + ei,1

Wi,2 = Xi,2 + ei,2,
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Figure 13: Two explanatory variables measured with error
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where E(Xi,1) = µ1, E(Xi,2) = µ2, E(εi) = E(ei,1) = E(ei,2) = 0, V ar(εi) = ψ,
V ar(ei,1) = ω1, V ar(ei,2) = ω2, the errors εi, ei,1 and ei,2 are all independent, Xi,1 is
independent of εi, ei,1 and ei,2, Xi,2 is independent of εi, ei,1 and ei,2, and

cov

(
Xi,1

Xi,1

)
=

(
φ11 φ12

φ12 φ22

)
.

Figure 13 shows the path diagram.
Again, because the actual explanatory variables Xi,1 and Xi,2 are latent variables that

cannot be observed, Wi,1 and Wi,2 are used in their place. The data analyst fits the naive
model

Yi = β0 + β1Wi,1 + β2Wi,2 + εi.

An attractive feature of multiple regression is its ability to represent the relationship
of one or more explanatory variables to the response variable, while controlling for other
explanatory varables. In fact, this may be the biggest appeal of multiple regression and
similar methods for non-experimental data. In Example 0.7.3, our interest is in the
relationship of X2 to Y controlling for X1. The main objective is to test H0 : β2 = 0, but
we are also interested in the estimation of β2.

The argument that follows illustrates a general way to see what happens as n → ∞
for mis-specified (that is, incorrect) regression models. We have already seen special cases
of this, three times. In Example 0.4.1 on omitted explanatory variables, the regression
coefficient converged to the wrong target in Expression 21 on page 32. In Example 0.7.1
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on measurement error in the response variable, the regression coefficient converged to the
correct target in Expression 31 on page 46. In Example 0.7.2 on measurement error in a
single explanatory variable, the regression coefficient converged to the target multiplied
by the reliability of the measurement, in Expression 33 on page 48.

Here is the recipe. Assume some “true” model for how the data are produced, and
a mis-specified model corresponding to a natural way that people would analyze the
data with a regression model. First, write the regression coefficients in terms of sample

variances and covariances. The general answer is given on page 14: β̂n = Σ̂
−1

x Σ̂xy. Then,
because sample variances and covariances are consistent estimators of their population
counterparts, we have the convergence β̂n

a.s.→ Σ−1
x Σxy from Page 15. This convergence

follows from the formula for the least-squares estimator, and does not depend in any way
on the correctness of the model. So, if you can derive Σx and Σxy under the true model, it
is easy to calculate the large-sample target of the ordinary least squares estimates under
the mis-specified model.

In the present application, there is just a minor notational issue. Under the naive
model, the explanatory variables are called w instead of x. Adopting a notation that will
be used throughout the book, denote one of the n vectors of observable data by Di. Here,

Di =

 Wi,1

Wi,2

Yi

 .

Then, let Σ = [σi,j] = cov(Di). Corresponding to Σ is the sample variance covariance

matrix Σ̂ = [σ̂i,j], with n rather than n − 1 in the denominators. To make this setup
completely explicit,

Σ = cov

 Wi,1

Wi,2

Yi

 =

 σ1,1 σ1,2 σ1,3

σ1,2 σ2,2 σ2,3

σ1,3 σ2,3 σ3,3


Then, we calculate the regression coefficients under the naive model.

β̂n =

(
β̂1

β̂2

)
(34)

= Σ̂
−1

w Σ̂wy

=

(
σ̂1,1 σ̂1,2

σ̂1,2 σ̂2,2

)−1(
σ̂1,3

σ̂2,3

)

=


σ̂22σ̂13−σ̂12σ̂23
σ̂11σ̂22−σ̂2

12

σ̂11σ̂23−σ̂12σ̂13
σ̂11σ̂22−σ̂2

12

 .
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Our primary interest is in the estimation of β2. Because sample variances and covariances
are strongly consistent estimators of the corresponding population quantities,

β̂2 =
σ̂11σ̂23 − σ̂12σ̂13

σ̂11σ̂22 − σ̂2
12

a.s.→ σ11σ23 − σ12σ13

σ11σ22 − σ2
12

. (35)

This convergence holds provided that the denominator σ11σ22−σ2
12 6= 0. The denominator

is a determinant:

σ11σ22 − σ2
12 =

∣∣∣∣cov( Wi,1

Wi,2

)∣∣∣∣ .
It will be non-zero provided at least one of

cov

(
Xi,1

Xi,2

)
=

(
φ11 φ12

φ12 φ22

)
and cov

(
ei,1
ei,2

)
=

(
ω1 0
0 ω2

)
is positive definite – not a lot to ask.

The convergence of β̂2 in Expression 35 applies regardless of what model is correct. To
see what happens when the true model of Example 0.7.3 holds, we need to write the σij
quantities in terms of the parameters of the true model. A straightforward set of scalar
variance-covariance calculations yields

Σ = cov

 Wi,1

Wi,2

Yi


=

 σ1,1 σ1,2 σ1,3

σ1,2 σ2,2 σ2,3

σ1,3 σ2,3 σ3,3


=

 ω1 + φ11 φ12 β1φ11 + β2φ12

φ12 ω2 + φ22 β1φ12 + β2φ22

β1φ11 + β2φ12 β1φ12 + β2φ22 β2
1φ11 + 2 β1β2φ12 + β2

2φ22 + ψ


Subsituting into expression 35 and simplifying20, we obtain

β̂2 =
σ̂11σ̂23 − σ̂12σ̂13

σ̂11σ̂22 − σ̂2
12

a.s.→ σ11σ23 − σ12σ13

σ11σ22 − σ2
12

=
β1ω1φ12 + β2(ω1φ22 + φ11φ22 − φ2

12)

(φ1,1 + ω1)(φ2,2 + ω2)− φ2
12

= β2 +
β1ω1φ12 + β2ω2(φ11 − ω1)

(φ1,1 + ω1)(φ2,2 + ω2)− φ2
12

(36)

By the asymptotic normality of sample variances and covariances and the multivariate
delta method (see Appendix A.5), β̂2 has a distribution that is approximately normal for

20The simplification may be elementary, but that does not make it easy. I used Sage; see Appendix B.
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large samples, with approximate mean given by expression (36). Thus, it makes sense
to call the second term in (36) the asymptotic bias. It is also the amount by which the
estimate of β2 will be wrong as n→∞.

Clearly, this situation is much more serious than the bias toward zero detected for
the case of one explanatory variable. With two explanatory variables, the bias can be
positive, negative or zero depending on the values of other unknown parameters.

In particular, consider the problems associated with testing H0 : β2 = 0. The purpose
of this test is to determine whether, controlling for X1, X2 has any relationship to Y . The
supposed ability of multiple regression to answer questions like this is the one of the main
reasons it is so widely used in practice. So when measurement error makes this kind of
inference invalid, it is a real problem.

Suppose that the null hypothesis is true, so β2 = 0. In this case, Expression (36)
becomes

β̂2
a.s.→ β1ω1φ12

(φ1,1 + ω1)(φ2,2 + ω2)− φ2
12

. (37)

Recall that β1 is the link between X1 and Y , ω1 = V ar(e1) is the variance of measurement
error in X1, and φ12 is the covariance between X1 and X2. Thus, when H0 : β2 = 0 is
true, β̂2 converges to a non-zero quantity unless

• There is no relationship between X1 and Y , or

• There is no measurement error in W1, or

• There is no correlation between X1 and X2.

Brunner and Austin [14] have shown that whether H0 is true or not, the standard error

of β̂2 goes to zero, and when the large-sample target of β̂2 is non-zero, the p-value goes
almost surely to zero. That is, the probability of making a Type I error goes to one
because of measurement error in an explanatory variable — not the one being tested, but
the one for which one is “controlling.”

This is potentially a disaster, because the primary function of statistical hypothesis
testing in the social and biological sciences is to filter out results that might be just ran-
dom noise, and keep them from reaching the published research literature. Holding down
the probability of a Type I error is critical. The preceding calculations show that in the
very reasonable scenario where one needs to control for an explanatory variable but the
measurement of that variable is imperfect (which is always the case), standard regression
methods do not work as advertised. Instead, the probability of getting statistically sig-
nificant results can go to one even when the null hypothesis is true and there is nothing
real to discover. You should be appalled.

A large-scale simulation study All this is true as the sample size goes to infinity, but
in reality no sample size can approach infinity. So it is important to see what happens
for realistic sample sizes. The idea is to use computer-generated pseudo-random numbers
to generate data sets in which the true parameter values are known, because actually
those true parameter values are inputs to the program. Applying statistical methods to
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such simulated data allows one to investigate the performance of the methods empirically
as well mathematically. Ideally, empirical and mathematical investigations of statistical
questions are complementary, and usually reinforce one another.

Brunner and Austin [14] took this approach to the topic under discussion. They report
a large simulation study in which random data sets were generated according to a factorial
design with six factors. The factors were

• Sample size: n = 50, 100, 250, 500, 1000

• Corr(X1, X2): φ12 = 0.00, 0.25, 0.75, 0.80, 0.90

• Proportion of variance in Y explained by X1: 0.25, 0.50, 0.75

• Reliability of W1: 0.50, 0.75, 0.80, 0.90, 0.95

• Reliability of W2: 0.50, 0.75, 0.80, 0.90, 0.95

• Distribution of the latent variables and error terms: Normal, Uniform, t, Pareto.

Thus there were 5×5×3×5×5×4 = 7,500 treatment combinations. Ten thousand random
data sets were generated within each treatment combination, for a total of 75 million data
sets. All the data sets were generated according to the true model of Example 0.7.3, with
β2 = 0, so that H0 : β2 = 0 was true in each case. For each data set, we fit the naive
model (no measurement error), and tested H0 : β2 = 0 at α = 0.05. The proportion of
times H0 is rejected is a Monte Carlo estimate of the Type I Error Probability.

The study yielded 7,500 estimated Type I error probabilities, and even looking at all
of them is a big job. Table 1 shows a small but representative part of the results. In
this table, all the variables and error terms are normally distributed, and the reliability
of both explanatory variables was equal to 0.90. This means that 90% of the variance
came from the real thing as opposed to random noise – a stellar value. The values of the
regression coefficients were β0 = 1, β1 = 1 and of course β2 = 0.

Remember that we are trying to test the effect of X1 on Y controlling for X2, and since
we don’t have X1 and X2, we are using W1 and W2 instead. In fact, because H0 : β2 = 0 is
true, X2 is conditionally independent of Y given X1 = x1. This means that the estimated
Type I error probabilities in Table 1 should all be around 0.05 if the test is working
properly.

When the correlation between X1 and X2 is zero (the first column of Table 1), none
of the estimated Type I error probabilites is significantly different from 0.05. This is
consistent with Equation (37), where β̂2 converges to the right target when the covariance
betweenX1 andX2 is zero. But as the correlation between explanatory variables increases,
so does the Type I error probability – especially when the X1 and Y is strong and the
sample size is large. Look at the intermediate case in which 50% of variance in Y is
explained by X1 (admittedly a strong relationship, at least in the social sciences) and
n = 250. As the correlation between X1 and X2 increases from zero to 0.90, the Type I
error probability increases from 0.05 to about 0.60. With the strongest relationship beween
X1 and Y , and the largest sample size, the test of X2’s relationship to Y controlling for
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Table 1: Estimated Type I Error

Correlation between X1 and X2

n 0.00 0.25 0.75 0.80 0.90
25% of variance in Y is explained by X1

50 0.0491† 0.0505† 0.0663 0.0740 0.0838
100 0.0541† 0.0527† 0.0896 0.0925 0.1227
250 0.0479† 0.0577† 0.1364 0.1688 0.2585
500 0.0510† 0.0588† 0.2399 0.2887 0.4587

1000 0.0489† 0.0734 0.4175 0.4960 0.7391
50% of variance in Y is explained by X1

50 0.0518† 0.0535† 0.0949 0.1081 0.1571
100 0.0501† 0.0541† 0.1512 0.1763 0.2710
250 0.0487† 0.0710 0.3065 0.3765 0.5994
500 0.0518† 0.0782 0.5499 0.6487 0.8740

1000 0.0500† 0.1132 0.8260 0.9120 0.9932
75% of variance in Y is explained by X1

50 0.0504† 0.0554† 0.1669 0.2072 0.3361
100 0.0510† 0.0599 0.3019 0.3791 0.5943
250 0.0487† 0.0890 0.6399 0.7542 0.9441
500 0.0496† 0.1296 0.9058 0.9599 0.9987

1000 0.0502† 0.2157 0.9969 0.9992 1.0000
†Not Significantly different from 0.05, Bonferroni corrected for 7,500 tests.

X1 was significant 10,000 times out of 10,000. Again, this is when the null hypothesis is
true, and Y is conditionally independent of X2, given X1.

Again, this simulation study was a 6-factor experiment with 7,500 treatment combi-
nations. A rough way to see general trends is to look at marginal means, averaging the
estimated Type I error probabilities over the other factors, for each factor in the study.
Table 2 is actually six subtables, showing marginal estimated Type I error probabilities
for each factor. The only one that may not be self-explanatory is “Base distribution.”
This is the distribution of X1, X2, e1 and e2, shifted when necessary to have expected
value zero, and scaled to have variance for the particular treatment condition.

The inescapable conclusion is that ignoring measurement error in the explanatory
variables can seriously inflate Type I error probabilities in multiple regression. To repeat,
ignoring measurement error is what people do all the time. The poison combination
is measurement error in the variable for which you are “controlling,” and correlation
between latent explanatory variables. If either is zero, there is no problem. Factors
affecting severity of the problem are

• As the correlation between X1 and X2 increases, the problem gets worse.

• As the correlation between X1 and Y increases, the problem gets worse.
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Table 2: Marginal Type I Error Probabilities                   Marginal Mean Type I Error Rates
        

              Base Distribution
normal        Pareto     t Distr     uniform
0.38692448  0.36903077  0.38312245  0.38752571  

        Explained Variance
0.25         0.50         0.75         
0.27330660   0.38473364   0.48691232   

     Correlation between Latent Independent Variables
0.00         0.25         0.75         0.80         0.90         
0.05004853   0.16604247   0.51544093   0.55050700   0.62621533        

                      Sample Size n
50           100          250          500          1000         
0.19081740   0.27437227   0.39457933   0.48335707   0.56512820     

                      Reliability of W1

0.50         0.75         0.80         0.90         0.95         
0.60637233   0.46983147   0.42065313   0.26685820   0.14453913          

                      Reliability of W2

0.50         0.75         0.80         0.90         0.95         
0.30807933   0.37506733   0.38752793   0.41254800   0.42503167                

2

• As the amount of measurement error in X1 increases, the problem gets worse.

• As the amount of measurement error in X2 increases, the problem gets less severe.

• As the sample size increases, the problem gets worse.

• Distribution of the variables does not matter much.

It is particularly noteworthy that the inflation of Type I error probability gets worse
with increasing sample size. Generally in statistics, things get better as the sample size
increases. This is an exception. For a large enough sample size, no amount of measurement
error in the explanatory variables is safe, assuming that the latent explanatory variables
are correlated.

It might be objected that null hypotheses are never exactly true in observational
studies, so that estimating Type I error probability is a meaningless exercise. However,
look at expression (36), the large-sample target of β̂2 when the true value of β2 (the
parameter being tested) is not necessarily zero. Suppose that the true value of β2 is
negative, the true value of β1 is positive, and the covariance between X1 and X2 is
positive. This is a perfectly natural scenario. Depending on the values of the variances
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and covariances, it is quite possible for the second term in (36) to be a larger positive

value, overwhelming β2 and making the large-sample target of β̂2 positive. Brunner and
Austin report a smaller-scale simulation of this situation in which measurement error
leads to rejection of the null hypothesis in the wrong direction nearly 100% of the time.
This is a particularly nasty possibility, because findings that are opposite of the truth
(especially if they are published) can only serve to muddy the waters and make scientific
progress slower and more difficult.

Brunner and Austin go on to show that the inflation of Type I error probability
arising from measurement error is not limited to multiple regression and measurement
error of a simple additive type. It applies to other kinds of regression and other types
of measurement error, including logistic regression, proportional hazards regression in
survival analysis, log-linear models (for testing conditional independence in the presence
of classification error, and median splits on explanatory variables, which is a kind of
measurement error created by the data analyst. Even converting X1 to ranks inflates
Type I Error probability.

This is a serious problem, but only if one is interested in interpreting the results of
statistical analyses to find out more about the world. If the only interest is in prediction,
you just use the variables you have. You might wish your predictors were measured with
less error, because that might make the predictions more accurate. But it doesn’t really
matter whether a given regression coefficient is positive or negative. On the other hand,
if this is science, then it matters.

It’s worth observing that the news about true experimental studies is good. The first
column of Table 1, where the covariance of explanatory variables is zero, illustrates the
primary virtue of random assignment: it erases any relationship between experimental
treatment and potential confounding variables. Thinking of X2 as the treatment and X1

as a covariate, it is apparent that in an experimental study, the Type I error probability
is not inflated by measurement error in the treatment, the covariate, or both – as long
as random assignment has made the latent versions of these variables independent, and
the experimental procedure has been of sufficiently high quality that the corresponding
measurement errors are uncorrelated.

This example also illustrates that assignment to experimental conditions need not
be random to be effective. All that’s needed is to somehow break up the relationship
between the treatment and any possible confounding variables. In a clinical trial, for
example, suppose that patients coming in to a medical clinic are assigned to experimental
and control conditions alternately, and not randomly. There is no serious problem with
this, because treatment condition would still be unrelated to any characteristic of the
patients.

The whole issue of measurement error in the predictors is really just a sentence or
two in the narrative about correlation versus causation. It goes like this. If X is related
to Y , it could be that X is influencing Y , or that Y is influencing X, or that some
confounding variables related to X are influencing Y . You might think that if you have
an idea what those confounding variables are, you can control for them with regression
methods. Unfortunately, if potential confounding variables are measured with error, the
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standard ways of controlling for them do not quite work (Brunner and Austin, 2009)21.
The last two sentences are the addition to the standard narrative. It’s only a couple

of sentences, but it’s still a big deal, because correlation-causation is a fundamental issue
in research design. What’s the solution? Surely it must be to admit that measurement
error exists, and incorporate it directly into the statistical model.

0.8 Modeling measurement error

Ignoring measurement error in regression can yield conclusions that are very misleading.
But as soon as we try building measurement error into the statistical model, we encounter
a technical issue that will occupy a central role in this book: parameter identifiability.

A first try at including measurement error

Example 0.8.1 Model Includes Measurement Error

The following is basically the true model of Example 0.7.2, with everything normally
distributed. Independently for i = 1, . . . , n, let

Yi = β0 + β1Xi + εi (38)

Wi = ν +Xi + ei,

where

• Xi is normally distributed with mean µx and variance φ > 0

• εi is normally distributed with mean zero and variance ψ > 0

• ei is normally distributed with mean zero and variance ω > 0

• Xi, ei, εi are all independent.

The intercept term ν could be called “measurement bias.” If Xi is true amount of exercise
per week and Wi is reported amount of exercise per week, ν is the average amount by
which people exaggerate.

Data from Model (38) are just the pairs (Wi, Yi) for i = 1, . . . , n. The true explanatory
variable Xi is a latent variable whose value cannot be known exactly. The model implies
that the (Wi, Yi) are independent bivariate normal with

E

(
Wi

Yi

)
= µ =

(
µ1

µ2

)
=

(
µx + ν

β0 + β1µx

)
,

21I could not resist citing the paper. There is no claim that Brunner and Austin discovered the problem
with measurement error in the predictors. The ill effects of measurement error on estimation have been
known since the 1930s, though the issue has been mostly ignored by mainstream statisticians and other
users of statistical methods. What Brunner and Austin did was to review the literature and document
the effect of measurement error on significance testing.
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and variance covariance matrix

cov

(
Wi

Yi

)
= Σ = [σi,j] =

(
φ+ ω β1φ
β1φ β2

1φ+ ψ

)
.

There is a big problem here, and the moment structure equations reveal it.

µ1 = µx + ν (39)

µ2 = β0 + β1µx

σ1,1 = φ+ ω

σ1,2 = β1φ

σ2,2 = β2
1φ+ ψ.

It is impossible to solve these five equations for the seven model parameters22. That is,
even with perfect knowledge of the probability distribution of the data (for the multivari-
ate normal, that means knowing µ and Σ, period), it would be impossible to know the
model parameters.

To make the problem clearer, look at the table below. It shows two diferent set of
parameter values θ1 and θ2 that both yield the same mean vector and covariance matrix,
and hence the exact same distribution of the observable data.

µx β0 ν β1 φ ω ψ
θ1 0 0 0 1 2 2 3
θ2 0 0 0 2 1 3 1

Both θ1 and θ2 imply a bivariate normal distribution with mean zero and covariance
matrix

Σ =

(
4 2
2 5

)
,

and thus the same distribution of the sample data.
No matter how large the sample size, it will be impossible to decide between θ1 and

θ2, because they imply exactly the same probability distribution of the observable data.
The problem here is that the parameters of Model (38) are not identifiable. This calls for
a brief discussion of identifiability, a topic of central importance in structural equation
modeling.

0.9 Parameter Identifiability

The Basic Idea Suppose we have a vector of observable data D = (D1, . . . , Dn), and
a statistical model (a set of assertions implying a probability distribution) for D. The
model depends on a parameter θ, which is usually a vector. If the probability distribution
of D corresponds uniquely to θ, then we say that the parameter vector is identifiable.

22That’s a strong statement, and a strong theorem is coming to justify it.
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But if any two different parameter values yield the same probability distribution, then
the parameter vector is not identifiable. In this case, the data cannot be used to decide
between the two parameter values, and standard methods of parameter estimation will
fail. Even an infinite amount of data cannot tell you the true parameter values.

Definition 0.4 A Statistical Model is a set of assertions that partly23 specify the proba-
bility distribution of a set of observable data.

Definition 0.5 Suppose a statistical model implies D ∼ Pθ,θ ∈ Θ. If no two points in
Θ yield the same probability distribution, then the parameter θ is said to be identifiable.
On the other hand, if there exist θ1 and θ2 in Θ with Pθ1 = Pθ2, the parameter θ is not
identifiable.

A good example of non-identifiability appears in Example 0.4.1 in Section 0.4 on omitted
variables in regression. There, the correct model has a set of infinitely many parameter
values that imply exactly the same probability distribution of the observed data.

Theorem 0.1 If the parameter vector is not identifiable, consistent estimation for all
points in the parameter space is impossible.

In Figure 14, θ1 and θ2 are two distinct sets of parameter values for which the distribution
of the observable data is the same.

Figure 14: Two parameters values yielding the same probability distribution

&%
'$qθ1

&%
'$qθ2

Let Tn be a estimator that is consistent for both θ1 and θ2. What this means is that if
θ1 is the correct parameter value, eventually as n increases, the probability distribution of
Tn will be concentrated in the circular neighborhood around θ1. And if θ1 is the correct
parameter value, it the probability distribution will be concentrated around θ2.

But the probability distribution of the data, and hence of Tn (a function of the data)
is identical for θ1 and θ2. This means that for a large enough sample size, most of Tn’s
probability distribution must be concentrated in the neighborhood around θ1, and at the
same time it must be concentrated in the neighborhood around θ2. This is impossible,
since the two regions do not overlap. Hence there can be no such consistent estimator Tn.

23Suppose that the distribution is assumed known except for the value of a parameter vector θ. So the
distribution is “partly” specified.



60 CHAPTER 0. REGRESSION WITH MEASUREMENT ERROR

Theorem 0.1 says why parameter identifiability is so important. Without it, even an
infinite amount of data cannot reveal the values of the parameters.

Surprisingly often, whether a set of parameter values can be recovered from the dis-
tribution depends on where in the parameter space those values are located. That is, the
parameter vector may be identifiable at some points but not others.

Definition 0.6 The parameter is said to be identifiable at a point θ0 if no other point in
Θ yields the same probability distribution as θ0.

If the parameter is identifiable at at every point in Θ, it is identifiable.

Definition 0.7 The parameter is said to be locally identifiable at a point θ0 if there
is a neighbourhood of points surrounding θ0, none of which yields the same probability
distribution as θ0.

Obviously, local identifiability at a point is a necessary condition for global identifiability
there.

It is possible for individual parameters (or other functions of the parameter vector) to
be identifiable even when the entire parameter vector is not.

Definition 0.8 Let g(θ) be a function of the parameter vector. If g(θ0) 6= g(θ) implies
Pθ0 6= Pθ for all θ ∈ Θ, then the function g(θ) is said to be identifiable at the point θ0.

For example, let D1, . . . , Dn be i.i.d. Poisson random variables with mean λ1 + λ2,
where λ1 > 0 and λ1 > 0. The parameter is the pair θ = (λ1, λ2). The parameter is not
identifiable because any pair of λ values satisfying λ1 + λ2 = c will produce exactly the
same probability distribution. Notice also how maximum likelihood estimation will fail
in this case; the likelihood function will have a ridge, a non-unique maximum along the
line λ1 + λ2 = D, where D is the sample mean. The function g(θ) = λ1 + λ2, of course,
is identifiable.

The failure of maximum likelihood for the Poisson example is very typical of situations
where the parameter is not identifiable. Collections of points in the parameter space yield
the same probability distribution of the observable data, and hence identical values of
the likelihood. Often these form connected sets of infinitely many points, and when
a numerical likelihood search reaches such a higher-dimensional ridge or plateau, the
software checks to see if it’s a maximum, and (if it’s good software) complains loudly
because the maximum is not unique. The complaints might take unexpected forms, like a
statement that the Hessian has negative eigenvalues. But in any case, maximum likelihood
estimation fails.

The idea of a function of the parameter vector covers a lot of territory. It includes
individual parameters and sets of parameters, as well as things like products and ratios of
parameters. Look at the moment structure equations (39) of Example 0.8.1 on page 57.
If σ1,2 = 0, this means β1 = 0, because φ is a variance, and is greater than zero. Also
in this case ψ = σ2,2 and β0 = µ2. So, the function g(θ) = (β0, β1, ψ) is identifiable at
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all points in the parameter space where β1 = 0. The other four parameters are still not
identifiable.

Recall how for the regression model of Example 0.8.1, the moment structure equa-
tions (39) consist of five equations in seven unknown parameters. It was shown by a
numerical example that there were two different sets of parameter values that produced
the same mean vector and covariance matrix, and hence the same distribution of the
observable data. Actually, infinitely many parameter values produce the same distribu-
tion, and it happens because there are more unknowns than equations. Theorem 0.2 is a
strictly mathematical theorem24 that provides the necessary details.

Theorem 0.2 Let

y1 = f1(x1, . . . , xp)

y2 = f2(x1, . . . , xp)
...

...

yq = fq(x1, . . . , xp),

If the functions f1, . . . , fq are analytic (posessing a Taylor expansion) and p > q, the set
of points (x1, . . . , xp) where the system of equations has a unique solution occupies at most
a set of volume zero in Rp.

The following corollary to Theorem 0.2 is the fundamental necessary condition for param-
eter identifiability. It will be called the Parameter Count Rule.

Rule 1: The Parameter Count Rule. Suppose identifiability is to be decided based on
a set of moment structure equations. If there are more parameters than equations, the
parameter vector is identifiable on at most a set of volume zero in the parameter space.

When the data are multivariate normal (and this will frequently be assumed), then
the distribution of the sample data corresponds exactly to the mean vector and covariance
matrix, and to say that a parameter value is identifiable means that is can be recovered
from elements of the mean vector and covariance matrix. Most of the time, that involves
trying to solve the moment structure equations or covariance structure equations for the
model parameters.

Even when the data are not assumed multivariate normal, the same process makes
sense. Classical structural equation models, including models for regression with mea-
surement error, are based on systems of simultaneous linear equations. Assuming simple
random sampling from a large population, the observable data are independent and iden-
tically distributed, with a mean vector µ and a covariance matrix Σ that may be written
as functions of the model parameters in a straightforward way. If it is possible to solve
uniquely for a given model parameter in terms of the elements of µ and Σ, then that

24The core of the proof may be found in Appendix 5 of Fisher’s (1966) The identification problem in
econometrics. [27]
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parameter is a function of µ and Σ, which in turn are functions of the probability dis-
tribution of the data. A function of a function is a function, and so the parameter is a
function of the probability distribution of the data. Hence, it is identifiable.

Another way to reach this conclusion is to observe that if it is possible to solve for
the parameters in terms of moments, simply “putting hats on everything” yields Method
of Moments estimator. These estimators, though they may be less than ideal in some
ways, will still usually be consistent by the Law of Large Numbers and continuous map-
ping. Theorem 0.1 tells us consistency would be impossible if the parameters were not
identifiable.

To summarize, we have arrived at the standard way to check parameter identifiability
for any linear simultaneous equation model, not just measurement error regression. First,
calculate the expected value and covariance matrix of the observable data, as a function of
the model parameters. If it is possible to solve uniquely for the model parameters in terms
of the means, variances and covariances of the observable data, then the model parameters
are identifiable.

If two distinct parameter vectors yield the same pair (µ,Σ) and the distribution is mul-
tivariate normal, the parameter vector is clearly not identifiable. When the distribution is
not multivariate normal this conclusion does not necessarily follow; the parameters might
be recoverable from higher moments, or possibly from the moment-generating function or
characteristic function.

But this would require knowing exactly what the non-normal distribution of the data
might be. When it comes to analyzing actual data using linear models like the ones in this
book, there are really only two alternatives. Either the distribution is assumed25 normal,
or it is acknowledged to be completely unknown. In both cases, parameters will either be
identifiable from the mean and covariance matrix (usually just the covariance matrix), or
they will not be identifiable at all.

The conclusion is that in practice, “identifiable” means identifiable from the moments.
This explains why the parameter count rule (Rule 1) is frequently used to label parameters
“not identifiable” even when there is no assumption of normality.

0.10 Double measurement

Consider again the model of Example 0.8.1, a simple regression with measurement error in
the single explanatory variable. This represents something that occurs all too frequently
in practice. The statistician or scientist has a data set that seems relevant to a particular
topic, and a model for the observable data that is more or less reasonable. But the
parameters of the model cannot be identified from the distribution of the data. In such
cases, valid inference is very challenging, if indeed it is possible at all.

The best way out of this trap is to avoid getting trapped in the first place. Plan the
statistical analysis in advance, and ensure identifiability by collecting the right kind of
data. Double measurement is a straightforward way to get the job done. The key is to

25Even when the the data are clearly not normal, methods – especially likelihood ratio tests – based
on a normal model can work quite well.



0.10. DOUBLE MEASUREMENT 63

measure the explanatory variables twice, preferably using different methods or measuring
instruments26.

0.10.1 A scalar example

Example 0.10.1

Instead of measuring the explanatory variable only once, suppose we had a second, inde-
pendent measurement; “independent” means that the measurement errors are statistically
independent of one another. Perhaps the two measurements are taken at different times,
using different instruments or methods. Then we have the following model. Independently
for i = 1, . . . , n, let

Wi,1 = ν1 +Xi + ei,1 (40)

Wi,2 = ν2 +Xi + ei,2

Yi = β0 + β1Xi + εi,

where

• Xi is normally distributed with mean µx and variance φ > 0

• εi is normally distributed with mean zero and variance ψ > 0

• ei,1 is normally distributed with mean zero and variance ω1 > 0

• ei,2 is normally distributed with mean zero and variance ω2 > 0

• Xi, ei,1, ei,2 and εi are all independent.

The model implies that the triples Di = (Wi,1,Wi,2, Yi)
> are multivarate normal with

E(Di) = E

 Wi,1

Wi,1

Yi

 =

 µx + ν1

µx + ν2

β0 + β1µx

 ,

26The reason for different instruments or methods is to ensure (or try to ensure) that the errors of
measurements are independent. For example, suppose a questionnaire is designed to measure racism.
Respondents differ in their actual, true unobservable level of racism. They also differ in the extent to
which they wish to be perceived as non-racist. If you give people two similar questionnaires in which
they agree or disagree with various statements that are obviously about racism, the individuals who fake
good on one questionnaire will also fake good on the other one. The result is that if e1 and e2 are the
measurement errors in the two questionnaires, then e1 and e2 will surely have positive covariance. If the
unknown covariance is assumed zero, the result will almost surely be incorrect estimation and inference.
If the unknown covariance is a parameter in the model, it usually will create problems with identifiability.
This all may seem quite technical, but there is a common-sense version. Problems with identifiability
almost always correspond to shortcomings in research design. If data are collected in a way that is poorly
thought out, the data analysis is unlikely to yield valid conclusions. Taking two measurements that are
likely to be contaminated in the same way is just not very smart.
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and variance covariance matrix

cov(Di) = Σ = [σi,j] =

 φ+ ω1 φ β1φ
φ+ ω2 β1φ

β2
1φ+ ψ

 . (41)

Here are some comments.

• There are now nine moment structure equations in nine unknown parameters. This
model passes the test of the parameter count rule, meaning that identifiability is
possible, but not guaranteed.

• Notice that the model dictates σ1,3 = σ2,3. This model-induced constraint upon Σ
is testable. If H0 : σ1,3 = σ2,3 were rejected, the correctness of the model would be
called into question27. Thus, the study of parameter identifiability leads to a useful
test of model fit.

• The constraint σ1,3 = σ2,3 allows two solutions for β1 in terms of the moments:
β1 = σ13/σ12 and β1 = σ23/σ12. Does this mean the solution for β1 is not “unique?”
No; everything is okay. Because σ1,3 = σ2,3, the two solutions are actually the same.
If a parameter can be recovered from the moments in any way at all, it is identifiable.

• For the other model parameters appearing in the covariance matrix, the additional
measurement of the explanatory variable also appears to have done the trick. It is
easy to solve for φ, ω1, ω2 and ψ in terms of σi,j values. Thus, these parameters are
identifiable.

• On the other hand, the additional measurement did not help with the means and
intercepts at all. Even assuming β1 known because it can be recovered from Σ, the
remaining three linear equations in four unknowns have infinitely many solutions.
There are still infinitely many solutions if ν1 = ν2.

Maximum likelihood for the parameters in the covariance matrix would work up to a
point, but the lack of unique values for µx, ν1, ν2 and β0 would cause numerical problems.
A good solution is to re-parameterize the model, absorbing µx+ν1 into a parameter called
µ1, µx + ν2 into a parameter called µ2, and β0 + β1µx into a parameter called µ3. The
parameters in µ = (µ1, µ2, µ3)> lack meaning and interest28, but we can estimate them
with the vector of sample means D and focus on the parameters in the covariance matrix.

27Philosophers of science agree that falsifiability – the possibility that a scientific model can be chal-
lenged by empirical data – is a very desirable property. The Wikipedia has a good discussion under
Falsifiability — see http://en.wikipedia.org/wiki/Falsifiable. Statistical models may be viewed as primi-
tive scientific models, and should be subject to the same scrutiny. It would be nice if scientists who use
statistical methods would take a cold, clear look at the statistical models they are using, and ask “Is this
a reasonable model for my data?”

28If Xi is true amount of exercise, µx is the average amount of exercise in the population; it’s very
meaningful. Also, the quantity ν1 is interesting; it’s the average amount people exaggerate how much
they exercise using Questionnaire One. But when you add these two interesting quantities together, you
get garbage. The parameter µ in the re-parametrerized model is a garbage can.

http://en.wikipedia.org/wiki/Falsifiable
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Here is the multivariate normal likelihood from Appendix A.4, simplified so that it’s
clear that the likelihood depends on the data only through the MLEs D and Σ̂. This is
just a reproduction of expression (A.20) from Appendix A.

L(µ,Σ) = |Σ|−n/2(2π)−np/2 exp−n
2

{
tr(Σ̂Σ

−1
) + (D− µ)>Σ−1(D− µ)

}
(42)

Notice that if Σ is positive definite then so is Σ−1, and so for any positive definite Σ
the likelihood is maximized when µ = D. In that case, the last term just disappears.
So, re-parameterizing and then letting µ̂ = D leaves us free to conduct inference on the
model parameters in Σ.

Just to clarify, after re-parameterization and estimation of µ with Dn, the likelihood
function may be written

L(θ) = |Σ(θ)|−n/2(2π)−np/2 exp−n
2

{
tr(Σ̂Σ(θ)−1)

}
, (43)

where θ is now a vector of just those parameters appearing in the covariance matrix.
This formulation is general. For the specific case of the scalar double measurement Ex-
ample 0.10.1, θ = (φ, ω1, ω2, β1, ψ)>, and Σ(θ) is given by Expression (41). Maximum
likelihood estimation is numerical, and the full range of large-sample likelihood methods
described in Section A.6.3 of Appendix A is available.

Testing goodness of model fit

When there are more covariance structure equations than unknown parameters and the
parameters are identifiable, the parameters are said to be over-identified. In this case,
the model implies functional connections between some variances and covariances. In
the small example we are considering, it is clear from Expression (41) on page 64 that
σ13 = σ23, because they both equal β1φ. This is a testable null hypothesis, and if it is
rejected, the model is called into question.

The traditional way to do the test29 is to compare the fit of the model to the fit of a
completely unrestricted multivariate normal using the test statistic

G2 = −2 ln
L
(
D,Σ(θ̂)

)
L(D, Σ̂)

= n
(
tr
(
Σ̂Σ(θ̂)−1

)
− ln

∣∣∣Σ̂Σ(θ̂)−1
∣∣∣− p) , (44)

where Σ̂ is the ordinary sample variance-covariance matrix with n in the denominator,
and L(·, ·) is the multivariate normal likelihood (42) on page 65. The degrees of freedom
equals the number of covariance structure equations minus the number of parameters.
The idea is that if there are r parameters and m unique variances and covariances, the

29The test is documented on page 447 of Jöreskog’s classic (1978) article [37] in Psychometrika, but I
believe it had been in Jöreskog and Sörbom’s LISREL software for years before that.
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model imposes m − r equality constraints on the variances and covariances30. Those
are the constraints being tested, even when we don’t know exactly what they are. The
goodness of fit test is examined more closely in Chapter 7.

The matrix Σ(θ̂) is called the reproduced covariance matrix. It is the covariance matrix
of the observable data, written as a function of the model parameters and evaluated at
the MLE. For the present example,

Σ(θ̂) =

 φ̂+ ω̂1 φ̂ β̂1φ̂

φ̂+ ω̂2 β̂1φ̂

β̂2
1 φ̂+ ψ̂


The reproduced covariance matrix obeys all model-induced constraints, while Σ̂ does not.
However, they should be close if the model is right. In the limiting case where Σ̂ = Σ(θ̂),
the G2 statistic in (44) equals zero.

When the parameter vector is identifiable and there are more unique variances and
covariances than parameters, we call the parameter vector over-identifiable. An alterna-
tive terminology is to say that the “model is over-identified.” The equality restrictions on
Σ imposed by the model are called over-identifying restrictions. The likelihood ratio test
for goodness of fit is testing the null hypothesis that the over-identifying restrictions are
true.

Suppose that the entire parameter vector is identifiable, and m = k. That is, the
number of parameters is equal to the number of unique variances and covariances. In this
case, identifiability is established by solving k equations in k unknowns. The function
from parameters to the variances and covariances is one-to-one (injective), and the model
imposes no constraints on the variances and covariances. In this case the parameter
vector is said to be just identifiable. Alternatively, the model is often said to be “just
identified,” or saturated. In this case, Σ̂ = Σ(θ̂) by the invariance principle, and the
likelihood ratio test statistics for goodness of fit automatically equals zero. The degrees
of freedom m − k = 0 also. These values are usually displayed by software, which could
be confusing unless you know why. It means the model is not testable. It is incapable of
being challenged by any data set, at least using this technology.

0.10.2 Computation with lavaan

A variety of commercial software is available for fitting structural equation models, in-
cluding LISREL, EQS, Amos and Mplus. I myself have used mostly SAS proc calis

until recently. In keeping with the open-source philosophy of this text, we will use the
free, open-source R package lavaan; the name is short for LAtent VAriable ANalysis. The

30Here’s why. In most cases, it is possible to choose just r of the m variances and covariances, and
establish identifiability by solving r equations in r unknowns. In this case, there are m − r unused,
redundant equations. Each sets a variance or covariance equal to some function of the model parameters.
Substituting the solutions for the parameters in terms of σij back into the unused equations will yield
m− r equality constraints on the variances and covariances.
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software is described very well by Rosseel [48] in his 2012 article in the Journal of Statis-
tical Software. The capabilities of lavaan have grown since the article was published. A
nice tutorial is available at http://lavaan.ugent.be/tutorial.

This first illustration of lavaan will use a data set simulated from the model of Exam-
ple 0.10.1, the same little double measurement example we have been studying. It may
be a toy example, but it’s an educational toy. Readers familiar with lavaan will notice
that for now, I am using synax that favours explicitness over brevity. R input and output
will be interspersed with explanation.

When I begin an R session, I like to clear the deck with rm(list=ls()), removing any
existing R objects that may be in the workspace. The statement options(scipen=999)

suppresses scientific notation. This is just a matter of taste.
The lavaan package may be installed with the install.packages command. You

only need to do this once, which is why it’s commented out below. library(lavaan) is
necessary to load the package, every time.

> rm(list=ls()); options(scipen=999)

> # install.packages("lavaan", dependencies = TRUE)

> library(lavaan)

This is lavaan 0.6-7

lavaan is BETA software! Please report any bugs.

Next, we read the data, look at the first few lines, and obtain a summary and correlation
matrix. Notice that that the data file has only observable variables (obviously), and that
their means are certainly not zero. In practice, we would examine the data much more
carefully. This vital step in data analysis will not be mentioned again.

> babydouble = read.table("http://www.utstat.toronto.edu/~brunner/openSEM

/data/Babydouble.data.txt")

> head(babydouble)

W1 W2 Y

1 9.94 12.24 15.23

2 12.42 11.32 14.55

3 10.43 10.40 12.40

4 9.07 9.85 17.09

5 11.04 11.98 16.83

6 10.40 10.85 15.04

> summary(babydouble)

W1 W2 Y

Min. : 6.190 Min. : 6.76 Min. : 3.98

1st Qu.: 8.932 1st Qu.: 9.11 1st Qu.:10.97

Median : 9.720 Median :10.05 Median :13.22

Mean : 9.809 Mean :10.06 Mean :13.10

3rd Qu.:10.655 3rd Qu.:10.99 3rd Qu.:15.46

Max. :12.830 Max. :13.57 Max. :21.62

http://www.jstatsoft.org/v48/i02
http://lavaan.ugent.be/tutorial/index.html
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> cor(babydouble)

W1 W2 Y

W1 1.0000000 0.5748331 0.1714324

W2 0.5748331 1.0000000 0.1791539

Y 0.1714324 0.1791539 1.0000000

Notice that the sample correlations of W1 with Y and W2 with Y are very close. This is
consistent with the model-induced constraint σ13 = σ23, especially if ω1 = ω2.

Next comes specification of the model to be fit. Again, this is the model of Exam-
ple 0.10.1 on page 63. The entire model specification is in a model string, assigned to
the string variable dmodel1. If the model is big and you are using it repeatedly, you can
compose the model string in a separate file and bring it in with readlines.

> dmodel1 = ’Y ~ beta1*X # Latent variable model (even though Y is observed)

X =~ 1*W1 + 1*W2 # Measurement model

# Variances (covariances would go here too)

X~~phi*X # Var(X) = phi

Y~~psi*Y # Var(epsilon) = psi

W1~~omega1*W1 # Var(e1) = omega1

W2~~omega2*W2 # Var(e2) = omega2

’

It’s best to discuss the model string line by line.

Y ∼ beta1*X: This is reminiscent of R’s lm syntax. The translation is Y = β1X + ε. No-
tice that there is no β0. Though you can specify intercepts and expected values in lavaan

if you wish, by default they are invisible. Thus the whole process of re-parameterization
and swallowing all the non-identifiable expected values and intercepts into µ (see page 65)
is implicit.

X =∼ 1*W1 + 1*W2: This looks like X is being produced by W1 and W2, when actually
it’s the other way around. However, if you read ∼ and =∼ as two different flavours of “is
modelled as,” it makes more sense. The statment stands for two model equations:

W1 = 1 ∗X + e1

W2 = 1 ∗X + e2

These two statements constitute the measurement model for this simple example. The
observable variables W1 and W2 are called indicators of X. An indicator of a latent vari-
able is an observable variable that arises from only that latent variable plus an error term.
In lavaan, a latent variable must have indicators. Otherwise, it is assumed observable
even if it’s not in the input data set. The explicit “1∗” syntax is necessary if you want
the coefficients to equal one. Otherwise, lavaan will assume you want coefficients that
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are free parameters in the model, but you don’t feel like naming them. It will try to be
helpful, with results that are unfortunate in this case31.

X∼∼ phi*X: As the comment statement says, this means V ar(X) = φ. The double tilde
is a way of naming variances, or setting them equal to numeric constants if that’s what
you want to do. Notice that the symbol X appears on both sides. If you had two different
variable names, the statement would specify a covariance. Since a variance may be viewed
as the covariance of a random variable with itself, this is good notation. Also be aware
that if a covariance is not specified, it equals zero.

Y∼∼ psi*Y: In contrast to the preceding statement, this one is not saying that V ar(Y ) =
ψ. It is saying V ar(ε) = ψ. Here’s the rule. If a variable appears on the left side of any
model equation, then the ∼∼ notation specifies the variance or covariance of the error
term in the equation. If the variable appears only on the right side (possibly in more
than one equation), the ∼∼ notation specifies the variance or covariance of the variable
itself. In this way, though error terms are never named in lavaan, you can name their
variances, and you can name their covariances with other variables and error terms.

W1∼∼omega1*W1: V ar(e1) = ω1

W2∼∼omega2*W2: V ar(e2) = ω2

A covariance between the measurement errors e1 and e2 would be specified with something
like W1∼∼omega12*W2. A covariance of c between X and ε would be specified with
X∼∼c*Y.

Next, we fit the model and look at a summary. We use the lavaan function32 (same name
as the lavaan package).

> dfit1 = lavaan(dmodel1, data=babydouble)

> summary(dfit1)

lavaan 0.6-7 ended normally after 23 iterations

Estimator ML

Optimization method NLMINB

Number of free parameters 5

Number of observations 150

Model Test User Model:

31lavaan’s “helpful” behaviour really is helpful for many users under many circumstances. It is based
on rules for parameter identifiability that will be developed later in this text.

32Model fitting can also be accomplished with the sem and cfa functions. With these “user friendly”
alternatives, the model specification in the model string is less elaborate, and the software makes choices
about the model for you. These choices are intended to be helpful, and may or may not be what you
want.
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Test statistic 0.007

Degrees of freedom 1

P-value (Chi-square) 0.933

Parameter Estimates:

Standard errors Standard

Information Expected

Information saturated (h1) model Structured

Latent Variables:

Estimate Std.Err z-value P(>|z|)

X =~

W1 1.000

W2 1.000

Regressions:

Estimate Std.Err z-value P(>|z|)

Y ~

X (bet1) 0.707 0.290 2.442 0.015

Variances:

Estimate Std.Err z-value P(>|z|)

X (phi) 1.104 0.181 6.104 0.000

.Y (psi) 9.775 1.153 8.481 0.000

.W1 (omg1) 0.834 0.158 5.265 0.000

.W2 (omg2) 0.800 0.156 5.123 0.000

We first learn that the numerical parameter estimation converged in 23 iterations, n =
150, and estimation was by maximum likelihood – the default. Under “Model Test

User Model,” the Test statistic is exactly the G2 statistic given in expression (44) on
page 65: the likelihood ratio test for goodness of model fit. The small value of G2 and the
correspondingly large p-value indicate that the model passes this test, and is not called
into question.

The next section in the output is entitled Latent Variables, saying that X is man-
afested by the indicators W1 and W2. The “estimates” are the fixed numerical constants
of 1.000, specified in the model string. More generally, this section would include all the
latent variables in a model. If coefficients (factor loadings) linking the latent variables to
their indicators were not pre-specified, their estimates would appear here, together with
tests of difference from zero.

The next section of the summary is Regressions. These correspond to all the model
equations using the ∼ rather than the ∼= notation, whether the variables involved are
latent or observed. Here, we have maximum likelihood estimates, standard errors, Z-tests
for whether the parameter equals zero, and two-sided p-values. The standard errors are
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what you would expect. They are square roots of the diagonal elements of the inverse of
the Hessian of the minus log likelihood. If this does not make sense, see the maximum
likelihood review in Appendix A. Also, observe that in the summary display, the parameter
names are abbreviated to four characters.

The last section of the summary is Variances. Covariances would go here too, if any
had been specified in the model. We have maximum likelihood estimates of the variance
parameters, standard errors, and two-sided Z-tests for whether the parameter equals zero.
When the variance in question is the variance of an error term rather than of the variable
itself, the variable name is preceded by a dot, as in .Y, .W1 and .W2.

Testing whether variances equal zero It might seem strange to test whether vari-
ances equal zero, when they are automatically greater than zero according to the model.
It’s not as silly as you might think. Look at Equation (41) on page 64, which gives the
covariance matrix of the observable variables for this model, in terms of the model param-
eters. The covariance σ1,2 equals φ, which is a variance. That means that the covariance
between W1 and W2 must be greater than zero if the model is correct; this would not
necessarily be true for an arbitrary covariance matrix.

The other variance parameters, because they are identifiable, can also be written as
functions of the variances and covariances σi,j. This means that they also correspond to
functions of the variances and covariances — functions that must be greater than zero if
the model is correct. In this way, we see that the model also imposes inequality constraints
on the covariance matrix Σ. The most obvious of these constraints33 can be tested by
looking at the estimates of the variance parameters in the model. If the variance estimates
are less than zero, particularly if they are significantly less than zero, the model is thrown
into question.

The conclusion is that testing whether variances equal zero is another way to test
model fit. A good practice is to check the equality constraint first with the likelihood
ratio test for goodness of fit, and then worry about inequality constraints provided that
the first test is non-significant. It is quite common for inequality violations to disappear
once the equality violations have been fixed.

The R object created by the lavaan function contains a large amount of additional
information. The parameterEstimates function returns a data frame that gives more
detail about the parameter estimates, including confidence intervals.

> parameterEstimates(dfit1)

lhs op rhs label est se z pvalue ci.lower ci.upper

1 Y ~ X beta1 0.707 0.290 2.442 0.015 0.140 1.275

2 X =~ W1 1.000 0.000 NA NA 1.000 1.000

3 X =~ W2 1.000 0.000 NA NA 1.000 1.000

4 X ~~ X phi 1.104 0.181 6.104 0.000 0.750 1.459

5 Y ~~ Y psi 9.775 1.153 8.481 0.000 7.516 12.034

6 W1 ~~ W1 omega1 0.834 0.158 5.265 0.000 0.524 1.145

33It can be challenging to obtain all the inequality constraints in a useful form. See Chapter 7.
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7 W2 ~~ W2 omega2 0.800 0.156 5.123 0.000 0.494 1.105

The parTable function yields details about the model fitting, including the starting values
for the numerical search.

> parTable(dfit1)

id lhs op rhs user block group free ustart exo label plabel start est se

1 1 Y ~ X 1 1 1 1 NA 0 beta1 .p1. 0.000 0.707 0.290

2 2 X =~ W1 1 1 1 0 1 0 .p2. 1.000 1.000 0.000

3 3 X =~ W2 1 1 1 0 1 0 .p3. 1.000 1.000 0.000

4 4 X ~~ X 1 1 1 2 NA 0 phi .p4. 0.050 1.104 0.181

5 5 Y ~~ Y 1 1 1 3 NA 0 psi .p5. 5.164 9.775 1.153

6 6 W1 ~~ W1 1 1 1 4 NA 0 omega1 .p6. 0.968 0.834 0.158

7 7 W2 ~~ W2 1 1 1 5 NA 0 omega2 .p7. 0.953 0.800 0.156

A vector containing the parameter estimates may be obtained with the coef function.
This is useful when the parameter estimates are to be used in further calculations.

> coef(dfit1) # A vector of MLEs

beta1 phi psi omega1 omega2

0.707 1.104 9.775 0.834 0.800

The fitted function returns a list of two matrices. The first element is the reproduced
covariance matrix Σ(θ̂). The second element is what might be called the “reproduced

mean vector”µ(θ̂). It will be nonzero if means are specified in the model.

> fitted(dfit1) # Sigma(thetahat) and mu(thetahat)

$cov

W1 W2 Y

W1 1.939

W2 1.104 1.904

Y 0.781 0.781 10.327

$mean

W1 W2 Y

0 0 0

As usual with R, the vcov function returns the estimated asymptotic covariance matrix,
the inverse of the observed Fisher information (Hessian).

> vcov(dfit1)

beta1 phi psi omega1 omega2

beta1 0.084

phi -0.007 0.033

psi -0.035 0.002 1.328

omega1 0.003 -0.004 -0.002 0.025

omega2 0.003 -0.005 -0.002 -0.007 0.024
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Even though the upper triangular entries are not shown, that’s just a display method.
The whole symmetric matrix is available for furter calculation.

The logLik function returns the log likelihood evaluated at the MLE.

> logLik(dfit1)

’log Lik.’ -878.512 (df=5)

It would be possible to use logLik to compute likelihood ratio tests, but the anova

function is more convenient. One can fit a restricted model by specifying the constraints
in the lavaan statement.

> # Fit a restricted model (restricted by H0)

> dfit1r = lavaan(dmodel1, data=babydouble, constraints = ’omega1==omega2’)

> anova(dfit1r,dfit1)

Chi Square Difference Test

Df AIC BIC Chisq Chisq diff Df diff Pr(>Chisq)

dfit1 1 1767 1782.1 0.0071

dfit1r 2 1765 1777.1 0.0262 0.019189 1 0.8898

To test a null hypothesis with multiple constraints, put the constraints on separate lines.
This is the code for testing H0 : ω1 = ω2, φ = 1.

> # Put multiple constraints on separate lines.

> dfit1r2 = lavaan(dmodel1, data=babydouble, constraints = ’omega1==omega2

+ phi==1’)

> anova(dfit1r2,dfit1)

Illustrating a Wald test34 of H9 : ω1 = ω2, we first define the publicly available Wtest

function, and then enter the L matrix and do the calculation.

> # For Wald tests: Wtest = function(L,Tn,Vn,h=0) # H0: L theta = h

> source("http://www.utstat.utoronto.ca/~brunner/Rfunctions/Wtest.txt")

> LL = cbind(0,0,0,1,-1); LL

[,1] [,2] [,3] [,4] [,5]

[1,] 0 0 0 1 -1

> Wtest(LL,coef(dfit1),vcov(dfit1))

W df p-value

0.01918586 1.00000000 0.88983498

It is only a little surprising that the Wald and likelihood ratio test statistics are so close.
The two tests are asymptotically equivalent under the null hypothesis, meaning that the

34The Wald test of the linear null hypothesis Lθ = h is given in Section A.6.7 of Appendix A, Equa-
tion (A.37) on page 600.
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difference between the two test statistic values goes to zero in probability when H0 is
true. In this case, the null hypothesis is exactly true (these are simulated data), and the
sample size of n = 150 is fairly large.

The lavaan software makes it remarkably convenient to estimate non-linear functions
of the parameters, along with standard errors calculated using the multivariate delta
method (see the end of Section A.5 in Appendix A). This is accomplished with the :=

operator, as shown below. In this example, two functions of the parameter vector are
specified. The first function is ω1 − ω2. Because this function is linear, the Z-test for
whether it equals zero is equivalent to the Wald test of H0 : ω1 = ω2 directly above. The
second function is the reliability of W1. Using Equation (29) on page 41, this is φ

φ+ω1
.

> # Non-linear functions of the parameters with :=

> dmodel1b = ’Y ~ beta1*X # Latent variable model

+ X =~ 1*W1 + 1*W2 # Measurement model

+ # Variances (covariances would go here too)

+ X~~phi*X # Var(X) = phi

+ Y~~psi*Y # Var(epsilon) = psi

+ W1~~omega1*W1 # Var(e1) = omega1

+ W2~~omega2*W2 # Var(e2) = omega2

+ diff := omega1-omega2

+ rel1 := phi/(omega1+phi)

+ ’

> dfit1b = lavaan(dmodel1b, data=babydouble)

> parameterEstimates(dfit1b)

lhs op rhs label est se z pvalue ci.lower ci.upper

1 Y ~ X beta1 0.707 0.290 2.442 0.015 0.140 1.275

2 X =~ W1 1.000 0.000 NA NA 1.000 1.000

3 X =~ W2 1.000 0.000 NA NA 1.000 1.000

4 X ~~ X phi 1.104 0.181 6.104 0.000 0.750 1.459

5 Y ~~ Y psi 9.775 1.153 8.481 0.000 7.516 12.034

6 W1 ~~ W1 omega1 0.834 0.158 5.265 0.000 0.524 1.145

7 W2 ~~ W2 omega2 0.800 0.156 5.123 0.000 0.494 1.105

8 diff := omega1-omega2 diff 0.035 0.252 0.139 0.890 -0.458 0.528

9 rel1 := phi/(omega1+phi) rel1 0.570 0.066 8.657 0.000 0.441 0.699

Apart from rounding error, the Z statistic of 0.139 for the null hypothesis ω1 − ω2 = 0
matches the Wald test of the same null hypothesis, with W = Z2.

> 0.139^2

[1] 0.019321

Trying to fit models with non-identifiable parameters This sub-section contains
more details about how lavaan works, and also some valuable material on the connec-
tion of identifiability to maximum likelihood estimation. The account of how double
measurement can help with identifiability is continued on page 83.
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Trying to estimate the parameters of a structural equation model without first checking
identifiability is like jumping out of an airplane without checking that your backpack
contains a parachute and not just a sleeping bag. You shouldn’t do it. Unfortunately,
people do it all the time. Sometimes it’s because they have little or no idea what parameter
identifiability is. Sometimes it’s because the model is a little non-standard, and checking
identifiability is too much work35. Sometimes, it’s because of coding errors. Typos in
the model string can easily specify a model that’s non-identifiable, because a mis-spelled
parameter name is assumed to represent a different parameter. Anyway, it’s interesting
to see how lavaan deals with models you know are not identified. The main lesson is
that sometimes it complains, and sometimes it just returns a meaningless answer with
no obvious indication that anything is wrong. This is not a criticism of lavaan. It’s a
reminder that you need to know what you are doing.

Example 0.10.2

In this first example, non-identifiability causes lavaan to complain loudly. The model is
obtained by taking dmodel1 (that’s the model of Example 0.10.1 on page 63) and adding
unknown coefficients λ1 and λ2 linking X to W1 and W2 respectively36. The result is that
there are now two more parameters, for a total of seven. There are still only six variances
and covariances, so the model fails the parameter count rule, and we know the parameters
can be identifiable on at most a set of volume zero in the parameter space.

> dmodel2 = ’Y ~ beta1*X # Latent variable model

+ X =~ lambda1*W1 + lambda2*W2 # Measurement model

+ # Variances (covariances would go here too)

+ X~~phi*X # Var(X) = phi

+ Y~~psi*Y # Var(epsilon) = psi

+ W1~~omega1*W1 # Var(e1) = omega1

+ W2~~omega2*W2 # Var(e2) = omega2

+ ’

When we try to fit the model, it’s clear that something is wrong.

> dfit2 = lavaan(dmodel2, data=babydouble)

Warning message:

In lav_model_vcov(lavmodel = lavmodel, lavsamplestats = lavsamplestats, :

lavaan WARNING: could not compute standard errors!

lavaan NOTE: this may be a symptom that the model is not identified.

In this case, lavaan correctly guessed that the parameters were not identifiable. Here’s
what happened.

35In later chapters, we will use Sage to ease the burden of symbolic calculation. See Appendix B.
36This is surely a more believable model.
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When lavaan does maximum likelihood estimation, it is minimizing a function propor-
tional to the minus log likelihood plus a constant37. If the parameter vector is massively
non-identifiable as in the present case, the typical parameter vector belongs to an infinite,
connected set whose members all yield exactly the same covariance matrix and hence the
same value of the function being minimized. The graph of the function does not look
like a high-dimensional bowl. Instead, it resembles a high-dimensional river valley. The
non-unique minimum is on the flat surface of the water at the bottom of the valley. The
numerical search starts somewhere up in the hills, and then trickles downhill, usually until
it comes to the river. Then it stops. The stopping place (the MLE) depends entirely on
where the search began.

The surface is not strictly concave up at the stopping point, so the Hessian matrix
(see Expression A.29 in Appendix A) is not positive definite. However, the valley func-
tion is convex, so that the Hessian has to be non-negative definite. Consequently all its
eigenvalues are greater than or equal to zero. They can’t all be positive, or the Hessian
would be positive definite. This means there must be at least one zero eigenvalue. Hence,
the determinant of the Hessian is zero and its inverse does not exist.

The standard errors of the MLEs are the square roots of the diagonal elements of the
estimated asymptotic variance-covariance matrix. This matrix is obtained by inverting
the Hessian of the minus log likelihood; see Expression (A.35) in Appendix A. Since the
inverse does not exist, the standard errors can’t be computed, and lavaan issues a warning
about it. This whole scenario is so common that lavaan also speculates – correctly in
this case – that the problem arises from lack of parameter identifiability.

This is not an error; it’s just a warning. A model fit object is created.

> summary(dfit2)

lavaan 0.6-7 ended normally after 26 iterations

Estimator ML

Optimization method NLMINB

Number of free parameters 7

Number of observations 150

Model Test User Model:

Test statistic NA

Degrees of freedom -1

P-value (Unknown) NA

Parameter Estimates:

37The constant is L(D, Σ̂), the multivariate normal likelihood evaluated at the unrestricted MLE of
µ and Σ. The function is also divided by n, which can help with numerical accuracy. When the search
finds a minimum, multiplication by 2n yields the test statistic given in Equation (44).
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Standard errors Standard

Information Expected

Information saturated (h1) model Structured

Latent Variables:

Estimate Std.Err z-value P(>|z|)

X =~

W1 (lmb1) 0.962 NA

W2 (lmb2) 0.998 NA

Regressions:

Estimate Std.Err z-value P(>|z|)

Y ~

X (bet1) 0.693 NA

Variances:

Estimate Std.Err z-value P(>|z|)

X (phi) 1.151 NA

.Y (psi) 9.776 NA

.W1 (omg1) 0.871 NA

.W2 (omg2) 0.761 NA

After “normal” convergence (hummm), the Minimum Function Test Statistic is NA,
or missing even though it could be computed. The degrees of freedom are -1, impossible
for a chi-squared statistic. The degrees of freedom are calculated as number of unique
variances and covariances minus number of parameters. When it’s negative, this is a sure
sign the model has failed the parameter count rule, and the parameter vector can’t be
identifiable. The software could check this and inform the user, but as of this writing it
does not. Parameter estimates (corresponding to the point where the search stopped) are
given, but standard errors are NA and there are no significance tests.

Example 0.10.3

In this next example, we modify the model of Example 0.10.1 again, keeping the unknown
factor loadings λ1 and λ2 that connect the latent explanatory variable F to its indicators
W1 and W2, but making the two measurement error variances equal: ω1 = ω2 = ω.
Everything else remains the same. The model has six unknown parameters and six unique
variances and covariances, so it passes the test of the parameter count rule. This means
identifiability is possible, but not guaranteed.

> # dmodel3 passes the parameter count rule, but its parameters are not identifiable.

> dmodel3 = ’Y ~ beta1*X # Latent variable model

+ X =~ lambda1*W1 + lambda2*W2 # Measurement model

+ X~~phi*X # Var(X) = phi
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+ Y~~psi*Y # Var(epsilon) = psi

+ W1~~omega*W1 # Var(e1) = omega

+ W2~~omega*W2 # Var(e2) = omega

+ ’

> dfit3 = lavaan(dmodel3, data=babydouble)

>

lavaan fits the model and generates a useful warning.

Warning message:

In lav_model_vcov(lavmodel = lavmodel, lavsamplestats = lavsamplestats, :

lavaan WARNING:

The variance-covariance matrix of the estimated parameters (vcov)

does not appear to be positive definite! The smallest eigenvalue

(= 1.121048e-18) is close to zero. This may be a symptom that the

model is not identified.

So, even though lavaan is able to numerically invert the Fisher information to get an
asymptotic covariance matrix of the MLEs, it correctly speculates that there is a problem
with identifiability, and the answer should not be trusted. Looking at summary,

> summary(dfit3)

lavaan 0.6-7 ended normally after 19 iterations

Estimator ML

Optimization method NLMINB

Number of free parameters 7

Number of equality constraints 1

Number of observations 150

Model Test User Model:

Test statistic 0.014

Degrees of freedom 0

Parameter Estimates:

Standard errors Standard

Information Expected

Information saturated (h1) model Structured

Latent Variables:

Estimate Std.Err z-value P(>|z|)

X =~
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W1 (lmb1) 0.987 0.085 11.575 0.000

W2 (lmb2) 0.975 0.085 11.443 0.000

Regressions:

Estimate Std.Err z-value P(>|z|)

Y ~

X (bet1) 0.693 0.264 2.624 0.009

Variances:

Estimate Std.Err z-value P(>|z|)

X (phi) 1.148 0.078 14.757 0.000

.Y (psi) 9.776 1.153 8.481 0.000

.W1 (omeg) 0.817 0.094 8.660 0.000

.W2 (omeg) 0.817 0.094 8.660 0.000

Except for the warning message, everything seems to be fine. However, it’s not fine! The
parameters of this model are not identifiable, and as in the previous example (Exam-
ple 0.10.2), the MLE is not unique. At first glance, it’s not obvious why.

The matrix equation (45) gives the covariance matrix of (Wi,1,Wi,2, Yi)
>, expressing

the six covariance structure equations in six unknowns, in a compact form. σ11 σ12 σ13

σ22 σ23

σ33

 =

 λ2
1φ+ ω λ1λ2φ λ1β1φ

λ2
2φ+ ω λ2β1φ

β2
1φ+ ψ

 . (45)

First, it is clear that if just one of λ1 = 0, λ2 = 0 or β1 = 0, the zero value would be
detectable from the covariance matrix, making that parameter identifiable. However, the
remaining four equations in five unknowns would fail the parameter count rule, so that
the other parameters would not be identifiable. If two or three of λ1, λ2 and β1 were equal
to zero, it would be impossible to tell which ones they were. Solving the remaining three
equations in six unknowns is a hopeless task, and the entire parameter vector would be
non-identifiable.

All these identifiability problems are local, and would have no effect on numerical
maximum likelihood unless the true parameter values in question were zero. So consider
points in the parameter space where λ1, λ2 and β1 are all non-zero. In this case, ω and ψ
are identifiable, because

ω = σ11 −
σ12σ13

σ23

and ψ = σ33 −
σ13σ23

σ12

.

In fact, ω is over-identified, and this imposes the testable constraint σ11 = σ22 on the
covariance matrix, even though the Model Test degrees of freedom equal zero in the
output. As for the other parameters, let θ1 be an arbitrary point in the parameter space.
Letting c 6= 0, consider the two parameter vectors

θ1 λ1 λ2 β1 φ ω ψ

θc cλ1 cλ2 cβ1
φ
c2

ω ψ
(46)
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It is clear that θ1 and θc both yield the same covariance matrix (45), and hence the same
value of the likelihood function. In fact, every point in the parameter space belongs to
an infinite family {θc : c 6= 0} whose members all have the same the same likelihood.
This means that if a numerical search locates a minimum, that point is just one of an
infinite number of points in the parameter space where that same minimum value is
attained. Furthermore the set is connected, and we are back to the river valley picture of
Example 0.10.2.

A good way to confirm this account of what’s happening is to choose a different set of
starting values. Then, the numerical search should trickle downhill into the valley until
it reaches a different point on the likelihood river. The estimated parameters should be
very different (except for ψ and ω), but the value of the likelihood function (the height of
the point on the river) should be the same. In the first test, I will try to start the search
exactly in the river, at a point fairly distant from the first MLE. If the map provided by
the table in (46) is correct, this should work.

To specify starting value of a regression coefficient in lavaan, one replaces the co-
efficient with start(number), where number is a numeric starting value. A generic
example is Y∼start(4.2)*X. This is excellent when you are letting lavaan name pa-
rameters automatically, but what if you want to also name the regression coefficient?
Somewhat oddly, you specify the connection between X and Y twice, and lavaan picks
up the information in two passes through the syntax. The generic example would look
like this: Y∼beta*X + start(4.2)*X. A similar syntax works for variances, like this:
Y∼∼sigmasq*Y + start(1.0)*Y.

Since the estimated β1 for model dmodel3 was positive, we will make it negative this
time. As far as I can tell, the starting values have to be literal numbers, and not R
variables.

> c = -2

> thetac = coef(dfit3); thetac

beta1 lambda1 lambda2 phi psi omega omega

0.693 0.987 0.975 1.148 9.776 0.817 0.817

> thetac[1] = c*thetac[1]; thetac[2] = c*thetac[2]; thetac[3] = c*thetac[3]

> thetac[4] = thetac[4]/c^2

> cat(thetac)

-1.386474 -1.974219 -1.949046 0.2870302 9.775661 0.816833 0.816833

The cat function was used to get more decimal places in the output, because I needed to
copy and paste the numbers into the model string. To start right in the river, we need as
much accuracy as possible.

> dmodel3b = ’Y ~ beta1*X + start(-1.386474)*X

+ X =~ lambda1*W1 + start(-1.974219)*W1 +

+ lambda2*W2 + start(-1.949046)*W2

+ # Variances (covariances would go here too)
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+ X~~phi*X + start(0.2870302)*X # Var(X) = phi

+ Y~~psi*Y + start(9.775661)*Y # Var(epsilon) = psi

+ W1~~omega*W1 + start(0.816833)*W1 # Var(e1) = omega

+ W2~~omega*W2 + start(0.816833)*W2 # Var(e2) = omega

+ ’

> dfit3b = lavaan(dmodel3b, data=babydouble)

There is a warning about a near-zero eigenvalue, similar to the last one. Then,

> show(dfit3b)

lavaan 0.6-7 ended normally after 2 iterations

Estimator ML

Optimization method NLMINB

Number of free parameters 7

Number of equality constraints 1

Number of observations 150

Model Test User Model:

Test statistic 0.014

Degrees of freedom 0

This time the search found a minimum in two iterations rather than 19. The value of
Test Statistic is the same as last time, suggesting that the height of the minus log
likelihood function is the same with the new starting values.

Binding the starting and ending values into a matrix for easy inspection, we see that
they are identical, at least to R’s accuracy of display. This means that essentially, we
started the numerical search at one of the infinitely many MLEs — as planned.

> rbind(thetac,coef(dfit3b))

beta1 lambda1 lambda2 phi psi omega omega

thetac -1.386474 -1.974219 -1.949046 0.2870302 9.775661 0.816833 0.816833

-1.386474 -1.974219 -1.949046 0.2870302 9.775661 0.816833 0.816833

Also as expected, the parameter estimates are quite different from the first set we located,
except for the estimates of the identifiable parameters ψ and ω.

> rbind(coef(dfit3),coef(dfit3b))

beta1 lambda1 lambda2 phi psi omega omega

[1,] 0.6932368 0.9871093 0.9745232 1.1481206 9.775661 0.816833 0.816833

[2,] -1.3864740 -1.9742186 -1.9490464 0.2870302 9.775661 0.816833 0.816833
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Though the locations of the MLEs are different, the log likelihood at those points is the
same. Again, the theoretical analysis is confirmed.

> c( logLik(dfit3), logLik(dfit3b) )

[1] -878.5155 -878.5155

In one last variation, the search starts fairly close to the river38 but not exactly on target,
and finds its way to yet another MLE. Here, starting values are provided for λ1, λ2, β1

and φ. lavaan provides starting values for ψ and ω.

> dmodel3c = ’Y ~ beta1*X + start(6)*X

X =~ lambda1*W1 + start(8)*W1 +

lambda2*W2 + start(8)*W2

# Variances (covariances would go here too)

X~~phi*X + start(1/64)*X # Var(X) = phi

Y~~psi*Y # Var(epsilon) = psi

W1~~omega*W1 # Var(e1) = omega

W2~~omega*W2 # Var(e2) = omega

’

> dfit3c = lavaan(dmodel3c, data=babydouble)

Warning message:

In lav_model_vcov(lavmodel = lavmodel, lavsamplestats = lavsamplestats, :

lavaan WARNING:

The variance-covariance matrix of the estimated parameters (vcov)

does not appear to be positive definite! The smallest eigenvalue

(= 1.285532e-12) is close to zero. This may be a symptom that the

model is not identified.

> c( logLik(dfit3), logLik(dfit3b), logLik(dfit3b) )

[1] -878.5155 -878.5155 -878.5155

> rbind( coef(dfit3), coef(dfit3b), coef(dfit3c) )

beta1 lambda1 lambda2 phi psi omega omega

[1,] 0.6932368 0.9871093 0.9745232 1.1481206 9.775661 0.816833 0.816833

[2,] -1.3864740 -1.9742186 -1.9490464 0.2870302 9.775661 0.816833 0.816833

[3,] 5.7803725 8.2307505 8.1258046 0.0165135 9.775661 0.816833 0.816833

So the search located another point with the same maximum log likelihood, fairly far from
the other two. For the parameters that are not identifiable, the answer depends on the
starting value.

When the parameters of a model are all identifiable, the minus log likelihood should
have a unique global minimum, and lavaan’s default starting values should be adequate

38To find a point that is “fairly close,” observe from (46) that the product λ1λ2φ must be constant for
all points on the river. The constant is pretty close to 1, and β1 should be around 3/4 of λ1. So β1 = 6,
λ1 = λ2 = 8 and φ = 1/64 should do it.
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most of the time. However even when the parameters are identifiable, local maxima
and minima are possible. If you suspect the search may have located a local minimum
(perhaps because some of the MLEs are extremely large), you may need to specify your
own starting values. Try several sets. The parTable function can be used to verify that
the starting values were the ones you intended. In the display below, ustart are the
starting values given by the user, some of which are NA because they were not specified.
The start column are the starting values used by the software, and the est column
(estimates) is where the search ended — at the parameter estimates.

> parTable(dfit3c)

id lhs op rhs user block group free ustart exo label plabel start est se

1 1 Y ~ X 1 1 1 1 6.000 0 beta1 .p1. 6.000 5.780 1.895

2 2 X =~ W1 1 1 1 2 8.000 0 lambda1 .p2. 8.000 8.231 0.822

3 3 X =~ W2 1 1 1 3 8.000 0 lambda2 .p3. 8.000 8.126 0.819

4 4 X ~~ X 1 1 1 4 0.016 0 phi .p4. 0.016 0.017 0.004

5 5 Y ~~ Y 1 1 1 5 NA 0 psi .p5. 5.164 9.776 1.153

6 6 W1 ~~ W1 1 1 1 6 NA 0 omega .p6. 0.968 0.817 0.094

7 7 W2 ~~ W2 1 1 1 7 NA 0 omega .p7. 0.953 0.817 0.094

8 8 .p6. == .p7. 2 0 0 0 NA 0 0.000 0.000 0.000

0.10.3 The Double Measurement Design in Matrix Form

Consider the general case of regression with measurement error in both the explanatory
variables and the response variables. Independently for i = 1, . . . , n, let

wi,1 = ν1 + xi + ei,1 (47)

vi,1 = ν2 + yi + ei,2

wi,2 = ν3 + xi + ei,3

vi,2 = ν4 + yi + ei,4,

yi = α+ βxi + εi

where

yi is a q × 1 random vector of latent response variables. Because q can be greater
than one, the regression is multivariate.

β is a q×p matrix of unknown constants. These are the regression coefficients, with
one row for each response variable and one column for each explanatory variable.

xi is a p×1 random vector of latent explanatory variables, with expected value zero
and variance-covariance matrix Φ, a p × p symmetric and positive definite matrix
of unknown constants.

εi is the error term of the latent regression. It is a q×1 random vector with expected
value zero and variance-covariance matrix Ψ, a q×q symmetric and positive definite
matrix of unknown constants.
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wi,1 and wi,2 are p×1 observable random vectors, each consisting of xi plus random
error and a set of constant terms that represent measurement bias39.

vi,1 and vi,2 are q× 1 observable random vectors, each consisting of yi plus random
error and measurement bias.

ei,1, . . . , ei,1 are the measurement errors in wi,1,vi,1,wi,2 and vi,2 respectively. Join-
ing the vectors of measurement errors into a single long vector ei, its covariance
matrix may be written as a partitioned matrix

cov(ei) = cov


ei,1
ei,2
ei,3
ei,4

 =


Ω11 Ω12 0 0

Ω>12 Ω22 0 0
0 0 Ω33 Ω34

0 0 Ω>34 Ω44

 = Ω.

The matrices of covariances between xi, εi and ei are all zero.

α, ν1, ν2, ν3 and ν4 are vectors of constants.

E(xi) = µx.

The main idea of the Double Measurement Design is that every variable is measured
by two different methods. Errors of measurement may be correlated within measurement
methods, but not between methods. So for example, farmers who overestimate their
number of pigs may also overestimate their number of cows. On the other hand, if
the number of pigs is counted once by the farm manager at feeding time and on another
occasion by a research assistant from an areal photograph, then it would be fair to assume
that the errors of measurement for the different methods are uncorrelated. In general,
correlation within measurement methods is almost unavoidable. The ability of the double
measurement model to admit the existence of correlated measurement error and still be
identifiable is a real advantage.

In symbolic terms, ei,1 is error in measuring the explanatory variables by method one,
and ei,2 is error in measuring the response variables by method one. cov(ei,1) = Ω11 need
not be diagonal, so method one’s errors of measurement for the explanatory variables
may be correlated with one another. Similarly, cov(ei,2) = Ω22 need not be diagonal, so
method one’s errors of measurement for the response variables may be correlated with one
another. And, errors of measurement using the same method may be correlated between
the explanatory and response variables. For method one, this is represented by the matrix
cov(ei,1, ei,2) = Ω12. The same pattern holds for method two. On the other hand, ei,1
and ei,2 are each uncorrelated with both ei,3 and ei,4.

To emphasize an important practical point, the matrices Ω11 and Ω33 must be of
the same dimension, just as Ω22 and Ω44 must be of the same dimension – but none of
the corresponding elements have to be equal. In particular, the corresponding diagonal

39For example, if one of the elements of wi,1 is reported amount of exercise, the corresponding element
of ν1 would be the average amount by which people exaggerate how much they exercise.
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Figure 15: The Double Measurement Model
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elements may be unequal. This means that measurements of a variable by two different
methods do not need to be equally precise.

The model is depicted in Figure 15. It follows the usual conventions for path diagrams
of structural equation models. Straight arrows go from exogenous variables (that is,
explanatory variables, those on the right-hand side of equations) to endogenous varables
(response variables, those on the left side). Correlations among exogenous variables are
represented by two-headed curved arrows. Observable variables are enclosed by rectangles
or squares, while latent variables are enclosed by ellipses or circles. Error terms are not
enclosed by anything.

Parameter identifiability As usual in structural equation models, the moments (specif-
ically, the expected values and variance-covariance matrix) of the observable data are
functions of the model parameters. If the model parameters are also functions of the
moments, then they are identifiable40. For the double measurement model, the parame-
ters appearing in the covariance matrix of the observable variables are identifiable, but
the parameters appearing only in the mean vector are not. Accordingly, we split the job

40Meaning identifiable from the moments. For multivariate normal models and also in general practice,
a parameter is identifiable from the mean vector and covariance matrix, or not at all.
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into two parts, starting with the covariance matrix. The first part is typical of easier
proofs for structural equation models. The goal is to solve for the model parameters in
terms of elements of the variance-covariance matrix of the observable data. This shows
the parameters are functions of the distribution, so that no two distinct parameter values
could yield the same distribution of the observed data.

Collecting wi,1, vi,1, wi,2 and vi,2 into a single long data vector di, we write its variance-
covariance matrix as a partitioned matrix:

Σ =


Σ11 Σ12 Σ13 Σ14

Σ22 Σ23 Σ24

Σ33 Σ34

Σ44

 ,

where the covariance matrix of wi,1 is Σ11, the covariance matrix of vi,1 is Σ22, the matrix
of covariances between wi,1 and vi,1 is Σ12, and so on.

Now we express all the Σij sub-matrices in terms of the parameter matrices of Model (47)
by straightforward variance-covariance calculations. Students may be reminded that
things go smoothly if one substitutes for everything in terms of explanatory variables
and error terms before actually starting to calculate covariances. For example,

Σ12 = cov(wi,1,vi,1)

= cov (ν1 + xi + ei,1, ν2 + yi + ei,2)

= cov (ν1 + xi + ei,1, ν2 +α+ βxi + εi + ei,2)

= cov (xi + ei,1, βxi + εi + ei,2)

= cov(xi,βxi) + cov(xi, εi) + cov(xi, ei,2) + cov(ei,1,βxi) + cov(ei,1, εi) + cov(ei,1, ei,2)

= cov(xi,xi)β
> + 0 + 0 + 0 + 0 + Ω12

= Φβ> + Ω12.

In this manner, we obtain the partitioned covariance matrix of the observable data di =
(w>i,1,v

>
i,1,w

>
i,2,v

>
i,2)> as

Σ =


Σ11 Σ12 Σ13 Σ14

Σ22 Σ23 Σ24

Σ33 Σ34

Σ44

 (48)

=


Φ + Ω11 Φβ> + Ω12 Φ Φβ>

βΦβ> + Ψ + Ω22 βΦ βΦβ> + Ψ

Φ + Ω33 Φβ> + Ω34

βΦβ> + Ψ + Ω44


The equality (48) corresponds to a system of ten matrix equations in nine matrix un-
knowns. The unknowns are the parameter matrices of Model (47): Φ, β, Ψ, Ω11, Ω22,
Ω33, Ω44, Ω12, and Ω34. In the solution below, notice that once a parameter has been
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identified, it may be used to solve for other parameters without explicitly substituting in
terms of Σij quantities. Sometimes a full explicit solution is useful, but to show identifi-
ability all you need to do is show that the moment structure equations can be solved.

Φ = Σ13 (49)

β = Σ23Φ
−1 = Σ>14Φ

−1

Ψ = Σ24 − βΦβ>

Ω11 = Σ11 −Φ

Ω22 = Σ22 − βΦβ> −Ψ

Ω33 = Σ33 −Φ

Ω44 = Σ44 − βΦβ> −Ψ

Ω12 = Σ12 −Φβ>

Ω34 = Σ34 −Φβ>

The solution (49) shows that the parameters appearing in the covariance matrix Σ are
identifiable. This includes the critical parameter matrix β, which determines the connec-
tion between explanatory variables and response variables.

Intercepts

In Model (47), let µ = E(di). This vector of expected values may be written as a
partitioned vector, as follows.

µ =


µ1

µ2

µ3

µ4

 =


E(wi,1)
E(vi,1)
E(wi,2)
E(vi,2)

 =


ν1 + µx
ν2 +α+ βµx
ν3 + µx
ν4 +α+ βµx

 . (50)

The parameters that appear in µ but not Σ are contained in ν1, ν2, ν3, ν4, µx and
α. To identify these parameters, one would need to solve the equations in (50) uniquely
for these six parameter vectors. Even with β considered known and fixed because it is
identified in (49), this is impossible in most of the parameter space, because (50) specifies
2m+ 2p equations in 3m+ 3p unknowns.

It is tempting to assume the measuremant bias terms ν1 . . . ,ν4 to be zero; this would
allow identification of α and µx. Unfortunately, it is doubtful that such an assumption
could be justified very often in practice. Most of the time, all we can do is identify the
parameter matrices that appear in the covariance matrix, and also the functions µ1 . . . ,µ4

of the parameters as given in equation (50). This can be viewed as a re-parameterization
of the model. In practice, the functions µ1 . . . ,µ4 of the parameters are usually not
of much interest. They are estimated by the corresponding sample means, conveniently
forgotten, and almost never mentioned.
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To summarize, the parameters appearing in the covariance matrix are identifiable.
This includes β, the quantity of primary interest. Means and intercepts are not identi-
fiable, but they are absorbed in a re-parameterization and set aside. It’s no great loss.
In practice, if data are collected following the double measurement recipe, then the data
analysis may proceed with no worries about parameter identifiability.

For the double measurement model, there are more covariance structure equations
than unknowns. Thus the model is over-identified, and testable. Notice in the covariance
structure equations (48), that Σ14 = Σ>23. As in the scalar Example 0.10.1 (see page 63),
this constraint on the covariance matrix Σ arises from the model, and provides a way to
test whether the model is correct. These pq equalities are not the only ones implied by
the model. Because Σ13 = Φ, the p× p matrix of covariances Σ13 is actually a covariance
matrix, so it is symmetric. This implies p(p− 1)/2 more equalities.

Estimation and testing

Normal model As in Example 0.10.1, the (collapsed) expected values are estimated
by the corresponding vector of sample means, and then set aside. Under a multivari-
ate normal model, these terms literally disappear from the likelihood function (42) on
page 65. The resulting likelihood is (43) on page 65. The full range of large-sample likeli-
hood methods is available. Maximum likelihood estimates are asymptotically normal, and
asymptotic standard errors are convenient by-products of the numerical minimization as
described in Section A.6.3 of Appendix A; most software produces them by default. Di-
viding an estimated regression coefficient by its standard error gives a Z-test for whether
the coefficient is different from zero. My experience is that likelihood ratio tests can sub-
stantially outperform both these Z-tests and the Wald tests that are their generalizations,
especially when there is a lot of measurement error, the explanatory variables are strongly
related to one another, and the sample size is not huge.

Distribution-free In presenting models for regression with measurement error, it is
often convenient to assume that everything is multivariate normal. This is especially true
when giving examples of models where the parameters are not identifiable. But normality
is not necessary. Suppose Model (47) holds, and that the distributions of of the latent
explanatory variables and error terms are unknown, except that they possess covariance
matrices, with ei,1 and ei,2 having zero covariance with ei,3 and ei,4. In this case the
parameter of the model could be expressed as θ = (β, Φ, Ψ, Ω, Fx, Fε, Fe), where Fx,
Fε and Fe are the (joint) cumulative distribution functions of xi, εi and ei respectively.

Note that the parameter in this “non-parametric” problem is of infinite dimension,
but that presents no conceptual difficulty. The probability distribution of the observed
data is still a function of the parameter vector, and to show identifiability, we would have
to be able to recover the parameter vector from the probability distribution of the data.
While in general we cannot recover the whole thing, we certainly can recover a useful
function of the parameter vector, namely β. In fact, β is the only quantity of interest;
the remainder of the parameter vector consists only of nuisance parameters, whether it is
of finite dimension or not.
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To make the reasoning explicit, the covariance matrix Σ is a function of the probability
distribution of the observed data, whether that probability distribution is normal or not.
The calculations leading to (49) still hold, showing that β is a function of Σ, and hence
of the probability distribution of the data. Therefore, β is identifiable.

This is all very well, but can we actually do anything without knowing what the dis-
tributions are? Certainly! Looking at (49), one is tempted to just put hats on everything
to obtain Method-of-Moments estimators. However, we can do a little better. Note that
while Φ = Σ12 is a symmetric matrix in the population and Σ̂12 converges to a symmetric
matrix, Σ̂12 will be non-symmetric for any finite sample size (with probability one if the
distributions involved are continuous). A better estimator is obtained by averaging pairs
of off-diagonal elements:

Φ̂M =
1

2
(Σ̂13 + Σ̂

>
13), (51)

where the subscript M indicates a Method-of-Moments estimator. Using the second line
of (49), a reasonable though non-standard estimator of β is

β̂M =
1

2

(
Σ̂
>
14 + Σ̂23

)
Φ̂
−1

M (52)

Consistency follows from the Law of Large Numbers and a continuity argument. All this
assumes the existence only of second moments and cross-moments. With the assumption
of fourth moments (so that sample variances possess variances), Theorem A.1 in Ap-
pendix A, combined with the multivariate delta method, provides a basis for large-sample
interval estimation and testing.

However, there is no need to bother. As described in Chapter 5, the normal-theory
tests and confidence intervals for β can be trusted when the data are not normal. Note
that this does not extend to the other model parameters. For example, if the vector of
latent variables xi is not normal, then normal-theory inference about its covariance matrix
will be flawed. In any event, the estimation method of choice will maximum likelihood,
with interpretive focus on the regression coefficients in β rather than on the other model
parameters.

0.10.4 The BMI Health Study

Body mass index (BMI) is defined as weight in kilograms divided by height in meters
squared. It represents weight relative to height, and is a measure of how thick, or hefty
a person is. People with a BMI less than 18 are described as underweight, those over 25
are described as overweight, and those over 30 are described as obese. However, many
professional athletes have BMI numbers in the overweight range.

High BMI tends to be associated with poor health, and with indicators such as high
blood pressure and high cholesterol. However, people with high BMI also tend to be older
and fatter. Perhaps age and physical condition are responsible for the association of BMI
to health. The natural idea is to look at the connection of BMI to health indicators,
controlling for age and some indicator of physical condition like percent body fat. The
problem is that percent body fat (and to a lesser extent, age) are measured with error. As

https://en.wikipedia.org/wiki/Body_mass_index
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discussed in Section 0.7, standard ways of controlling for them with ordinary regression
are highly suspect. The solution is double measurement regression.

Example 0.10.4 The BMI health study41

In this study, there are five latent variables. Each one was were measured twice, by
different personnel at different locations and mostly by different methods. The variables
are age, BMI, percent body fat, cholesterol level, and diastolic blood pressure.

• In measurement set one, age was self report. In measurement set two, age was based
on a passport or birth certificate.

• In measurement set one, the height and weight measurements making up BMI were
conducted in a doctor’s office, following no special procedures. In measurement set
two, they were conducted by a lab technician. Patients had to remove their shoes,
and wore a hospital gown.

• In measurement set one, estimated percent body fat was based on measurements
with tape and calipers, conducted in the doctor’s office. In measurement set two,
percent body fat was estimated by submerging the participant in a water tank
(hydrostatic weighing).

• In measurement set one, serum (blood) cholesterol level was measured in lab 1.
In measurement set two, it was measured in lab 2. There is no known difference
between the labs in quality.

• In measurement set one, diastolic blood pressure was measured in the doctor’s
office using a standard manual blood pressure cuff. In measurement set two, blood
pressure was measured in the lab by a digital device, and was mostly automatic.

Measurement set two was of generally higher quality than measurement set one. Corre-
lation of measurement errors is possible within sets, but unlikely between sets.

Figure 16 shows a regression model for the latent variables. Because all the vari-
ables are latent, they are enclosed in ovals. There are two response variables, so this is
multivariate regression.
First, we read the data and take a look. The variables are self-explanatory. There are
500 cases.

> bmidata = read.table("http://www.utstat.toronto.edu/~brunner/openSEM/data/bmi.data.txt")

> head(bmidata)

age1 bmi1 fat1 cholest1 diastol1 age2 bmi2 fat2 cholest2 diastol2

1 63 24.5 16.5 195.4 38 60 23.9 20.1 203.5 66

2 42 13.0 1.9 184.3 86 44 14.8 2.6 197.3 78

3 32 22.5 14.6 354.1 104 33 21.7 20.4 374.3 73

41This study is fictitious, and the data come from a combination of random number generation and
manual editing. As far as I know, nothing like this has actually been done. I believe it should be.
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Figure 16: Latent variable model for the BMI health study

age

bmi

fat

diastol

ε
1cholest

ε
2

4 59 25.5 19.0 214.6 93 58 28.5 20.0 203.7 106

5 45 26.5 17.8 324.8 97 43 25.0 12.3 329.7 92

6 31 19.4 17.1 280.7 92 42 19.9 19.9 276.7 87

The standard, naive approach to analyzing these data is to ignore the possibility of mea-
surement error, and use ordinary linear regression. One could either use just the better
set of measurements (set 2), or average them. Averaging is a little better, because it
improves reliability.

> age = (age1+age2)/2; bmi = (bmi1+bmi2)/2; fat = (fat1+fat2)/2

> cholest = (cholest1+cholest2)/2; diastol = (diastol1+diastol2)/2

There are two response variables (cholesterol level and diastolic blood pressure), so we
fit a conventional multivariate linear model, and look at the multivariate test of BMI
controlling for age and percent body fat. The full model has age, percent body fat and
BMI, while the restricted model has just age and percent body fat.

> fullmod = lm( cbind(cholest,diastol) ~ age + fat + bmi)

> restrictedmod = update(fullmod, . ~ . - bmi) # Remove var(s) being tested

> anova(fullmod,restrictedmod) # Gives multivariate test.

Analysis of Variance Table

Model 1: cbind(cholest, diastol) ~ age + fat + bmi

Model 2: cbind(cholest, diastol) ~ age + fat

Res.Df Df Gen.var. Pillai approx F num Df den Df Pr(>F)

1 496 591.89

2 497 1 599.36 0.02869 7.3106 2 495 0.0007431 ***

---

Signif. codes: 0 *** 0.001 ** 0.01 * 0.05 . 0.1 1
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The conclusion is that controlling for age and percent body fat, BMI is related to choles-
terol, or diastolic blood pressure, or both. The summary function gives two sets of uni-
variate output. Primary interest is in the t-tests for bmi.

> summary(fullmod) # Two sets of univariate output

Response cholest :

Call:

lm(formula = cholest ~ age + fat + bmi)

Residuals:

Min 1Q Median 3Q Max

-148.550 -34.243 2.626 33.661 165.582

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 220.0610 21.0109 10.474 < 0.0000000000000002 ***

age -0.2714 0.2002 -1.356 0.17578

fat 2.2334 0.5792 3.856 0.00013 ***

bmi 0.5164 1.0154 0.509 0.61128

---

Signif. codes: 0 *** 0.001 ** 0.01 * 0.05 . 0.1 1

Residual standard error: 52.43 on 496 degrees of freedom

Multiple R-squared: 0.09701,Adjusted R-squared: 0.09155

F-statistic: 17.76 on 3 and 496 DF, p-value: 0.00000000005762

Response diastol :

Call:

lm(formula = diastol ~ age + fat + bmi)

Residuals:

Min 1Q Median 3Q Max

-44.841 -7.140 -0.408 7.612 41.377

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 49.69194 4.52512 10.981 < 0.0000000000000002 ***

age 0.12648 0.04311 2.934 0.003504 **

fat 0.64056 0.12474 5.135 0.000000406 ***

bmi 0.82627 0.21869 3.778 0.000177 ***

---
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Signif. codes: 0 *** 0.001 ** 0.01 * 0.05 . 0.1 1

Residual standard error: 11.29 on 496 degrees of freedom

Multiple R-squared: 0.3333,Adjusted R-squared: 0.3293

F-statistic: 82.67 on 3 and 496 DF, p-value: < 0.00000000000000022

For cholesterol, we have t = 0.509 and p = 0.61128. The conclusion is that controlling for
age and percent body fat, there is no evidence of a connection between body mass index
and serum cholesterol level.

For diastolic blood pressure, the test of BMI controlling for age and percent body fat is
t = 3.778 and p = 0.000177. This time the conclusion is that even controlling for age and
percent body fat, higher BMI is associated with higher average diastolic blood pressure
– a bad sign for health. However, this “even controlling for” conclusion is exactly the
kind of mistake that is often caused by ignoring measurement error; see Section 0.7. So,
we specify a proper double measurement regression model. The names of latent variables
begin with L. I did this because I’d already used the natural names like age, bmi and
cholest earlier, and I wanted to avoid accidental conflicts.

bmimodel1 =

########################################################

# Latent variable model

# ---------------------

’Lcholest ~ beta11*Lage + beta12*Lbmi + beta13*Lfat

Ldiastol ~ beta21*Lage + beta22*Lbmi + beta23*Lfat

#

# Measurement model

# -----------------

Lage =~ 1*age1 + 1*age2

Lbmi =~ 1*bmi1 + 1*bmi2

Lfat =~ 1*fat1 +1*fat2

Lcholest =~ 1*cholest1 + 1*cholest2

Ldiastol =~ 1*diastol1 + 1*diastol2

#

# Variances and covariances

# -------------------------

# Of latent explanatory variables

Lage ~~ phi11*Lage; Lage ~~ phi12*Lbmi; Lage ~~ phi13*Lfat

Lbmi ~~ phi22*Lbmi; Lbmi ~~ phi23*Lfat

Lfat ~~ phi33*Lfat

# Of error terms in latent the regression (epsilon_ij)

Lcholest ~~ psi11*Lcholest; Lcholest ~~ psi12*Ldiastol

Ldiastol ~~ psi22*Ldiastol

# Of measurement errors (e_ijk) for measurement set 1

age1 ~~ w111*age1; age1 ~~ w112*bmi1; age1 ~~ w113*fat1;

age1 ~~ w114*cholest1; age1 ~~ w115*diastol1

bmi1 ~~ w122*bmi1; bmi1 ~~ w123*fat1; bmi1 ~~ w124*cholest1; bmi1 ~~ w125*diastol1

fat1 ~~ w133*fat1; fat1 ~~ w134*cholest1; fat1 ~~ w135*diastol1

cholest1 ~~ w144*cholest1; cholest1 ~~ w145*diastol1

diastol1 ~~ w155*diastol1

# Of measurement errors (e_ijk) for measurement set 2
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age2 ~~ w211*age2; age2 ~~ w212*bmi2; age2 ~~ w213*fat2;

age2 ~~ w214*cholest2; age2 ~~ w215*diastol2

bmi2 ~~ w222*bmi2; bmi2 ~~ w223*fat2; bmi2 ~~ w224*cholest2; bmi2 ~~ w225*diastol2

fat2 ~~ w233*fat2; fat2 ~~ w234*cholest2; fat2 ~~ w235*diastol2

cholest2 ~~ w244*cholest2; cholest2 ~~ w245*diastol2

diastol2 ~~ w255*diastol2

’ ################# End of bmimodel1 #################

When we try to fit this perfectly nice model, there is trouble.

> # install.packages("lavaan", dependencies = TRUE) # Only need to do this once

> library(lavaan)

This is lavaan 0.6-7

lavaan is BETA software! Please report any bugs.

> fit1 = lavaan(bmimodel1, data=bmidata)

Warning message:

Warning messages:

1: In lav_model_estimate(lavmodel = lavmodel, lavpartable = lavpartable, :

lavaan WARNING: the optimizer warns that a solution has NOT been found!

2: In lav_model_estimate(lavmodel = lavmodel, lavpartable = lavpartable, :

lavaan WARNING: the optimizer warns that a solution has NOT been found!

3: In lav_model_vcov(lavmodel = lavmodel, lavsamplestats = lavsamplestats, :

lavaan WARNING:

Could not compute standard errors! The information matrix could

not be inverted. This may be a symptom that the model is not

identified.

4: In lav_object_post_check(object) :

lavaan WARNING: some estimated lv variances are negative

We are warned that a numerical solution has not been found, and that the information
matrix (that’s the Fisher Information, the Hessian of the minus log likelihood) could
not be inverted. This means that the minus log likelihood is not strictly concave up in
every direction at the point where the search stopped, so the search has not located a
local minimum. lavaan speculates that “this may be a symptom that the model is not
identified,” but the guess is wrong. This is standard double measurement regression, and
we have proved that all the parameters are identifiable. At the end of the red warnings,
we are also informed that some estimated latent variable variances are negative. This
means that the numerical search for the MLE has left the parameter space.

The output of summary(fit1) is quite voluminous. There are 45 parameters, and
everything we do will generate a lot of output. It starts like this.

lavaan 0.6-7 ended normally after 4241 iterations

Estimator ML

Optimization method NLMINB

Number of free parameters 45
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Number of observations 500

Model Test User Model:

Test statistic 89.369

Degrees of freedom 10

P-value (Chi-square) 0.000

That’s a lot of iterations, and the criteria for “normal” convergence appear to be quite
forgiving. The output goes on. The last section gives variance estimates; as the warning
message said, one of them is negative.

Variances:

Estimate Std.Err z-value P(>|z|)

Lage (ph11) 146.720 NA

Lbmi (ph22) 12.318 NA

Lfat (ph33) 42.615 NA

.Lcholst (ps11) 169.820 NA

.Ldiastl (ps22) -2785.532 NA

.age1 (w111) 18.767 NA

.bmi1 (w122) 9.177 NA

.fat1 (w133) 18.669 NA

.cholst1 (w144) 200.123 NA

.diastl1 (w155) 204.316 NA

.age2 (w211) 8.326 NA

.bmi2 (w222) 2.460 NA

.fat2 (w233) 9.975 NA

.cholst2 (w244) 344.031 NA

.diastl2 (w255) 59.441 NA

Besides being negative, the value of ψ̂22 is very large in absolute value compared to the
other variances. This, combined with the large number of iterations, suggests that the
numerical search wandered off and gotten lost somewhere far from the actual MLE.

The minus log likelihood functions for structural equation models are characterized by
hills and valleys. There can be lots of local maxima and minima. While there will be a deep
hole somehere for a sufficiently large sample is the model is correct, the only guarantee of
finding it is to start the search close to the hole, where the surface is already sloping down
in the right direction. Otherwise, what happens will depend on the detailed topography
of the minus log likelihood, and finding the correct MLE is far from guaranteed.

Here, it seems that that lavaan’s default starting values, which often work quite well,
were fairly far from the global minimum. The search proceeded downhill, but only slightly
downhill after a while42, off into the distance in an almost featureless plain. It was never

42The verbose = TRUE option on the lavaan statement generated thousands of lines of output, not
shown here. The decrease in the minus log likelihood was more and more gradual near the end.
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going to arrive anywhere meaningful.
I tried setting boundaries to prevent variances from becoming negative, hoping the

search would bounce off the barrier into a better region of the parameter space. I added
the following to the model string bmimodel1,

# Bounds (Variances are positive)

# ------

phi11 > 0; phi22 > 0 ; phi33 > 0

psi11 > 0; psi22 > 0

w111 > 0; w122 > 0; w133 > 0; w144 > 0; w155 > 0;

w211 > 0; w222 > 0; w233 > 0; w244 > 0; w255 > 0

and then re-ran lavaan. The search converged “normally” after 1,196 iterations. This
time ψ̂22 was (just barely) positive, but we get this warning.

lavaan WARNING: covariance matrix of latent variables

is not positive definite;

use lavInspect(fit, "cov.lv") to investigate.

The lavInspect function is very useful and powerful. See help(lavInspect) for details.
Following their suggestion,

> lavInspect(fit1, "cov.lv")

Lage Lbmi Lfat Lchlst Ldistl

Lage 146.667

Lbmi 3.021 11.672

Lfat 24.479 21.887 43.473

Lcholest 21.588 65.420 121.015 2893.067

Ldiastol 37.581 26.730 54.471 109.211 140.689

That’s the estimated covariance matrix of the latent variables – very nice! It does not
really tell me much, except that the estimated variance of latent cholesterol level is sus-
piciously large compared to the other numbers in the matrix. To see that the matrix not
positive definite, one can look at the eigenvalues.

lvcov = lavInspect(fit1, "cov.lv"); eigen(lvcov)$values

[1] 2904.4720798211 198.2045328588 111.6623591169 21.2286105008 -0.0003796765

Sure enough, there’s a negative eigenvlue, so the matrix is not positive definite.
The only cure for this disease is better starting values. Commercial software for struc-

tural equation modeling uses a deep and sophisticated bag of tricks to pick starting values,
and SAS proc calis has no trouble with this model and these data model. However, as
of this writing, lavaan’s automatic starting values work okay only most of the time43.

43I’m not complaining. I am deeply grateful for lavaan, and if I want better starting values I should
develop the software myself. To me, this is not the most interesting project in the world, so it is on the
back burner.
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Here is a way to obtain good starting values for any structural equation model, pro-
vided the parameters are identifiable. Recall how the proof of identifiability goes. For
any model, the covariance matrix is a function of the model parameters: Σ = g(θ).
This equality represents the covariance structure equations. The parameters that ap-
pear in Σ are identifiable if the covariance structure equations can be solved to yield
θ = g−1(Σ). Provided the solution is available explicitly44, a method of moments estima-

tor is θ̂M = g−1(Σ̂), where Σ̂ denotes the sample variance-covariance matrix. Typically,
the function g−1 is continuous in most of the parameter space. In this case, the method
of moments estimator is guaranteed to be consistent by the Law of Large Numbers and
continuous mapping. Since the MLE is also consistent, it will be close to θ̂M for large
samples, and θ̂M should provide an excellent set of starting values.

For double measurement regression, the solution (49) represents θ = g−1(Σ). One

may start with Expression (51) for Φ̂M and Expression (52) for β̂M (see page 89), and
then use (49) for the rest of the parameters. This is done in the R work below.

> # Obtain the MOM estimates to use as starting values.

> head(bmidata)

age1 bmi1 fat1 cholest1 diastol1 age2 bmi2 fat2 cholest2 diastol2

1 63 24.5 16.5 195.4 38 60 23.9 20.1 203.5 66

2 42 13.0 1.9 184.3 86 44 14.8 2.6 197.3 78

3 32 22.5 14.6 354.1 104 33 21.7 20.4 374.3 73

4 59 25.5 19.0 214.6 93 58 28.5 20.0 203.7 106

5 45 26.5 17.8 324.8 97 43 25.0 12.3 329.7 92

6 31 19.4 17.1 280.7 92 42 19.9 19.9 276.7 87

> W1 = as.matrix(bmidata[,1:3]) # age1 bmi1 fat1

> V1 = as.matrix(bmidata[,4:5]) # cholest1 diastol1

> W2 = as.matrix(bmidata[,6:8]) # age2 bmi2 fat2

> V2 = as.matrix(bmidata[,9:10]) # cholest2 diastol2

> var(W1,W2) # Matrix of sample covariances

age2 bmi2 fat2

age1 148.220782 3.621581 25.29808

bmi1 5.035726 13.194016 21.42201

fat1 23.542289 20.613490 45.13296

> # Using S as short for Sigmahat, and not worrying about n vs. n-1,

> S11 = var(W1); S12 = var(W1,V1); S13 = var(W1,W2); S14 = var(W1,V2)

> S22 = var(V1); S23 = var(V1,W2); S24 = var(V1,V2)

> S33 = var(W2); S34 = var(W2,V2)

> S44 = var(V2)

> # The matrices below should all have "hat" in the name, because they are estimates

44For some models, an explicit solution is hard to obtain, even if you can prove it exists. That’s the
main obstacle to automating this process.
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> Phi = (S13+t(S13))/2

> rownames(Phi) = colnames(Phi) = c(’Lage’,’Lbmi’,’Lfat’); Phi

Lage Lbmi Lfat

Lage 148.220782 4.328654 24.42019

Lbmi 4.328654 13.194016 21.01775

Lfat 24.420185 21.017749 45.13296

> Beta = 0.5*(t(S14)+S23) %*% solve(Phi)

> rownames(Beta) = c(’Lcholest’,’Ldiastol’)

> colnames(Beta) = c(’Lage’,’Lbmi’,’Lfat’); Beta

Lage Lbmi Lfat

Lcholest -0.3851327 -0.1885072 2.968322

Ldiastol 0.0224190 -0.3556138 1.407425

> Psi = S24 - Beta %*% Phi %*% t(Beta)

> rownames(Psi) = colnames(Psi) = c(’Lcholest’,’Ldiastol’) # epsilon1, epsilon2

> Psi

Lcholest Ldiastol

Lcholest 2548.17303 -44.56069

Ldiastol -28.70087 57.64153

> # Oops, it should be symmetric.

> Psi = ( Psi+t(Psi) )/2; Psi

Lcholest Ldiastol

Lcholest 2548.17303 -36.63078

Ldiastol -36.63078 57.64153

> Omega11 = S11 - Phi; Omega11

age1 bmi1 fat1

age1 19.640040 4.610807 1.634183

bmi1 4.610807 8.699533 8.754484

fat1 1.634183 8.754484 15.033932

> Omega12 = S12 - ( S14+t(S23) )/2; Omega12

cholest1 diastol1

age1 4.499017 12.164192

bmi1 -1.517733 10.671443

fat1 3.888565 -2.196681

> Omega22 = S22-S24 # A little rough but consistent

> Omega22 = (Omega22 + t(Omega22) )/2

> Omega22

cholest1 diastol1

cholest1 213.76117 11.24971
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diastol1 11.24971 196.44520

> Omega33 = S33 - Phi; Omega33

age2 bmi2 fat2

age2 5.862661 -1.219843 -2.155736

bmi2 -1.219843 1.146991 -1.714769

fat2 -2.155736 -1.714769 10.033984

> Omega34 = S34 - ( S14+t(S23) )/2; Omega34

cholest2 diastol2

age2 -2.978041 0.7795992

bmi2 -1.206256 2.1081739

fat2 -6.422983 -4.9125882

> Omega44 = S44 - S24 ; Omega44 = ( Omega44 + t(Omega44) )/2

> Omega44

cholest2 diastol2

cholest2 333.45335 -21.65923

diastol2 -21.65923 47.23065

> round(Beta,3)

Lage Lbmi Lfat

Lcholest -0.385 -0.189 2.968

Ldiastol 0.022 -0.356 1.407

Please look at the last set of numbers. It is worth noting how far these method-of-moments
estimates are from the stopping place of the first numerical search. Here is a piece of the
output from the first summary(fit1), not shown before.

Estimate Std.Err z-value P(>|z|)

Lcholest ~

Lage (bt11) -26.391 NA

Lbmi (bt12) -354.932 NA

Lfat (bt13) 203.432 NA

Ldiastol ~

Lage (bt21) -28.583 NA

Lbmi (bt22) -390.464 NA

Lfat (bt23) 221.685 NA

While the method-of-moments estimates are promising as starting values, there is no
doubt that entering them all manually is a major pain. I was motivated and I was
confident it would work, so I did it. The model string is given below. As in Example 0.10.3,
variables appear twice, once to specify the parameter name and a second time to specify
the starting value.

> bmimodel2 =
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+ #

+ # Latent variable model

+ # ---------------------

+ ’Lcholest ~ beta11*Lage + beta12*Lbmi + beta13*Lfat +

+ start(-0.385)*Lage + start(-0.189)*Lbmi + start(2.968)*Lfat

+ Ldiastol ~ beta21*Lage + beta22*Lbmi + beta23*Lfat +

+ start(0.022)*Lage + start(-0.356)*Lbmi + start(1.407)*Lfat

+ #

+ # Measurement model

+ # -----------------

+ Lage =~ 1*age1 + 1*age2

+ Lbmi =~ 1*bmi1 + 1*bmi2

+ Lfat =~ 1*fat1 +1*fat2

+ Lcholest =~ 1*cholest1 + 1*cholest2

+ Ldiastol =~ 1*diastol1 + 1*diastol2

+ #

+ # Variances and covariances

+ # -------------------------

+ # Of latent explanatory variables

+ Lage ~~ phi11*Lage + start(148.220782)*Lage

+ Lage ~~ phi12*Lbmi + start(4.328654)*Lbmi

+ Lage ~~ phi13*Lfat + start(24.42019)*Lfat

+ Lbmi ~~ phi22*Lbmi + start(13.194016)*Lbmi

+ Lbmi ~~ phi23*Lfat + start(21.01775)*Lfat

+ Lfat ~~ phi33*Lfat + start(45.13296)*Lfat

+ # Of error terms in latent the regression (epsilon_ij)

+ Lcholest ~~ psi11*Lcholest + start(2548.17303)*Lcholest

+ Lcholest ~~ psi12*Ldiastol + start(-36.63078)*Ldiastol

+ Ldiastol ~~ psi22*Ldiastol + start(57.64153)*Ldiastol

+ # Of measurement errors (e_ijk) for measurement set 1

+ age1 ~~ w111*age1 + start(19.640040)*age1

+ age1 ~~ w112*bmi1 + start(4.610807)*bmi1

+ age1 ~~ w113*fat1 + start(1.634183)*fat1

+ age1 ~~ w114*cholest1 + start(4.499017)*cholest1

+ age1 ~~ w115*diastol1 + start(12.164192)*diastol1

+ bmi1 ~~ w122*bmi1 + start(8.699533)*bmi1

+ bmi1 ~~ w123*fat1 + start(8.754484)*fat1

+ bmi1 ~~ w124*cholest1 + start(-1.517733)*cholest1

+ bmi1 ~~ w125*diastol1 + start(10.671443)*diastol1

+ fat1 ~~ w133*fat1 + start(15.033932)*fat1

+ fat1 ~~ w134*cholest1 + start(3.888565)*cholest1

+ fat1 ~~ w135*diastol1 + start(-2.196681)*diastol1

+ cholest1 ~~ w144*cholest1 + start(213.76117)*cholest1

+ cholest1 ~~ w145*diastol1 + start(11.24971)*diastol1
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+ diastol1 ~~ w155*diastol1 + start(196.44520)*diastol1

+ # Of measurement errors (e_ijk) for measurement set 2

+ age2 ~~ w211*age2 + start(5.862661)*age2

+ age2 ~~ w212*bmi2 + start(-1.219843)*bmi2

+ age2 ~~ w213*fat2 + start(-2.155736)*fat2

+ age2 ~~ w214*cholest2 + start(-2.978041)*cholest2

+ age2 ~~ w215*diastol2 + start(0.7795992)*diastol2

+ bmi2 ~~ w222*bmi2 + start(1.146991)*bmi2

+ bmi2 ~~ w223*fat2 + start(-1.714769)*fat2

+ bmi2 ~~ w224*cholest2 + start(-1.206256)*cholest2

+ bmi2 ~~ w225*diastol2 + start(2.1081739)*diastol2

+ fat2 ~~ w233*fat2 + start(10.033984)*fat2

+ fat2 ~~ w234*cholest2 + start(-6.422983)*cholest2

+ fat2 ~~ w235*diastol2 + start(-4.9125882)*diastol2

+ cholest2 ~~ w244*cholest2 + start(333.45335)*cholest2

+ cholest2 ~~ w245*diastol2 + start(-21.65923)*diastol2

+ diastol2 ~~ w255*diastol2 + start(47.23065)*diastol2

+ # Bounds (Variances are positive)

+ # ------

+ phi11 > 0; phi22 > 0 ; phi33 > 0

+ psi11 > 0; psi22 > 0

+ w111 > 0; w122 > 0; w133 > 0; w144 > 0; w155 > 0;

+ w211 > 0; w222 > 0; w233 > 0; w244 > 0; w255 > 0

+ ’ ################# End of bmimodel2 #################

> fit2 = lavaan(bmimodel2, data=bmidata)

> summary(fit2)

lavaan 0.6-7 ended normally after 327 iterations

Estimator ML

Optimization method NLMINB

Number of free parameters 45

Number of inequality constraints 15

Number of observations 500

Model Test User Model:

Test statistic 4.654

Degrees of freedom 10

P-value (Chi-square) 0.913

Parameter Estimates:

Standard errors Standard
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Information Expected

Information saturated (h1) model Structured

Latent Variables:

Estimate Std.Err z-value P(>|z|)

Lage =~

age1 1.000

age2 1.000

Lbmi =~

bmi1 1.000

bmi2 1.000

Lfat =~

fat1 1.000

fat2 1.000

Lcholest =~

cholest1 1.000

cholest2 1.000

Ldiastol =~

diastol1 1.000

diastol2 1.000

Regressions:

Estimate Std.Err z-value P(>|z|)

Lcholest ~

Lage (bt11) -0.320 0.228 -1.404 0.160

Lbmi (bt12) 0.393 1.708 0.230 0.818

Lfat (bt13) 2.774 0.980 2.829 0.005

Ldiastol ~

Lage (bt21) 0.020 0.050 0.407 0.684

Lbmi (bt22) -0.480 0.419 -1.145 0.252

Lfat (bt23) 1.480 0.235 6.312 0.000

Covariances:

Estimate Std.Err z-value P(>|z|)

Lage ~~

Lbmi (ph12) 4.161 2.141 1.944 0.052

Lfat (ph13) 23.321 3.986 5.851 0.000

Lbmi ~~

Lfat (ph23) 20.976 1.584 13.244 0.000

.Lcholest ~~

.Ldiastl (ps12) -45.870 24.969 -1.837 0.066

.age1 ~~

.bmi1 (w112) 3.998 0.945 4.231 0.000

.fat1 (w113) 2.389 1.505 1.587 0.112
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.cholst1 (w114) 2.705 9.091 0.297 0.766

.diastl1 (w115) 10.562 3.824 2.762 0.006

.bmi1 ~~

.fat1 (w123) 8.968 0.956 9.382 0.000

.cholst1 (w124) -0.888 4.178 -0.212 0.832

.diastl1 (w125) 10.060 2.274 4.424 0.000

.fat1 ~~

.cholst1 (w134) 7.916 6.741 1.174 0.240

.diastl1 (w135) -2.928 3.409 -0.859 0.390

.cholest1 ~~

.diastl1 (w145) -0.107 16.907 -0.006 0.995

.age2 ~~

.bmi2 (w212) -0.661 0.735 -0.899 0.369

.fat2 (w213) -2.703 1.369 -1.974 0.048

.cholst2 (w214) -1.964 8.962 -0.219 0.827

.diastl2 (w215) 2.274 2.710 0.839 0.401

.bmi2 ~~

.fat2 (w223) -1.849 0.705 -2.624 0.009

.cholst2 (w224) -2.650 3.476 -0.762 0.446

.diastl2 (w225) 2.652 1.487 1.784 0.074

.fat2 ~~

.cholst2 (w234) -11.370 6.546 -1.737 0.082

.diastl2 (w235) -4.839 2.536 -1.908 0.056

.cholest2 ~~

.diastl2 (w245) -8.964 12.605 -0.711 0.477

Variances:

Estimate Std.Err z-value P(>|z|)

Lage (ph11) 147.330 9.699 15.190 0.000

Lbmi (ph22) 13.341 0.986 13.528 0.000

Lfat (ph33) 44.485 3.101 14.345 0.000

.Lcholst (ps11) 2534.507 171.258 14.799 0.000

.Ldiastl (ps22) 56.169 9.221 6.092 0.000

.age1 (w111) 18.584 2.914 6.378 0.000

.bmi1 (w122) 8.665 0.708 12.239 0.000

.fat1 (w133) 16.124 1.659 9.717 0.000

.cholst1 (w144) 200.103 57.422 3.485 0.000

.diastl1 (w155) 195.040 14.323 13.617 0.000

.age2 (w211) 6.861 2.701 2.540 0.011

.bmi2 (w222) 1.089 0.491 2.220 0.026

.fat2 (w233) 9.332 1.539 6.065 0.000

.cholst2 (w244) 344.454 60.290 5.713 0.000

.diastl2 (w255) 48.350 8.246 5.864 0.000
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Constraints:

|Slack|

phi11 - 0 147.330

phi22 - 0 13.341

phi33 - 0 44.485

psi11 - 0 2534.507

psi22 - 0 56.169

w111 - 0 18.584

w122 - 0 8.665

w133 - 0 16.124

w144 - 0 200.103

w155 - 0 195.040

w211 - 0 6.861

w222 - 0 1.089

w233 - 0 9.332

w244 - 0 344.454

w255 - 0 48.350

With these starting values, the maximum likelihood search converged after 327 iterations.
The likelihood ratio chi-squared test of model fit indicated no problems: G2 = 4.654, df =
10, p = 0.913. Primary interest is in the relationship of latent (true) BMI to latent
cholesterol level and latent blood pressure, controlling for latent age and latent percent
body fat. When measurement error was taken into account using double measurement,
neither relationship was statistically significant at the 0.05 level. For cholesterol, Z =
0.230 and p = 0.818. For diastolic blood pressure, Z = −1.145 and p = 0.252. This is in
contrast to the conclusion from naive ordinary least squarees regression, which was that
controlling for age and percent body fat, higher BMI was associated with higher average
diastolic blood pressure. Brunner and Austin (1992; also see Section 0.7) have shown how
this kind of “even controlling for” conclusion is the kind of error that tends to creep in
with ordinary regression, when the explanatory variables are measured with error. Double
measurement regression has more credibility.

Plenty more tests based on this model are possible and worthwhile, but BMI controlling
for age and percent body fat is the main issue. Just as a demonstration, let’s look
at one more test, a likelihood ratio test of BMI controlling for age and percent body
fat, for cholesterol and diastolic blood pressure simultaneously. The null hypothesis is
H0 : β21 = β22 = 0. We begin by fitting a restricted model45. Note that each constraint
has to go on a separate line.

> nobmi = lavaan(bmimodel2, data=bmidata,

+ constraints = ’beta12 == 0

+ beta22 == 0’)

45It is a relief that the non-zero starting values for β21 and β22 in bmimodel2 do not conflict with the
constraint that sets them equal to zero.
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>

> anova(nobmi,fit2)

Chi Square Difference Test

Df AIC BIC Chisq Chisq diff Df diff Pr(>Chisq)

fit2 10 35758 35947 4.6537

nobmi 12 35755 35936 6.1457 1.492 2 0.4743

Again, the conclusion is that allowing for age and percent body fat, there is no evidence
of a connection between BMI and either health indicator.

0.11 Extra Response Variables

Sometimes, double measurement is not a practical alternative. Perhaps the data are
already collected, and the study was designed without planning for a latent variable
analysis. The guilty parties might be academic or private sector researchers who do not
know what a parameter is, much less parameter identifiability. Or, the data might have
been collected for some purpose other than research. For example, a paper mill might
report the amount and concentrations of poisonous chemicals they dump into a nearby
river. They take the measurements because they have agreed to do so, or because they
are required to do it by law — but they certainly are not going to do it twice. Much
economic data and public health data is of this kind.

In such situations, all one can do is to use what information happens to be available.
While most research studies will not contain multiple measurements of the explanatory
variables, they often will have quite a few possible response variables. These variables
might already be part of the data set, or possibly the researchers could go back and collect
them without an unbearable amount of effort. It helps if these extra response variables
are from a different domain than the response variable of interest, so one can make a case
that the extra variables and the response variables of interest are not affected by common
omitted variables. In the path diagrams, this is represented by the absence of curved,
double-headed arrows connecting error terms. It is a critical part of the recipe.

One explanatory variable

In a simple measurement error regression model like the one in Example 0.8.1, suppose
that we have access to data for a second response variable that depends on the latent
explanatory variable Xi. Our main interest is still in the response variable Yi. The other
response variable may or may not be interesting in its own right; it is included as a way
of getting around the identifiability problem.

Example 0.11.1 One Extra Response Variable
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Figure 17: Y2 is an extra response variable
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Here is the expanded version of the model. The original response variable Yi is now called
Yi,1. Independently for i = 1, . . . , n.

Wi = ν +Xi + ei (53)

Yi,1 = α1 + β1Xi + εi,1

Yi,2 = α2 + β2Xi + εi,2

where ei, εi,1 and εi,2 are all independent, V ar(Xi) = φ, V ar(εi,1) = ψ1, V ar(εi,2) = ψ2,
V ar(ei) = ω, E(Xi) = µx, and the expected values of all error terms are zero. Figure 17
shows a path diagram of this model.

It is usually helpful to check the parameter count rule (Rule 1) before doing detailed
calculations. For this model, there are ten parameters: θ = (ν, α1, α2, β1, β2, µx, φ, ω, ψ1, ψ2).
Writing the vector of observable data for case i as Di = (Wi, Yi,1, Yi,2)>, we see that
µ = E(Di) has three elements and Σ = cov(Di) has 3(3 + 1)/2 = 6 unique elements.
Thus identifiability of the entire parameter vector is ruled out in most of the parameter
space. However, it turns out that useful functions of the parameter vector are identifiable,
and this includes β1, the parameter of primary interest.

Based on our experience with the double measurement model, we are pessimistic
about identifying expected values and intercepts. So consider first the covariance matrix.
Elements of Σ = cov(Di) may be obtained by elementary one-variable calculations, like
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V ar(Wi) = V ar(ν +Xi + ei) = V ar(Xi) + V ar(ei) = φ+ ω, and

Cov(Wi, Yi,i) = Cov(Xi + ei, β1Xi + εi,1)

= β1Cov(Xi, Xi) + Cov(Xi, εi,1) + β1Cov(ei, Xi) + Cov(ei, εi,1)

= β1V ar(X) + 0 + 0 + 0

= β1φ

In this way we obtain

Σ =

 σ11 σ12 σ13

σ22 σ23

σ33

 =

 φ+ ω β1φ β2φ
β2

1φ+ ψ1 β1β2φ
β2

2φ+ ψ2

 ,

which is a nice compact way to look at the six covariance structure equations in six
unknown parameters. The fact that there are the same number of equations and unknowns
does not guarantee the existence of a unique solution; it merely tells us that a unique
solution is possible. It turns out that for this model, identifiability depends on where
in the parameter space the true parameter is located. In the following, please bear in
mind that the only parameter we really care about is β1, which represents the connection
between X and Y1. All the other parameters are just nuisance parameters.

Since σ12 = 0 if and only if β1 = 0, the parameter β1 is identifiable whenever it equals
zero. But then both σ12 = 0 and σ23 = 0, reducing the six equations in six unknowns to
four equations in five unknowns, meaning the other parameters in the covariance matrix
can’t all be recovered.

But what if β1 does not equal zero? At those points in the parameter space where β2

is non-zero, β1 = σ23
σ13

. This means that adding Y2 to the model bought us what we need,
which is the possibility of correct estimation and inference about β1. Note that stipulating
β2 6= 0 is not a lot to ask, because it just means that the extra variable is related to the
response variable. Otherwise, why include it46?

If both β1 6= 0 and β2 6= 0, all six parameters in the covariance matrix can be recovered

46Moreover, one can rule out β2 = 0 by a routine test of the correlation between W and Y2. This kind
of test is very helpful (assuming the data are in hand), because for successful inference it’s not necessary
for the entire parameter to be identifiable everywhere in the parameter space. It’s only necessary for the
interesting part of the parameter vector to be identifiable in the region of the parameter space where the
true parameter is located.
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by simple substitutions as follows:

β1 =
σ23

σ13

(54)

β2 =
σ23

σ12

φ =
σ12σ13

σ23

ω = σ11 −
σ12σ13

σ23

ψ1 = σ22 −
σ12σ23

σ13

ψ2 = σ33 −
σ13σ23

σ12

This is a success, but actually the job is not done yet. Four additional parameters appear
only in the expected value of the data vector; they are the expected value and intercepts:
ν, µx, α1, and α2. We have

µ1 = ν + µx (55)

µ2 = α1 + β1µx

µ3 = α2 + β2µx

Even treating β1 and β2 as known because they can be identified from the covariance
matrix, this system of three linear equations in four unknowns does not have a unique
solution.

As in the double measurement case, this lack of identifiability is really not too serious,
because our primary interest is in β1. So we re-parameterize, absorbing the expected value
and intercepts into µ exactly as defined in the mean structure equations (55). The new
parameters µ1, µ2 and µ3 may not be very interesting in their own right, but they can be
safely estimated by the vector of sample means and then disregarded.

To clarify, the original parameter was

θ = (ν, µx, α1, α2, β1, β2, φ, ω, ψ1, ψ2).

Now it’s
θ = (µ1, µ2, µ3, β1, β2, φ, ω, ψ1, ψ2).

The dimension of the parameter space is now one less, and we haven’t lost anything that is
either accessible or important. This is all the more true because the model pretends that
the response variables are measured without error. Actually, the equations for Yi,1 and Yi,2
should be viewed as re-parameterizations like the one in Expression (32) on page 46, and
the intercepts α1 and α2 are already the original intercepts plus un-knowable measurement
bias terms.

To an important degree, this is the story of structural equation models. The mod-
els usually used in practice are not what the scientist or statistician originally had in
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mind. Instead, they are the result of judicious re-parameterizations, in which the original
parameter vector is collapsed into a vector of functions of the parameters that are identi-
fiable, and at the same time allow valid inference about the original parameters that are
of primary interest.

Example 0.11.1 is interesting for another reason. The purpose of all this is to test
H0 : β1 = 0, but even if an assumption of normality is justified, the usual normal theory
tests will break down if the null hypothesis is true. Though β1 is identifiable when
the null hypothesis is true, the entire parameter vector is not. There will be trouble
fitting the restricted model needed for a likelihood ratio test, because infinitely many sets
(β2, φ, ψ2, ω) yield the same covariance matrix when β1 = 0.

The Wald test will suffer too, even though it requires fitting only the unrestricted
model. For one thing, local identifiability at the true parameter value is assumed in the
proof of asymptotic normality of the MLE, and I don’t see a way of getting around it; see
for example Davison [20], p. 119 and Wald [66]. Even setting theoretical considerations
aside, the experience of fitting the unrestricted model and trying to test H0 : β1 = 0 is
likely to be unpleasant. This is illustrated in a small-scale simulation study.

A little simulation study

Using R, n sets of independent (Wi, Yi,1, Yi,2) triples were generated from Model (53), with
β1 = 0, β2 = 1, and φ = ω = ψ1 = ψ2 = 1. Note that this makes H0 : β1 = 0 true, and
the entire parameter vector is not identifiable. The expected values and intercepts were
all zero, and all the variables were normally distributed. This was carried out 1,000 times
for n = 50, 100, 500 and 1000, and lavaan was used to fit the model to each simulated
data set. Here is the code.

###############################################

# Run n = 50, 100, 500, 1000 separately

###############################################

rm(list=ls()); options(scipen=999)

# install.packages("lavaan", dependencies = TRUE) # Only need to do this once

library(lavaan)

n = 50 # Set the sample size here

# Parameters

beta1 = 0; beta2 = 1; phi = 1; omega = 1; psi1 = 1; psi2 = 1

# Initialize

M = 1000

converged = logical(M) # Did the numerical search converge?

posvar = logical(M) # Are all the estimated variances positive?

# Only have to define the model once.

mod1 = ’Y1 ~ beta1*X # Latent variable model

Y2 ~ beta2*X

X =~ 1.0*W # Measurement model

# Variances (covariances would go here too)
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X~~phi*X # Var(X) = phi

W ~~ omega*W # Var(e) = omega

Y1 ~~ psi1*Y1 # Var(epsilon1) = psi1

Y2 ~~ psi2*Y2 # Var(epsilon2) = psi2

’

# Simulate: Random number seed is sample size

set.seed(n)

for(sim in 1:M)

{

x = rnorm(n,0,sqrt(phi)); e = rnorm(n,0,sqrt(omega))

epsilon1 = rnorm(n,0,sqrt(psi1)); epsilon2 = rnorm(n,0,sqrt(psi2))

W = x + e

Y1 = beta1*x + epsilon1

Y2 = beta2*x + epsilon2

simdat = data.frame( cbind(W,Y1,Y2) ) # Data must be in a data frame

fit1 = lavaan(mod1, data = simdat) # Fit the model

# Gather data on this simulation

converged[sim] = lavInspect(fit1,"converged") # Checking convergence

posvar[sim] = lavInspect(fit1,"post.check") # All estimated variances positive?

} # Next sim

addmargins(table(converged,posvar)) # Look at results

Table 3 shows that the numerical maximum likelihood search converged to a point in the
parameter space only about one third of the time. For about one third of the simulations,

Table 3: Simulation from Model (53)

Sample Size
n = 50 n = 100 n = 500 n = 1, 000

Did not converge 366 310 327 355
Converged, but at least one
negative variance estimate 322 336 315 302
Converged, variance estimates
all positive 312 354 358 343

Total 1,000 1,000 1,000 1,000

the search failed to converge, and for one third the search converged, but to an answer
with negative variance estimates47. I expected the problems to be worse with larger

47You might be thinking that convergence to a solution with negative variance estimates could be
caused by poor starting values. This was not the case. When the numerical search converged, it was
almost always to the correct MLE; this happened 2,614 times out of 2,642. How do we know what the
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sample sizes, but this did not happen. In any case, fitting the unrestricted model will be
confusing and frustrating about two-thirds of the time for this example.

There is a general lesson here, and a way out in this particular case. The general
lesson is to re-verify parameter identifiability when the null hypothesis is true, bearing in
mind that likelihood methods depend on identifiability of the entire parameter vector. It
is better to anticipate trouble and avoid it than to be confused by it once it happens.

As for the way out of the haunted house, note that if β2 6= 0, the null hypothesis β1 = 0
is true if and only if σ12 = σ23 = 0. This null hypothesis can be tested using a generic,
unstructured multivariate normal model for the observable data. The likelihood ratio
test, like the Wald test, will have two degrees of freedom. If the normal assumption is a
source of discomfort, try testing a couple of Spearman rank correlations with a Bonferroni
correction. More generally, we will see shortly that having more than one extra response
variable can yield identifiability whether or not H0 : β1 = 0 is true. This is a better
solution if it’s possible, because it makes the analysis more routine.

Example 0.11.2 Correlation between explanatory variables and error terms

Recalling Section 0.4 on omitted variables in regression, it is remarkable that while the
explanatory variable Xi must not be correlated with the error term εi,1, the error term
εi,2 (corresponding to the extra variable Yi,2) is allowed to be correlated with Xi, perhaps
reflecting the operation of omitted explanatory variables that affect Yi,2 and have non-zero
covariance with Xi. Figure 18 shows a path diagram of this model.

Figure 18: Error term correlated with the explanatory variable
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correct MLE was? By invariance. This is a saturated model, in which the number of parameters equals
the number of unique variances and covariances. Thus, putting hats on the solution (54) yields the exact
maximum likelihood estimates. Note that under the normal model, the joint distribution of the unique
elements of Σ̂ is continuous, so that with probability one there will be no division by zero.
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Suppose Cov(Xi, εi,2) = κ, which might be non-zero. This means that seven unknown
parameters appear in the six covariance structure equations, and the parameter count
rule warns us that it will be impossible to identify them all. Proceeding anyway, the
covariance matrix of Di becomes σ11 σ12 σ13

σ22 σ23

σ33

 =

 φ+ ω β1φ β2φ+ κ
β2

1φ+ ψ1 β1β2φ+ β1κ
β2

2φ+ ψ2 + 2β2κ

 .

Assuming as before that Y2 is a useful extra variable so that β2 6= 0,

σ23

σ13

=
β1(β2φ+ κ)

β2φ+ κ
= β1. (56)

In fact, if κ 6= 0, we don’t even need β2 6= 0 to identify β1. That is, the extra response
variable does not need be influenced by the latent explanatory variable. It need only be
influenced by some unknown variable or variables that are correlated with the explanatory
variable. Far from being a problem in this case, the omitted variables made it easier to
get at β1. In Figure 18, Y2 is an instrumental variable, a point to which we will return in
Section 0.12.

As in Example 0.11.1, testing H0 : β1 = 0 is non-standard because while β1 is identifi-
able, the entre parameter vector is not. We can deal with this kind of complication if we
need to, but everything is much easier with more than one extra variable.

Example 0.11.3 More Than One Extra Response Variable

Suppose that the data set contains another two variables that depend on the latent ex-
planatory variable Xi. Our main interest is still in the response variable Yi,1; the other
two are just to help with identifiability. Now the model is, independently for i = 1, . . . , n,

Wi = ν +Xi + ei (57)

Yi,1 = α1 + β1Xi + εi,1

Yi,2 = α2 + β2Xi + εi,2

Yi,3 = α3 + β3Xi + εi,3,

where ei, ei, εi,1, εi,2 and εi,3 are all independent, V ar(Xi) = φ, V ar(εi,1) = ψ1, V ar(εi,2) =
ψ2, V ar(εi,3) = ψ3, V ar(ei) = ω, E(Xi) = µx and the expected values of all error terms
are zero.

Writing the vector of observable data for case i as Di = (Wi, Yi,1, Yi,2, Yi,3)>, we have

µ = E


Wi

Yi,1
Yi,2
Yi,3

 =


ν + µx
α1 + β1µx
α2 + β2µx
α3 + β3µx


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and

Σ =


φ+ ω β1φ β2φ β3φ

β2
1φ+ ψ1 β1β2φ β1β3φ

β2
2φ+ ψ2 β2β3φ

β2
3φ+ ψ3

 . (58)

As before, it is impossible to identify the intercepts and expected values, so we re-
parameterize, absorbing them into a vector of expected values which we estimate with
the corresponding vector of sample means; we never mention them again.

To establish identifiability of the parameters that appear in the covariance matrix, the
task is to solve the following ten equations for the eight unknown parameters φ, ω, β1,
β2, β3, ψ1, ψ2, and ψ3:

σ11 = φ+ ω (59)

σ12 = β1φ

σ13 = β2φ

σ14 = β3φ

σ22 = β2
1φ+ ψ1

σ23 = β1β2φ

σ24 = β1β3φ

σ33 = β2
2φ+ ψ2

σ34 = β2β3φ

σ44 = β2
3φ+ ψ3

Assuming the extra variables are well-chosen so that both β2 and β3 are both non-zero,

σ13σ14

σ34

=
β2β3φ

2

β2β3φ
= φ. (60)

Then, simple substitutions allow us to solve for the rest of the parameters, yielding the
complete solution
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φ =
σ13σ14

σ34

(61)

ω = σ11 −
σ13σ14

σ34

β1 =
σ12σ34

σ13σ14

β2 =
σ34

σ14

β3 =
σ34

σ13

ψ1 = σ22 −
σ2

12σ34

σ13σ14

ψ2 = σ33 −
σ13σ34

σ14

ψ3 = σ44 −
σ14σ34

σ13

This proves identifiability at all points in the parameter space where β2 6= 0 and β3 6= 0.
The extra variables Y2 and Y3 have been chosen so as to guarantee this, and in any case
the assumption is testable.

The solution (61) is thorough but somewhat tedious, even for this simple example.
The student may wonder how much work really needs to be shown. I would suggest
showing the calculations leading to the covariance matrix (58), saying “Denote the i, j
element of Σ by σij,” skipping the system of equations (59) because they are present
in (58), and showing the solution for φ in (60), including the stipulation that β2 and β3

are both non-zero. Then, instead of the explicit solution (61), write something like this:

ω = σ11 − φ
β1 =

σ12

φ

β2 =
σ13

φ

β3 =
σ14

φ

ψ1 = σ22 − β2
1φ

ψ2 = σ33 − β2
2φ

ψ3 = σ44 − β2
3φ

Notice how once we have solved for a model parameter, we use it to solve for other
parameters without explicitly substituting in terms of σij. The objective is to prove that
a unique solution exists by showing how to get it. A full statement of the solution is not
necessary unless you need it for some other purpose, like method of moments estimation.
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With two (or more) extra variables, the identifiability argument does not need to
be as fussy about the locations in the parameter space where different functions of the
parameter vector are identifiable. In particular, there is no loss of identifiability under the
natural null hypothesis that β1 = 0, and testing that null hypothesis presents no special
difficulties.

Constraints on the covariance matrix Like the double measurement model, the
model of Example 0.11.3 imposes equality constraints on the covariance matrix of the
observable data. In the solution given by (61), the critical parameter β1 is recovered by
β1 = σ12σ34

σ13σ14
, but a look at the covariance structure equations (59) shows that β1 = σ23

σ13
and β1 = σ24

σ14
are also correct. These seemingly different ways of solving for the parameter

must be the same. That is,

σ12σ34

σ13σ14

=
σ23

σ13

and
σ12σ34

σ13σ14

=
σ24

σ14

.

Simplifying a bit yields

σ12σ34 = σ14σ23 = σ13σ24. (62)

Since all three products equal β1β2β3φ
2, the model clearly implies the equality con-

straints (62) even where the identifiability conditions β2 6= 0 and β3 6= 0 do not hold.

What is happening geometrically is that the covariance structure equations are map-
ping a parameter space48 of dimension eight into a moment space of dimension ten. The
image of the parameter space is an eight-dimensional surface in the moment space, con-
tained in the set defined by the relations (62). Ten minus eight equals two, the number
of over-identifying restrictions.

We will see later that even models with non-identifiable parameters can imply equality
constraints. Also, models usually imply inequality constraints on the variances and covari-
ances, whether the parameters are identifiable or not. For example, in (61), φ = σ13σ14

σ34
.

Because φ is a variance, we have the inequality restriction σ13σ14
σ34

> 0, something that is
not automatically true of covariance matrices in general. Inequalities like this are testable,
and provide a valuable way of challenging, or disconfirming a model.

Multiple explanatory variables

Most real-life models have more than one explanatory variable. No special difficulties arise
for the device of introducing extra response variables. In fact, the presence of multiple
explanatory variables only provides more ways to identify the parameters and more over-
identifying restrictions.

Example 0.11.4 Two explanatory variables and two extra response variables

48Actually it’s a subset of the parameter space, containing just those parameters that appear in the
covariance matrix,
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Here is an example with two explanatory variables and a single extra response variable
for each one. Independently for i = 1, . . . , n,

Wi,1 = ν1 +Xi,1 + ei,1 (63)

Yi,1 = α1 + β1Xi,1 + εi,1

Yi,2 = α2 + β2Xi,1 + εi,2

Wi,2 = ν2 +Xi,2 + ei,2

Yi,3 = α3 + β3Xi,2 + εi,3

Yi,4 = α4 + β4Xi,2 + εi,4

where E(Xi,j) = µj, ei,j and εi,j are independent of one another and of Xi,j, V ar(ei,j) = ωj,
V ar(εi,j) = ψj, and

cov

(
Xi,1

Xi,1

)
=

(
φ11 φ12

φ12 φ22

)
.

As usual, intercepts and expected values can’t be recovered individually. Eight parameters
are intercepts and expected values of latent variables that appear in the expressions for
only six expected values of the observable variables. So we re-parameterize, absorbing
them into µ1, . . . , µ6. Then we estimate µ with the vector of 6 sample means and set it
aside, forever.

Denoting the data vectors by Di = (Wi,1, Yi,1, Yi,2,Wi,2, Yi,3, Yi,4)>, the covariance ma-
trix Σ = cov(Di) is

[σij] =


φ11 + ω1 β1φ11 β2φ11 φ12 β3φ12 β4φ12

β2
1φ11 + ψ1 β1β2φ11 β1φ12 β1β3φ12 β1β4φ12

β2
2φ11 + ψ2 β2φ12 β2β3φ12 β2β4φ12

φ22 + ω2 β3φ22 β4φ22

β2
3φ22 + ψ3 β3β4φ22

β2
4φ22 + ψ4


Disregarding the expected values, the parameter49 is

θ = (β1, β2, β3, β4, φ11, φ12, φ22, ω1, ω2, ψ1, ψ2, ψ3, ψ4).

Since θ has 13 elements and Σ has 6(6+1)
2

= 21 variances and non-redundant covariances,
this problem easily passes the test of the parameter count rule. Provided the parameter
vector is identifiable, the model will impose 21 − 13 = 8 over-identifying restrictions on
Σ.

First notice that if φ12 6= 0, all the regression coefficients are immediately identifiable.
Since the extra variables Y2 and Y4 are presumably well-chosen, it may be assumed that

49Since the distributions of the random variables in the model are unspecified, one could say that they
are also unknown parameters. In this case, the quantity θ is really a function of the full parameter vector,
even after the re-parameterization of intercepts and expected values.
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β2 6= 0 and β4 6= 0. In that case, the entire parameter vector is identifiable — for example
identifying φ11 from σ12 and then ω1 from σ11 . . . .

Since it is very common for explanatory variables to be related to one another in non-
experimental studies, assumptions like φ12 6= 0 are very reasonable, and in any case are
testable as part of an exploratory data analysis. So, extension of this design to data sets
with more than two explanatory variables is straightforward, and identifiability follows
without detailed calculations.

Example 0.11.5 Two explanatory variables, one response variable of primary interest,
and one extra response variable for each explanatory variable.

In this example, each explanatory variable has its own extra response variable, but they
share a response variable of primary interest. This is more interesting, because now one
can speak of one explanatory variable controlling for the other, as in ordinary regression.
Figure 19 shows the path diagram.

Figure 19: Two explanatory variables with one extra response variable each, plus a single
response variable of interest
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The formal statement of this model dispenses with intercepts and expected values.
They are really present, but because they are not identifiable separately, they are not
even mentioned. This is common in structural equation modeling. Independently for
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i = 1, . . . , n, let

Wi,1 = Xi,1 + ei,1

Wi,2 = Xi,2 + ei,2

Yi,1 = β1Xi,1 + εi,1

Yi,2 = β2Xi,2 + εi,2

Yi,3 = β3Xi,1 + β4Xi,2 + εi,3

where

• The Xi,j variables are latent, while the Wi,j and Yi,j variables are observable.

• ei,1 ∼ N(0, ω1) and ei,2 ∼ N(0, ω2).

• εi,j ∼ N(0, ψj) for j = 1, 2, 3.

• ei,j and εi,j are independent of each other and of Xi,j.

• Xi,j have covariance matrix

cov

(
Xi,1

Xi,2

)
=

(
φ11 φ12

φ12 φ22

)
.

Denote the vector of observable data by Di = (Wi,1, Yi,1,Wi,2, Yi,2, Yi,3)>, with cov(Di) =
Σ = [σij].

Among other things, this example illustrates how the search for identifiability can
be supported by exploratory data analysis. Hypotheses about single covariances, like
H0 : σij = 0 can be tested by looking at tests of the corresponding correlations. These
tests, including non-parametric tests based on the Spearman rank correlation, are easily
obtained using R’s cor.test function.

The parameter vector50 for this problem is θ = (φ11, φ12, φ22, ω1, ω2, β1, β2, β3, β4, ψ1, ψ2, ψ3)>.
There are 12 parameters and 5 observable variables, so that the covariance matrix has
5(5 + 1)/2 = 15 unique variances and covariances. Thus there are 15 covariance structure
equations in 12 unknowns, and the parameter count rule tells us that identifiability in
most of the parameter space is possible but not guaranteed.

The matrix equation 64 shows the covariance structure equations in a compact form.
σ11 σ12 σ13 σ14 σ15

σ22 σ23 σ24 σ25

σ33 σ34 σ35

σ44 σ45

σ55

 = (64)

50That is, the vector of parameters appearing in Σ = cov(Di).
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
ω1 + φ11 β1φ11 φ12 β2φ12 β3φ11 + β4φ12

β2
1φ11 + ψ1 β1φ12 β1β2φ12 β1(β3φ11 + β4φ12)

ω2 + φ22 β2φ22 β3φ12 + β4φ22

β2
2φ22 + ψ2 β2(β3φ12 + β4φ22)

(β3φ11 + β4φ12)β3 + (β3φ12 + β4φ22)β4 + ψ3


In our study of identifiability for this example, we will confine our attention to that part
of the parameter space where β1 6= 0 and β2 6= 0. After all, the variables Y1 and Y2 were
introduced only to help with identifiability, and they are useless unless they are related to
the explanatory variables. The issue may be resolved empirically by testing H0 : σ23 = 0
and H0 : σ14 = 0 with cor.test. One should proceed to model fitting only if both null
hypotheses are comfortably rejected. In any case, the rest of this discussion assumes that
β1 and β2 are both non-zero.

The parameter φ12 is identifiable, since φ12 = σ13. Consider two cases. The first case
is φ12 6= 0. In this region of the parameter space, β1 is identified from β1 = σ23/φ12, and
β2 is identified from β2 = σ14/φ12. Then, φ11 = σ12/β1 and φ22 = σ34/β2.

With φ11, φ12 and φ22 identified, they may be treated as known. Then, β3 and β4 are
identified from σ14 and σ34 by solving two linear equations in two unknowns. Writing the
equations in matrix form, (

φ11 φ12

φ12 φ22

)(
β3

β4

)
=

(
σ14

σ34

)
.

There is a unique solution if and only if the covariance matrix of the latent explanatory
variables has an inverse, which is not much to ask. At this point, all parameters have
been identified except the variances of the eij and εij. Accordingly, ω1, ψ1, ω2, ψ2 and ψ3

are obtained from the diagonal elements of Σ, by subtraction. The conclusion is that all
parameters are identifiable provided φ12 6= 0. In most observational studies, explanatory
variables will be correlated. That means the parameters of this model are identifiable for
most applications.

Now consider the case where φ12 = 0; that is, the latent explanatory variables are
uncorrelated. This might apply in a designed experiment with random assignment. The
covariance structure equations are now

σ11 σ12 σ13 σ14 σ15

σ22 σ23 σ24 σ25

σ33 σ34 σ35

σ44 σ45

σ55

 = (65)


ω1 + φ11 β1φ11 0 0 β3φ11

β2
1φ11 + ψ1 0 0 β1β3φ11

ω2 + φ22 β2φ22 β4φ22

β2
2φ22 + ψ2 β2β4φ22

β2
3φ11 + β2

4φ22 + ψ3

 .
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The parameter φ12 is still identifiable from σ13, but three equations are lost since φ12 = 0
also implies σ14 = σ23 = σ24 = 0. Thus there are eleven equations in the eleven remaining
unknown parameters. The condition of the the parameter count rule is satisfied, and
identifiability of the entire parameter vector is still possible.

Using (65), β3 = σ25/σ12 and β4 = σ45/σ34. If β3 and β4 are non-zero, solution for
the rest of the parameters is routine. But if β3 = 0, then β1 is no longer identifiable.
Similarly, if β4 = 0, then β2 is no longer identifiable. Since the whole point of this model
is likely to test something like H0 : β3 = 0, it’s important to examine the situation where
this null hypothesis is true.

Suppose one could be sure that Cov(Xi, X2) = φ12 = 0, and consider the problem of
testing H0 : β3 = 0. The first thought might be to just compare the likelihood ratio test
statistic to a chi-squared critical value with one degree of freedom. As in Example 0.11.1
(one extra response variable), this won’t work. In Wilks’ (1938) proof of the likelihood
ratio test [70], identifiability under the null hypothesis is regularity condition zero, and
we are in a situation that Davison [20] (pp. 144-48) would call non-regular. As a practical
matter, the numerical search for the restricted MLE (restricted by H0) will not converge
except by a numerical fluke. As in the little simulation study on page 109, there is also
likely to be trouble fitting even the unrestricted model. If by chance the search for an
unrestricted MLE were to converge, the the theory behind Z-test of H0 : β3 = 0 fails,
because it is equivalent to a Wald test.

Instead, look at equality (65) and observe that β3 = 0 implies both σ15 = 0 and
σ25 = 0. This hypothesis may be tested using a likelihood ratio or Wald test, with two
degrees of freedom. Again, the moral of this story is that the study of identifiability should
specifically consider those parts of the parameter space where important null hypotheses
are true.

Also, be aware that the models presented here are actually re-parameterizations of
models with measurement error in the response variables. One must carefully consider
the methods of data collection to rule out correlation between measurement error in the
explanatory variables and measurement error in the response variables. Such correlations
would appear as non-zero covariances between eij and εij terms in the models, and it will
be seen in homework how this can sink the ship on a technical level.

Just to be clear, when data are collected by a common method in a common setting,
errors of measurement will naturally be correlated with one another. For example, in a
study investigating the connection between diet and athletic accomplishment in children,
suppose the data all came from questionnaires filled out by parents. It would be very
natural for some parents to exaggerate the healthfulness of the food they serve and also
to exaggerate their children’s athletic achievements. On the other extreme, some parents
would immediately figure out the purpose of the study, and tell the interviewers what they
want to hear. “My kids eat junk (I can’t control them) and they are terrible in sports.”
Both these tendencies would produce a positive covariance between the measurement
errors in the explanatory and response variables. And in the absence of other information,
it would be impossible to tell whether a positive relationship between observable diet and
athletic performance came from this, or from an actual relationship between the latent
variables.
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0.12 Instrumental Variables Again

In Section 0.5, the method of instrumental variables was introduced as a solution to the
problems that arise when explanatory variables that are missing from the model cause
non-zero covariances between the error term and variables that are in the model. We will
now see that instrumental variables can help with measurement error too.

Recall Example 0.5.1 in Section 0.5; see page 36. The interest was in the relationship
of income to credit card debt. In the imaginary study, data were collected on real estate
agents in a variety of towns and cities. In addition to income (Xi) and credit card debt
(Yi), we had an instrumental variable (Zi) — the median selling price of a home in
the agent’s region. With the instrumental variable, everything worked out beautifully.
The parameters were just identifiable, with nine covariance structure equations in nine
unknown parameters.

The problem is that both income and debt are undoubtedly measured with error, and
there are almost surely other unmeasured variables that affect them both. Figure 20
represents a more realistic model. Omitted variables affecting both true X and true Y
give rise to covariance ψ12 between the error terms ε1 and ε2. Common omitted variables
are also affecting measurement of X and measurement of Y , which are both likely to be
self-report. This gives rise to the covariance ω12 between the measurement error terms
e1 and e2. The regression coefficients λ1 and λ2 linking true income (Tx) to observed
income (X) and true credit card debt (Ty) are positive, but unknown and unlikely to
equal one. We now have six covariance structure equations in eleven unkowns, and still
it’s not realistic enough, because housing prices are only estimated.

The model shown in Figure 21 is easier to defend, but impossible to estimate. By
a mysterious process possibly involving multiple variables, the publicly available median
resale price of a home is dynamically related to a latent variable or set of variables that
positively affect the real estate agent’s income.

Fortunately, an instrumental variable only has to be correlated with the explanatory
variable. As long as we are confident that the covariance between resale price and income
is positive (and we are) everything will be okay. Figure 22 acknowledges our ignorance of
the exact process by which which median resale price to connected to income, representing
the connection with an un-analyzed covariance represented by a curved, double-headed
arrow. Since the model no longer explicitly posits that true latent income is affected by
any variable in the model, the operation of common omitted variables on Tx and Ty is
now represented by a curved, double-headed arrow connecting Tx and ε.

The model of Figure 22 is fairly realistic, but on first examination it does not look
promising. There are six covariance structure equations in 11 unknowns. This model fails
the parameter count rule, which is poison. The explanatory variable is correlated with
the error term, which is another flavour of poison. In addition, errors of measurement
are correlated, which is yet another form of poison. However, we have an instrumental
variable. Let’s calculate the covariance matrix of the observable variables, bearing in
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Figure 20: Z is median price of resale home, X is income, Y is credit card debt
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mind that β is the parameter of primary interest. Showing part of the calculation,

Cov(Z, Y ) = Cov(Z, λ2Ty + e2)

= Cov(Z, λ2(βTx+ ε) + e2)

= λ2βCov(Z, Tx) + λ2Cov(Z, ε) + Cov(Z, e2)

= λ2βφ12 + 0 + 0

The full covariance matrix is

cov

 Z
X
Y

 =

 φ11 λ1φ12 βλ2φ12

· λ2
1φ22 + ω11 βλ1λ2φ22 + cλ1λ2 + ω12

· · β2λ2
2φ22 + 2 βcλ2

2 + λ2
2ψ + ω22

 .

The primary parameter β is not identifiable, but φ12 (the covariance between median home
price and real estate agent income) is positive, and λ2 (the link between true income and
reported income) is also greater than zero. So the sign of β is identifiable from σ13, the
null hypothesis H0 : β = 0 is testable by simply testing whether σ13 is different from zero,
and it is possible to answer the basic question of the study.
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Figure 21: More realistic, but impossible to estimate
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?

It’s a miracle. Instrumental variables can help with measurement error and omitted
variables at the same time. If there is measurement error, the regression coefficients of
interest are not identifiable and cannot be estimated consistently, but their signs can.
Often, that’s all you really need to know. A matrix version is available. The usual rule
in Econometrics is at least one instrumental variable for each explanatory variable. As
you will see in homework, the main technical requirement is that the p × p matrix of
covariances between X and Z must have an inverse.

Zero covariance between the instrumental variable and error terms is critical. Since
non-zero covariances arise naturally from omitted variables, this means instrumental vari-
ables need to come from another world, and are related to to x for reasons that are
separate from why x is related to y. For example, consider the question of whether aca-
demic ability contributes to higher salary. Study adults who were adopted as children. x
is academic ability, y is salary at age 40, W is measured IQ at 40, and the instrumental
variable z is birth mother’s IQ score.

The method of instrumental variables is a solution to the problems of omitted variables
and measurement error, but it’s a partial solution. Good instrumental variables are not
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Figure 22: An improved model of income and credit card debt
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easy to find. They will almost certainly not be in a data set casually collected for other
purposes. Advance planning is needed.

In many textbook examples of instrumental variables, the instrumental variable ar-
guably has a causal impact on the corresponding explanatory variable. That is, one can
argue for a straight arrow running from Z to X. Here is a nice example from the Wikipedia
article on “natural experiments” []. The idea behind a natural experiment is that nature,
rather than the investigator, assigns the study participants to treatment conditions. And,
while the assignment may not be exactly random, it is at least unlikely to be connected
to plausible confounding variables. Here’s the story, quoted from the Wikipedia.

One of the best-known early natural experiments was the 1854 Broad Street
cholera outbreak in London, England. On 31 August 1854, a major outbreak
of cholera struck Soho. Over the next three days, 127 people near Broad Street
died. By the end of the outbreak 616 people died. The physician John Snow
identified the source of the outbreak as the nearest public water pump, using
a map of deaths and illness that revealed a cluster of cases around the pump.

In this example, Snow discovered a strong association between the use of the
water from the pump, and deaths and illnesses due to cholera. Snow found
that the Southwark and Vauxhall Waterworks Company, which supplied water
to districts with high attack rates, obtained the water from the Thames down-
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stream from where raw sewage was discharged into the river. By contrast, dis-
tricts that were supplied water by the Lambeth Waterworks Company, which
obtained water upstream from the points of sewage discharge, had low attack
rates. Given the near-haphazard patchwork development of the water sup-
ply in mid-nineteenth century London, Snow viewed the developments as ”an
experiment . . . on the grandest scale.”

So, the explanatory variable x was drinking and otherwise using water containing raw
sewage, the response variable y was getting cholera, and the instrumental variable z was
the company that supplied the water. The critical fact that makes it a good instrumental
variable is the “. . . near-haphazard patchwork development of the water supply in mid-
nineteenth century London.” (We will gladly take their word for it.) Seemingly, the
configuration of the water supply was so chaotic that it was unlikely to be related to
other plausible influences on getting cholera, like social class and income. Thus, one can
argue for the absence of any curved arrows connecting the instrumental variable to the
error terms. From both a technical and common-sense viewpoint, that’s what makes the
whole thing work.

The Wikipedia article has several other good examples of natural experiments, and
they are also good examples of instrumental variables. In fact, one could say that the
ultimate instrumental variable is randomly assigned; in that case, it’s guaranteed to come
from another world, and if the experiment is otherwise well-controlled, connections be-
tween omitted variables and the treatment are entirely ruled out.

But for better or worse, we are concerned with cases where ethics or simple practical
considerations dictate that we cannot control the values of the explanatory variables.
Our data come from observational studies. If the data set contains good instrumental
variables, many of our difficulties will disappear, but we cannot just manufacture them.
We must discover and notice them as they naturally occur, and this requires a bit of good
luck, as well as a sharp eye and flexible thinking.

0.13 Exercises for Chapter 0

• Exercises 0.2: Conditional and unconditional regression

1. Everybody knows that V ar(Yi) = σ2 for a regression model, but that’s really
a conditional variance. Independently for i = 1, . . . , n, let

Yi = β0 + β1Xi,1 + β2Xi,2 + εi,

where ε1, . . . εn are independent random variables with expected value zero and
common variance σ2, E(Xi,1) = µ1, V ar(Xi,1) = σ2

1, E(Xi,2) = µ2, V ar(Xi,2) =
σ2

2, and Cov(Xi,1, Xi,2) = σ12. Calculate V ar(Yi); show your work.

2. Suppose that the model (3) has an intercept. How many integral signs are
there in the second line of (6)? The answer is a function of n and p.
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3. The usual univariate multiple regression model with independent normal errors
is

y = Xβ + ε,

where X is an n × p matrix of known constants, β is a p × 1 vector of un-
known constants, and ε is multivariate normal with mean zero and covariance
matrix σ2In, with σ2 > 0 an unknown constant. But of course in practice,
the explanatory variables are random, not fixed. Clearly, if the model holds
conditionally upon the values of the explanatory variables, then all the usual
results hold, again conditionally upon the particular values of the explanatory
variables. The probabilities (for example, p-values) are conditional probabili-
ties, and the F statistic does not have an F distribution, but a conditional F
distribution, given X = x.

(a) Show that the least-squares estimator β̂ = (X′X)−1X′y is conditionally
unbiased.

(b) Show that β̂ is also unbiased unconditionally.

(c) A similar calculation applies to the significance level of a hypothesis test.
Let F be the test statistic (say for an extra-sum-of-squares F -test), and
fc be the critical value. If the null hypothesis is true, then the test is size
α, conditionally upon the explanatory variable values. That is, P (F >
fc|X = x) = α. Find the unconditional probability of a Type I error.
Assume that the explanatory variables are discrete, so you can write a
multiple sum.

• Exercises ??: The Centering Rule

Maybe refer to some exercises from the Appendix.

• Exercises 0.4: Omitted variables

1. In the following regression model, the independent variables X1 and X2 are
random variables. The true model is

Yi = β0 + β1Xi,1 + β2Xi,2 + εi,

independently for i = 1, . . . , n, where εi ∼ N(0, σ2).

The mean and covariance matrix of the independent variables are given by

E

(
Xi,1

Xi,2

)
=

(
µ1

µ2

)
and V ar

(
Xi,1

Xi,2

)
=

(
φ11 φ12

φ12 φ22

)
Unfortunately Xi,2, which has an impact on Yi and is correlated with Xi,1,
is not part of the data set. Since Xi,2 is not observed, it is absorbed by the
intercept and error term, as follows.

Yi = β0 + β1Xi,1 + β2Xi,2 + εi

= (β0 + β2µ2) + β1Xi,1 + (β2Xi,2 − β2µ2 + εi)

= β′0 + β1Xi,1 + ε′i.
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The primes just denote a new β0 and a new εi. It was necessary to add and
subtract β2µ2 in order to obtain E(ε′i) = 0. And of course there could be more
than one omitted variable. They would all get swallowed by the intercept and
error term, the garbage bins of regression analysis.

(a) What is Cov(Xi,1, ε
′
i)?

(b) Calculate the variance-covariance matrix of (Xi,1, Yi) under the true model.

(c) Suppose we want to estimate β1. The usual least squares estimator is

β̂1 =

∑n
i=1(Xi,1 −X1)(Yi − Y )∑n

i=1(Xi,1 −X1)2
.

You may just use this formula; you don’t have to derive it. Is β̂1 a consistent
estimator of β1 for all points in the parameter space if the true model holds?
Answer Yes or no and show your work. Remember, X2 is not available,
so you are doing a regression with one independent variable. You may use
the consistency of the sample variance and covariance without proof.

(d) Are there any points in the parameter space for which β̂1 is a consistent
estimator when the true model holds?

2. Ordinary least squares is often applied to data sets where the independent
variables are best modeled as random variables. In what way does the usual
conditional linear regression model imply that (random) independent variables
have zero covariance with the error term? Hint: Assume Xi as well as εi
continuous. What is the conditional distribution of εi given Xi = xi) = 0?

3. Show that E(εi|Xi = xi) = 0 for all xi implies Cov(Xi, εi) = 0, so that a
standard regression model without the normality assumption still implies zero
covariance (though not necessarily independence) between the error term and
explanatory variables.

• Exercises 0.6: Measurement error

1. Calculate expression (29) for the reliability, showing the details that were
skipped. The point of this question (besides exercising your variance-covariance
muscles and keeping you busy so you don’t have a personal life) is to see whether
you feel comfortable assuming µ = 0 even though it may not be.

2. In a study of diet and health, suppose we want to know how much snack food
each person eats, and we “measure” it by asking a question on a questionnaire.
Surely there will be measurement error, and suppose it is of a simple additive
nature. But we are pretty sure people under-report how much snack food they
eat, so a model like W = X + e with E(e) = 0 is hard to defend. Instead, let

W = ν +X + e,

where E(X) = µ, E(e) = 0, V ar(X) = σ2
x, V ar(e) = σ2

e , and Cov(X, e) = 0
The unknown constant ν could be called measurement bias. Calculate the
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reliability of W for this model. Is it the same as (29), or does ν 6= 0 make a
difference?

3. Continuing Exercise 2, suppose that two measurements of W are available.

W1 = ν1 +X + e1

W2 = ν2 +X + e2,

where E(X) = µ, V ar(X) = σ2
T , E(e1) = E(e2) = 0, V ar(e1) = V ar(e2) = σ2

e ,
and X, e1 and e2 are all independent. Calculate Corr(W1,W2). Does this
correlation still equal the reliability?

4. Let X be a latent variable, W = X + e1 be the usual measurement of X with
error, and G = X+e2 be a measurement of X that is deemed “gold standard,”
but of course it’s not completely free of measurement error. It’s better than
W in the sense that 0 < V ar(e2) < V ar(e1), but that’s all you can really say.
This is a realistic scenario, because nothing is perfect. Accordingly, let

W = X + e1

G = X + e2,

where E(X) = µ, V ar(X) = σ2
x, E(e1) = E(e2) = 0, V ar(e1) = σ2

1, V ar(e2) =
σ2

2 and that X, e1 and e2 are all independent of one another. Prove that the
squared correlation between W and G is strictly less than the reliability of W .
Show your work.

The idea here is that the squared population correlation51 between an ordinary
measurement and an imperfect gold standard measurement is strictly less than
the actual reliability of the ordinary measurement. If we were to estimate such
a squared correlation by the corresponding squared sample correlation, all we
would be doing is estimating a quantity that is not the reliability. On the
other hand, we would be estimating a lower bound for the reliability — and
this could be reassuring if it is a high number.

5. In this continuation of Exercise 4, show what happens when you calculate the
squared sample correlation between a usual measurement and an imperfect
gold standard, and let n→∞. It’s just what you would think.

6. Suppose we have two equivalent measurements with uncorrelated measurement
error:

W1 = X + e1

W2 = X + e2,

51When we do Greek-letter calculations, we are figuring out what is happening in the population from
which a data set might be a random sample.
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where E(X) = µ, V ar(X) = σ2
x, E(e1) = E(e2) = 0, V ar(e1) = V ar(e2) = σ2

e ,
and X, e1 and e2 are all independent. What if we were to measure the true
score X by adding the two imperfect measurements together? Would the result
be more reliable?

(a) Let S = W1 + W2. Calculate the reliability of S. Is there any harm in
assuming µ = 0?

(b) Suppose you take k independent measurements (in psychometric theory,
these would be called equivalent test items). What is the reliability of
S =

∑k
i=1 Wi? Show your work.

(c) What happens as the number of measurements k →∞?

This exercise establishes the well-known principle that longer tests tend to be
more reliable. The measurement of practically anything can be improved by
measuring it independently several times and then averaging the results —
assuming this is possible.

7. Suppose we have two equivalent measurements with correlated measurement
error:

W1 = X + e1

W2 = X + e2,

where E(X) = µ, V ar(X) = σ2
x, E(e1) = E(e2) = 0, V ar(e1) = V ar(e2) =

σ2
e , and e1 and e2 are all independent of X but Cov(e1, e2) = κ. Calculate
Corr(W1,W2); show your work. What is the relationship of your answer to
the reliability if κ > 0 (which is typical of correlated measurement error)? The
point of this question is that correlated measurement errors are more the rule
than the exception in practice, and it’s poison.

• Exercises 0.7: Ignoring measurement error

1. The following is perhaps the simplest example of what happens to regression
when there is measurement error in the explanatory variable. Independently
for i = 1, . . . , n, let

Yi = Xiβ + εi

Wi = Xi + ei,

where E(Xi) = E(εi) = 0, V ar(Xi) = σ2
x, V ar(εi) = σ2

ε , V ar(ei) = σ2
e , and Xi,

εi and ei are all independent. Notice that Wi is just Xi plus a piece of random
noise. This is a simple additive model of measuremnt error.

Unfortunately, we cannot observe the Xi values. All we can see are the pairs
(Xi,Wi) for i = 1, . . . , n. So we do what everybody does, and fit the naive
(mis-specified, wrong) model

Yi = Wiβ + εi
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and estimate β with the usual formula for regression through the origin. Where
does β̂n go as n→∞? Show your work.

2. Recall the simulation study of inflated Type I error when independent variables
are measured with error but one ignores it and uses ordinary regression anyway.
We needed to produce correlated (latent, that is unobservable) independent
variables from different distributions. Here’s how we did it.

(a) It is easy to simulate a collection of independent random variables from
any distribution, and then standardize them to have expected value zero
and variance one. Let E(X) = µ and V ar(X) = σ2. Now define Z = X−µ

σ
.

Find

i. E(Z)

ii. V ar(Z)

(b) Okay, now let R1, R2 and R3 be independent random variables from any
distribution you like, but standardized to have expected value zero and
variance one. Now let

W1 =
√

1− φR1 +
√
φR3 and

W2 =
√

1− φR2 +
√
φR3.

Find

i. Cov(W1,W2)

ii. Corr(W1,W2)

(c) This one is more efficient. Let R1 and R2 be independent random variables
with expected value zero and variance one. Now let

W1 =

√
1 + φ

2
R1 +

√
1− φ

2
R2

W2 =

√
1 + φ

2
R1 −

√
1− φ

2
R2

Find

i. Cov(W1,W2)

ii. Corr(W1,W2)

(d) Briefly state how you know the following. No proof is required.

– If the R variables are normal and φ = 0, both methods yield X1 and
X2 independent.

– But if the Rs are non-normal, then φ = 0 only implies independence
for the first method.

• Exercises 0.8: Modeling measurement error
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1. Let X1, . . . , Xn be a random sample from a normal distribution with mean
θ1 and variance θ2 + θ3, where −∞ < θ1 < ∞, θ2 > 0 and θ3 > 0. Are the
prameters of this model identifiable? Answer Yes or No and prove your answer.
This is fast.

2. Let X1, . . . , Xn be a random sample from a normal distribution with mean θ
and variance θ2, where −∞ < θ <∞. Is θ identifiable? Answer Yes or No and
justify your answer. This is even faster than the last one.

3. For this problem you may want to read about the invariance principle of max-
imum likelihood estimation in Appendix A. Consider the simple regression
model

Yi = βXi + εi,

where β is an unknown constant, Xi ∼ N(0, φ), εi ∼ N(0, ψ) and the random
variables Xi and εi are independent. Xi and Yi are observable variables.

(a) What is the parameter vector θ for this model? It has three elements.

(b) What is the distribution of the data vector (Xi, Yi)
>? Of course the ex-

pected value is zero; obtain the covariance matrix in terms of θ values.
Show your work.

(c) Now solve three equations in three unknowns to express the three elements
of θ in terms of σi,j values.

(d) Are the parameters of this model identifiable? Answer Yes or No and state
how you know.

(e) For a sample of size n, give the MLE Σ̂. Your answer is a matrix containing
three scalar formulas (or four formulas, if you write down the same thing
for σ̂1,2 and σ̂2,1). Write your answer in terms of Xi and Yi quantities. You
are not being asked to derive anything. Just translate the matrix MLE
into scalar form.

(f) Use the invariance principle to obtain the formula for β̂ and simplify. Show
your work.

(g) Give the formula for φ̂. Use the invariance principle.

(h) Obtain the formula for ψ̂ and simplify. Use the invariance principle. Show
your work.

4. Consider the regression model

Yi,1 = β1Xi + εi,1

Yi,2 = β2Xi + εi,2,

where Xi ∼ N(0, φ), and Xi is independent of εi,1 and εi,2. The error terms εi,1
and εi,2 are bivariate normal, with mean zero and covariance matrix

Ψ =

(
ψ1,1 ψ1,2

ψ1,2 ψ2,2

)
.

The variables Xi, Yi,1 and Yi,2 are observable; there is no measurement error.
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(a) What is the parameter vector θ for this model? It has six elements.

(b) Calculate the covariance matrix of the observable variables; show your
work.

(c) Are the parameters of this model identifiable? Answer Yes or No and
justify your answer.

5. Here is a multivariate regression model with no intercept and no measurement
error. Independently for i = 1, . . . , n,

yi = βXi + εi

where

yi is an q × 1 random vector of observable response variables, so the re-
gression can be multivariate; there are q response variables.

Xi is a p× 1 observable random vector; there are p explanatory variables.
Xi has expected value zero and variance-covariance matrix Φ, a p × p
symmetric and positive definite matrix of unknown constants.

β is a q × p matrix of unknown constants. These are the regression coef-
ficients, with one row for each response variable and one column for each
explanatory variable.

εi is the error term of the latent regression. It is an q×1 random vector with
expected value zero and variance-covariance matrix Ψ, a q × q symmetric
and positive definite matrix of unknown constants. εi is independent of
Xi.

Are the parameters of this model identifiable? Answer Yes or No and show
your work.

6. Consider the following simple regression through the origin with measurement
error in both the explanatory and response variables. Independently for i =
1, . . . , n,

Yi = βXi + εi

Wi,1 = Xi + ei,1

Wi,2 = Xi + ei,2

Vi = Yi + ei,3

whereXi and Yi are latent variables, εi, ei,1, ei,2, ei,3 andXi and are independent
normal random variables with expected value zero, V ar(Xi) = φ, V ar(εi) = ψ,
and V ar(ei,1) = V ar(ei,2) = V ar(ei,3) = ω. The regression coefficient β is a
fixed constant. The observable variables are Wi,1,Wi,1 and Vi.

(a) Calculate the variance-covariance matrix of the observable variables. Show
your work.

(b) Write down the moment structure equations.
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(c) Are the parameters of this model identifiable? Answer Yes or No and prove
your answer.

7. Independently for i = 1, . . . , n, let

Yi = βXi + εi

Wi = Xi + ei,

where E(Xi) = µ 6= 0, E(εi) = E(ei) = 0, V ar(Xi) = φ, V ar(εi) = ψ,
V ar(ei) = ω, and Xi, ei andεi are all independent. The variables Xi is latent,
while Wi and Yi are observable.

(a) Does this model pass the test of the parameter count rule? Answer Yes or
No and give the numbers.

(b) Is the parameter vector identifiable? Answer Yes or No and prove your
answer. If the answer is No, give a simple example of two different sets
of parameter values that yield the same (bivariate normal) distribution of
the observable data.

(c) Let

β̂1 =

∑n
i=1WiYi∑n
i=1W

2
i

.

Is β̂1 a consistent estimator of β? Answer Yes or No and prove your answer.

(d) Let

β̂2 =

∑n
i=1 Yi∑n
i=1Wi

.

– Is β̂2 a consistent estimator of β? Answer Yes or No and justify your
answer.

– We know from Theorem 0.1 that consistent estimation is impossible
when the parameter is not identifiable. Does this example contradict
Theorem 0.1?

8. Independently for i = 1, . . . , n, let

Yi = βXi + εi

Wi,1 = Xi + ei,1

Wi,2 = Xi + ei,2,

where

– Xi is a normally distributed latent variable with mean zero and variance
φ > 0

– εi is normally distributed with mean zero and variance ψ > 0

– ei,1 is normally distributed with mean zero and variance ω1 > 0

– ei,2 is normally distributed with mean zero and variance ω2 > 0
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– Xi, εi, ei,1 and ei,2 are all independent of one another.

(a) What is the parameter vector θ for this model?

(b) Does this problem pass the test of the parameter count rule? Answer Yes
or No and give the numbers.

(c) Calculate the variance-covariance matrix of the observable variables. Show
your work.

(d) Is the parameter vector identifiable? Answer Yes or No and prove your
answer.

(e) Propose a consistent estimator of the parameter β, and show it is consis-
tent.

• Exercises 0.9

•

•

•

•



Chapter 1

Introduction to Structural Equation
Models

The design of this book is for Chapter 0 to be a self-contained discussion of regression with
measurement error, while this chapter introduces the classical structural equation models
in their full generality. So, this chapter may serve as a starting point for advanced read-
ers. These advanced readers may belong to two species — quantitatively oriented social
scientists who are already familiar with structural equation modeling, and statisticians
looking for a quick introduction to the topic at an appropriate level.

Also, readers of Chapter 0 will have noticed that the study of a particular model
typically involves a fair amount of symbolic calculation, particularly the calculation of
covariance matrices in terms of model parameters. While these calculations often yield
valuable insights, they become increasingly burdensome as the number of variables in-
creases, particularly when more than one model must be considered.

The solution is to let a computer do it. So starting with this chapter, many calculations
will be illustrated using Sage, an open source computer algebra package described in
Appendix B. The Sage parts will be interleaved with the rest of the text rather than fully
integrated. Typically, an example will include the result of a calculation without giving
a lot of detail, and then at an appropriate place for a pause, the Sage code will be given.
This will allow readers who are primarily interested in the ideas to skip material they
may find tedious.

1.1 Overview

Structural equation models may be viewed as an extension of multiple regression. They
generalize multiple regression in three main ways: there is usually more than one equa-
tion, a response variable in one equation can be an explanatory variable in another, and
structural equation models can include latent variables.

Multiple equations: Structural equation models are usually based upon more
than one regression-like equation. Having more than one equation is not really

135
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unique; multivariate regression already does that. But you will see that structural
equation models are more flexible than the usual multivariate linear model.

Variables can be both explanatory and response: This is an attractive feature.
Consider a study of arthritis patients, in which joint pain and mobility are measured
at several time points. Joint pain at one time period can lead to decreased physical
activity during the same period, which then leads to more pain at the next time
period. Level of physical activity at time t is both a response variable and a response
variable. Structural equation models are also capable of representing the back-and-
forth nature of supply and demand in Economics. Many other examples will be
given

Latent variables: Structural equation models may include random variables that
cannot be directly observed, and also are not error terms. This capability (combined
with relative simplicity) is their biggest advantage. It allows the statistican to admit
that measurement error exists, and to incorporate it directly into the statistical
model. The regression models with latent variables in Chapter 0 are special cases
of structural equation models.

There are some ways that structural equation models are different from ordinary linear
regression. These include random (rather than fixed) explanatory variable values, a bit
of specialized vocabulary, and some modest changes in notation. Tests and confidence
intervals are based on large-sample theory, even when normal distributions are assumed.
Also, structural equation models have a substantive1 as well as a statistical compontent;
closely associated with this is the use of path diagrams to represent the connections
between variables.

To the statistician, perhaps the most curious feature of structural equation mod-
els is that usually, the regression-like equations lack intercepts and the expected values
of all random variables equal zero. This happens because the models have been re-
parameterized in search of parameter identifiability. Details are given in the next section
(Section A.6.1).

Random explanatory variables Chapter 0 discusses the advantages of the traditional
regression model in which values of the explanatory variables are treated as fixed con-
stants, and the model is considered to be conditional on those values. But once we admit
that the variables we observe are contaminated by random measurement error, the virtues
of a conditional model mostly disappear. So in the standard structural equation models,
all variables are random variables.

Vocabulary Structural equation modeling has developed a specialized vocabulary, and
except for the term “latent variable,” much of it is not seen elsewhere in Statistics. But
the terminology can help clarify things once you know it, and also it appears in software
manuals and on computer output. Here are some terms and their definitions.

1Substantive means having to do with the subject matter. A good substantive model of water pollution
would depend on concepts from Chemistry and Hydrodynamics.
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• Latent variable: A random variable that cannot be directly observed, and also is
not an error term.

• Manifest variable: An observable variable. An actual data set contains only
values of the manifest variables. This book will mostly use the term “observable.”

• Exogenous variable: In the regression-like equations of a structural equation
model, the exogenous variabes are ones that appear only on the right side of the
equals sign, and never on the left side in any equation. If you think of Y being a
function of X, this is one way to remember the meaning of exogenous. All error
terms are exogenous variables.

• Endogenous variable: Endogenous variables are those that appear on the left
side of at least one equals sign. Endogenous variables depend on the exogenous
varables, and possibly other endogenous variables. Think of an arrow from an
exogenous variable to an endogenous variable. The end of the arrow is pointing at
the endogenous variable.

• Factor: This term has a meaning that actually conflicts with its meaning in main-
stream Statistics, particularly in experimental design. Factor analysis (not “facto-
rial” analysis of variance!) is a set of statistical concepts and methods that grew
up in Psychology. Factor analysis models are special cases of the general structural
equation model. A factor is an underlying trait or characteristic that cannot be
measured directly, like intelligence. It is a latent variable, period.

Notation Several different but overlapping models and accompanying notation systems
are to be found in the many books and articles on structural equation modeling. The
present book introduces a sort of hybrid notation system, in which the symbols for param-
eters are mosly taken from the structural equation modeling literature, while the symbols
for random variables are based on common statistical usage. This is to make it easier
for statisticians to follow. The biggest change from Chapter 0 is that the symbol β is
no longer used for just any regression coefficient. It is reserved for links between latent
endgenous variables and other latent endgenous variables.

1.2 A general two-stage model

Independently for i = 1, . . . , n, let

yi = α+ βyi + Γxi + εi (1.1)

Fi =

(
xi
yi

)
di = ν + ΛFi + ei,

where
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• yi is a q × 1 random vector.

• α is a q × 1 vector of constants.

• β is a q × q matrix of constants with zeros on the main diagonal.

• Γ is a q × p matrix of constants.

• xi is a p× 1 random vector with expected value µx and positive definite covariance
matrix Φx.

• εi is a q×1 random vector with expected value zero and positive definite covariance
matrix Ψ.

• Fi (F for Factor) is a partitioned vector with xi stacked on top of yi. It is a
(p + q) × 1 random vector whose expected value is denoted by µF , and whose
variance-covariance matrix is denoted by Φ.

• di is a k × 1 random vector. The expected value of di will be denoted by µ, and
the covariance matrix of di will be denoted by Σ.

• ν is a k × 1 vector of constants.

• Λ is a k × (p+ q) matrix of constants.

• ei is a k × 1 random vector with expected value zero and covariance matrix Ω.

• xi, εi and ei are independent.

Only d1, . . . ,dn are observable. All the other random vectors are latent. But because
Ω = cov(ei) need not be strictly positive definite, error variances of zero are permitted.
This way, it is possible for a variable to be both exogenous and observable.

The distributions of xi, εi and ei are either assumed to be independent and multivariate
normal, or independent and unknown. When the distributions are normal, the parameter
vector θ consists of the unique elements of the parmeter matrices α, β, Γ, µx, Φx, Ψ, ν,
Λ and Ω. When the distributions are unknown, the parameter vector also includes the
three unknown probability distributions.

The two parts of Model (1.1) are called the Latent Variable Model and the Measure-
ment Model. The latent variable part is yi = α + βyi + Γxi + εi, and the measurement
part is di = ν + ΛFi + ei. The bridge between the two parts is the process of collecting
the latent exogenous vector xi and the latent endogenous vector yi into a “factor” Fi.
This is not a categorical explanatory variable, the usual meaning of factor in experimental
design. The terminology comes from factor analysis, a popular multivariate method in
the social sciences. Factor analysis is discussed in Chapters 2 and 3.

Example 1.2.1 The Brand Awareness study
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A major Canadian coffee shop chain is trying to break into the U.S. Market. They assess
the following variables twice on a random sample of coffee-drinking adults. Each variable
is measured first in an in-person interview, and then in a telephone call-back several days
later, conducted by a different interviewer. Thus, errors of measurement for the two
measurements of each variable are assumed to be independent. The variables are

• Brand Awareness (X1): Familiarity with the coffee shop chain

• Advertising Awareness (X2): Recall for advertising of the coffee shop chain

• Interest in the product category (X3): Mostly this was how much they say
they like coffee and doughnuts.

• Purchase Intention (Y1): Expressed willingness to go to an outlet of the coffeeshop
chain and make an order.

• Purchase behaviour (Y2): Reported dollars spent at the chain during the 2 months
following the interview.

All variables were measured on a scale from 0 to 100 except purchase behaviour, which is
in dollars.

Figure 1.1 shows a path diagram for these data. It is a picture of how some variables
are thought to influence other variables. The notation is standard. Straight arrows go
from exogenous variables to endogenous variables, and possibly from endogenous variables
to other endogenous variables. Correlations among exogenous variables are represented
by two-headed curved arrows. Observable variables are enclosed by rectangles or squares,
while latent variables are enclosed by ellipses or circles. Error terms are not enclosed by
anything.

The path diagram in Figure 1.1 expresses some very definite assertions about consumer
behaviour. For example, it says that brand awareness and advertising awareness affect
actual purchase only through purchase intention, while interest in the product may have a
direct effect on purchase behaviour, as well as an indirect effect through purchase intention
— perhaps reflecting impulse purchases. Such claims may be right or they may be wrong,
and some are testable. But the point is that the statistical model corresponding to the
typical path diagram has a strong subject matter component, and actually is a sort of
hybrid, occupying a position somewhere between the typical statistical model and an
actual theory about the data.

It is always possible to argue about how the path diagram should look, and it is
usually valuable as well. The more subject matter expertise that can be brought to the
discussion, the better. Often, the contest between two or more competing pictures will
be traceable to unresolved theoretical issues in the field. Will the data at hand allow a
formal statistical test to decide between the models? If not, is it possible to design a
study that will make such a comparison possible? Thus, the more technical statistical
expertise that can be brought to the discussion, the better.

The measurement model — that is, the part relating the latent variables to the ob-
servable variables — should not escape scrutiny. The processes it represents are usually
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Figure 1.1: The Brand Awareness Study

Brand
Awareness

Interest

Advertising
Awareness

Purchase
Intention

Purchase
Behaviour

W
1

W
2 W

3
W

6
W

5

V
2

W
4

V
3

V
4V

1

ε
1

ε
2

e
2

e
3

e
4

e
5

e
6

e
7

e
8

e
9

e
10

e
1



1.2. A GENERAL TWO-STAGE MODEL 141

not the reason the data were collected, but high quality measurement is a key to the
success of structural equation modeling.

Continuing with the Brand Awareness example, the model corresponding to Figure 1.1
may be written in scalar form as a system of simultaneous regression-like equations.
Independently for i = 1, . . . , n, let

Yi,1 = α1 + γ1Xi,1 + γ2Xi,2 + γ3Xi,3 + εi,1 (1.2)

Yi,2 = α2 + βYi,1 + γ4Xi,3 + εi,2

Wi,1 = ν1 + λ1Xi,1 + ei,1

Wi,2 = ν2 + λ2Xi,1 + ei,2

Wi,3 = ν3 + λ3Xi,2 + ei,3

Wi,4 = ν4 + λ4Xi,2 + ei,4

Wi,5 = ν5 + λ5Xi,3 + ei,5

Wi,6 = ν6 + λ6Xi,3 + ei,6

Vi,1 = ν7 + λ7Yi,1 + ei,7

Vi,2 = ν8 + λ8Yi,1 + ei,8

Vi,3 = ν9 + λ9Yi,2 + ei,9

Vi,4 = ν10 + λ10Yi,2 + ei,10,

where E(Xi,1 = µx1), E(Xi,2 = µx2), E(Xi,3 = µx3), the expected values of all error
terms equal zero, V ar(Xi,j) = φjj for j = 1, 2, 3, Cov(Xi,j, Xi,k) = φjk, V ar(ei,j) = ωj for
j = 1, . . . , 10, V ar(εi,1) = ψ1, V ar(εi,2) = ψ2, and all the error terms are independent of
one another and of the Xi,j variables.

If the two measurements of each variable were deemed similar enough, it would be
possible to reduce the parameter space quite a bit, for example setting ν1 = ν2, λ1 = λ2,
and ω1 = ω2. The same kind of thing could be done for the other latent variables. Also,
the distributions could be assumed normal, or they could be left unspecified; in practice,
those are the two choices.

Setting up the problem in matrix form, we have p = 3 latent exogenous variables, q = 2
latent endogenous variables, and k = 10 observable variables, all of which are endogenous
in this example. Using parameter symbols from the scalar version, the equations of the
latent variable model are

yi = α + β yi + Γ xi + εi(
Yi,1
Yi,2

)
=

(
α1

α2

)
+

(
0 0
β 0

) (
Yi,1
Yi,2

)
+

(
γ1 γ2 γ3

0 0 γ4

)  Xi,1

Xi,2

Xi,3

 +

(
εi,1
εi,2

)

with

Φx = cov(xi) =

 φ11 φ12 φ13

φ12 φ22 φ23

φ13 φ23 φ33

 and Ψ = cov(εi) =

(
ψ1 0
0 ψ2

)
.
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Collecting xi and yi into a single vector of “factors,”

Fi =

(
xi
yi

)
=


Xi,1

Xi,2

Xi,3

Yi,1
Yi,2

 .

Finally, the equations of the measurement model are

di = ν + Λ Fi + ei

Wi,1

Wi,2

Wi,3

Wi,4

Wi,5

Wi,6

Vi,1
Vi,2
Vi,3
Vi,4


=



ν1

ν2

ν3

ν4

ν5

ν6

ν7

ν8

ν9

ν10


+



λ1 0 0 0 0
λ2 0 0 0 0
0 λ3 0 0 0
0 λ4 0 0 0
0 0 λ5 0 0
0 0 λ6 0 0
0 0 0 λ7 0
0 0 0 λ8 0
0 0 0 0 λ9

0 0 0 0 λ10




Xi,1

Xi,2

Xi,3

Yi,1
Yi,2

 +



ei,1
ei,2
ei,3
ei,4
ei,5
ei,6
ei,7
ei,8
ei,9
ei,10


with

Ω = cov(ei) =



ω1 0 0 0 0 0 0 0 0 0
0 ω2 0 0 0 0 0 0 0 0
0 0 ω3 0 0 0 0 0 0 0
0 0 0 ω4 0 0 0 0 0 0
0 0 0 0 ω5 0 0 0 0 0
0 0 0 0 0 ω6 0 0 0 0
0 0 0 0 0 0 ω7 0 0 0
0 0 0 0 0 0 0 ω8 0 0
0 0 0 0 0 0 0 0 ω9 0
0 0 0 0 0 0 0 0 0 ω10


Given a verbal description of a data set, the student should be able to write down a path
diagram, and translate freely between the path diagram, the model in scalar form and
the model in matrix form. Three three ways of expressing the model are equivalent, and
some software2 will allow a model to be specified using only a built-in drawing program.
This can be appealing to users who don’t like equations and Greek letters, but for larger
models the process can be very tedious.

1.3 Review of identifiability

The general two-stage model (1.1) of Section 1.2 is very general indeed — so much so,
that its parameters are seldom identifiable without additional restrictions. Choosing these

2The ones I know of are Amos and JMP.
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restrictions wisely is an essential part of structural equation modeling. In fact, it turns
out that almost everything that makes structural equation modeling distinct from other
large-sample statistical methods can be traced to issue of parameter identifiability. For
the convenience of readers who are starting with Chapter 1, this section collects material
on identifiability from Chapter 0. Readers of Chapter 0 are also encouraged to look it
over. The presentation is intended to be terse. For more detail, please see Chapter 0.

Definition 0.5 (Page 59) Suppose a statistical model implies d ∼ Pθ,θ ∈ Θ. If no
two points in Θ yield the same probability distribution, then the parameter θ is said to
be identifiable. On the other hand, if there exist θ1 and θ2 in Θ with Pθ1 = Pθ2 , the
parameter θ is not identifiable.

Theorem 0.1 (Page 59) If the parameter vector is not identifiable, consistent estimation
for all points in the parameter space is impossible.

Definition 0.6 (Page 60) The parameter is said to be identifiable at a point θ0 if no
other point in Θ yields the same probability distribution as θ0.

Definition 0.7 (Page 60) The parameter is said to be locally identifiable at a point
θ0 if there is a neighbourhood of points surrounding θ0, none of which yields the same
probability distribution as θ0.

Definition 0.8 (Page 60) Let g(θ) be a function of the parameter vector. If g(θ0) 6= g(θ)
implies Pθ0 6= Pθ for all θ ∈ Θ, then the function g(θ) is said to be identifiable at the
point θ0.

Theorem 0.2 (Page 61) Let

y1 = f1(x1, . . . , xp)

y2 = f2(x1, . . . , xp)
...

...

yq = fq(x1, . . . , xp),

If the functions f1, . . . , fq are analytic (posessing a Taylor expansion) and p > q, the set of
points (x1, . . . , xp) where the system of equations has a unique solution occupies at most
a set of volume zero in Rp.

Moment structure equations give moments of the distribution of the observable data in
terms of model parameters. In this course, moments are limited to expected values, vari-
ances and covariances. If it is possible to solve uniquely for the parameter vector in terms
of the these quantities, then the parameter vector is identifiable. Even when a multivari-
ate normal distribution is not assumed, in practice “identifiable” means identifiable from
the moments — usually the variances and covariances.
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Rule 1 (The Parameter Count Rule, page 61) Suppose identifiability is to be decided
based on a set of moment structure equations. If there are more parameters than equa-
tions, the parameter vector is identifiable on at most a set of volume zero in the parameter
space.

1.4 Models: Original and Surrogate

1.4.1 Overview

It is taken for granted that even the best scientific models are not “true” in any ultimate
sense. At best, they are approximations of how nature really works. And this is even
more true of statistical models. As Box and Draper (1987, p. 424) put it, “Essentially
all models are wrong, but some are useful.” [11] In structural equation modeling, the
models used in practice are usually not even the approximate versions that the scientist
or statistician has in mind. Instead, they are re-parameterized versions of the intended
models. This explains some features that may seem odd at first.

Figure 1.2: A sequence of re-parameterizations

Truth ≈ Original Model → Surrogate Model 1 → Surrogate Model 2 → . . .

Figure 1.2 is a picture of the process3. Underlying everything is the true state of
nature, the real process that gave rise to the observable data in our possession. We can
scarcely even imagine what it is, but undoubtedly it’s non-linear, and involves a great
many unmeasured variables. So we start with a model based on the general two-stage
model (1.1) of Section 1.2. It is not the truth and we know it’s not the truth, but maybe it’s
not too bad. It’s basically a collection of regression equations, complete with intercepts.
Based on the usefulness of ordinary multiple regression, there is reason to hope it roughly
approximates the truth in a useful way, at least within the range of the observed data.

As primitive as the original model may be compared to the real truth, its parameters
are still not identifiable. So we re-parameterize, producing a new model whose parameters
are functions of the parameters of the original model. Such a model will be called a
surrogate model because it stands for the original model, and tries to do the job of the
original model. Like a surrogate mother, it may not be as good as a the real thing, but
it will have to do.

As indicated in Figure 1.2, re-parameterization may happen in more than one step. For
the classical structural equation models presented in this book, the first re-parameterization
results in a centered surrogate model with no intercepts, and all expected values equal to
zero. The model equations may look a bit strange at first glance, but it is much more

3Thanks to Michael Li for this way of expressing the idea.
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convenient if we even don’t even have to look at symbols for vectors of parameters that
we can’t estimate uniquely anyway.

Typically, the parameters of the centered surrogate model are still not identifiable,
and there is another re-parameterization, leading to a second level surrogate model. The
process can continue. At each step, the parameter vector of the new model is a function
of of the parameters of the preceding model, and typically the function is not one-to-one.
Otherwise, identifiability would not change. At each stage, the dimension of the new
parameter space is less, so the re-parameterization represents a restriction, or collapsing
of the original parameter space. The end result is a model whose parameters are identi-
fiable functions of the original parameter vector. The goal is for those functions to be as
informative as possible about the parameters of the original model.

Two features of the original model deserve special mention. The first is that usually,
the original model is already a restricted version of Model (1.1), even before it is re-
parameterized to produce a surrogate model. The restrictions in question arise from
substantive modeling considerations rather than from a search for identifiability. So, in
the Brand Awareness example of Section 1.2, the parameter matrices have many elements
fixed at zero. These represent theoretical assertions about consumer psychology. They
may be helpful in making the remaining free parameters identifiable, but that is not their
justification.

A second notable feature of the original model is that expected values are non-zero
in general, and all the equations are regression-like equations with intercepts, and with
slopes that do not necessarily equal one. Any deviation from this standard needs to be
justified on substantive grounds, not on grounds of simplicity or convenience. Otherwise,
it’s a surrogate model and not an original model. The distinction is important, because
most structural equation models used in practice are surrogate models, and a good way to
understand them is to trace the connection between their parameters and the parameters
of the original models from which they are are derived.

Consider a simple additive model for measurement error, like (28) on page 40:

W = X + e.

Immediately it is revealed as a surrogate model, because there is no intercept and the
slope is set to one – a choice that would be hard to justify on modeling grounds most of
the time. For example, X might be actual calories consumed during the past week, and W
might be number of reported calories based on answers to a questionnaire. Undoubtedly,
the true relationship between these variables is non-linear. In an original (though not
exactly true) model, the relationship would be approximated by

W = ν + λX + e.

With this example in mind, it is clear that most of the models given in Chapter 0 (and
all the models in Chapter 0 with identifiable parameters) are actually surrogate models.
This might be a bit unsettling because you did not realize that you were being tricked, or
it might be reassuring because some models that struck you as unrealistic may actually
be better than they seem.
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1.4.2 The centered surrogate model

The first stage of re-parameterization may be done in full generality. The argument
begins with a demonstration that the means and intercepts of the original model are not
identifiable. Please bear in mind that as a practical consideration, “identifiable” means
identifiable from the moments – the expected values and variance-covariance matrix of
the observable data.

Starting with the latent variable part of the two-stage original model (1.1), it is helpful
to write the endogenous variables solely as functions of the exogenous variables, and not
of each other.

yi = α+ βyi + Γxi + εi

⇔ yi − βyi = α+ Γxi + εi

⇔ Iyi − βyi = α+ Γxi + εi

⇔ (I− β)yi = α+ Γxi + εi

⇔ (I− β)−1(I− β)yi = (I− β)−1 (α+ Γxi + ε)

⇔ yi = (I− β)−1 (α+ Γxi + εi) (1.3)

The preceding calculation assumes that the matrix I−β has an inverse. Surprisingly, the
existence of (I−β)−1 is guaranteed by the model. The proof hinges on the specifications
that xi and εi are independent, and that Ψ = cov(εi) is positive definite.

Theorem 1.1 Model (1.1) implies the existence of (I− β)−1.

Proof yi = α+βyi + Γxi + εi yields (I−β)yi = α+ Γxi + εi. Suppose (I−β)−1 does
not exist. Then the rows of I − β are linearly dependent, and there is a q × 1 non-zero
vector of constants a with a>(I− β) = 0. So,

0 = a>(I− β)yi = a>α+ a>Γxi + a>εi

⇒ V ar(0) = V ar(a>Γxi) + V ar(a>εi)

⇒ 0 = a>ΓΦxΓ
>a + a>Ψa.

But the quantity on the right side is strictly positive, because while ΓΦxΓ
> = cov(Γxi)

is only guaranteed to be non-negative definite, Ψ is strictly positive definite according to
the model. Thus, the assumption that I − β is singular leads to a contradiction. This
shows that (I− β)−1 must exist if the model holds. �

Sometimes, the surface defined by |I− β| = 0 is interior to the parameter space, and
yet cannot belong to the parameter space because of the other model specifications. Thus
it forms an unexpected hole in the parameter space. The pinwheel Model () on page
whatever provides an example.

Now that the existence of (I − β)−1 is established, Expression (1.3) may be used to
calculate expected values, variances and covariances. Expressing the results of routine
calculations as partitioned matrices,
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ν + ΛµF = E(Fi) =

(
E(xi)
E(yi)

)
=

(
µx

(I− β)−1 (α+ Γµx)

)
(1.4)

µ = E(di) = ν + ΛµF

Φ = cov(Fi) =

(
cov(xi) cov(xi,yi)

cov(yi)

)
=

(
Φx ΦxΓ

>(I− β)−1T

(I− β)−1
(
ΓΦxΓ

> + Ψ
)

(I− β)−1T

)
Σ = cov(di) = ΛΦΛ> + Ω

The parameter matrices may be divided into three categories: those appearing only in
µ = E(di), those appearing only in Σ = cov(di), and those appearing in both µ and Σ.

Appearing only in µ µx,α,ν

Appearing only in Σ Φx,Ψ,Ω

Appearing in both β,Γ,Λ

Clearly, the parameters appearing only in µ must be identified from the k mean
structure equations or not at all. Even assuming the best case scenario in which β,Γ and
Λ can be identified from Σ and thus may be considered known, this requires the solution
of k equations in k + p + q unknowns. Since the equations are linear, there is no need
to invoke the parameter count rule4. For every fixed set of (β,Γ,Λ) values, infinitely
many sets (µx,α,ν) yield the same vector of expected values µ. Thus, the means and
intercepts in the model are not identifiable.

Not much is lost, because usually the matrices β, Γ and Λ are of primary interest, and
these (or useful functions of them) may potentially be recovered from Σ. So the standard
solution is to re-parameterize, replacing the parameter set (Φx,Ψ,Ω,β,Γ,Λ,µx,α,ν)
with (Φx,Ψ,Ω,β,Γ,Λ,κ), where κ = µ = ν + ΛµF . Then κ is treated as a nuisance
parameter to be estimated with the vector of sample means where technically necessary,
but otherwise ignored.

A useful way to express the re-parameterization is to re-write the equations of Model (1.1),
centering all the random vectors. Starting with the latent variable part,

yi = (I− β)−1 (α+ Γxi + εi)
= (I− β)−1 (α+ Γxi − Γµx + Γµx + εi)

⇔ yi − (I− β)−1 (α+ Γµx) = (I− β)−1 (Γ(xi − µx) + εi)

⇔
c
yi = (I− β)−1(Γ

c
xi +εi)

⇔ (I− β)
c
yi = Γ

c
xi +εi

⇔
c
yi = β

c
yi +Γ

c
xi +εi,

4A system of linear equations with more unknowns than equations has either infinitely many solutions
or none at all. The option of no solutions is ruled out because the pair (µ,Σ) is actually the image of
one particular set of parameter matrices in the parameter space. More details about mappings between
the parameter space and the moment space are given in Chapter 6.
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where putting a c above a random vector means it has been centered by subtracting off
its expected value. Automatically we have

c

Fi= Fi − µF =

(
c
xi
c
yi

)
.

For the measurement part of the model,

di = ν + ΛFi + ei
= ν + ΛFi −ΛµF + ΛµF + ei

⇔ di − (ν + ΛµF ) = Λ(Fi − µF ) + ei

⇔
c

di = Λ
c

Fi +ei.

Thus, a centered version of Model (1.1) is 100% equivalent to the original. A surrogate
for Model (1.1) is obtained by simply dropping the letter c over the random vectors, and
writing

yi = βyi + Γxi + εi (1.5)

Fi =

(
xi
yi

)
di = ΛFi + ei,

where E(xi) = 0, and all other specifications are as in Model (1.1). This will be called
the Centered Surrogate Model. It is a good substitute for the original because

• It hides the nuisance parameters µx, α and ν, which can’t be identified anyway,
and are essentially discarded by a re-parameterization.

• The remaining parameter matrices are identical to those of the original model.

• The covariance matrix Σ of the observable data (given in Expression 1.4) is identical
to that of the original model.

• Special cases of Σ that are used in applications easier to calculate.

It must be emphasized that (1.5) is not a realistic model for almost any actual data set,
because most variables don’t have zero expected value5. Rather, it’s a substitute for a
re-parameterized version of the original Model (1.1), one that’s more convenient to work
with. This explains why structural equation models are usually written in centered form,
with zero means and no intercepts, and why some structural equation modeling software
does not even allow for models with means and intercepts.

5Some authors suggest that the observable data have been centered by subtracting off sample means,
so that they do have expected value zero. That would explain why ν + ΛµF = 0, but not why µF is
necessarily equal to zero.
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1.4.3 An additional re-parameterization

In general, the parameters of the centered surrogate model are still not identifiable. In
most cases, even after restricting the parameters based on modeling considerations, further
technical restrictions are necessary to obtain a model whose parameters are identifiable.
Like centering, these restrictions should be viewed as re-parameterizations, and the models
that result should be viewed as surrogates for the original model. But unlike centering,
which does not affect the parameters appearing in the covariance matrix, the second
level of re-parameterization affects the meaning of the remaining parameters. General
principles will be developed in later chapters, but here is a simple example to illustrate
the idea.

Example 1.4.1 Blood Pressure

Patients with high blood pressure are randomly assigned to different dosages of a blood
pressure medication. There are many different dosages, so dosage may be treated as
a continuous variable. Because the exact dosage is known, this exogenous variable is
observed without error. After one month of taking the medication, the level of the drug
in the patient’s bloodstream is measured once (with error, of course), by an independent
lab. Then, two measurements of the patient’s blood pressure are taken in the doctor’s
office. The measurements are taken on different days and by different technicians, but
with exacly the same equipment and following exactly the same measurement protocol.
Thus, the two blood pressure readings are thought to be equivalent as well as having
independent measurement errors.

Figure 1.3 shows a path diagram of the model, with X representing drug dosage, Y1

representing true blood level of the drug, and Y2 representing the patient’s average resting
blood pressure.

Figure 1.3: Blood pressure path model
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The original model for this problem may be written in scalar form as follows. Inde-
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pendently for i = 1, . . . , n,

Yi,1 = α1 + γXi + εi,1 (1.6)

Yi,2 = α2 + βYi,1 + εi,2

Vi,1 = ν1 + λ1Yi,1 + ei,1

Vi,2 = ν2 + λ2Yi,2 + ei,2

Vi,3 = ν2 + λ2Yi,2 + ei,3,

where E(Xi) = µx, V ar(Xi) = φ, all error terms are independent with expected values
equal to zero, V ar(εi,1) = ψ1, V ar(εi,2) = ψ2, V ar(ei,1) = ω1, and V ar(ei,2) = V ar(ei,3) =
ω2. The equal intercepts, slopes and intercepts for V2 and V3 are modeling restrictions,
based on the belief that V2 and V3 really are equivalent measurements.

Again, this is the original model. In a typical application, a surrogate model would be
presented, both to the reader and to the software. It would be in centered form, with the
coefficients λ1 and λ2 both set equal to one. There might be a brief reference to “setting
the scales” of the latent variables6. Here is a more detailed account of what is going on.

How does the surrogte model arise from the original model? The first step is to
re-parameterize by a change of variables in which each variable is transformed by sub-
tracting off its expected value, and then any notational evidence if the transformation
is suppressed. The result is a centered surrogate model like (1.5). Before further re-
parameterization, let us verify that the parameters of the centered model are not iden-
tifiable. It passes the test of the parameter count rule, because the covariance matrix
contains ten parameters and has ten unique elements. So there are ten covariance struc-
ture equations in ten unknowns.

The covariance matrix Σ = [σij] of the observable variables di = (Xi, Vi,1, Vi,2, Vi,3)>

is 
φ γλ1φ βγλ2φ βγλ2φ(

γ2φ+ ψ1

)
λ21 + ω1

(
γ2φ+ ψ1

)
βλ1λ2

(
γ2φ+ ψ1

)
βλ1λ2(

β2γ2φ+ β2ψ1 + ψ2

)
λ22 + ω2

(
β2γ2φ+ β2ψ1 + ψ2

)
λ22(

β2γ2φ+ β2ψ1 + ψ2

)
λ22 + ω2

 . (1.7)

The model imposes three three equality constraints on the covariance matrix: σ13 = σ14,
σ23 = σ24 and σ33 = σ34. This effectively reduces the number of covariance structure
equations by three, so that to show identifiability it would be necessary to solve seven
equations in ten unknowns7. By the parameter count rule, a unique solution is impossible
except possibly on a set of volume zero in the parameter space. So the parameter vector
is not identifiable.

6See for example Bollen, get reference from language paper.
7This idea is a bit subtle. The σij quantities should be viewed as images of a single, fixed point θ0 in

the parameter space. So if the model implies σ13 = σ14 because they both equal βγλ2φ, it means that σ13
and σ14 both represent the same real number. At this point, parameter symbols like β and γ represent
fixed constants too, because they are elements of θ0. But then when the attempt is made to recover θ0
from Σ(θ0) by solving equations, parameter symbols like β and γ are treated as variables, while the σij
quantities remain fixed constants. Chapter 6 discusses mappings back and forth between the parameter
space and the moment space.
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If this argument is not entirely convincing, the table below gives a numerical example
of two different parameter vectors (with γ, β, λ1 and λ2 all non-zero) that yield the same
covariance matrix.

γ β λ1 λ2 ψ1 ψ2 φ ω1 ω2

θ1 2 4 1 1 4 16 1 1 1
θ2 1 2 2 4 1 1 1 1 1

Both parameter vectors yield the covariance matrix

Σ =


1 2 8 8
2 9 32 32
8 32 145 144
8 32 144 145

 .

By Definition 0.5, the parameter vector is not identifiable.
The next step is to re-examine the model equations in (surrogate) centered form,

Yi,1 = γXi + εi,1 (1.8)

Yi,2 = βYi,1 + εi,2

Vi,1 = λ1Yi,1 + ei,1

Vi,2 = λ2Yi,2 + ei,2

Vi,3 = λ2Yi,2 + ei,3

and carry out the standard re-parameterization that yields λ1 = λ2 = 1, purchasing
identifiability. Expressing the re-parameterization as a change of variables will make it
easier to trace the connection between the parameters of the original model and those
of the re-parameterized model. First note that on modeling grounds, we are sure that
λ1 > 0 and λ2 > 0.

Let Y ′i,1 = λ1Yi,1 and Y ′i,2 = λ2Yi,2. The primes just denote a new (transformed)
random variable. Then from the first equation of (1.8),

Y ′i,1 = (λ1γ)Xi + λ1εi,1

= γ′Xi + ε′i,1.

From the second equation of (1.8),

Y ′i,2 = λ2βYi,1 + λ2εi,2

= λ2β
λ1

λ1

Yi,1 + λ2εi,2

=

(
λ2β

λ1

)
Y ′i,1 + λ2εi,2

= β′Y ′i,1 + ε′i,2.
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Using Y ′i,1 = λ1Yi,1 and Y ′i,2 = λ2Yi,2, and putting it all together, the equations of the
second level surrogate model are

Y ′i,1 = γ′Xi + ε′i,1 (1.9)

Y ′i,2 = β′Y ′i,1 + ε′i,2
Vi,1 = Y ′i,1 + ei,1

Vi,2 = Y ′i,2 + ei,2

Vi,3 = Y ′i,2 + ei,3,

where

γ′ = λ1γ (1.10)

ψ′1 = V ar(ε′i,1) = λ2
1ψ1

β′ =
λ2β

λ1

ψ′2 = V ar(ε′i,2) = λ2
2ψ2

λ′1 = 1

λ′2 = 1.

The only parameters of the original model that are unaffected are ω1 and ω2.
The primes are now suppressed, resulting in a model that looks like (1.8) with λ1 =

λ2 = 1. The parameters of this model have the same names as some parameters of the
original model, but actually they are functions of those parameters and other parameters
(λ1 and λ2, in this case) that have been made invisible by the re-parameterization. In
terms of the new parameters, the covariance matrix Σ is

φ γφ βγφ βγφ
γφ γ2φ+ ω1 + ψ1 (γ2φ+ ψ1)β (γ2φ+ ψ1)β
βγφ (γ2φ+ ψ1)β β2γ2φ+ β2ψ1 + ω2 + ψ2 β2γ2φ+ β2ψ1 + ψ2

βγφ (γ2φ+ ψ1)β β2γ2φ+ β2ψ1 + ψ2 β2γ2φ+ β2ψ1 + ω2 + ψ2

 . (1.11)

It is easy to solve for the new parameters in terms of the variances and covariances σij,
showing that the functions of the original parameters given in (1.7) are identifiable.

Moreover, because the covariance matrix (1.11) is just the covariance matrix (1.7)
written in a different notation, the second level surrogate model (1.9) imposes the same
constraints on the covariance matrix that the original and centered surrogate models do.
These include the equality constraints σ13 = σ14, σ23 = σ24 and σ33 = σ34. As described in
Chapter 7, treating these constraints as a null hypothesis provides a way of testing model
correctness. Rejection of that null hypothesis would cast doubt on the original model.

The meanings of the parameters of the surrogate model are clear from the identities
in (1.10). The crucial parameters γ and β are multiplied by constants that are not just
unknown, they are un-knowable except for being positive. Thus, it will be possible to make
reasonable inference about whether these regression coefficients are positive, negative or
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zero. But parameter estimation as such is a meaningless exercise. It is useful only as an
intermediate step in the construction of hypothesis tests.

Actually, not much is lost here. It may be impossible to estimate the the parameters
of interest8, but recall Figure 1.2. The straight-line relationships of the original model
are at best approximations of the non-linear functions that occur in nature. So one may
hope that conclusions about the signs of regression coefficients will apply to whether the
true relationship is monotone increasing or monotone decreasing. By the way, this hope
is all you ever have with linear regression, as well.

So on the surface, setting λ1 = λ2 = 1 looks like either an arbitrary restriction of the
parameter space, or a measurement model that is very difficult to defend. But in fact
it is a very good re-parameterization, resulting in a surrogate model whose parameters
are not only identifiable, but also reflect what can be known about the parameters of the
original model. It is very helpful to express the re-parameterization in terms of a change
of variables, because that reveals how the apparent suppression of λ1 and λ2 caused them
to appear in the remaining model parameters. This was not at all obvious.

Fortunately, re-parameterizations like this usually do not need to be carried out ex-
plicitly. It is common practice to write the model in centered form from the beginning, set
one factor loading9 for each latent variable equal to one, and then check parameter iden-
tifiability. This is fine, provided that the process is understood as a re-parameterization
with cascading effects on the coefficients linking the latent variables to one another and
to the other observable variables in the model.

As alternative to setting factor loadings equal to one, the centered surrogate model
may be re-parameterized so that the variances of transformed latent variables are equal
to one. That is, if Fj is a latent variable with variance φjj, the change of variables
is F ′j =

√
φjjFj. This device has advantages and disadvantages. Further discussion is

deferred until Chapter 3, which focuses upon the measurement model that links latent to
observable variables.

1.4.4 The blood pressure example with Sage

Sage is an open source symbolic mathematics software package. Use of such software
can greatly ease the computational burden of structural equation modeling. This section
assumes the introduction to Sage in Appendix B. Like all the Sage material, it may be
skipped without loss of continuity. Since this is the first example in the textbook proper,
it contains quite a bit of extra detail.

Writing the equations of the centered surrogate model in matrix form, the latent

8One might hope that in a different re-parameterization, γ and β might appear unaltered as parameters
in the new model. But the numerical example shows that γ and β are not identifiable, and hence by
Theorem 0.1, consistent estimation of them is out of the question.

9This terminology anticipates Chapters 2 and 3. A factor loading is a coefficient linking a latent
variable to an observable variable.
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variable part is

yi = β yi + Γ xi + εi(
Yi,1
Yi,2

)
=

(
0 0
β 0

) (
Yi,1
Yi,2

)
+

(
γ
0

) (
Xi

)
+

(
εi,1
εi,2

)
,

and the measurement part of the model is

di = Λ Fi + ei
Xi

Vi,1
Vi,2
Vi,3

 =


1 0 0
0 λ1 0
0 0 λ2

0 0 λ2




Xi

Yi,1
Yi,2
Xi,3

 +


ei,1
ei,2
ei,3
ei,4

 .

For the measurement model equations to make sense, it is necessary for the distribution
of ei,1 to be degenerate at zero; that is, Pr{ei,1 = 0} = 1. This will be accomplished by
setting V ar(ei,1) = 0.

The covariance matrix Σ = cov(di) is the same under the original model and the
centered surrugate model. To calculate it, first download the sem package.

sem = ’http://www.utstat.toronto.edu/ brunner/openSEM/sage/sem.sage’

load(sem)

evaluate

Then set up the parameter matrices Φ, Γ, β, Ψ, Λ and Ω. Because these matrices contain
so many zeros, the ZeroMatrix function is used quite a bit to create symbolic matrices
that initially contain nothing but zeros. Then, non-zero elements are assigned using var

statements. First comes Φ, which is 1× 1.

# Set up matrices: p = 1, q = 2, k = 4

# Remember, matrix indices start with zero

PHIx = ZeroMatrix(1,1); PHIx[0,0] = var(’phi’); show(PHIx)

evaluate(
φ
)

The matrix Γ is 2× 1.

GAMMA = ZeroMatrix(2,1); GAMMA[0,0] = var(’gamma’); show(GAMMA)

evaluate(
γ
0

)
The matrix β is 2× 2.
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BETA = ZeroMatrix(2,2); BETA[1,0] = var(’beta’); show(BETA)

evaluate(
0 0
β 0

)
The 2×2 matrix Ψ can be created directly with the DiagonalMatrix function; the default
symbol is a ψ.

PSI = DiagonalMatrix(2); show(PSI)

evaluate(
ψ1 0
0 ψ2

)
The matrix Λ is 4× 3.

LAMBDA = ZeroMatrix(4,3); LAMBDA[0,0] = 1 ; LAMBDA[1,1] = var(’lambda1’)

LAMBDA[2,2] = var(’lambda2’) ; LAMBDA[3,2] = var(’lambda2’)

show(LAMBDA)

evaluate
1 0 0
0 λ1 0
0 0 λ2

0 0 λ2


The matrix Ω = cov(ei) has V ar(ei,1) = 0, so that the observable variable Xi can also
appear in the latent variable model.

OMEGA = ZeroMatrix(4,4); OMEGA[1,1] = var(’omega1’)

OMEGA[2,2] = var(’omega2’); OMEGA[3,3] = var(’omega2’)

show(OMEGA)

evaluate
0 0 0 0
0 ω1 0 0
0 0 ω2 0
0 0 0 ω2


Following the two-stage model formulation, the next step is to calculate Φ = cov(Fi).
Then Φ will be used as an ingredient in the calculation of Σ.
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# Calculate PHI = cov(F)

PHI = PathCov(Phi=PHIx,Beta=BETA,Gamma=GAMMA,Psi=PSI)

show(PHI)

evaluate φ γφ βγφ
γφ γ2φ+ ψ1 (γ2φ+ ψ1)β
βγφ (γ2φ+ ψ1)β β2γ2φ+ β2ψ1 + ψ2


Now, Σ is calculated from Φ, Λ and Ω, yielding Expression (1.7). I used Sage to generate
the LATEXcode for the matrix by double-clicking on the object in the Sage worksheet, and
then manually deleted the lower triangular part of the matrix so it would fit better on
the page. It was still a lot better than typesetting the matrix myself.

# Calculate SIGMA = cov(D)

SIGMA = FactorAnalysisCov(Lambda=LAMBDA,Phi=PHI,Omega=OMEGA)

show(SIGMA)

evaluate
φ γλ1φ βγλ2φ βγλ2φ

γλ1φ (γ2φ+ ψ1)λ2
1 + ω1 (γ2φ+ ψ1)βλ1λ2 (γ2φ+ ψ1)βλ1λ2

βγλ2φ (γ2φ+ ψ1)βλ1λ2 (β2γ2φ+ β2ψ1 + ψ2)λ2
2 + ω2 (β2γ2φ+ β2ψ1 + ψ2)λ2

2

βγλ2φ (γ2φ+ ψ1)βλ1λ2 (β2γ2φ+ β2ψ1 + ψ2)λ2
2 (β2γ2φ+ β2ψ1 + ψ2)λ2

2 + ω2


To generate the example of two numerically different parameter sets that yield the same
Σ, I looked at the equations in (1.10) to find distinct θ vectors corresponding to the
same θ′. There was a bit of trial and error, and Sage made it really convenient to do the
numerical calculations. A Sage object like a matrix may be treated as a function of the
symbolic variables that appear in it.

SIGMA(gamma=2,beta=4,lambda1=1,lambda2=1,psi1=4,psi2=16,

phi=1,omega1=1,omega2=1)

evaluate
1 2 8 8
2 9 32 32
8 32 145 144
8 32 144 145


SIGMA(gamma=1,beta=2,lambda1=2,lambda2=4,psi1=1,psi2=1,

phi=1,omega1=1,omega2=1)
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evaluate
1 2 8 8
2 9 32 32
8 32 145 144
8 32 144 145


The same Sage capability was used to generate Expression (1.11), the re-parameterized Σ
matrix under the second-level surrogate model. Rather than starting from the surrogate
model equations (1.9) and re-doing the whole calculation, I just evaluated the Σ of (1.7)
at λ1 = λ2 = 1.

SIGMA(lambda1=1,lambda2=1)

evaluate
φ γφ βγφ βγφ
γφ γ2φ+ ω1 + ψ1 (γ2φ+ ψ1)β (γ2φ+ ψ1)β
βγφ (γ2φ+ ψ1)β β2γ2φ+ β2ψ1 + ω2 + ψ2 β2γ2φ+ β2ψ1 + ψ2

βγφ (γ2φ+ ψ1)β β2γ2φ+ β2ψ1 + ψ2 β2γ2φ+ β2ψ1 + ω2 + ψ2


The covariance structure equations may now be solved by inspection, verifying identifi-
ability of the parameters in the re-parameterized model. But it is instructive to solve
the equations using Sage. The necessary ingredients are a list of equations and a list of
unknown parameters for which to solve.

The sem package has the specialized function Parameters for extracting parameters
from matrices, so they don’t all need to be re-typed. It works on the original parameter
matrices, not on computed matrices like Φ or Σ. For example, the 4×3 matrix Λ contains
just two parameters, λ1 and λ2.

Parameters(LAMBDA) # Don’t need these - just an example

evaluate

(λ1, λ2)

param = [phi,beta,gamma] # Start with this

param.extend(Parameters(PSI))

param.extend(Parameters(OMEGA))

param

evaluate

(φ, β, γ, ψ1, ψ2, ω1, ω2)



158 CHAPTER 1. INTRODUCTION TO STRUCTURAL EQUATION MODELS

Notice how the list param has been extended by adding the contents of Ψ and Ω. For
big matrices with lots of parameters, this is a real convenience.

The next step is to set up the equations to solve. The Sage solve function needs the same
number of equations as unknowns, so giving it the full set of 10 equations in 7 unknowns
will not work. But we’ll set up all 10 equations anyway to see what happens.

# Now set up equations to solve

S = SIGMA(lambda1=1,lambda2=1) # Sigma under surrogate model

S2 = SymmetricMatrix(4,’sigma’)

eqns = [] # Empty list

for i in range(4): # i goes from 0 to 3

for j in range(i+1): # j goes from 0 to i

item = S[i,j]==S2[i,j] # An equation

eqns.append(item) # Append to list of equations

eqns # Not easy to look at, but there is a scroll bar

evaluate

(φ = σ11, γφ = σ12, γ
2φ+ ω1 + ψ1 = σ22, βγφ = σ13, (γ

2φ+ ψ1)β = σ23, β
2γ2φ+ β2ψ1 + ω2 + ψ2 = σ33, βγφ = σ14, (γ

2φ+ ψ1)β = σ24, β
2γ2φ+ β2ψ1 + ψ2 = σ34, β

2γ2φ+ β2ψ1 + ω2 + ψ2 = σ44)

The object eqns is a list of equations; you can tell it’s a list because it’s enclosed in
brackets. As the comment statement says, it’s not very easy to look at, but there is
a scroll bar. So in a Sage environment, you can examine the output that runs off the
page in this document. Here’s a more convenient way to look at the covariance structure
equations.

for item in eqns: item

evaluate

φ = σ11

γφ = σ12

γ2φ+ ω1 + ψ1 = σ22

βγφ = σ13

(γ2φ+ ψ1)β = σ23

β2γ2φ+ β2ψ1 + ω2 + ψ2 = σ33

βγφ = σ14

(γ2φ+ ψ1)β = σ24

β2γ2φ+ β2ψ1 + ψ2 = σ34

β2γ2φ+ β2ψ1 + ω2 + ψ2 = σ44

It would seem easy to ask Sage to solve these ten equations in seven unknowns. It’s easy
to ask, but the answer is not what we’re looking for.

solve(eqns,param)
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evaluate

[]

That little rectangle is a left square bracket followed by a right square bracket; that is, it’s
an empty list (empty set), meaning that the system of equations has no general solution.
This happens because, for example, the fourth equation in the list says βγφ = σ13, while
the seventh equation says βγφ = σ14. To Sage, σ13 and σ14 are just numbers, and there
is no reason to assume they are equal. Thus there is no general solution.

Actually, because we think of the σij values as arising from a single, fixed point in the
parameter space, we recognize σ13 = σ14 (and also σ23 = σ24 and σ33 = σ44) as realities –
distinctive features that the model imposes on the covariance matrix Σ. But Sage can’t
know this unless we tell it, and I don’t know how to do that. It’s easiest to just eliminate
the redundant equations.

extra = [9,7,6] # Redundant equations, starting with index zero

for item in extra: show(eqns[item])

evaluate

β2γ2φ+ β2ψ1 + ω2 + ψ2 = σ44

(γ2φ+ ψ1)β = σ24

βγφ = σ14

Removing the the extra equations from the list and then taking a look . . .

for item in extra: eqns.remove(eqns[item])

for item in eqns: item

evaluate

φ = σ11

γφ = σ12

γ2φ+ ω1 + ψ1 = σ22

βγφ = σ13

(γ2φ+ ψ1)β = σ23

β2γ2φ+ β2ψ1 + ω2 + ψ2 = σ33

β2γ2φ+ β2ψ1 + ψ2 = σ34

Now it is possible to solve the remaining seven equations in seven unknowns. The solution
will be easier to use in later calculations if it is obtained in the form of a dictionary. To
see if the solution is unique, first check the length of the list of dictionaries returned by
solve.
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# Return solution as list of dictionaries

solist = solve(eqns,param,solution_dict=True)

len(solist)

evaluate

1

There is only one item in the list of dictionaries; it’s item zero. The key of the dictionary
is the parameter, and the value is the solution, which for us will be some function of
the σij quantities. Dictionary entries take the form Key-Colon-Value. Dictionaries are
inherently unordered.

sol = solist[0]; sol # Item 0 of the list; there’s just one.

evaluate{
φ : σ11, ψ1 :

σ11σ12σ23−σ2
12σ13

σ11σ13
, β : σ13

σ12
, ω2 : σ33 − σ34, γ : σ12

σ11
, ω1 : −σ12σ23−σ13σ22

σ13
, ψ2 : σ12σ34−σ13σ23

σ12

}
The dictionary format makes it convenient to refer to the solution for a parameter — for
example, the solution for ψ2.

sol[psi2]

evaluate

σ12σ34−σ13σ23
σ12

Dictionaries are hard to look at when they have a lot of items. Here is one way to take a
quick look at a solution. Dictionary entries are expressed as tuples of the form (Parameter,
Solution). Since the for loop below is going through the list of parameters, the output is
in that order.

for item in param:

item, sol[item]

evaluate

(φ, σ11)(
β, σ13

σ12

)
(
γ, σ12

σ11

)
(
ψ1,

σ11σ12σ23−σ2
12σ13

σ11σ13

)
(
ψ2,

σ12σ34−σ13σ23
σ12

)
(
ω1,−σ12σ23−σ13σ22

σ13

)
(ω2, σ33 − σ34)
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That’s okay for a quick look, and the syntax is intuitive. Equations are nicer, though.
In the following, realize that nothing is getting assigned. Rather, item==sol[item] just
causes that equation to be displayed.

for item in param: item==sol[item]

evaluate

φ = σ11

β = σ13
σ12

γ = σ12
σ11

ψ1 =
σ11σ12σ23−σ2

12σ13
σ11σ13

ψ2 = σ12σ34−σ13σ23
σ12

ω1 = −σ12σ23−σ13σ22
σ13

ω2 = σ33 − σ34

The dictionary sol gives parameters in terms of the σij values. It can also be useful to
have a dictionary that goes in the other direction, where the input is in terms σij and
the output is in terms of the model parameters. The function SigmaOfTheta sets up such
a dictionary; see Appendix B or try SigmaOfTheta? in a Sage environment for more
detail. In the following, the dictionary is in terms of the original (not surrogate) model
parameters.

# Original covariance matrix as a function of theta

theta = SigmaOfTheta(SIGMA)

# theta is a dictionary

# For example, sigma12 = gamma lambda1 phi

sigma12(theta)

evaluate

γλ1φ

Such a dictionary can be used to evaluate big, messy functions of Σ, including the solutions
in the dictionary sol.

# What is the solution for psi2 (that’s psi2-prime) in terms of

# ORIGINAL model parameters?

sol[psi2](theta)

evaluate

−(γ2φ+ψ1)β2γλ1λ22φ−(β2γ2φ+β2ψ1+ψ2)γλ1λ22φ
γλ1φ
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Simplify(_) # Underscore refers to the last item

evaluate

λ2
2ψ2

Where in the original parameter space is ψ′1 identifiable? These are the points in the
parameter space where the denominator of the solution (that’s σ11σ13) is non-zero. Eval-
uating the denominator as a function of the model parameters θ,

# Where is psi1-prime identifiable?

denominator(sol[psi2])(theta)

evaluate

βγλ2φ
2

Thus, β, γ and λ2 must all be non-zero in order for ψ′1 = λ2
1ψ1 to be identifiable. This is

the end of the Sage example.

1.4.5 Yet another type of surrogate model

In some structural equation models, variables that are obviously measured with error are
assumed to be observable. Invariably, the assumption is adopted so that the parameters
of the resulting model will be identifiable. Since it is practically impossible to measure
anything without error, almost every model that assumes error-free measurement is either
dangerously10 unrealistic, or a surrogate for some model that is more reasonable.

For an example, we will turn to Section 0.11 of Chapter 0, where extra response
variables were used to identify the parameters of regression models with measurement
error in the explanatory variables. Consider a centered version of model (53) on page 106.

Wi = Xi + ei (1.12)

Yi,1 = β1Xi + εi,1

Yi,2 = β2Xi + εi,2

The path diagram is shown in Figure ??. To give this some content, consider the question
of whether smoking cigarettes can help you lose weight. We will limit the study to young
adults who smoke at least occasionally, and who do not exercise regularly. Suppose that
the latent variable Xi is amount of smoking, Wi is reported number of cigarettes smoked
daily, Yi,1 is body mass index11, and Yi,2 is resting heart rate. Interest is in the connection

10Section 0.7 in Chapter 0 points out the disastrous effects of ignoring measurement error in multiple
regression, and it is natural to expect similar things to happen in a more general setting. Except possibly
for experimentally manipulated exogenous variables, assuming perfect measurement is not something to
be done lightly.

11Weight in kilograms divided by squared height in meters. Big numbers mean you are heavier for your
height.
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Figure 1.4: Path diagram of the surrogate model for credit card debt
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between amount of smoking and body mass index (BMI), represented by β1. Heart rate
(known to be increased by smoking) is an extra response variable.

Notice that in Wi = Xi + ei, the factor loading for equals one; this means that it’s
a surrogate model. As described starting on page 106, the parameters of this model are
identifiable — but it’s far from realistic. Body mass index surely cannot be measured
without error, because height and weight are measured with error. As for resting heart
rate, it will vary over the time of day, and also with things like ambient noise level and
recent exertion.

Figure 1.5 depicts a somewhat more reasonable model for the smoking example, and
it is proposed as the original model. In this model, Yi,1 is true body mass index, while Vi,1
is the measured version. Yi,2 is true average resting heart rate, while Vi,2 is the snapshot
measured with error that appears in the data file. The equations of the proposed original
model are

Wi = ν1 + λ1Xi + ei,1 (1.13)

Yi,1 = α1 + β1Xi + εi,1

Yi,2 = α2 + β2Xi + εi,2

Vi,1 = ν2 + λ2Yi,1 + ei,2

Vi,2 = ν3 + λ3Yi,2 + ei,3,

where V ar(Xi) = φ, V ar(ei,1) = ω1, V ar(ei,2) = ω2, V ar(ei,3) = ω3, V ar(εi,1) = ψ1 and
V ar(εi,2) = ψ2. As the path diagram indicates, all error terms are independent of Xi and
of one another. Because Wi, Vi,1 and Vi,2 are direct measurements of the corresponding
latent variables, it is safe to assume that the factor loadings λ1, λ2 and λ3 are all positive.

Centering the variables and setting all three factor loadings to one yields a second
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Figure 1.5: Path diagram of the original model for credit card debt

X

W V
1

V
2

e
1

ε
1

ε
2Y

1
Y
2

e
2 e

3

level surrogate model that preserves the signs of β1 and β2, though not their actual
values. There are now eight parameters, but still only six covariance structure equations.
By the parameter count rule, the parameters of this model cannot be identified. However,

Vi,1 = Yi,1 + ei,2

= (β1Xi + εi,1) + ei,2

= β1Xi + (εi,1 + ei,2)

= β1Xi + ε′i,1.

Re-labelling Vi,1 as Y ′i,1, we have the model equation Y ′i,1 = β1Xi + ε′i,1, with V ar(ε′i,1) =
ψ′1 = ψ1 +ω2. The same procedure yields Y ′i,2 = β2Xi+ε

′
i,2, with V ar(ε′i,2) = ψ′2 = ψ2 +ω3.

Dropping the primes as usual to hide the evidence of our strange activities, we arrive
once more at the model equations (1.12). All along, this model was a surrogate for the
original model of Figure 1.5 and Equations (1.13). It never really assumed that credit card
debt and vehicle value were observable. Rather, the change of variables ε′i,1 = εi,1 + ei,2
was carried out to obtain the re-parameterization ψ′1 = ψ1 + ω2, and the change of
variables ε′i,2 = εi,2 + ei,3 was carried out to obtain the re-parameterization ψ′2 = ψ2 + ω3.
Notationally, the result looks like a model with error-free measurement of Yi,1 and Yi,2
— but in this case appearances are deceiving. Surrogate models are never to be taken
literally.

The beginning of Section 0.7 of Chapter 0 suggested that in multiple regression, mea-
surement error in response variables may be safely ignored, and the result was a useful
surrogate model. The same principle applies here. In general, suppose that an endogenous



1.4. MODELS: ORIGINAL AND SURROGATE 165

variable Yi,j in the latent variable model is a purely endogenous variable, in the sense that
there are no arrows from Yi,j to any other latent variable. In addition, suppose that Yi,j
is measured with error in a single observable variable Vi,j, so that after centering,

Yi,j = r>j xi + εi,j

Vi,j = λjYi,j + ei,j,

where rj = rj(β,Γ) denotes row j of the matrix (I − β)−1Γ; see Expression (1.3) on
page 146. In addition, suppose that εi,j and ei,j are independent of one another and of all
other exogenous variables in the model, with V ar(εi,j) = ψj and V ar(ei,j) = ωj.

At this point it would be possible and legitimate to implicitly re-parameterize by
setting λj = 1 as in the Credit Card Debt example. As an alternative, the absorption
of the un-knowable factor loading will be accomplished by the re-parameterization that
combines ψj and ωj, all in one step.

Vi,j = λjYi,j + ei,j

= λj(r
>
j xi + εi,j) + ei,j

= (λjrj)
>xi + (λjεi,j + ei,j)

= r′>j xi + ε′i,j,

with V ar(ε′i,j) = ψ′j = λ2
jψj + ωj. The β and γ parameters in rj are also re-expressed in

this step. Now Vi,j may be called Y ′i,j without doing any harm. The result is a new model
in which

• The parameters are functions of the parameters in the original model.

• The dimension of the parameter space is two less, so the new parameter vector
should be easier to identify.

• The meaning of the new parameters is clear. The β and γ parameters in rj are
positive multiples of what they were before, while any separate meaning that ψj
and ωj may have had is lost. They were probably not knowable anyway.

• After dropping the primes, it looks like Yi,j is measured without error, but that is
an illusion. No such claim was ever intended.

The situation is shown graphically in Figure 1.6. When a latent endogenous variable does
not affect any other latent variables and is expressed by only one observable variable, it
is acceptable to drop the latent variable from the model, and run all the arrows directly
to the observable variable.

Comments Virtually all structural equation models used in practice are surrogate mod-
els, and most of them have the features described here. While the re-parameterizations
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Figure 1.6: Direct path to the observed variable
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are very standard, the terms “original model” and “surrogate model” are not. I made
them up, and they will not be found elsewhere12.

Experts in the field undoubtedly know that what’s happening is a series of re-parameterizations,
but this is often not acknowledged in textbooks. Instead, the process is presented as a
harmless restriction of the parameter space, adopted in order to identify the parameters.
I think it’s really helpful to point out how the re-parameterizations are accomplished by
change-of-variable operations. This reveals effects on other parameters in the model (not
just the ones that seem to be restricted), and makes it possible to specify the meanings
of the new parameters in terms of the parameters of the original model.

1.5 Maximum likelihood

In most structural equation modeling software, the default method of parameter estima-
tion is numerical maximum likelihood13. The exogenous variables and error terms are
assumed multivariate normal, and consequently the joint distribution of the observable
variables is multivariate normal too. It will be seen in theorem ?? that when the nor-
mal assumption is clearly wrong, maximum likelihood estimates based on normality are
still consistent. They are also asymptotically normal under conditions that are widely
accepted. This makes bootstrap standard errors potentially very useful when the as-
sumption of normality is questionable. Bootstrapping in lavaan is easy, and theoretically
based robust standard errors are also available.

12That is, unless others find the terminology useful and it catches on. It’s always possible, I suppose.
13The reader is referred to Section A.6.3 in Appendix A for material on maximum likelihood and related

concepts.
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1.5.1 Estimation

Let d1, . . . ,dn be a random sample from a k-dimensional multivariate normal distribution
with expected value µ and varance-covariance matrix Σ. The likelihood is

L(µ,Σ) =
n∏
i=1

1

|Σ| 12 (2π)
k
2

exp

{
−1

2
(di − µ)>Σ−1(di − µ)

}

= |Σ|−n/2(2π)−nk/2 exp

{
−1

2

n∑
i=1

(di − µ)>Σ−1(di − µ)

}

= |Σ|−n/2(2π)−nk/2 exp−n
2

{
tr(Σ̂Σ

−1
) + (d− µ)>Σ−1(d− µ)

}
,

where Σ̂ = 1
n

∑n
i=1(di − d)(di − d)> is the sample variance-covariance matrix.

Let θ ∈ Θ be a vector of parameters from a structural equation model; Θ is the
parameter space. For example, θ could be the the unique elements in the parameter
matrices in the original Model (1.1), restricted only by modeling considerations. Then the
likelihood is a function of θ through µ = µ(θ) and Σ = Σ(θ), as given in Expressions (1.4).

Maximizing the likelihood over θ is equivalent to minimizing the minus log likelihood

−`(θ) =
n

2
log |Σ(θ)|+ nk

2
log(2π) +

n

2
tr(Σ̂Σ(θ)−1) (1.14)

+
n

2

(
d− µ(θ)

)>
Σ(θ)−1

(
d− µ(θ)

)
For any set of observed data values, the minus log likelihood defines a high-dimensional
surface floating over the parameter space Θ. The maximum likelihood estimate θ̂ is the
point in Θ where the surface is lowest. One might try the calculus approach, partially
differentiating the log likelihood and setting all the derivates to zero. This ypically yields
a system of equations that nobody can solve, so it really does not help us locate the point
where the minimum value ofccurs. To find the point numerically, choose a starting value
as close to the answer as possible and move downhill. Choice of good starting values is
important, because the likelihood surface can have many local maxima and minima, and
other topological features that are “interesting,” but not in a good way.

Ideally, the numerical search will terminate at the unique minimum of the function.
Geometrically, the surface at that point will be level and concave up. Analytically, the
gradient will be zero, and the eigenvalues of the Hessian matrix will all be positive. As
described in Appendix A, the Hessian is the observed Fisher information matrix evaluated
at θ̂, and its inverse is the approximate asymptotic covariance matrix of θ̂.

When the parameters are not identifiable, this procedure fails. The likelihood is con-
stant on collections of functions of θ that are identifiable. Typically, the numerical search
reaches the bottom of a high-dimensional valley, and at the bottom of that valley is a
contour (think of a winding, invisibly thin river) where the minus log likelihood is con-
stant. The gradient is zero at any point on the surface of the river, but the surface is
not concave up in every direction. It follows that the Hessian matrix has one or more
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eigenvalues equal to zero. The determinant of the Hessian equals zero, and inverting it to
approximate the asymptotic covariance matrix of θ̂ is impossible. In this situation, good
software complains loudly14.

Re-parameterization Since the parameters of the original Model (1.1) are not identifi-
able, directly fitting it by maximum likelihood is out of the question. Re-parameterization
is necessary. Following Section A.6.1, the first step is to lose the expected values and in-
tercepts. Let κ = ν + ΛµF , where the partitioned matrix

µF =

(
µx

(I− β)−1 (α+ Γµx)

)
.

Under this re-parameterization, the new parameter vector θ′ consists of κ, plus all the
parameters that appear in Σ — that is, the unique elements of Φx,Ψ,Ω, β,Γ and Λ.

Because the new parameter κ is exactly µ(θ), the minus log likelihood is minimal
when κ = d, regardless of the values of the remaining parameters. The second line of
Expression (1.14) disappears, and the task is now to minimize the first line with respect
to the parameters that appear in the covariance matrix.

The remaining parameters are still not identifiable in general. Further re-parameterization
is necessary, and the re-parameterizations corresponding to standard surrogate models
are often very helpful. The parameters of a good surrogate model are identifiable func-
tions of the original model’s parameters. After the centering step, re-parameterization
is carried out by a set of change-of-variables operations involving only latent variables.
As a result, the parameters of the original model appear in the covariance matrix only
through functions of θ that correspond to the parameters of the surrogate model. If the
re-parameterizations are well chosen, the maximum of the likelihood under the surrogate
model is identical to the maximum of the likelihood under the original model. If in addi-
tion, the likelihood function achieves its maximum at a point where the parameters of the
surrogate model are identifiable, then the maximum will be unique. The minus log likeli-
hod will be nicely concave up at this point in the parameter space of the re-parameterized
model. The Hessian matrix (observed Fisher Information) will be positive definite, and its
inverse will provide an approximate asymptotic covariance for the estimated parameters
of the surrogate model. This is the main ingredient for Z-tests and Wald tests. The
height of the minus log likelihood at the MLE is used in likelihood ratio tests.

Once the expected values and intercepts have been absorbed into κ, we implicitly
estimate the identifiable function κ with the vector of sample means d, and then forget
about it, basing all inference upon the sample variance-covariance matrix. This is standard
practice, but it raises a few issues. First, note that while κ is a function of the un-knowable
parameters ν, α and µx, it is also a function of β,Γ and Λ. These last three matrices

14This encourages some naive users to simply run their structural equation modeling software without
thinking very hard about identifiability, trusting that if the parameters are not identifiable, the search
will blow up. Unfortunately, the search can blow up numerically for other reasons, and sometimes the
symptoms can be very similar to those arising from lack of identifiability. It is much better to check
identifiability mathematically, before trying to fit the model.
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are often of primary interest. Might d contain some information about them? Are we are
throwing this information away?

The answer is no, provided that the intercept term ν is not restricted by modeling
considerations. Suppose that the first line of the minus log likelihood (1.14) is minimized,
regardless of whether that minimum is unique. Now consider the effect of adjusting β,
Γ or Λ. The value of the first line will increase or remain the same. Now look at the
second line, recalling that µ(θ) = ν + ΛµF . Regardless of how the values of the other
parameters change, ν can always be adjusted so that d − µ(θ) = 0. This makes the
second line equal to zero, which is as low as it can be. Therefore, the second line of (1.14)
makes no contribution to the MLEs of parameters appearing in the covariance matrix Σ
— that is, provided that ν is unrestricted.

Since inference is to be be based on the covariance matrix, it saves mental effort to
employ the centered surrogate model. But we never actually fit the centered surrogate
model. We cannot, because the change of variables involves subtracting expected values
from the observed data, and those expected values (elements of µ(θ) = κ) are unknown.
On the other hand, it is possible to fit an approximate centered model by using the vector
of sample means in place of µ(θ). That is,

c

di= di − µ(θ) ≈ di − d

by the Law of Large Numbers. The approximation will be very good for large samples.

Letting
c

di refer to di − d for now, the model is that
c

d1, . . .
c

dn are a random sample
from a multivariate normal distribution with expected value zero and covariance matrix
Σ(θ). The observations are not quite independent because the same random quantity d
is subtracted from each one, but the covariances go to zero as n → ∞. The likelihood
function is

L(Σ) =
n∏
i=1

1

|Σ| 12 (2π)
k
2

exp

{
−1

2

c

d
>
i Σ−1

c

di

}

= |Σ|−n/2(2π)−nk/2 exp

{
−1

2

n∑
i=1

(di − d)>Σ−1(di − d)

}

= |Σ|−n/2(2π)−nk/2 exp−n
2

{
tr(Σ̂Σ

−1
)
}
.

The minus log likelihood is just the first line of (1.14). So, estimating κ = µ(θ) with
d and setting it aside is the same as fitting the approximate centered surrogate model.
Either way, the intercepts and expected values disappear.

1.5.2 Hypothesis testing

z-tests The maximum likelihood estimates are asymptotically normal under general
conditions, so that for a scalar parameter θj,

z =
θ̂j − θj
sθj

(1.15)
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has an approximate standard normal distribution for large samples, where sθj is the

standard error (estimated standard deviation) of θ̂j, obtained by taking the square root
of a diagonal element the estimated asymptotic covariance matrix. There are various
good ways to estimate the asymptotic covariance matrix15. Squaring the z statistic yields
a Wald chi-square statistic with one degree of freedom. Wald tests are the topic of the
next brief section.

Wald tests As described in Section A.6.7 of Appendix A, a linear null hypothesis of
the form H0 : Lθ = h can be tested using the statistic

Wn = (Lθ̂n − h)>(LV̂nL
>)−1(Lθ̂n − h). (1.16)

Under the null hypothesis, Wn has an approximate chi-squared distribution with r degrees
of freedom, where r is the number of rows in the matrix L. In the formula, V̂n is the
estimated asymptotic covariance matrix of θ̂; see footnote 15.

Likelihood ratio tests As described more fully in Section A.6.8 of Appendix A, a
large-sample likelihood ratio test of a linear (or under some circumstances, non-linear)
null hypothesis may be based on the test statistic

G2 = −2 log

(
L(θ̂0)

L(θ̂)

)
(1.17)

= 2
(
`(θ̂)− `(θ̂0)

)
,

where L(·) is the likelihood function, `(·) is the log likelihood, θ̂ is the unrestricted max-

imum likelihood estimate, and θ̂0 is the maximum likelihood estimate restricted by the
null hypothesis. The second line says that the test statistic is just the difference between
two log likelihoods. If the null hypothesis is true, then the approximate large-sample
distribution of G2 is chi-squared with r degrees of freedom, where r is the number of
equalities specified by the null hypothesis.

1.5.3 Testing model correctness

The typical structural equation model implies a covariance matrix Σ(θ) with properties
that are not necessarily true of covariance matrices in general. For example, the original
and surrogate model for the Blood Pressure example yields the covariance matrix (1.7)
on page 150. In this matrix, σ13 = σ14, σ23 = σ24 and σ33 = σ34; these same constraints
are implied by the surrogate model. The double measurement regression Model (47) and

15For a classical estimate that depends on multivariate normality of the data, one can use the inverse
of the estimated Fisher information – either I(θ̂) or J (θ̂) from Section A.6.6 in Appendix A. Robust
estimators like the ones described in Section 5 provide alternatives that do not assume multivariate
normality.
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the instrumental variables Model (57) also induce equality constraints on their covariance
matrices; see pages 87 and 115 respectively for details.

In all such cases, the model implies that certain polynomials in σij are equal to zero.

These constraints are satisfied by Σ(θ) for any θ in the parameter space, including θ̂. This

means that the matrix Σ(θ̂) (the reproduced covariance matrix) automatically satisfies
the constraints as well.

With probability one, Σ(θ̂) will not be exactly equal to Σ̂, but if the model is correct
it should be fairly close. This is the idea behind Jöreskog’s (1967) classical likelihood ratio
test for goodness of model fit [35]. The null hypothesis is that the equality constraints
implied by the model are true16, and the alternative is that Σ is completely unconstrained
except for being symmetric and positive definite. Note that since a well-chosen surrogate
model implies the same constraints as the original model, this test of model correctness
applies equally to the original and the surrogate model. It is far more convenient to carry
out model fitting using the surrogate model.

Assuming that substantive modeling considerations do not restrict the intercept pa-
rameter ν in the general Model (1.1)17, the likelihood ratio test statistic is written

G2 = −2 log
L
(
Σ(θ̂)

)
L(Σ̂)

= −2 log
|Σ(θ̂)|−n/2(2π)−nk/2 exp−n

2

{
tr(Σ̂Σ(θ̂)−1)

}
|Σ̂|−n/2(2π)−nk/2 exp−n

2

{
tr(Σ̂Σ̂

−1
)
}

= n
(

log |Σ(θ̂)|+ tr(Σ̂Σ(θ̂)−1)− log |Σ̂| − k
)

= n
(
tr(Σ̂Σ(θ̂)−1)− log |Σ̂Σ(θ̂)−1| − k

)
(1.18)

This statistic is quite easy to compute given θ̂. In fact, it is common for software to
directly minimize the “objective function” or “loss function”

b(θ) = tr(Σ̂Σ(θ)−1)− k − log |Σ̂Σ(θ)−1| (1.19)

instead of the minus log likelihood18, and then just multiply the final result by n to get the
likelihood ratio test statistic G2. An advantage of doing it this way is that the numerical
performance of the minimization is not affected by the sample size.

16This is not what he says, but it clarifies what he does say.
17This might not be a completely safe assumption. For example, if two measurements of a latent

variable are truly equivalent, they will have the same means as well as the same variances and the same
covariances with other variables. Overlooking this kind of thing would result in a modest loss of power
in the goodness of fit test.

18If you are a history buff, compare (1.19) to formula (6) on p. 446 in Jöreskog’s (1978) classic article [37]
in Psychometrika. Astonishingly, this is almost the same as Formula (6) (same equation number) on p. 446
(same page number) in [35], another classic article by Jöreskog in Psychometrika (Jöreskog, 1967). The
1967 paper is limited to the special case of factor analysis.
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The test statistic G2 is referred to a chi-squared distribution with degrees of freedom
equal to the number of model-induced equality constraints on Σ. When G2 is larger than
the critical value, the null hypothesis that the constraints hold is rejected, casting doubt
on the model.

To count the constraints, first assume that the parameter vector is identifiable, and
that there are more moment structure equations than unknown parameters. If the number
of parameters is equal to the number of moment structure equations, the model is called
saturated, and this way of testing model fit does not work.

Suppose there are m moments (typically covariances or correlations), and r unknown
parameters in the vector θ, with m > r. The degrees of freedom are m − r. To see why
this might hold, suppose that exactly r of the the moment structure equations can be
solved for the r unknown parameters. Substituting the solution into the m − r unused
equations gives m − r equalities involving only σij quantities. These correspond to the
constraints. Notice that while this is a test of the constraints that the model induces on
the covariance matrix Σ, the test statistic can be calculated and degrees of freedom can
be determined without knowing exactly what the constraints are.

If a model fails the G2 goodness of fit test, it is common to search for a model that does
fit. Sometimes, the reason for lack of fit can be revealed by residuals formed by subtracting
the elements of Σ̂ from those of Σ(θ). Approximate formulas for standardization are
available. Once the model fits, likelihood ratio tests for full versus reduced models can
be obtained by subtracting G2 statistics, with degrees of freedom equal to the number of
additional constraints implied by the reduced model.

The likelihood ratio test for goodness of fit is useful, but as a test of model correctness it
is incomplete. This is because structural equation models imply two types of constraint on
Σ: equality constraints and inequality constraints. For example, in proving identifiability
for the instrumental variables Model (57) on page 112, the solution (61) includes ω =
σ11 − σ13σ14

σ34
. Because ω is a variance, this means σ11 >

σ13σ14
σ34

=⇒ σ11σ34 > σ13σ14, an
inequality constraint that is obviously not true of 4×4 covariance matrices in general. The
typical structural equation model imposes many inequality constraints on the covariance
matrix.

In general, moment structure equations map the parameter space into a moment space,
which for the classical surrogate models is a space of k × k positive definite matrices. As
the numerical maximum likelihood search moves θ through the parameter space, Σ(θ)
moves along through a lower-dimensional subset of the moment space where the equality
constraints are satisfied, generally behaving as if it were attracted to Σ̂.

While Σ(θ) is forced to obey the equality constraints, it need not obey the inequality
constraints. If the true value of Σ is such that an inequality constraint is not satisfied
(which means the model is wrong), then it is quite possible for Σ(θ) to cross the boundary
of an inequality constraint. This means that θ leaves the parameter space. Maximum
likelihood estimates that are outside the parameter space make everyone uncomfortable,
if they are noticed. In factor analysis, this phenomenon is called a “Heywood case;” see
page 226.

Example 1.5.1 A negative variance estimate
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Here is a very simple example. Suppose we have two measurements of a latent variable,
like academic ability. The surrogate model equations are, independently for i = 1, . . . , n,

Wi,1 = Xi + ei,1

Wi,2 = Xi + ei,2,

where all expected values are zero, V ar(Xi) = φ, V ar(ei,1) = ω1, and V ar(ei,2) = ω2.
According to the model, the exogenous variables ei,1, ei,2 and Xi are all independent.
A path diagram is shown in the left panel of Figure 1.7. The covariance matrix of the

Figure 1.7: Two measurements of a latent variable
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The model is saturated, with three linear covariance structure equations in three unknown
parameters. The solutions are

φ = σ12

ω1 = σ11 − σ12 (1.20)

ω2 = σ22 − σ12,



174 CHAPTER 1. INTRODUCTION TO STRUCTURAL EQUATION MODELS

so that the parameters are just identifiable. The model imposes no equality constraints on
Σ, and it is untestable with the classical test of fit. However, since the model parameters
are all variances, the equations (1.20) reveal three inequality constraints: σ12 > 0, σ11 >
σ12 and σ22 > σ12.

By the invariance principle, explicit formulas for the maximum likelihood estimates
φ̂, ω̂1 and ω̂2 are obtained by simply putting hats on the Greek letters in (1.20). To see
what could go wrong, suppose that the observable variables Wi,1 and Wi,2 have other,
unmeasured common influences in addition to Xi, like test anxiety or something. As
discussed in Section 0.4 on omitted variables in regression, the result would be a positive
covariance between ei,1 and ei,2. We will denote cov(ei,1, ei,2) by ω12. The resulting path
diagram is shown in the right panel of Figure 1.7. The covariance matrix of the observable
variables is now (

ω1 + φ φ+ ω12

φ+ ω12 ω2 + φ

)
=

(
σ11 σ12

σ12 σ22

)
.

This second model could well be more realistic than the first, even though the parameters
are not identifiable. There is no doubt that it’s easier to assume zero covariance between
error terms than to guarantee it in practice.

Let’s say that the second model is correct, but we fit the first model anyway. The
model we are fitting says that σ12 = φ, when in fact σ12 = φ+ω12. Assuming the incorrect
model, the maximum likelihood estimate of ω1 is ω̂1 = σ̂11 − σ̂12. But under the correct
model,

ω̂1 = σ̂11 − σ̂12
a.s.→ σ11 − σ12

= (ω1 + φ)− (φ+ ω12)

= ω1 − ω12.

Recall that ω1 = V ar(ei,1). For the estimate of this variance to be negative for large
samples, all that’s required is ω12 > ω1. Is this possible (while keeping the covariance
matrix of (ei,1, ei,2)> positive definite)? Most assuredly. Here’s a numerical example.(

ω1 ω12

ω12 ω2

)
=

(
1 2
2 5

)
.

The point here is that structural equation models imply inequality constraints on the
elements of Σ, the covariance matrix of the observable variables. Model incorrectness
can result in violation of these constraints, and cause numerical maximum likelihood
to leave the parameter space. This is a valuable way to diagnose problems with the
model. Of course negative variance estimates are easiest to notice. Chapter 7 treats
model diagnostics in more detail.

1.6 The Brand Awareness Study Re-visted

We return to the Brand Awareness Example 1.2, given in Section 1.2. A major Canadian
coffee shop chain is trying to break into the U.S. Market. They assess the following vari-
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ables twice on a random sample of coffee-drinking adults. The two measurements of each
variable are conducted at different times by different interviewers asking somewhat differ-
ent questions, in such a way that the errors of measurement may be assumed independent.
The latent variables are

X1: Brand Awareness: True familiarity with the coffee shop chain.

X2: Advertising Awareness: Recall for advertising of the coffee shop chain.

X3: True interest in the product category: Mostly this is how much they really like
doughnuts.

Y1: Purchase Intention: True willingness to go to an outlet of the coffeeshop chain and
make an order.

Y2: Purchase behaviour: True number of dollars spent at the chain during the 2 months
following the interview.

There are two observed versions of each latent variable, all based on self-report. All
observed variables were measured on a scale from 0 to 100 except purchase behaviour,
which is in dollars.

Figure 1.8 shows the path diagram for a surrogate model. It is more detailed than
Figure 1.1 on page 140, in that symbols are indicted on the arrows. You can tell it’s
a surrogate model because of the symbol “1” on the arrows linking latent to observed
variables. The model asserts that all measurement here is double measurement.

The model equations in (1.2) on page 141 are the equations of the original model. The
equations of the centered surrogate model corresponding to Figure 1.8 are

Yi,1 = γ1Xi,1 + γ2Xi,2 + γ3Xi,3 + εi,1 (1.21)

Yi,2 = βYi,1 + γ4Xi,3 + εi,2

Wi,1 = Xi,1 + ei,1

Wi,2 = Xi,1 + ei,2

Wi,3 = Xi,2 + ei,3

Wi,4 = Xi,2 + ei,4

Wi,5 = Xi,3 + ei,5

Wi,6 = Xi,3 + ei,6

Vi,1 = Yi,1 + ei,7

Vi,2 = Yi,1 + ei,8

Vi,3 = Yi,2 + ei,9

Vi,4 = Yi,2 + ei,10,

where all expected values equal zero, V ar(Xi,j) = φjj for j = 1, 2, 3, Cov(Xi,j, Xi,k) = φjk,
V ar(ei,j) = ωj for j = 1, . . . , 10, V ar(εi,1) = ψ1, V ar(εi,2) = ψ2. All the error terms are
independent of one another and of the Xi,j variables.
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Figure 1.8: Brand Awareness Model One
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Before fitting any structural equation model, one should verify that the parameters
are identifiable. Later chapters this text develop a set of standard rules that would allow
us to do the check by just examining the path diagram in Figure 1.8. These rules are
summarized in (someplace; I have not written it yet). For now, we will do the job from
first principles.

The general two-stage model of Section 1.2 is designed to facilitate two-stage proofs of
identifiability. Disregarding intercepts and expected values as usual and assuming other
details in the model specification (1.1),

• The measurement model is di = ΛFi + ei, with cov(Fi) = Φ and cov(ei) = Ω.

• The latent variable model is yi = βyi+Γxi+εi, with cov(xi) = Φx and cov(εi) = Ψ.

• The models are linked by Fi =

(
xi
yi

)
.
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Denoting the common covariance matrix of the data vectors by cov(di) = Σ, the task is to
show that all the Greek-letter model parameters can be recovered from Σ. The two-stage
strategy is

1. Referring to the measurement model, write Σ as a function of the parameter matrices
Λ, Φ and Ω. Then solve for Λ, Φ and Ω in terms of Σ, showing they are identifiable.

2. Referring to the latent variable model, write Φ = cov(Fi) as a function of β, Γ, Φx

and Ψ. Then solve for β, Γ, Φx and Ψ in terms of Φ. Since Φ is already shown
to be a function of Σ in the first stage, this means that the latent variable model
parameters are also functions of Σ, and they are identified.

Double Measurement For the brand awareness example, the measurement part of
the model is a special case of the measurement model for double measurement regression
in section 0.10.3 of Chapter 0. The measurements come in two independent sets, which
may be denoted di,1 and di,2. The full set of observable data is the partitioned random
vector

di =

(
di,1
di,2

)
, where di,1 =


Wi,1

Wi,3

Wi,5

Vi,1
Vi,3

 and di,2 =


Wi,2

Wi,4

Wi,6

Vi,2
Vi,4

 .

The double measurement model equations are

di,1 = Fi + ei,1 (1.22)

di,2 = Fi + ei,2,

where the vector of latent variables Fi has zero covariance with ei,1 and ei,2, cov(ei,1) = Ω1,
cov(ei,2) = Ω2 and cov(ei,1, ei,2) = O. Thus we have a partitioned covariance matrix for
the measurement errors:

cov(di) = Ω =

(
Ω1 O
O Ω2

)
.

For the model of Figure 1.8, the matrices Ω1 and Ω2 happen to be diagonal, but what’s
important is independence of measurement errors between sets, not within.

Using the notation Σ1,1 = cov(di,1), Σ2,2 = cov(di,1) and Σ1,2 = cov(di,1,di,2) (so that
Σ is also a partitioned matrix), we have

Σ1,1 = Φ + Ω1

Σ2,2 = Φ + Ω2

Σ1,2 = Φ,

Solving for the parameter matrices is immediate, yielding

Φ = Σ1,2

Ω1 = Σ1,1 −Σ1,2 (1.23)

Ω2 = Σ2,2 −Σ1,2.
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That establishes identifiability for the double measurement model in general, including
this particular model for the brand awareness data. Identifiability of the double measure-
ment model is so useful that it will be documented as a formal parameter identifiability
rule.

Rule 2a: The Double Measurement Rule. The parameters of the double measurement
model (1.22) are identifiable. There are two sets of measurements. Each latent variable is
measured twice, and all factor loadings equal one. Measurement errors may be correlated
within sets, but not between sets.

For the current Brand Awareness model, the double measurement rule establishes stage
one of the two-stage proof. In the second stage, we recover the parameters of the latent
variable model from Φ, which has already been identified. First of all, Φx, the covariance
matrix of the latent exogenous variables (Xi,1, Xi,2, Xi,3)>, is part of Φ – so it’s identified.
Then, look at the first equation in (1.21), or at the path diagram. It’s just a regression,
so by (16) on page 26, all the parameters are identifiable from the covariance matrix
of (Xi,1, Xi,2, Xi,3, Yi,1)>. That is, we have identified γ1, γ2, γ3 and ψ1. The second line
of (1.21) is also just a regression, and the parameters γ4, β and ψ2 are identified from
the covariance matrix of the variables involved. This completes the second stage. All the
parameters in the model are identifiable.

We proceed to fit the model with lavaan. Familiarity with the material in sec-
tion 0.10.2 starting on page 66 is assumed. The R job begins by loading lavaan, and
then reading and documenting the data.

> # Brand awareness

>

> rm(list=ls()); options(scipen=999)

> # install.packages("lavaan", dependencies = TRUE) # Only need to do this once

> library(lavaan)

This is lavaan 0.6-7

lavaan is BETA software! Please report any bugs.

> coffee = read.table("http://www.utstat.toronto.edu/~brunner/openSEM/data/timmy1.data.txt")

> head(coffee)

w1 w2 w3 w4 w5 w6 v1 v2 v3 v4

1 40 23 26 21 48 38 22 22 15 15

2 45 24 29 23 49 48 26 13 8 13

3 29 21 21 13 42 37 18 12 13 13

4 38 26 18 19 47 42 20 9 12 10

5 47 31 30 18 48 52 26 16 22 16

6 31 24 18 13 39 40 20 12 16 18

>

> # Observed variables

> # w1 = Brand Awareness 1

> # w2 = Brand Awareness 2

> # w3 = Ad Awareness 1

> # w4 = Ad Awareness 2
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> # w5 = Interest 1

> # w6 = Interest 2

> # v1 = Purchase Intention 1

> # v2 = Purchase Intention 2

> # v3 = Purchase Behaviour 1

> # v4 = Purchase Behaviour 2

> # Latent variables

> # L_BrAw = True brand awareness

> # L_AdAw = True advertising awareness

> # L_Inter = True interest in the product category

> # L_PI = True purchase intention

> # L_PBeh = True purchase behaviour

Next, we define and fit the model. lavaan returns the R prompt without any complaints
or warnings.

> torus1 =

+ ’

+ # Latent variable model

+ L_PI ~ gamma1*L_BrAw + gamma2*L_AdAw + gamma3*L_Inter

+ L_PBeh ~ gamma4*L_Inter + beta*L_PI

+ # Measurement model (simple double measurement)

+ L_BrAw =~ 1*w1 + 1*w2

+ L_AdAw =~ 1*w3 + 1*w4

+ L_Inter =~ 1*w5 + 1*w6

+ L_PI =~ 1*v1 + 1*v2

+ L_PBeh =~ 1*v3 + 1*v4

+ # Variances and covariances

+ # Exogenous latent variables

+ L_BrAw ~~ phi11*L_BrAw # Var(L_BrAw) = phi11

+ L_BrAw ~~ phi12*L_AdAw # Cov(L_BrAw,L_AdAw) = phi12

+ L_BrAw ~~ phi13*L_Inter # Cov(L_BrAw,L_Inter) = phi13

+ L_AdAw ~~ phi22*L_AdAw # Var(L_AdAw) = phi22

+ L_AdAw ~~ phi23*L_Inter # Cov(L_AdAw,L_Inter) = phi23

+ L_Inter ~~ phi33*L_Inter # Var(L_Inter) = phi33

+ # Errors in the latent model (epsilons)

+ L_PI ~~ psi1*L_PI # Var(epsilon1) = psi1

+ L_PBeh ~~ psi2*L_PBeh # Var(epsilon2) = psi2

+ # Measurement errors

+ w1 ~~ omega1*w1 # Var(e1) = omega1

+ w2 ~~ omega2*w2 # Var(e2) = omega2

+ w3 ~~ omega3*w3 # Var(e3) = omega3

+ w4 ~~ omega4*w4 # Var(e4) = omega4

+ w5 ~~ omega5*w5 # Var(e5) = omega5

+ w6 ~~ omega6*w6 # Var(e6) = omega6

+ v1 ~~ omega7*v1 # Var(e7) = omega7

+ v2 ~~ omega8*v2 # Var(e8) = omega8
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+ v3 ~~ omega9*v3 # Var(e9) = omega9

+ v4 ~~ omega10*v4 # Var(e10) = omega10

+ # Bounds (Variances are positive)

+ phi11 > 0; phi22 > 0; phi33 > 0

+ psi1 > 0; psi2 > 0

+ omega1 > 0; omega2 > 0; omega3 > 0; omega4 > 0; omega5 > 0

+ omega6 > 0; omega7 > 0; omega8 > 0; omega9 > 0; omega10 > 0

+ ’ # End of model torus1

>

> fit1 = lavaan(torus1, data=coffee)

>

Looking just at the fit of the model,

> show(fit1)

lavaan 0.6-7 ended normally after 113 iterations

Estimator ML

Optimization method NLMINB

Number of free parameters 23

Number of inequality constraints 15

Number of observations 200

Model Test User Model:

Test statistic 77.752

Degrees of freedom 32

P-value (Chi-square) 0.000

By the likelihood ratio test, the model does not fit19. A close look at the output of
summary and partable reveals nothing out of the ordinary. We need determine why
the model did not fit, and fix it if possible. To do this, a divide and conquer strategy
can be helpful. We’ll split the problem into parts, and look first at the measurement
model. Figure 1.9 shows a model in which the structure in the latent variable model is
discarded, and the measurement model is preserved. Note the shorthand way of expressing
all possible covariances among the latent variables. By the first stage of the two-stage
proof of identifiability, all the parameters of this model are identifiable.

The model is fully specified in the model string torus2. It’s very explicit, but naming
all the variances and covariances makes it tedious to type.

> torus2 =

+ ’

19In this example, I follow my usual practice of relying on the likelihood ratio test to determine whether
a model fits adequately. This choice is not very popular among practitioners of structural equation
modelling, because standard models so often fail the test when applied to real data. See Chapter 7.
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Figure 1.9: Brand Awareness Model Two
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+ # Measurement model (still simple double measurement)

+ L_BrAw =~ 1*w1 + 1*w2

+ L_AdAw =~ 1*w3 + 1*w4

+ L_Inter =~ 1*w5 + 1*w6

+ L_PI =~ 1*v1 + 1*v2

+ L_PBeh =~ 1*v3 + 1*v4

+ # Variances and covariances

+ # Latent variables

+ L_BrAw ~~ phi11*L_BrAw # Var(L_BrAw) = phi11

+ L_BrAw ~~ phi12*L_AdAw # Cov(L_BrAw, L_AdAw) = phi12

+ L_BrAw ~~ phi13*L_Inter # Cov(L_BrAw, L_Inter) = phi13

+ L_BrAw ~~ phi14*L_PI # Cov(L_BrAw, L_PI) = phi14

+ L_BrAw ~~ phi15*L_PBeh # Cov(L_BrAw, L_PBeh) = phi15

+

+ L_AdAw ~~ phi22*L_AdAw # Var(L_AdAw) = phi22

+ L_AdAw ~~ phi23*L_Inter # Cov(L_AdAw, L_Inter) = phi23

+ L_AdAw ~~ phi24*L_PI # Cov(L_AdAw, L_PI) = phi24

+ L_AdAw ~~ phi25*L_PBeh # Cov(L_AdAw, L_PBeh) = phi25

+

+ L_Inter ~~ phi33*L_Inter # Var(L_Inter) = phi33

+ L_Inter ~~ phi34*L_PI # Cov(L_Inter, L_PI) = phi34

+ L_Inter ~~ phi35*L_PBeh # Cov(L_Inter, L_PBeh) = phi35

+

+ L_PI ~~ phi44*L_PI # Var(L_PI) = phi44

+ L_PI ~~ phi45*L_PBeh # Cov(L_PI, L_PBeh) = phi45

+
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+ L_PBeh ~~ phi55*L_PBeh # Var(L_PBeh) = phi55

+ # Measurement errors

+ w1 ~~ omega1*w1 # Var(e1) = omega1

+ w2 ~~ omega2*w2 # Var(e2) = omega2

+ w3 ~~ omega3*w3 # Var(e3) = omega3

+ w4 ~~ omega4*w4 # Var(e4) = omega4

+ w5 ~~ omega5*w5 # Var(e5) = omega5

+ w6 ~~ omega6*w6 # Var(e6) = omega6

+ v1 ~~ omega7*v1 # Var(e7) = omega7

+ v2 ~~ omega8*v2 # Var(e8) = omega8

+ v3 ~~ omega9*v3 # Var(e9) = omega9

+ v4 ~~ omega10*v4 # Var(e10) = omega10

+ # Bounds (Variances are positive)

+ phi11 > 0; phi22 > 0; phi33 > 0; phi44 > 0; phi55 > 0

+ omega1 > 0; omega2 > 0; omega3 > 0; omega4 > 0; omega5 > 0

+ omega6 > 0; omega7 > 0; omega8 > 0; omega9 > 0; omega10 > 0

+ ’ # End of model torus2

>

> fit2 = lavaan(torus2, data=coffee)

There has to be a better way, and there is. In the model torus2b, only the measurement
model is specified.

> torus2b =

+ ’

+ # Measurement model (still simple double measurement)

+ L_BrAw =~ 1*w1 + 1*w2

+ L_AdAw =~ 1*w3 + 1*w4

+ L_Inter =~ 1*w5 + 1*w6

+ L_PI =~ 1*v1 + 1*v2

+ L_PBeh =~ 1*v3 + 1*v4

+ # Leave off everything else and see what happens.

+ ’ # End of model torus2b

The lavaan function chokes on this, because it requires more detail. However, the cfa
function (for confirmatory factor analysis – see Chapter 3) assumes by default that all the
latent variables have non-zero covariances, and does not require the user to name them20.

> fit2b = cfa(torus2b, data=coffee)

That’s a lot better. The models torus2 and torus2b are 100% equivalent, except that
the parameters in torus2 have labels. The fit (that is, lack of fit) is identical.

20Actually, the lavaan function will name your parameters for you too. Syntax like L PI ∼
gamma1*L BrAw + gamma2*L AdAw + gamma3*L Inter looks like you are transcribing a model equation,
but technically those Greek letter names are just optional labels for the regression parameters, which
have their own internal names.
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> show(fit2)

lavaan 0.6-7 ended normally after 124 iterations

Estimator ML

Optimization method NLMINB

Number of free parameters 25

Number of inequality constraints 15

Number of observations 200

Model Test User Model:

Test statistic 76.380

Degrees of freedom 30

P-value (Chi-square) 0.000

> show(fit2b)

lavaan 0.6-7 ended normally after 139 iterations

Estimator ML

Optimization method NLMINB

Number of free parameters 25

Number of observations 200

Model Test User Model:

Test statistic 76.380

Degrees of freedom 30

P-value (Chi-square) 0.000

The measurement model does not fit21, and we need to fix it. Now, the model asserts
a kind of double measurement, but it’s a restricted kind in which all the measurement
errors are all independent. Maybe independence does not hold, and that’s causing the
lack of fit.

In the proof of identifiability for this example, the measurement model had two sets
of measurements, with errors of measurement potentially correlated within sets but not
between sets. The proposal here is just to put in the non-zero covariances between sets,
so identifiability has already been established. Figure 1.10 shows the resulting model.
Measurement set one is red, and measurement set two is blue.

In the model string torus3, the non-zero covariances among measurement error terms

21It’s a bit tempting to observe that the difference between the models torus1 and torus2 is that
torus1 imposes some structure in the relationships among the latent variables. In fact, it can be shown
that the only difference between the two models is the lack of some arrows in torus1. So it would seem
that one could test the difference between the two models with a likelihood ratio test, and thereby assess
the fit of the latent variable model. That’s not a good idea, though. When a full model does not fit the
data, testing for difference between full and restricted models can be very misleading.
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Figure 1.10: Brand Awareness Model Three
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are specified without explicitly naming the parameters. This saves a fair amount of typing.

> torus3 =

+ ’

+ # Measurement model (still simple double measurement)

+ L_BrAw =~ 1*w1 + 1*w2

+ L_AdAw =~ 1*w3 + 1*w4

+ L_Inter =~ 1*w5 + 1*w6

+ L_PI =~ 1*v1 + 1*v2

+ L_PBeh =~ 1*v3 + 1*v4

+ # Add covariances between measurement error terms, without naming them

+ w1 ~~ w3; w1 ~~ w5; w1 ~~ v1; w1 ~~ v3

+ w3 ~~ w5; w3 ~~ v1; w3 ~~ v3
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+ w5 ~~ v1; w5 ~~ v3

+ v1 ~~ v3

+ w2 ~~ w4; w2 ~~ w6; w2 ~~ v2; w2 ~~ v4

+ w4 ~~ w6; w4 ~~ v2; w4 ~~ v4

+ w6 ~~ v2; w6 ~~ v4

+ v2 ~~ v4

+ ’ # End of model torus3

When we try to fit this nice model, there is trouble.

> fit3 = cfa(torus3, data=coffee)

Warning message:

In lav_object_post_check(object) :

lavaan WARNING: the covariance matrix of the residuals of the observed

variables (theta) is not positive definite;

use lavInspect(fit, "theta") to investigate.

The phrase “residuals of the observed variables” refers to the measurement error terms.
These are denoted by ei,1, . . . , ei,10 in (1.21). Presumably they are called “residuals”
because of the analogy between residuals and error terms in regression. Following the
suggestion to try lavInspect,

> lavInspect(fit3, "theta")

w1 w2 w3 w4 w5 w6 v1 v2 v3 v4

w1 10.617

w2 0.000 10.477

w3 2.700 0.000 11.704

w4 0.000 -1.726 0.000 11.263

w5 1.246 0.000 0.475 0.000 8.786

w6 0.000 -3.239 0.000 -1.904 0.000 5.053

v1 3.208 0.000 2.999 0.000 3.933 0.000 13.013

v2 0.000 -2.484 0.000 -1.490 0.000 -3.382 0.000 6.854

v3 0.555 0.000 -0.485 0.000 1.049 0.000 0.875 0.000 4.699

v4 0.000 -1.408 0.000 -1.756 0.000 -0.663 0.000 -1.499 0.000 3.911

Note how the covariances between even-numbered variables and odd-numbered variables
are all zero. This is definitely the estimated covariance matrix of (ei,1, . . . , ei,10)>. An
application of eigen(lavInspect(fit3, "theta"))$values reveals one negative eigen-
value, so the matrix is not positive definite, and the numerical search for the MLE has
left the parameter space. It is nice that lavaan checks for this.

It is possible that the numerical search left the parameter space because the model is
wrong, but it’s also possible that the problem was caused by sub-optimal starting values.
Method-of-moments estimates make excellent starting values. As usual, if identifiability
has been established by obtaining explicit solutions to the covariance structure equa-
tions, then putting hats on the solutions yields method-of-moments estimates. Using the
solution (1.23), estimates for the brand awareness data are calculated as follows.
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> # Checking why torus3 left the parameter space.

> # Obtain MOM estimates for use as starting values.

>

> d1 = as.matrix(coffee[,c(1,3,5,7,9)]) # Measurement set one

> d2 = as.matrix(coffee[,c(2,4,6,8,10)]) # Measurement set two

> Phi_hat = cov(d1,d2); Phi_hat

w2 w4 w6 v2 v4

w1 10.186131 6.670427 15.123116 11.928618 8.162688

w3 6.655075 8.684598 12.766332 11.339975 6.893844

w5 7.627940 6.536859 16.409548 10.881683 6.290829

v1 8.347940 7.563392 16.891960 15.024598 10.119975

v3 4.674573 3.738015 7.650754 6.998216 17.746859

This matrix isn’t symmetric, so it’s not in the parameter space. That’s easy to fix.

> # Make it symmetric

> Phi_hat = (Phi_hat + t(Phi_hat) )/2; Phi_hat

w2 w4 w6 v2 v4

w1 10.186131 6.662751 11.375528 10.138279 6.418631

w3 6.662751 8.684598 9.651595 9.451683 5.315930

w5 11.375528 9.651595 16.409548 13.886822 6.970791

v1 10.138279 9.451683 13.886822 15.024598 8.559095

v3 6.418631 5.315930 6.970791 8.559095 17.746859

> eigen(Phi_hat)$values # Is it positive definite?

[1] 50.164191 12.097980 2.925981 1.668071 1.195511

So Φ̂ is okay. Computing and testing the estimated covariance matrices of the error terms,

> Omega1_hat = cov(d1) - Phi_hat

> Omega2_hat = cov(d2) - Phi_hat

> eigen(Omega1_hat)$values # Is Omega1_hat positive definite?

[1] 26.402687 9.301147 8.288868 5.106178 2.868356

> eigen(Omega2_hat)$values # Is Omega2_hat positive definite?

[1] 12.867799 11.828405 9.847771 4.712254 -3.393667

The method-of-moments estimate Ω̂2 is not positive definite. If we used it as a source
of starting values, we would be starting the numerical search for the MLE outside of the
parameter space. This is not going to be helpful. My conclusion is that this model is
incompatible with the data, and it’s time to consider another one.

Recall that the two measurements of each latent variable are different. One of the
interviews is in-person, and the other is by telephone call-back. Maybe they’re not really
equivalent. Perhaps one in each set (say number two, the call-backs) should have a
coefficient not equal to one. Figure 1.11 illustrates the model. We are back to independent
error terms for the present. Proof of identifiability is deferred until (one of those two-
variable rules).
Fitting the model,
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Figure 1.11: Brand Awareness Model Four

Brand
Awareness Interest

Advertising
Awareness

Purchase
Intention

Purchase
Behaviour

W
1 W

2
W

3
W

6
W

5
V
2

W
4 V

3
V
4

V
1

1 1 1 1
1 λ

4 λ
6 λ

8 λ
10

λ
2

> torus4 =

+ ’

+ # Measurement model (still simple double measurement)

+ L_BrAw =~ 1*w1 + lambda2*w2

+ L_AdAw =~ 1*w3 + lambda4*w4

+ L_Inter =~ 1*w5 + lambda6*w6

+ L_PI =~ 1*v1 + lambda8*v2

+ L_PBeh =~ 1*v3 + lambda10*v4

+ ’ # End of model torus4

> fit4 = cfa(torus4, data=coffee)

> show(fit4)

lavaan 0.6-7 ended normally after 161 iterations

Estimator ML

Optimization method NLMINB

Number of free parameters 30

Number of observations 200

Model Test User Model:

Test statistic 17.837

Degrees of freedom 25

P-value (Chi-square) 0.849

The measurement model fits! Now combine it with the latent variable model, as shown
in Figure 1.12.
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Figure 1.12: Brand Awareness Model Five

Brand
Awareness

Interest

Advertising
Awareness

Purchase
Intention

Purchase
Behaviour

W
1 W

2
W

3
W

6
W

5

V
2

W
4

V
3

V
4V

1

1
1

111

γ
1

λ
4 λ

6

λ
8 λ

10

λ
2

γ
3

γ
4

γ
2 β

φ
12

φ
13

φ
23

It is easy to edit model string torus1 to put the λj parameters in the measurement
model. Showing just the first part of the model string,

> torus5 =

+ ’

+ # Latent variable model

+ L_PI ~ gamma1*L_BrAw + gamma2*L_AdAw + gamma3*L_Inter

+ L_PBeh ~ gamma4*L_Inter + beta*L_PI

+ # Measurement model

+ L_BrAw =~ 1*w1 + lambda2*w2

+ L_AdAw =~ 1*w3 + lambda4*w4

+ L_Inter =~ 1*w5 + lambda6*w6

+ L_PI =~ 1*v1 + lambda8*v2

+ L_PBeh =~ 1*v3 + lambda10*v4

Fitting the model,
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> fit5 = lavaan(torus5, data=coffee)

Warning messages:

1: In lav_model_vcov(lavmodel = lavmodel, lavsamplestats = lavsamplestats, :

lavaan WARNING:

Could not compute standard errors! The information matrix could

not be inverted. This may be a symptom that the model is not

identified.

2: In lav_object_post_check(object) :

lavaan WARNING: covariance matrix of latent variables

is not positive definite;

use lavInspect(fit, "cov.lv") to investigate.

The parameters of this model are definitely identifiable, so that’s not the problem. The
search has left the parameter space, and since the measurement model fits, the source
of the trouble must be in the fit of the latent variable model. The output of summary
contains some clues. Let us examine it one piece at a time.

> summary(fit5)

lavaan 0.6-7 ended normally after 2096 iterations

Estimator ML

Optimization method NLMINB

Number of free parameters 28

Number of inequality constraints 15

Number of observations 200

Model Test User Model:

Test statistic 31.127

Degrees of freedom 27

P-value (Chi-square) 0.266

Parameter Estimates:

Standard errors Standard

Information Expected

Information saturated (h1) model Structured

It used a lot of iterations (2,096), which can be an indication that the numerical search
wandered off into nowhere. For comparison, fit4 (the good measurement model with
λ2, λ4, . . . , λ10) found a good solution in 161 iterations, and fit3 (the full double mea-
surement model) found a solution outside the parameter space in 193 iterations, when
the method-of-moments estimator was also outside the parameter space. The fit we are
considering (fit5) actually passes the goodness of fit test, with G2 = 31.127, p = 0.266.
It’s still unacceptable, though, because the solution is outside the parameter space.

Continuing to look at the output of summary,
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Latent Variables:

Estimate Std.Err z-value P(>|z|)

L_BrAw =~

w1 1.000

w2 (lmb2) 0.535 NA

L_AdAw =~

w3 1.000

w4 (lmb4) 0.552 NA

L_Inter =~

w5 1.000

w6 (lmb6) 1.094 NA

L_PI =~

v1 1.000

v2 (lmb8) 0.708 NA

L_PBeh =~

v3 1.000

v4 (lm10) 1.034 NA

Comparing the estimates from the good measurement model,

> coef(fit4)

lambda2 lambda4 lambda6 lambda8 lambda10

0.530 0.543 1.090 0.708 1.029

w1~~w1 w2~~w2 w3~~w3 w4~~w4 w5~~w5

5.106 12.955 7.034 13.401 6.205

w6~~w6 v1~~v1 v2~~v2 v3~~v3 v4~~v4

6.134 8.322 10.301 4.440 3.993

L_BrAw~~L_BrAw L_AdAw~~L_AdAw L_Inter~~L_Inter L_PI~~L_PI L_PBeh~~L_PBeh

19.135 15.914 14.980 21.128 17.155

L_BrAw~~L_AdAw L_BrAw~~L_Inter L_BrAw~~L_PI L_BrAw~~L_PBeh L_AdAw~~L_Inter

12.297 13.502 16.248 7.883 11.306

L_AdAw~~L_PI L_AdAw~~L_PBeh L_Inter~~L_PI L_Inter~~L_PBeh L_PI~~L_PBeh

15.070 6.144 15.564 6.533 9.619

Looking at just the first line, we see that the λ̂j from fit5 are almost identical to the
ones from fit4, which means that they are above suspicion. Continuing to look at the
output of summary(fit5),

Regressions:

Estimate Std.Err z-value P(>|z|)

L_PI ~

L_BrAw (gmm1) 47.719 NA

L_AdAw (gmm2) -156.406 NA

L_Inter (gmm3) 80.361 NA

L_PBeh ~

L_Inter (gmm4) -0.156 NA

L_PI (beta) 0.570 NA
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Now we see a problem. The estimates of γ1, γ2 and γ3 are very large in absolute value.
Consider that the observable versions of all the variables involved are on a scale from zero
to one hundred, and that one of the coefficients linking the latent version to the observable
version is set to one. This means that the latent variables are also approximately on a
scale from zero to one hundred. γ̂1 = 47.719 means that a one-point change in brand
awareness is thought to produce a 47-point change in purchase intention. This is entirely
unbelievable. Furthermore, the extremely large negative value of γ̂2 means that a very
small increase in advertising awareness produces produces a decrease in purchase intention
that is off the scale. This is even worse. The first three estimates are all extremely suspect.
In contrast, the next two, γ̂4 and β̂, seem unremarkable.

Looking at the estimated variances and covariances,

Covariances:

Estimate Std.Err z-value P(>|z|)

L_BrAw ~~

L_AdAw (ph12) 12.498 NA

L_Inter (ph13) 13.407 NA

L_AdAw ~~

L_Inter (ph23) 11.621 NA

Variances:

Estimate Std.Err z-value P(>|z|)

L_BrAw (ph11) 18.730 NA

L_AdAw (ph22) 9.691 NA

L_Inter (ph33) 14.851 NA

.L_PI (psi1) 260.320 NA

.L_PBeh (psi2) 12.623 NA

.w1 (omg1) 5.511 NA

.w2 (omg2) 12.959 NA

.w3 (omg3) 13.263 NA

.w4 (omg4) 15.139 NA

.w5 (omg5) 6.335 NA

.w6 (omg6) 6.158 NA

.v1 (omg7) 8.341 NA

.v2 (omg8) 10.301 NA

.v3 (omg9) 4.524 NA

.v4 (om10) 3.903 NA

The only thing that jumps out is the large value of ψ̂1, the variance of the error term
feeding into latent purchase intention. Looking back at Figure 1.12, it is clear that all the
obvious signs of pathology are in the latent regression linking latent purchase intention
to latent brand awareness, advertising awareness, and interest in the product.

Following the suggestion in the warning message, we take a look at the estimated
variance-covariance matrix of the latent variables, which is not positive definite.

> lavInspect(fit5, "cov.lv")

L_BrAw L_AdAw L_Intr L_PI L_PBeh
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L_BrAw 18.730

L_AdAw 12.498 9.691

L_Inter 13.407 11.621 14.851

L_PI 16.411 14.534 15.565 21.059

L_PBeh 7.261 6.469 6.554 9.572 17.054

At first, nothing seems obviously wrong; for example, all the estimated variances are
positive. It’s true that one of the eigenvalues is negative (I checked), but this is something
we can trust lavaan to get right.

Comparison with lavInspect(fit4, "cov.lv") is really helpful. Recall that fit4

was the successful fit of the measurement model, so this is the real MLE of the covariance
matrix of the latent variables. It’s shown in Table 1.1. The biggest difference between

Table 1.1: MLE of the covariance matrix of latent variables for Brand Awareness data

lavInspect(fit4, "cov.lv")

L_BrAw L_AdAw L_Intr L_PI L_PBeh

L_BrAw 19.135

L_AdAw 12.297 15.914

L_Inter 13.502 11.306 14.980

L_PI 16.248 15.070 15.564 21.128

L_PBeh 7.883 6.144 6.533 9.619 17.155

these two matrices is in the estimated variance for L AdAw, latent advertising awareness.
The value in fit5 is 9.691, while the value in fit4 is 15.914. The fit4 value is the real
MLE of the variance of this latent exogenous variable, and has a lot more credibility.

In fact, the low variance in question causes the estimated variance-covariance matrix of
just the exogenous latent variables to not be positive definite22. Again, we see a problem
with estimation in the same part of the latent variable model. It’s in the first stage, the
latent regression linking latent purchase intention to latent brand awareness, advertising
awareness, and interest in the product.

In general, when a numerical search leaves the parameter space, it could be either
because of the starting values, or because the model is wrong. Here, it seems very likely
to be the starting values. The reason is that this is just a regression, and its parameters
are one-to-one with a set of variances and covariances that have already been estimated
successfully. This point will become clear as we work to obtain better starting values,
based on the estimated variances and covariances in fit4. Again, fit4 comes from the
successful measurement model represented in Figure 1.11, the one with λ2, λ4, . . . , λ10.

It would be possible to accomplish our goal by translating the regression notation
of (16), but it is more informative to derive the starting values using the current notation.
Let xi denote the vector of latent exogenous variables (Xi,1, Xi,2, Xi,3)>. There was trouble
estimating Φx = cov(xi), but we already have a good estimate: the first three rows and
columns of Table 1.1. So we’ll use that.

22I played around with it.
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Write the sub-model we’re considering as yi,1 = γ>xi + εi,1, where γ = (γ1, γ2, γ3)>.
We need estimates of γ and ψ1 = var(εi,1) to use as starting values. Basic variance and
covariance calculations yield

cov(xi, yi,1) = Φxγ

var(yi,1) = γ>Φxγ + ψ1

Use Φx,y1 to denote cov(xi, yi,1), the vector of three covariances between the exogenous
variables and purchase intention. Estimates are directly available from Table 1.1. Starting

values for the estimate of γ will be the very respectable estimate γ̂ = Φ̂
−1

x Φ̂x,y1 . Using the

estimated variance of purchase intention from Table 1.1, we get ψ̂1 = φ̂4,4−γ̂>Φ̂xγ̂ = φ̂4,4−
Φ̂
>
x,y1

Φ̂
−1

x Φ̂x,y1 . These estimates are one-to-one functions of the MLE from a closely related
model for these data, so they should be very good starting values for the parameters of
the model in Figure 1.12. Calculating,

> # The names of all these quantities should include "hat."

> Phi = lavInspect(fit4, "cov.lv")

> Phix = Phi[1:3,1:3]; Phix

L_BrAw L_AdAw L_Inter

L_BrAw 19.13510 12.29660 13.50213

L_AdAw 12.29660 15.91372 11.30579

L_Inter 13.50213 11.30579 14.98033

> Phixy = as.matrix(Phi[1:3,4]); Phixy

[,1]

L_BrAw 16.24761

L_AdAw 15.07005

L_Inter 15.56443

> gamma = t(Phixy) %*% solve(Phix); gamma

L_BrAw L_AdAw L_Inter

[1,] 0.1996458 0.3932861 0.5622287

> psi1 = Phi[4,4] - as.numeric(gamma %*% Phix %*% t(gamma)); psi1

[1] 3.206661

These numbers are much more reasonable than the ones from fit5. Let’s see if we can
get away with specifying just 10 starting values. We’ll drop the inequality constraints
too, since lavaan will issue a warning if any variance estimate is negative.

> torus6 =

+ ’

+ # Latent variable model

+ L_PI ~ gamma1*L_BrAw + start(0.1996458)*L_BrAw +

+ gamma2*L_AdAw + start(0.3932861)*L_AdAw +

+ gamma3*L_Inter + start(0.5622287)*L_Inter

+ L_PBeh ~ gamma4*L_Inter + beta*L_PI

+ # Measurement model

+ L_BrAw =~ 1*w1 + lambda2*w2

+ L_AdAw =~ 1*w3 + lambda4*w4
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+ L_Inter =~ 1*w5 + lambda6*w6

+ L_PI =~ 1*v1 + lambda8*v2

+ L_PBeh =~ 1*v3 + lambda10*v4

+ # Variances and covariances

+ # Exogenous latent variables

+ L_BrAw ~~ phi11*L_BrAw + start(19.13510)*L_BrAw # Var(L_BrAw) = phi11

+ L_BrAw ~~ phi12*L_AdAw + start(12.29660)*L_AdAw # Cov(L_BrAw,L_AdAw) = phi12

+ L_BrAw ~~ phi13*L_Inter + start(13.50213)*L_Inter # Cov(L_BrAw,L_Inter) = phi13

+ L_AdAw ~~ phi22*L_AdAw + start(15.91372)*L_AdAw # Var(L_AdAw) = phi22

+ L_AdAw ~~ phi23*L_Inter + start(11.30579)*L_Inter # Cov(L_AdAw,L_Inter) = phi23

+ L_Inter ~~ phi33*L_Inter + start(14.98033)*L_Inter # Var(L_Inter) = phi33

+ # Errors in the latent model (epsilons)

+ L_PI ~~ psi1*L_PI + start(3.206661)*L_PI # Var(epsilon1) = psi1

+ L_PBeh ~~ psi2*L_PBeh # Var(epsilon2) = psi2

+ # Measurement errors

+ w1 ~~ omega1*w1 # Var(e1) = omega1

+ w2 ~~ omega2*w2 # Var(e2) = omega2

+ w3 ~~ omega3*w3 # Var(e3) = omega3

+ w4 ~~ omega4*w4 # Var(e4) = omega4

+ w5 ~~ omega5*w5 # Var(e5) = omega5

+ w6 ~~ omega6*w6 # Var(e6) = omega6

+ v1 ~~ omega7*v1 # Var(e7) = omega7

+ v2 ~~ omega8*v2 # Var(e8) = omega8

+ v3 ~~ omega9*v3 # Var(e9) = omega9

+ v4 ~~ omega10*v4 # Var(e10) = omega10

+ ’ # End of model torus6

> fit6 = lavaan(torus6, data=coffee)

>

lavaan returns the R prompt with minimal time lag and no warning messages, which is
a good sign.

> fit6

lavaan 0.6-7 ended normally after 108 iterations

Estimator ML

Optimization method NLMINB

Number of free parameters 28

Number of inequality constraints 15

Number of observations 200

Model Test User Model:

Test statistic 18.962

Degrees of freedom 27

P-value (Chi-square) 0.871
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Finally, the model fits! summary gives numerical estimates of all the parameters, along
with standard errors (square roots of the diagonal elements of the inverse of the observed
Fisher information matrix), and large-sample z-tests of the null hypothesis that the pa-
rameter equals zero.

> summary(fit6)

lavaan 0.6-7 ended normally after 108 iterations

Estimator ML

Optimization method NLMINB

Number of free parameters 28

Number of observations 200

Model Test User Model:

Test statistic 18.962

Degrees of freedom 27

P-value (Chi-square) 0.871

Parameter Estimates:

Standard errors Standard

Information Expected

Information saturated (h1) model Structured

Latent Variables:

Estimate Std.Err z-value P(>|z|)

L_BrAw =~

w1 1.000

w2 (lmb2) 0.528 0.077 6.861 0.000

L_AdAw =~

w3 1.000

w4 (lmb4) 0.543 0.090 6.013 0.000

L_Inter =~

w5 1.000

w6 (lmb6) 1.092 0.081 13.528 0.000

L_PI =~

v1 1.000

v2 (lmb8) 0.707 0.066 10.745 0.000

L_PBeh =~

v3 1.000

v4 (lm10) 1.040 0.110 9.457 0.000

Regressions:

Estimate Std.Err z-value P(>|z|)

L_PI ~
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L_BrAw (gmm1) 0.229 0.145 1.581 0.114

L_AdAw (gmm2) 0.369 0.161 2.285 0.022

L_Inter (gmm3) 0.553 0.170 3.253 0.001

L_PBeh ~

L_Inter (gmm4) -0.129 0.257 -0.502 0.615

L_PI (beta) 0.546 0.224 2.438 0.015

Covariances:

Estimate Std.Err z-value P(>|z|)

L_BrAw ~~

L_AdAw (ph12) 12.301 1.864 6.598 0.000

L_Inter (ph13) 13.480 1.831 7.360 0.000

L_AdAw ~~

L_Inter (ph23) 11.312 1.694 6.679 0.000

Variances:

Estimate Std.Err z-value P(>|z|)

L_BrAw (ph11) 19.200 3.110 6.174 0.000

L_AdAw (ph22) 15.910 3.033 5.246 0.000

L_Inter (ph33) 14.961 2.153 6.949 0.000

.L_PI (psi1) 3.301 1.340 2.463 0.014

.L_PBeh (psi2) 12.620 2.097 6.019 0.000

.w1 (omg1) 5.041 2.075 2.430 0.015

.w2 (omg2) 12.974 1.413 9.179 0.000

.w3 (omg3) 7.038 2.218 3.172 0.002

.w4 (omg4) 13.400 1.477 9.074 0.000

.w5 (omg5) 6.224 0.960 6.484 0.000

.w6 (omg6) 6.098 1.063 5.735 0.000

.v1 (omg7) 8.280 1.479 5.598 0.000

.v2 (omg8) 10.299 1.215 8.477 0.000

.v3 (omg9) 4.612 1.682 2.742 0.006

.v4 (om10) 3.809 1.789 2.129 0.033

The estimates of λ2, . . . , λ10 are essentially the same as the estimates from fit4, which is
good. Comparing other estimates to the starting values we supplied,

> parTable(fit6)

id lhs op rhs user block group free ustart exo label plabel start est se

1 1 L_PI ~ L_BrAw 1 1 1 1 0.200 0 gamma1 .p1. 0.200 0.229 0.145

2 2 L_PI ~ L_AdAw 1 1 1 2 0.393 0 gamma2 .p2. 0.393 0.369 0.161

3 3 L_PI ~ L_Inter 1 1 1 3 0.562 0 gamma3 .p3. 0.562 0.553 0.170

4 4 L_PBeh ~ L_Inter 1 1 1 4 NA 0 gamma4 .p4. 0.000 -0.129 0.257

5 5 L_PBeh ~ L_PI 1 1 1 5 NA 0 beta .p5. 0.000 0.546 0.224

6 6 L_BrAw =~ w1 1 1 1 0 1.000 0 .p6. 1.000 1.000 0.000

7 7 L_BrAw =~ w2 1 1 1 6 NA 0 lambda2 .p7. 0.476 0.528 0.077

8 8 L_AdAw =~ w3 1 1 1 0 1.000 0 .p8. 1.000 1.000 0.000

9 9 L_AdAw =~ w4 1 1 1 7 NA 0 lambda4 .p9. 0.421 0.543 0.090

10 10 L_Inter =~ w5 1 1 1 0 1.000 0 .p10. 1.000 1.000 0.000

11 11 L_Inter =~ w6 1 1 1 8 NA 0 lambda6 .p11. 0.724 1.092 0.081
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12 12 L_PI =~ v1 1 1 1 0 1.000 0 .p12. 1.000 1.000 0.000

13 13 L_PI =~ v2 1 1 1 9 NA 0 lambda8 .p13. 0.594 0.707 0.066

14 14 L_PBeh =~ v3 1 1 1 0 1.000 0 .p14. 1.000 1.000 0.000

15 15 L_PBeh =~ v4 1 1 1 10 NA 0 lambda10 .p15. 0.807 1.040 0.110

16 16 L_BrAw ~~ L_BrAw 1 1 1 11 19.135 0 phi11 .p16. 19.135 19.200 3.110

17 17 L_BrAw ~~ L_AdAw 1 1 1 12 12.297 0 phi12 .p17. 12.297 12.301 1.864

18 18 L_BrAw ~~ L_Inter 1 1 1 13 13.502 0 phi13 .p18. 13.502 13.480 1.831

19 19 L_AdAw ~~ L_AdAw 1 1 1 14 15.914 0 phi22 .p19. 15.914 15.910 3.033

20 20 L_AdAw ~~ L_Inter 1 1 1 15 11.306 0 phi23 .p20. 11.306 11.312 1.694

21 21 L_Inter ~~ L_Inter 1 1 1 16 14.980 0 phi33 .p21. 14.980 14.961 2.153

22 22 L_PI ~~ L_PI 1 1 1 17 3.207 0 psi1 .p22. 3.207 3.301 1.340

23 23 L_PBeh ~~ L_PBeh 1 1 1 18 NA 0 psi2 .p23. 0.050 12.620 2.097

24 24 w1 ~~ w1 1 1 1 19 NA 0 omega1 .p24. 12.120 5.041 2.075

25 25 w2 ~~ w2 1 1 1 20 NA 0 omega2 .p25. 9.162 12.974 1.413

26 26 w3 ~~ w3 1 1 1 21 NA 0 omega3 .p26. 11.474 7.038 2.218

27 27 w4 ~~ w4 1 1 1 22 NA 0 omega4 .p27. 9.046 13.400 1.477

28 28 w5 ~~ w5 1 1 1 23 NA 0 omega5 .p28. 10.593 6.224 0.960

29 29 w6 ~~ w6 1 1 1 24 NA 0 omega6 .p29. 11.965 6.098 1.063

30 30 v1 ~~ v1 1 1 1 25 NA 0 omega7 .p30. 14.725 8.280 1.479

31 31 v2 ~~ v2 1 1 1 26 NA 0 omega8 .p31. 10.439 10.299 1.215

32 32 v3 ~~ v3 1 1 1 27 NA 0 omega9 .p32. 10.797 4.612 1.682

33 33 v4 ~~ v4 1 1 1 28 NA 0 omega10 .p33. 11.085 3.809 1.789

The column ustart shows the user-supplied starting values, start shows all the starting
values, and est contains the parameter estimates (MLEs). It is clear that where starting
values were supplied, the search moved from them just a little bit, at most. They were
very good.

The output of summary, shows that that the coefficients linking the Set Two measure-
ments to the latent variables are all significantly different from zero; they’d better be!
But are they all significantly different from one? Starting with a likelihood ratio test of
the null hypothesis that all five coefficients equal one,

> # Likelihood ratio test of

> # H0: lambda2 = lambda4 = lambda6 = lambda8 = lambda10 = 1

> anova(fit1,fit6)

Chi-Squared Difference Test

Df AIC BIC Chisq Chisq diff Df diff Pr(>Chisq)

fit6 27 10947 11039 18.962

fit1 32 10996 11071 77.752 58.789 5 0.00000000002162 ***

---

Signif. codes: 0 *** 0.001 ** 0.01 * 0.05 . 0.1 1

For the corresponding Wald test, it is convenient to use the publicly available function
Wtest.

# For Wald tests: Wtest = function(L,Tn,Vn,h=0) # H0: L theta = h

source("http://www.utstat.utoronto.ca/~brunner/Rfunctions/Wtest.txt")

As the comment indicates, Wtest allows testing of the linear null hypothesis H0 : Lθ = h,

based on maximum likelihood. The argument Tn is the maximum likelihood estimate θ̂n,
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and Vn is its asymptotic covariance matrix. It is helpful to display θ̂n, just to verify the
order of the parameters.

> thetahat = coef(fit6); thetahat

gamma1 gamma2 gamma3 gamma4 beta lambda2 lambda4 lambda6 lambda8

0.229 0.369 0.553 -0.129 0.546 0.528 0.543 1.092 0.707

lambda10 phi11 phi12 phi13 phi22 phi23 phi33 psi1 psi2

1.040 19.200 12.301 13.480 15.910 11.312 14.961 3.301 12.620

omega1 omega2 omega3 omega4 omega5 omega6 omega7 omega8 omega9

5.041 12.974 7.038 13.400 6.224 6.098 8.280 10.299 4.612

omega10

3.809

> LL = rbind(c(0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0),

+ c(0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0),

+ c(0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0),

+ c(0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0),

+ c(0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0))

> hh = c(1,1,1,1,1)

> Wtest(LL,thetahat,vcov(fit6),hh)

W df p-value

84.5066737182521876547980 5.0000000000000000000000 0.0000000000000001110223

Both the likelihood ratio test and the Wald test confirm overwhelmingly that the coeffi-
cients in question are not all one. To test the individual coefficients, it’s convenient to use
the MLEs and standard errors from parTable. The next-to-last column is the parameter
estimate, and the last column is the standard error. The following code computes the z
statistics for H0 : θj = 1 for all the parameters but then displays only the relevant ones.

> pt6 = parTable(fit6); dim(pt6)

[1] 33 15

> z = as.numeric( (pt6[,14]-1)/pt6[,15] )

> # Extract only meaningful z statistics (lambda_j)

> z = z[c(7,9,11,13,15)]

> names(z) = c(’lambda2’, ’lambda4’, ’lambda6’, ’lambda8’, ’lambda10’)

> z

lambda2 lambda4 lambda6 lambda8 lambda10

-6.1368432 -5.0581710 1.1367154 -4.4540676 0.3614714

> pt6[c(7,9,11,13,15),14] # Corresponding theta-hats

[1] 0.5278696 0.5431214 1.0917385 0.7069418 1.0397428

And we see that the 1.09 and the 1.04 are not significantly different from one.

1.7 Criticisms of structural equation modeling

Not everybody likes structural equation modeling. One objection is subjectivity. It’s true
that quite a lot of theoretical input is required to use this tool on a data set. One cannot
compose a path diagram (or equivalently, a system of model equations) without making
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some very definite assertions about the way the process works. Statisticians might object
that they are not subject matter experts, perhaps with the sub-text that they don’t want
to think too hard about it, and especially they don’t want to read books and articles in
a foreign discipline. The solution to this problem is either find a collaborator, or go do
something more theoretical.

Scientists, too, may feel uncomfortable. It’s not the math; they are already resigned
to the fact that they need to use statistical methods they do not understand all the way
down to the bedrock. The problem is that they see themselves as empiricists. They have
gone to a lot of trouble to collect the data, and now they want to hear what the data
have to say. They do not want to impose their conjectures on the data23; it strikes them
as unscientific.

One such scientist once said to a friend of mine (Lennon Li) something like “All
these variables are connected to each other. Why not just run arrows from everything
to everything else, and then test whether the coefficients are zero?” Lennon was faced
with the task of explaining parameter identifiability to a busy, impatient, sleep-deprived
physician who was already running late. In the end, Lennon wound up doing almost all
the modeling himself. He did the best he could, but it was not an optimal outcome.

Actually, I have a lot of sympathy for the empirically-oriented user who is reluctant
to engage in modeling. Frequently, the objection is not to modeling or theorizing per
se, but to mixing this enterprise with the statistical analysis. It’s a reasonable position,
but I do have a few questions. First of all, is the data set strictly observational, or
have some variables been manipulated by random assignment to treatment conditions?
In the latter case, causal inference is the objective, and surely arrows should be going
from the manipulated variables to others that could be deemed outcomes. Structural
equation methods may have some advantages over a traditional statistical analysis. See
Chapter ??. If it’s a purely observational study, here is another question for the skeptical
user. Have you ever used ordinary linear regression on data like these? If so, you’ve had
to decide which were the explanatory variables, and which were the response variables.
How did you decide? It seems that you may have already been doing structural equation
modeling of a basic sort. Do you agree that in regression, most explanatory variables are
measured with error? If so, see Chapter 0. It’s a slippery slope.

Sometimes, the objection is not so much to constructing models that will be incorpo-
rated into the statistical method, but to the interpretation of those models as causal. To
be explicit about this, the objection is to drawing causal conclusions from observational
data. We are back to the correlation-causation issue. One response is that while of course
one cannot firmly establish cause and effect without random assignment, at least one can
propose a causal model, and reject it if it does not fit the data. That being said, frequently

23If this sounds like an objection to Bayesian statistics, I agree. There is no doubt that even strictly
frequentist structural equation modeling makes heavy use of prior information. Without some opinion
based on past data or experience, how can you draw a path diagram? As I see it, both Bayesians and
frequentists incorporate prior information into the statistical model, while Bayesians also have a prior
distribution on the parameters. In fact, one could say that for the Bayesian, the model is part of the
prior, though in simple applications that part of the prior distribution is degenerate. This statement
applies to statistical models in general, not just to structural equation models.
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(but not always), a model with causality flowing in one direction fits exactly as well as
another model with causality flowing in the opposite direction. Some theoretical input
is required. When one variable is collected at an earlier time period, it’s easy. Other
cases can be more challenging. As will be seen in Chapter 4, successful models of mutual
influence are also possible under some circumstances.

Unfortunately, it is not so easy to dispose of the correlation-causation issue. Consider
two variables that are both impacted by variables for which no observable measures are
available. These unmeasured variables are aptly named “confounding” variables, because
they really do confuse matters. Are x and y correlated because x influences y, or is
it because they are both influenced by the unmeasured variables? Or, are d1 and d2

correlated because d1 and d2 are both influenced by a latent variable F (that’s what the
model says), or is it because they are both influenced by the unmeasured variables?

Recalling that error terms represent “all other influences,” a path diagram that ac-
knowledges the unmeasured influencers would have an extra curved, double-headed arrow
— between an exogenous variable and an error term, as in Figure 6, or between two error
terms as in Figure 1.7. In such cases, parameter identifiability is likely to be lost24.

It’s sometimes possible to model one’s way out of the problem, and come up with
another model that is both believable, and whose parameters are identifiable. If this is
not possible, the analyst is in an uncomfortable position. The choice may be between
proceeding ot fit a model that no thoughtful person could believe (hoping that it’s not
“too wrong”), and simply giving up. Even if one chooses to hold one’s nose and proceed,
it does not always work. As shown in Example 1.5.1, correlated error terms can lead to
an MLE that is firmly, reliably and significantly outside the parameter space. In such
a situation, one should not trust any of the estimates or tests associated with the fitted
model. To proceed is basically fraudulent. I was in this situation once, and I had to back
out of a project with a valued collaborator. I’m still sorry about that, Ana.

This is just one aspect of a larger problem that makes it difficult for some researchers
to embrace structural equation modeling. The problem is that sometimes, a superficially
reasonable model with identifiable parameters, simply do not fit. Then on further re-
flection, the analyst comes up with a model that is more believable. Unfortunately, the
parameters of this more believable model are not identifiable. The analyst may suspect
the problem with identifiability, without being able to confirm it mathematically. In any
case, he or she tries to fit the model, and it blows up. Maybe it’s the starting values.
As we saw in Section 0.10.2 lack of identifiability can produce numerical problems that
are hard to distinguish from the ones caused by bad starting values. So the analyst tries
different starting values, but it blows up every time. A few experiences like this with
different data sets are enough to turn anyone off.

I can see two possible remedies. The first is to know, not just guess, whether param-

24A notable exception is the double measurement design of Section 0.10.3 in Chapter 0; also see
the calculations leading to (1.23) on page 177. There, the measurement error terms for each set of
measurements are allowed to be correlated, though they are not allowed to be correlated between sets.
The virtue of this is that it’s quite natural for the measurements in one set to be contaminated by common
influences. Minimizing such contamination between sets is something that can be accomplished by good
study design.
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eters are identifiable. I hope this book helps. The second remedy is better data – that
is, data from a study that was designed with a particular structural equation model in
mind. Identifiability issues are taken care of at the planning stage. Potential confounding
variables are included in the data set, with adequate measurements. Correlations between
measurement errors are minimized by carrying out some of the measurements in varying
ways. For example, ask farmers how may cows they have, but also count them from aerial
photographs.

This is an ideal state of affairs. Mostly, structural equation models are applied to data
that were collected with other considerations in mind. In such cases, we do the best we
can.

1.8 The rest of the book

In structural equation modeling, it is imperative to check parameter identifiability before
proceeding to model fitting. The most direct way to check is to solve the covariance
structure equations for the unknown parameters, but that can be a big job. Fortunately,
there is a set of rules that often allow one to verify identifiability simply by examining the
path diagram, without explicitly solving any equations. The next task is to derive these
rules.

We will follow the logic of proving identifiability in two steps, as in the Brand Aware-
ness example of Section 1.6. In the general two-stage model of Section 1.2, the parameters
of the measurement model (Φ and Λ) are first recovered from Σ, the variance-covariance
matrix of a vector of an observable data vector. Then, the parameters of the latent vari-
able model (Φ,Γ,β and Ψ) are recovered from Φ. Since Φ has already been shown to
be a function of Σ, this shows that all the parameters are a function of Σ, and hence are
identifiable.

Chapters 2 and 3 treat the measurement model. This is also a major topic in its own
right, and goes by the name factor analysis. Chapter 4 is entitled path analysis. It treats
models in which a set of endogenous variables may be influenced by a set of exogenous
variables, and the endogenous variables may in turn influence other endogenous variables.
This is an accurate description of the latent variable model, and the principles developed
in Chapter 4 apply directly to the latent variable model. In Chapter 4, however, as in
traditional path analysis, the models are described as if all the variables were observable.
This makes the exposition easier, and in spite of the dangers of ignoring measurement
error (see Chapter 0), surface path models can occasionally be useful.

Though there is other discussion and a number of examples, the main task of chap-
ters 3 and 4 is develop a set of simple rules for parameter identifiability. These rules
are assembled and stated verbally at the beginning of Chapter 6. Illustrations are given.
Chapter 6 goes on to document a set of additional methods for dealing with identifiability
issues when the standard rules do not apply. The burden of computation is considerably
eased by the use of computer algebra.

When I apply structural equation models, I tend to decide whether a model fits by
simply applying the likelihood ratio test for goodness of fit. This is not a particularly
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popular choice, and Chapter 7 presents a wider range of options. The reader will not be
surprised to learn that in the end, I conclude that I am right.

At this point, the reader has the classical structural equation modeling toolkit, perhaps
with a deeper understanding of identifiability than usual. The remainder of the book will
cover topics including the following. This will be more complete once I have finished
writing it.

• True experimental studies (MIMIC)

• Groebner basis

• Categorical data

• Multiple groups

•



Chapter 2

Exploratory Factor Analysis

In experimental design, the term “factor” refers to a categorical explanatory variable. In
structural equation modeling and in the sub-field of factor analysis, a factor is a latent
variable, period. Factor analysis may be said to originate with a 92-page article [60]
by Charles Spearman in the 1901 American Journal of Psychology, entitled “General
intelligence, objectively determined and measured.” If you believe that some people are
generally smarter than others, the basic idea is quite natural. True intelligence cannot
be directly observed, so it’s a latent variable. However, we can observe performance on
various tests and puzzles. Spearman proposed that the correlations among observable
variables arise from their connection to a common “g” factor — general intelligence.

The early history of factor analysis is described masterfully in Harman’s (1960, 1967,
1976) classic Modern factor analysis [28]. Though Harman brings relative clarity to this
murky literature, his book is almost guaranteed to be frustrating for a statistician to
read. Lawley and Maxwell’s (1971) Factor analysis as a statistical method is a welcome
antidote. Bastlevsky’s (1994) Statistical factor analysis and related methods [2] is a strong
and more recent treatment of the topic.

Factor analysis may be divided into two types, commonly called exploratory factor
analysis and confirmatory factor analysis. The books cited above are about exploratory
factor analysis, which came first historically. While both types of factor analysis are
special cases of structural equation models, it is confirmatory factor analysis that provides
a useful measurement model. Exploratory factor analysis is helpful for understanding
confirmatory factor analysis. Another good reason to learn about exploratory factor
analysis is that some people still do it, or may ask you to do it.

2.1 Principal Components Analysis

Before describing what factor analysis is, it will be helpful to describe what it is not.
Principal components analysis is not factor analysis. Factors are unobservable latent
variables. Principal components are linear combinations of the sample data. The very
existence of factors depends on one’s acceptance of a fairly elaborate statistical model,
while the statistical model underlying principal components is quite minimal, if there is

203
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one at all. Still, principal components analysis and factor analysis have a similar flavour,
and some of the ideas from principal components are used in factor analysis.

The main application of principal components analysis is data reduction. Suppose
you have a large number of variables that are correlated with one another. Principal
components analysis allows you to find a smaller set of linear combinations of the variables,
linear combinations that contain most of the variation in the original set. It may be that
little is lost by using the linear combinations in place of the original variables, and there
can be substantial advantages in terms of storage and processing.

In the most relevant version of principal components, there are k observable variables
that are standardized1, by subtracting off their means and dividing by their standard
deviations. Collect the variables into a k-dimensional random vector z = [zj], with E(z) =
0 and cov(z) = Σ. Because of standardization, Σ is a correlation matrix.

Recall the spectral decomposition Σ = CDC> (see Section A.2 in Appendix A),
where D is a diagonal matrix containing the k eigenvalues of Σ in descending order, and
the columns of the k × k matrix C = [cij] contain the corresponding eigenvectors. The
eigenvectors are orthonormal, so CC> = C>C = I.

Let y = C>z = [yj]. The transformed variables in y will be called the principal
components of z. Immediately, we have E(y) = 0 and

cov(y) = cov(C>z)

= C>cov(z)C

= C>ΣC

= C>CDC>C

= D, (2.1)

so that the elements of y are uncorrelated, and their variances are the eigenvalues of Σ,
sorted from largest to smallest.

Since y = C>z, we can also write the original variables in terms of the principal
components as z = Cy. In scalar form,

z1 = c11y1 + c12y2 + · · ·+ c1kyk

z2 = c21y1 + c22y2 + · · ·+ c2kyk
...

...

zk = ck1y1 + ck2y2 + · · ·+ ckkyk.

Because the elements of y are uncorrelated, the variance of variable j is

V ar(zj) = V ar(cj1y1 + cj2y2 + · · ·+ cjkyk)

= c2
j1V ar(y1) + c2

j2V ar(y2) + · · ·+ c2
jkV ar(yk)

= c2
j1λ1 + c2

j2λ2 + · · ·+ c2
jkλk = 1. (2.2)

1In the other main version of principal components, the variables are not standardized. The develop-
ment is very similar.
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Thus, the variance of zj is decomposed into the part explained by y1, the part explained
by y2, and so on. Specifically, y1 explains c2

j1λ1 of the variance, y2 explains c2
j2λ2 of the

variance, etc.. Because zj is standardized, these are proportions of variance.
They are also squared correlations. Correlation is covariance divided by the product

of standard deviations. Using the fact that cov(yi, yj) = 0 for i 6= j,

Cov(zi, yj) = Cov(ci1y1 + ci2y2 + · · ·+ cijyj + · · ·+ cjkyk,yj)

= cijCov(yj, yj)

= cijλj.

Then,

Corr(zi, yj) =
Cov(zi, yj)

SD(zi)SD(yj)

=
cijλj

1
√
λj

= cij
√
λj, (2.3)

and the squared correlation between zi and yj is c2
ijλj.

Looking at the variances of all the original variables,

V ar(z1) = c2
11λ1 + c2

12λ2 + · · ·+ c2
1kλk

V ar(z2) = c2
21λ1 + c2

22λ2 + · · ·+ c2
2kλk (2.4)

...
...

V ar(zk) = c2
k1λ1 + c2

k2λ2 + · · ·+ c2
kkλk.

The pieces of variance being added up are the squared correlations between the original
variables and the principal components.

Imagine a k × k matrix of these squared correlations, with the original variables cor-
responding to rows, and the principal components corresponding to columns. The layout
is the same as the equations (2.4). If you add the entries in any row, you get one. If you
add the entries in a column, you get the total amount of variance in the original variables
that is explained by that principal component. The sum of entries in column j is

k∑
i=1

c2
ijλj = λj

k∑
i=1

c2
ij

= λj · 1 = λj, (2.5)

where the squared weights add to one because the eigenvectors are of unit length. This
means that the eigenvalues are both the variances of the principal components and the
amounts of variance in the original variables that are explained by the respective principal
components. The total variance in the original variables is the trace of Σ, which equals
k. The trace of a symmetric matrix is the sum of its eigenvalues, and everything adds up.

It’s actually even better than that. There is a well-known theorem saying that y1 has
the greatest possible variance of any linear combination whose squared weights add up to
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one. In addition, y2 is the linear combination that has the greatest variance subject to
the constraints that it’s orthogonal to y1 and its squared weights add to one. Continuing,
y3 is the linear combination that has the greatest variance subject to the constraints that
it’s orthogonal to y1 and y2, and its squared weights add to one — and so on. This
means that the principal components are optimal in the sense that the first one explains
the greatest possible amount of variance, and all the succeeding components explain the
greatest possible amounts of the variance that remains unexplained by the earlier ones.

If the correlations among the original variables are substantial, the first few eigenvalues
will be relatively large. The data reduction idea is to retain only the first several principal
components, the ones that contain most of the variation in the original variables. The
expectation is that they will capture most of the meaningful variation.

To apply this method to actual data, suppose you have n observations on k variables.
First standardize all the variables, by subtracting off sample means and dividing by sam-
ple standard deviations. Assemble the standardized data into an n× k matrix Z = [zij].

The true correlation matrix Σ is unknown, so use the sample correlation matrix Σ̂. Based
upon the spectral decomposition Σ̂ = ĈD̂Ĉ>, calculate Ŷ = ZĈ. The rows of Z con-
tain standardized data vectors, and the rows of Ŷ contain the corresponding vectors of
principal component values. Ŷ has a hat because it is a matrix of the sample principal
components. It can be informative to look at a matrix of squared sample correlations
between the original variables and the components, because the entries are estimated
proportions of variance in each variable that are explained by each component.

A nice feature of principal components is that the formulas given earlier in this section
are exactly correct for sample principal components. This is because most of the rules for
variances and covariances are also true for the sample versions2. As a result, it is possi-
ble to present principal components analysis as a purely descriptive procedure, without
assuming any sampling model at all. Some textbooks do it this way; it’s a matter of taste.

In any case, the main application of principal components is data reduction. The
data reduction strategy is to retain just a few columns of Ŷ, because those principal
components account for most of the variance in the original variables. But where do you
draw the line? How many principal components should you preserve? A standard answer
is to keep the components with eigenvalues greater than one, because one is the amount of
variance in a single original variable. After that point, the principal components explain
no more variance than the original variables.

Example 2.1.1 The Body-Mind Data

2This statement is true and it’s good enough, but here is an another way of thinking about it. The
formulas developed for principal components are true for any distribution of the observed data. In
particular, they are true for the rather peculiar discrete multivariate distribution that puts probability
1
n on each observed data vector. Think of the observed data vectors as strings of beads in an urn. We
are sampling from this urn with replacement. It’s the re-sampling model that is used in the bootstrap!
For this distribution, the population mean, variance, covariance and so on may be calculated using usual
formulas for the corresponding sample moments – provided that one uses the variance and covariance
formulas with n in the denominator rather than n− 1. Consequently, all the formulas derived here apply
directly to sample principal components.
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The Body-Mind data are a set of educational test scores and physical measurements for
a sample of high school students3. The variables are

• sex: F or M.

• progmat: Progressive matrices (puzzle) score.

• reason: Reasoning score.

• verbal: Verbal (reading and vocabulary) score.

• headlng: Head Length in mm.

• headbrd: Head Breadth in mm.

• headcir: Head Circumference in mm.

• bizyg: Bizygomatic breadth in mm, basically how far apart the eyes are.

• weight: In pounds.

• height: In cm.

These data will be used to illustrate true factor analysis as well as principal components.
We begin by reading the data, and looking at basic descriptive statistics and the correla-
tion matrix.

> rm(list=ls())

> bodymind = read.table(’http://www.utstat.toronto.edu/~brunner/openSEM/data/bodymind.data.txt’)

> head(bodymind)

sex progmat reason verbal headlng headbrd headcir bizyg weight height

1 M 108 128 136 182 162 553 140 144 1769

2 F 81 110 94 192 156 571 143 144 1633

3 F 110 134 132 186 145 549 131 135 1672

4 F 95 88 83 189 139 536 124 109 1700

5 M 83 94 100 180 163 549 141 124 1679

6 M 105 77 92 195 148 560 134 126 1651

> dim(bodymind) # Number of rows,columns

[1] 80 10

dat = as.matrix(bodymind[,2:10]) # Omit sex, make dat a matrix rather than a data frame.

> # summary(dat)

> Sigma_hat = cor(dat); round(Sigma_hat,3)

progmat reason verbal headlng headbrd headcir bizyg weight height

progmat 1.000 0.514 0.539 0.323 0.099 0.315 0.200 0.132 0.197

reason 0.514 1.000 0.728 0.203 0.053 0.322 0.291 0.171 0.207

verbal 0.539 0.728 1.000 0.260 0.139 0.354 0.337 0.236 0.199

headlng 0.323 0.203 0.260 1.000 0.255 0.821 0.475 0.506 0.554

3This is a modified subset of data reported in the journal Human Biology [17]. The data are used
here without permission, but I believe they have been sufficiently hacked so that the original copyright
no longer applies, and they can be protected under a Creative Commons license. Good luck trying to
recover the original data values.
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headbrd 0.099 0.053 0.139 0.255 1.000 0.604 0.692 0.368 0.362

headcir 0.315 0.322 0.354 0.821 0.604 1.000 0.713 0.641 0.591

bizyg 0.200 0.291 0.337 0.475 0.692 0.713 1.000 0.589 0.614

weight 0.132 0.171 0.236 0.506 0.368 0.641 0.589 1.000 0.599

height 0.197 0.207 0.199 0.554 0.362 0.591 0.614 0.599 1.000

The R functions princomp and prcomp will do principal components analysis, but we’ll
use spectral decomposition directly at first for illustrative purposes. The eigen function
returns a list with two elements. The first element is a vector of eigenvalues, and the
second element is the matrix C in A = CDC>. Column j of the matrix C is the
eigenvector corresponding to λj.

> eigenSigma = eigen(Sigma_hat); eigenSigma

eigen() decomposition

$values

[1] 4.28768216 1.77444482 0.87126975 0.64039055 0.47989427 0.40504511 0.26315906

[8] 0.21010253 0.06801175

$vectors

[,1] [,2] [,3] [,4] [,5] [,6] [,7]

[1,] -0.2274301 -0.47286949 0.10386693 -0.5037581 0.59758999 -0.29003259 -0.08152051

[2,] -0.2405745 -0.54632083 -0.12052776 0.2965707 -0.17975676 0.26454653 -0.63108107

[3,] -0.2665589 -0.51874379 -0.16430737 0.1996142 -0.24123089 -0.07990715 0.71935768

[4,] -0.3622340 0.08683821 0.53544154 -0.3586357 -0.34767275 0.16737858 0.08869681

[5,] -0.2933333 0.27697281 -0.66373737 -0.3094155 0.04112189 -0.03633303 -0.01019606

[6,] -0.4377198 0.12657178 0.08577647 -0.2525368 -0.33524350 0.01081660 -0.14979213

[7,] -0.4007471 0.17219323 -0.34669164 0.1054639 0.05971130 0.13277579 0.01297777

[8,] -0.3513037 0.20963075 0.18723810 0.4548388 0.02650610 -0.74034211 -0.13982797

[9,] -0.3556358 0.18698153 0.24048299 0.3351036 0.55960504 0.49428994 0.16579073

[,8] [,9]

[1,] 0.10288021 0.040581025

[2,] -0.11345554 -0.166563741

[3,] -0.09839457 0.035693597

[4,] 0.07347486 -0.532701450

[5,] -0.44524651 -0.315589722

[6,] -0.14639593 0.751580920

[7,] 0.81059576 -0.002188321

[8,] -0.07609981 -0.128655279

[9,] -0.28094584 0.067358086

Since only the first two eigenvalues are greater than one, the conventional choice for data
reduction would be to retain only the first two sample principal components. Dividing
the eigenvalues by the number of variables yields the proportions of the total variance
explained by each component.

> lambda_hat = eigenSigma$values

> lambda_hat/9 # Proportions of explained variance

[1] 0.476409129 0.197160535 0.096807750 0.071154506 0.053321586 0.045005012 0.029239896

[8] 0.023344726 0.007556861

> cumsum(lambda_hat/9) # Cumulative sum

[1] 0.4764091 0.6735697 0.7703774 0.8415319 0.8948535 0.9398585 0.9690984 0.9924431

[9] 1.0000000
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It seems that the first two components account for around 67% of the total variance in
the observed variables, and five components would account for about 90%.

Calculating Z and then Ŷ = ZĈ, we verify (2.1), which says cov(y) = D.

> > Z = scale(dat) # Standardize

> C_hat = eigenSigma$vectors #$

> Y_hat = Z %*% C_hat # Sample principal components

> # Looking at the variance-covariance matrix of the principal components,

> round(var(Y_hat), 4) # Should equal D

[,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8] [,9]

[1,] 4.2877 0.0000 0.0000 0.0000 0.0000 0.000 0.0000 0.0000 0.000

[2,] 0.0000 1.7744 0.0000 0.0000 0.0000 0.000 0.0000 0.0000 0.000

[3,] 0.0000 0.0000 0.8713 0.0000 0.0000 0.000 0.0000 0.0000 0.000

[4,] 0.0000 0.0000 0.0000 0.6404 0.0000 0.000 0.0000 0.0000 0.000

[5,] 0.0000 0.0000 0.0000 0.0000 0.4799 0.000 0.0000 0.0000 0.000

[6,] 0.0000 0.0000 0.0000 0.0000 0.0000 0.405 0.0000 0.0000 0.000

[7,] 0.0000 0.0000 0.0000 0.0000 0.0000 0.000 0.2632 0.0000 0.000

[8,] 0.0000 0.0000 0.0000 0.0000 0.0000 0.000 0.0000 0.2101 0.000

[9,] 0.0000 0.0000 0.0000 0.0000 0.0000 0.000 0.0000 0.0000 0.068

There it is: a diagonal matrix with the eigenvalues on the diagonal.
Based on the eigenvalues, let’s retain just the first two components and estimate how

much variance they explain. First, look at the correlations.

> y = Y_hat[,1:2] # Just the first two components

> zy = cor(Z,y); zy

[,1] [,2]

progmat -0.4709330 -0.6299014

reason -0.4981509 -0.7277446

verbal -0.5519561 -0.6910097

headlng -0.7500678 0.1156757

headbrd -0.6073970 0.3689507

headcir -0.9063741 0.1686041

bizyg -0.8298157 0.2293757

weight -0.7274347 0.2792455

height -0.7364050 0.2490749

All of the large correlations are negative, so they are a bit harder to look at. If this is
a problem, the signs of a principal component can be flipped, reversing the signs of the
correlation between that component and any variable. To see why this is true, recall
the definition of an eigenvalue and associated eigenvector: Ax = λx. Clearly if x is
an eigenvector corresponding to λ, so is −x. Since a principal component is a linear
combination of variables whose weights are the elements of an eigenvector, the sign is
arbitrary.

Now we will check Equation (2.3), which says Corr(zi, yj) = cij
√
λj. We should be

able to reproduce the matrix of correlations between Z and the first two components by

multiplying the first two columns of Ĉ by the matrix

 √
λ̂1 0

0

√
λ̂2

.

> A = rbind(c( sqrt(lambda_hat[1]), 0 ),
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+ c(0, sqrt(lambda_hat[2]) ) )

> C_hat[,1:2] %*% A

[,1] [,2]

[1,] -0.4709330 -0.6299014

[2,] -0.4981509 -0.7277446

[3,] -0.5519561 -0.6910097

[4,] -0.7500678 0.1156757

[5,] -0.6073970 0.3689507

[6,] -0.9063741 0.1686041

[7,] -0.8298157 0.2293757

[8,] -0.7274347 0.2792455

[9,] -0.7364050 0.2490749

Okay, it worked: Estimated Corr(zi, yj) is ĉij

√
λ̂j.

The squared correlations are components of variance. The addmargins function is
used below to add row and column sums. It’s easier to look at the output rounded to
three decimal places.

> zy2 = zy^2

> round( addmargins(zy2, margin = c(1,2), FUN = sum) , 3)

Margins computed over dimensions

in the following order:

1:

2:

sum

progmat 0.222 0.397 0.619

reason 0.248 0.530 0.778

verbal 0.305 0.477 0.782

headlng 0.563 0.013 0.576

headbrd 0.369 0.136 0.505

headcir 0.822 0.028 0.850

bizyg 0.689 0.053 0.741

weight 0.529 0.078 0.607

height 0.542 0.062 0.604

sum 4.288 1.774 6.062

This shows, for example, that the first principal component explains 54.2% of the variance
in height, and the second principal component explains an additional 6.2%. The first two
principal components explain around 85% of the variance in head circumference, but only
about 50.5% of the variance in head breadth. Also, the column totals are the eigenvalues,
as in (2.5). These are all estimated values, of course.

Principal components the easy way It’s a bit easier to use a specialized R function
for principal components analysis, rather than relying on eigen. I prefer prcomp over
princomp, because princomp has some unfortunate features that have been retained for
compatibility with the defunct commercial software S-plus.

In the prcomp function, the scale = T option divides variables by their sample stan-
dard deviations. The option center is true by default, so the data are converted to
z-scores. This is what we want.
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> # Principal components the easy way

> # help(prcomp)

> pc = prcomp(dat, scale = T)

The object pc is a list. The ls function shows its elements.

> ls(pc)

[1] "center" "rotation" "scale" "sdev" "x"

The element pc$center contains the sample means of the variables before standardization;
pc$scale contains the standard deviations. sdev has the standard deviations of the
components. Squaring the sdev vector yields the eigenvalues of the sample correlation
matrix.

> pc$sdev^2 # Eigenvalues

[1] 4.28768216 1.77444482 0.87126975 0.64039055 0.47989427 0.40504511 0.26315906

[8] 0.21010253 0.06801175

> lambda_hat # For comparison

[1] 4.28768216 1.77444482 0.87126975 0.64039055 0.47989427 0.40504511 0.26315906

[8] 0.21010253 0.06801175

The list element pc$rotation corresponds to the Ĉ matrix produced by the spectral

decomposition. Since Ĉ is an orthogonal matrix, it is indeed a rotation.

> pc$rotation

PC1 PC2 PC3 PC4 PC5 PC6 PC7

progmat -0.2274301 -0.47286949 0.10386693 -0.5037581 0.59758999 -0.29003259 0.08152051

reason -0.2405745 -0.54632083 -0.12052776 0.2965707 -0.17975676 0.26454653 0.63108107

verbal -0.2665589 -0.51874379 -0.16430737 0.1996142 -0.24123089 -0.07990715 -0.71935768

headlng -0.3622340 0.08683821 0.53544154 -0.3586357 -0.34767275 0.16737858 -0.08869681

headbrd -0.2933333 0.27697281 -0.66373737 -0.3094155 0.04112189 -0.03633303 0.01019606

headcir -0.4377198 0.12657178 0.08577647 -0.2525368 -0.33524350 0.01081660 0.14979213

bizyg -0.4007471 0.17219323 -0.34669164 0.1054639 0.05971130 0.13277579 -0.01297777

weight -0.3513037 0.20963075 0.18723810 0.4548388 0.02650610 -0.74034211 0.13982797

height -0.3556358 0.18698153 0.24048299 0.3351036 0.55960504 0.49428994 -0.16579073

PC8 PC9

progmat -0.10288021 0.040581025

reason 0.11345554 -0.166563741

verbal 0.09839457 0.035693597

headlng -0.07347486 -0.532701450

headbrd 0.44524651 -0.315589722

headcir 0.14639593 0.751580920

bizyg -0.81059576 -0.002188321

weight 0.07609981 -0.128655279

height 0.28094584 0.067358086

> C_hat # For comparison

[,1] [,2] [,3] [,4] [,5] [,6] [,7]

[1,] -0.2274301 -0.47286949 0.10386693 -0.5037581 0.59758999 -0.29003259 -0.08152051

[2,] -0.2405745 -0.54632083 -0.12052776 0.2965707 -0.17975676 0.26454653 -0.63108107

[3,] -0.2665589 -0.51874379 -0.16430737 0.1996142 -0.24123089 -0.07990715 0.71935768

[4,] -0.3622340 0.08683821 0.53544154 -0.3586357 -0.34767275 0.16737858 0.08869681

[5,] -0.2933333 0.27697281 -0.66373737 -0.3094155 0.04112189 -0.03633303 -0.01019606
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[6,] -0.4377198 0.12657178 0.08577647 -0.2525368 -0.33524350 0.01081660 -0.14979213

[7,] -0.4007471 0.17219323 -0.34669164 0.1054639 0.05971130 0.13277579 0.01297777

[8,] -0.3513037 0.20963075 0.18723810 0.4548388 0.02650610 -0.74034211 -0.13982797

[9,] -0.3556358 0.18698153 0.24048299 0.3351036 0.55960504 0.49428994 0.16579073

[,8] [,9]

[1,] 0.10288021 0.040581025

[2,] -0.11345554 -0.166563741

[3,] -0.09839457 0.035693597

[4,] 0.07347486 -0.532701450

[5,] -0.44524651 -0.315589722

[6,] -0.14639593 0.751580920

[7,] 0.81059576 -0.002188321

[8,] -0.07609981 -0.128655279

[9,] -0.28094584 0.067358086

Finally, pc$x has the principal components themselves.

> dim(pc$x) # x is a matrix of the principal components Y_hat = Z %*% C_hat

[1] 80 9

> head(pc$x) # Just the first 6 rows

PC1 PC2 PC3 PC4 PC5 PC6 PC7

1 -2.9056790 -0.8163483 -2.05648959 0.89345100 1.0826163 0.09581676 0.09097201

2 -1.8420248 1.6868136 -1.11946332 0.61460425 -1.7388326 0.20651893 0.68366132

3 -1.1270571 -2.3088592 0.08809617 0.75714079 0.1575711 -0.19017485 0.51153249

4 1.6221315 0.2340440 1.62777485 0.07639917 0.3896938 0.65365783 -0.33948607

5 -0.6431189 1.8507668 -2.60883792 0.58933649 -0.1899104 0.47035165 -0.33536456

6 -0.5757390 0.9010777 0.79544134 -1.28687495 0.1150836 -0.39632242 -0.59876963

PC8 PC9

1 0.66523233 -0.13093412

2 -0.60878367 0.09346307

3 0.34061367 0.13503816

4 0.44387949 0.16416604

5 0.06955952 0.02486900

6 -0.48127952 0.34279834

> head(Y_hat) # For comparison

[,1] [,2] [,3] [,4] [,5] [,6] [,7]

1 -2.9056790 -0.8163483 -2.05648959 0.89345100 1.0826163 0.09581676 -0.09097201

2 -1.8420248 1.6868136 -1.11946332 0.61460425 -1.7388326 0.20651893 -0.68366132

3 -1.1270571 -2.3088592 0.08809617 0.75714079 0.1575711 -0.19017485 -0.51153249

4 1.6221315 0.2340440 1.62777485 0.07639917 0.3896938 0.65365783 0.33948607

5 -0.6431189 1.8507668 -2.60883792 0.58933649 -0.1899104 0.47035165 0.33536456

6 -0.5757390 0.9010777 0.79544134 -1.28687495 0.1150836 -0.39632242 0.59876963

[,8] [,9]

1 -0.66523233 -0.13093412

2 0.60878367 0.09346307

3 -0.34061367 0.13503816

4 -0.44387949 0.16416604

5 -0.06955952 0.02486900

6 0.48127952 0.34279834

A useful feature of prcomp is that it’s easy to specify the number of components you want
to extract. This is accomplished by specifying rank in the call to prcomp.

> pc2 = prcomp(dat, scale = T, rank = 2) # Retain two principal components
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> pc2$rotation

PC1 PC2

progmat -0.2274301 -0.47286949

reason -0.2405745 -0.54632083

verbal -0.2665589 -0.51874379

headlng -0.3622340 0.08683821

headbrd -0.2933333 0.27697281

headcir -0.4377198 0.12657178

bizyg -0.4007471 0.17219323

weight -0.3513037 0.20963075

height -0.3556358 0.18698153

Only the first two columns of Ĉ are returned. Post-multiplying this matrix by the matrix
of standardized data in Z yields an 80×2 matrix of just the first two principal components.

> head(pc2$x) # There should be 2 columns

PC1 PC2

1 -2.9056790 -0.8163483

2 -1.8420248 1.6868136

3 -1.1270571 -2.3088592

4 1.6221315 0.2340440

5 -0.6431189 1.8507668

6 -0.5757390 0.9010777

This is all very nice, but it’s not factor analysis. Principal components analysis and factor
analysis are frequently confused, especially by social scientists. In a consulting situation,
suppose your client claims to have done a factor analysis. You should ask “What kind of
factor analysis?” If the client doesn’t know, ask “What software did you use?” If it’s SAS
or SPSS, ask “Did you use the default options?” If the answer is yes, it was a principal
components analysis. We now turn to true factor analysis.

2.2 True Factor Analysis

In exploratory factor analysis, the goal is to describe and summarize a data set by explain-
ing a set of observed variables in terms of a smaller number of latent variables (factors).
The factors are the reason the observable variables have the correlations they do. Fig-
ure 2.1 shows the path diagram of a model with two factors and eight observable variables.
A common rule is at least three observable variables for each factor. In general, the more
variables for each factor, the better.

The general factor analysis model may be written as follows. Independently for i =
1, . . . , n, let

di = ΛFi + ei, (2.6)

where di is a k× 1 observable random vector, Λ is a k× p matrix of constants, and Fi (F
for factor) is a p× 1 latent random vector with covariance matrix Φ. The k× 1 vector of
error terms ei is independent of Fi; it has expected value zero and covariance matrix Ω,
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Figure 2.1: A Two-factor Model
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which is almost always assumed to be diagonal4. There are no intercepts, and E(Fi) = 0.
This is a centered surrogate model (see Section A.6.1). The notation here is consistent
with the general two-stage model of Section 1.2, except that there, the dimension of Fi

would be (p+ q)× 1. A multivariate normal assumption for Fi and ei is common.

4The assumption that Ω is diagonal helps with identifiability, and may be traced to what Spear-
man [60] (1904, p. 273) calls the “Law of the Universal Unity of the Intellective Function,” to wit:
Whenever branches of intellectual activity are at all dis-similar, then their correlations with one another
appear wholly due to their being all variously saturated with some common fundamental Function (or
group of Functions as well as positive definite. Note that in Figure 2.1, Ω being diagonal corresponds
to a lack of any curved, double-headed arrows connecting e1, . . . , e8. This means that any correlations
between observable variables must come from the factors.
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To clarify the notation, the model equations for Figure 2.1 are

di = Λ Fi + ei

di,1
di,2
di,3
di,4
di,5
di,6
di,7
di,8


=



λ11 λ12

λ21 λ22

λ31 λ32

λ41 λ42

λ51 λ52

λ61 λ62

λ71 λ27

λ81 λ82


(
Fi,1
Fi,2

)
+



ei,1
ei,2
ei,3
ei,4
ei,5
ei,6
ei,7
ei,8


.

(2.7)

The λij values will be called factor loadings. They are essentially regression coefficients
linking the factors to the observed variables5. The factors Fi,1 and Fi,2 are sometimes
called common factors, because they influence all the observed variables; all the observed
variables have them in common. The error terms ei,1, . . . , ei,8 are sometimes called unique
factors, because each one influences only a single observed variable.

The defining feature of exploratory factor analysis is that it tries to be as unconstrained
as possible. The method really wants the data to speak. In Figure 2.1 and in general,
there are arrows from all factors to all observed variables.

Number of factors The number of factors (symbolized here by p) is a fundamental
property of a factor analysis model. For example, it determines the number of parameters.
It’s typically very important to subject matter experts, too. You can always get their
attention by asking if something they are talking about is uni-dimensional. For example,
is creativity uni-dimensional? Are political attitudes uni-dimensional (primarily just left-
right)? In market research, how about attitudes toward a particular product category?
Is it just positive-negative? Their eyes will light up.

Of course, there can be lots of factors. For example, Cattell’s Sixteen Personality
Factor Questionnaire [16] (documented in a 1970 paper by Cattell, Eber and Tatsuoka) is
based on factor analyses of a large number of personality test items. They came up with
16 factors.

In a classical factor analysis, the number of common factors is generally not known in
advance; it is determined in an exploratory manner. The first guiding principle is a piece
of wisdom [39] from Kaiser (1960), who pointed out that for the typical problem involving
human behavior or any other complex system, there are probably hundreds of common
factors. Including them all in the model is out of the question. The objective should be
to come up with a model that includes the most important factors for the variables in
the study, and captures the essence of what is going on. Simplicity is important. Other
things being more or less equal, the fewer factors the better. I have already mentioned a

5In some books, the term “factor loading” is reserved for the correlations between factors and observed
variables. When the factors are uncorrelated, the λij in (2.7) are indeed correlations, and the two common
uses of the term coincide.
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widely accepted rule of thumb6 that says there should be at least three observed variables
per factor [25]. This sets practical soft upper bound for the number of factors.

To narrow the search for the number of factors, quite a few methods are available. If
the parameters are estimated by maximum likelihood, perhaps the most natural approach
is to test goodness of fit using the likelihood ratio test (1.18) on page 171, increasing the
number of factors until the model fits. This idea has quite a pedigree. It was essentially
proposed by Lawley [41] in 19407, though he derived a slightly different large-sample chi-
squared test. The reasoning is that if we really insist that the error terms are independent
of the factors and have a diagonal covariance matrix, the only way that the model can be
incorrect is that it does not have enough factors. Thus, any test for goodness of fit is also
a test for number of factors.

Hypothesis testing may be attractive, but one thing to bear in mind is Kaiser’s obser-
vation that in reality, there are probably hundreds of factors. Suppose the true number
of factors is very large. Because the power of the likelihood ratio test increases with the
sample size, significant lack of fit may be expected for any model with a modest number
of factors, even if that model explains most of the non-error variance in an elegant and
useful way. Statistically, rejecting the null hypothesis is a correct decision, because the
model is wrong. Scientifically, it would be unfortunate. This suggests that while formal
tests for lack of fit may be useful, one should not rely on them exclusively.

Another common method [39], and one that continues to be the default in some
popular statistical software, is due to Kaiser (1960). Kaiser proposed estimating number
of factors by the number of eigenvalues of the correlation matrix that are greater than
one. The idea is that even though factor analysis and principal components analysis
are different, still, if the correlations among the observed variables arise from p common
factors, then the optimality of principal components in explaining variance suggests that
p principal components will explain at least as much variance. And then, as in principal
components, adding an additional factor that explains less variance than a single variable
will not improve the model as a summary of the data.

A variation, called parallel analysis [31] is to test whether each eigenvalue is signifi-
cantly larger than one would expect by chance. The meaning of “chance” is the probability
distribution of an (ordered) eigenvalue under the null hypothesis that the variables are
uncorrelated. These distributions are approximated by randomly independently permut-
ing the observed data values a large number of times, and calculating the eigenvalues of
the correlation matrix for each permutation. A factor is retained if the corresponding
ordered eigenvalue is larger than the 95th percentile of the random values.

A graphical alternative called the scree plot [15] was proposed by Cattell (1966). Scree
is a term from geology. It refers to the pile of rock and debris often found at the foot of a

6A rule of thumb is a rule that comes from experience and expert opinion, but is not backed up by
hard evidence. The term apparently comes from brewing beer. In the early days before thermometers,
the master brewer would stick a thumb in the vat of fermenting hops and stuff, and if the temperature
felt right then it was on to the next stage.

7This is the same article where Lawley proposed estimating factor loadings by maximum likelihood.
Like many of the procedures that are now standard in multivariate analysis, maximum likelihood factor
analysis became practical for most real data sets only after the invention of electronic computers.
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mountain cliff or volcano. Scree slopes tend to be concave up, steepest near the cliff and
then tailing off. In factor analysis, a scree plot shows the eigenvalues of the correlation
matrix, sorted in order of magnitude. It has the numbers 1, . . . , k (k = the number of
principal components as well as variables) on the x axis, and the eigenvalues on the y
axis. The largest eigenvalue goes with 1, the second largest with 2, and so on. It is very
common for the graph to decrease rapidly at first, and then straighten out with a small
negative slope for the rest of the way. The point at which the linear trend begins is the
estimated number of factors.

Figure 2.2 show a scree plot for the Mind-body data, described in Example 2.1 on
page 207. Reading the data and creating the object pc with prcomp has already been
illustrated.

> Eigenvalue = pc$sdev^2

> plot(1:9,Eigenvalue,type=’b’,xlab=’Principal Component’,xaxp=c(1,9,8))

Figure 2.2: Scree Plot for the Mind-Body Data
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Scree Plot for the Mind-Body Data

The linear part of decreasing trend appears to begin with the third eigenvalue, sug-
gesting three factors. There are only nine variables, so the rule of at least three variables
per factor would limit us to three factors at most, anyway. Two of the eigenvalues are
greater than one, suggesting two factors. There is no requirement that these any of these
criteria coincide, and in fact it is reassuring that they are this close.

A final criterion for number of factors is interpretability. What do the factors seem to
represent? Typically, the answer is more clear for models with fewer factors. With more
and more factors, explanation tends to become increasingly difficult, and the wise factor
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analyst will stop at a point where there is still a convincing story to tell. This process
is subjective, but reasonable and widely accepted. In a professional paper, one might
read something like “A maximum likelihood factor analysis extracted four interpretable
factors, accounting for an estimated 72% of the variance in the attitude scales. Table 3
shows the factor loadings . . . ”

Identifiability The parameters of the general factor analysis model are massively non-
identified. This is true even when, as in the example of Figure 2.1, the model passes the
test of the parameter count rule. To see this, first observe that the parameters are the
unique contents of the matrices Φ, Λ and Ω. If two distinct triples (Φ,Λ,Ω) yield the
same covariance matrix Σ = cov(di), then the parameters cannot be identified from Σ.
In practice, that means they can’t be identified at all. Calculating,

cov(di) = Σ = cov(ΛFi + ei)

= ΛΦΛ> + Ω.

The square root matrix of a symmetric matrix is also symmetric, so

ΛΦΛ> + Ω = Λ Φ1/2IΦ1/2 Λ> + Ω

= (ΛΦ1/2)I(Φ1/2>Λ>) + Ω

= (ΛΦ1/2)I(ΛΦ1/2)> + Ω

= Λ2IΛ
>
2 + Ω

Unless Φ = cov(Fi) was equal to the identity in the first place, the triple (I,Λ2,Ω) is
different from (Φ,Λ,Ω), yet it yields the same Σ. This shows that the parameters are
not identifiable.

Actually, Σ is produced by infinitely many parameter sets. Let Q be an arbitrary
positive definite covariance matrix for Fi. Then

Σ = Λ2IΛ
>
2 + Ω

= Λ2Q
− 1

2 QQ−
1
2 Λ>2 + Ω

= (Λ2Q
− 1

2 )Q(Q−
1
2
>Λ>2 ) + Ω

= (Λ2Q
− 1

2 )Q(Λ2Q
− 1

2 )> + Ω

= Λ3QΛ>3 + Ω (2.8)

No matter what the truth might be, one can make the covariance matrix of the factors
absolutely anything, and then adjust the factor loadings to yield exactly the same Σ that
is produced by the true parameter values. Note that for multivariate normal data with
expected value zero (the usual assumption), all one can ever get from increasing amounts
of data is a closer and closer approximation of Σ. This means that empirical data cannot
help us learn the model parameters. It’s not a good situation.
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The classical way out of this dilemma is to regard the covariance matrix of the factors
as essentially arbitrary, and fix Φ = I. The factors are said to be “orthogonal” (at right
angles, uncorrelated). They are also standardized, meaning that the (scalar) expected
value of each factor is zero, and its variance equals one. This is justified on the grounds
of simplicity and ease of interpretation.

Of course, the assumption of uncorrelated factors may be difficult to justify. Further-
more, it is untestable given model (2.6), since all possible covariance matrices for the
factors are equally compatible with any set of data. In exploratory factor analysis, the
possibility of correlated factors is addressed by transforming the estimates from a model
with orthogonal factors into estimates for a model in which the factors are oblique – that
is, not at right angles. Accordingly, we will proceed with the orthogonal factor model for
the present.

Again, setting Φ = I standardizes the factors as well as making them uncorrelated.
The observed variables are standardized as well. For j = 1, . . . , k and (almost) inde-

pendently for i = 1, . . . , n the data we work with are zij =
dij−dj
sj

. Thus, each observed

variable has variance one as well as mean zero.

In the revised exploratory factor analysis model below, the subscripts i on zi, Fi

and ei have been dropped to reduce notational clutter. Implicitly, everything applies
independently for i = 1, . . . , n. The model is

z = ΛF + e, where (2.9)

• z is a k × 1 observable random vector. Each element of z has expected value zero
and variance one.

• Λ is a k × p matrix of constants.

• F (F for factor) is a p × 1 latent random vector with expected value zero and
covariance matrix Ip.

• The k× 1 vector of error terms e has expected value zero and covariance matrix Ω,
which is diagonal.

For this model, everything emerges in terms in terms of correlations rather than covari-
ances. This is a virtue, because correlations are easier to interpret. First, cov(zi) = Σ =
ΛΛ>+ Ω is a correlation matrix; correspondingly, estimation and inference will be based
on the sample correlation matrix.
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Factor Loadings Next, consider the matrix of correlations between the factors and the
observed variables. Because all the variables are standardized,

corr(z,F) = cov(z,F)

= cov(ΛF + e,F)

= Λcov(F,F) + cov(e,F)

= Λcov(F) + 0

= ΛI

= Λ (2.10)

Thus, the factor loadings are correlations between the observable variables and the factors.
In particular, the correlation between observed variable i and factor j is λij. The square
of λij is the reliability8 of observed variable i as a measure of factor j.

Communality and Uniqueness Observed variable i (an element of z; the index i goes
from 1, . . . , k) may be written in scalar form as

zi = λi1F1 + · · ·+ λipFp + ei

=

p∑
j=1

λijFj + ei,

so that

V ar(zi) = V ar

(
p∑
j=1

λijFj + ei

)

=

p∑
j=1

λ2
ijV ar(Fj) + V ar(ei)

=

p∑
j=1

λ2
ij + ωi, (2.11)

where ωi = V ar(ei) is the ith diagonal element of Ω. Since the observed variables are
standardized, we have 1 =

∑p
j=1 λ

2
ij + ωi.

The variance of the observed variable has been split into two components.
∑p

j=1 λ
2
ij is

the proportion of variance in observed variable i that comes from the common factors. It
is called the communality. To get the communality of a variable, add up the squares of the
factor loadings in the corresponding row of Λ. The other component is ωi = 1−

∑p
j=1 λ

2
ij.

It is is what’s left over, the part that comes from error. It is called the uniqueness of the
variable.

It may seem a bit peculiar for the variance of the error term to “know” about the
factor loadings, but that’s what you get when you standardize the observed variables.

8Psychometric reliability. See page 41.
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More important is that since the matrix Ω is diagonal and its diagonal elements are
functions of the λij, the only parameters it contains are factor loadings that are already
in Λ. The role of Ω is to make the diagonal elements of Σ equal one — that is, to make Σ
a proper correlation matrix. In the standardized factor analysis model, the only unknown
parameters are the factor loadings.

This really is quite nice. Since factor loadings are the correlations between the ob-
servable variables and the factors, they could be very informative about the processes
driving the data. Squared factor loadings are reliabilities, another important feature of
the measurement model. One could also use estimated factor loadings to estimate how
much of the variance in each observable variable comes from each factor. All this could
reveal what the underlying factors are, and what they mean.

2.3 Orthogonal Rotations

Unfortunately, the factor loadings are still not identifiable, so meaningful estimation is
still out of the question. This part of the story depends on the idea of a rotation matrix.
In Figure 2.3, a basis for R2 is provided by the unit vectors ~i and ~j, which are at right
angles. These basis vectors are rotated through an angle θ, yielding ~i ′ and ~j ′. If a point

Figure 2.3: Rotation

i

j

i′j′

θ

on the plane is denoted in terms of ~i and ~j by (x, y), its position in terms of the rotated
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basis vectors is

x′ = x cos θ + y sin θ

y′ = −x sin θ + y cos θ.

These are the well-known equations of rotation. They may be written in matrix form as(
x′

y′

)
=

(
cos θ sin θ
− sin θ cos θ

)(
x
y

)
= R

(
x
y

)
. (2.12)

Using the identities cos(−θ) = cos θ and sin(−θ) = − sin θ, one obtains a matrix that
rotates the axes back to their original position.(

x
y

)
=

(
cos θ − sin θ
sin θ cos θ

)(
x′

y′

)
= R>

(
x′

y′

)
. (2.13)

As the notation indicates, the matrix that reverses the rotation is the transpose of the
original rotation matrix. Verifying that it’s also the inverse,

RR> =

(
cos θ sin θ
− sin θ cos θ

)(
cos θ − sin θ
sin θ cos θ

)
=

(
cos2 θ + sin2 θ − cos θ sin θ + sin θ cos θ

− sin θ cos θ + cos θ sin θ sin2 θ + cos2 θ

)
=

(
1 0
0 1

)
= I.

So in two dimensions, the transpose of a rotation matrix is also its inverse. This fact
holds in higher dimension as well. A p × p matrix R satisfying R−1 = R> is called an
orthogonal matrix, because the columns and rows are orthonormal vectors. Geometri-
cally, pre-multiplication by an orthogonal matrix corresponds to a rotation or possibly a
reflection in p-dimensional space. If you think of a set of factors F as a set of axes or
underlying dimensions, then RF is a rotation (or reflection) of the factors. Call it an
orthogonal rotation, because the factors remain uncorrelated — at right angles.

Rotation matrices are another source of non-identifiability. Returning to the stan-
dardized factor model, the covariance matrix of the observed data vector z is

Σ = ΛΛ> + Ω

= ΛR>RΛ> + Ω

= (ΛR>)(ΛR>)> + Ω

= Λ2Λ
>
2 + Ω

That is, infinitely many rotation matrices produce the same Σ, even though the factor
loadings in Λ2 = ΛR> can be very different for different R matrices.
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Post-multiplication of Λ by R> is often called “rotation of the factors,” for the fol-
lowing reason.

z = ΛF + e

= (ΛR>)(RF) + e

= Λ2F
′ + e. (2.14)

F′ = RF is a set of rotated factors. All rotations of the factors produce the same covariance
matrix of the observable data.

In addition, all sets of rotated factors account for the same proportion of variance.
To see this, recall that

∑p
j=1 λ

2
ij, the formula for the communality of observed variable i,

instructs us to add up the squares of the factor loadings in row i of Λ. This equals the
ith diagonal of element of ΛΛ>. Applying a rotation,

Λ2Λ
>
2 = (ΛR>)(ΛR>)>

= ΛR>RΛ>

= ΛΛ>, (2.15)

so that rotation does not affect the proportions of variance explained by the common
factors.

Confronted with this unpleasant situation, the exploratory factor analyst asks a ques-
tion. Since all rotations of the factors explain the data equally well, why not just pick a
good one? Here’s an outline of the strategy.

1. Place some restrictions on the factor loadings, so that the only rotation matrix that
preserves the restrictions is the identity matrix9. For example, λij = 0 for j > i.
There are other sets of restrictions that work — for example, forcing Λ>Ω−1Λ to
be diagonal.

2. Generally, the restricted factor loadings may not make sense in terms of the data.
Don’t worry about it.

3. Estimate the loadings, perhaps by maximum likelihood. Other methods are avail-
able, but less commonly used than in the past.

4. Now apply a rotation, without any restriction on the resulting factor loadings. All
(orthogonal) rotations result in the same maximum value of the likelihood function.
That is, the maximum is not unique. Again, don’t worry about it.

5. Pick a rotation that results in a simple pattern in the factor loadings, one that is
easy to interpret.

The first and last steps require further discussion. The first step is to place restrictions on
the factor loadings. Consider the restriction λij = 0 for j > i. This means that observed

9This statement will require a bit of qualification, but it’s the right idea.
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variable one comes only from factor one, observed variable two comes only from factors
one and two, observed variable three comes only from factors one, two and three – and so
on. This pattern might be plausible for some sets of variables, but not in general. Carry
on.

As an illustration, consider the case of two factors. In the path diagram of Figure 2.1,
the straight arrow from F2 to d1 is missing. Also, the curved, double-headed arrow between
F1 and F2 is missing, because the factors are orthogonal. In the model equations (2.7),
the only restriction is λ12 = 0. Maintaining that restriction under rotation means

λ11 0
λ21 λ22

λ31 λ32

λ41 λ42

λ51 λ52

λ61 λ62

λ71 λ27

λ81 λ82


(

cos θ sin θ
− sin θ cos θ

)
=



λ′11 0
λ′21 λ′22

λ′31 λ′32

λ′41 λ′42

λ′51 λ′52

λ′61 λ′62

λ′71 λ′27

λ′81 λ′82


Focusing on the zero in the right-hand side, we have

λ11 sin θ + 0 cos θ = 0

⇒ λ11 sin θ = 0

⇒ sin θ = 0 (provided λ11 6= 0).

Therefore, the angle of rotation θ equals 0, or π, or 2π, or 3π, or . . . . For θ = 0 or any
even multiple of π, cos θ = 1, and the rotation matrix is the identity. For θ = π or any
odd multiple of π, cos θ = −1, and the rotation matrix is minus the identity. This reverses
the signs of all the factor loadings.

There are two more orthogonal matrices that preserve the constraint λ12 = 0. They

are

(
−1 0

0 1

)
and

(
1 0
0 −1

)
. The first matrix reverses the signs of the first column

of Λ, but leaves the second column alone. The second matrix reverses the signs of the
second column of Λ while leaving the first column alone. These represent reflections. The
set of orthogonal matrices corresponds to the set of all possible reflections and rotations
about the origin.

This shows that the restriction λ12 = 0 does not quite make the remaining factor
loadings identifiable from the correlation matrix. We have located four distinct sets of
parameter values that yield exactly the same correlation matrix for the observed data
vector. On the other hand, these multiple solutions will not produce trouble in the
numerical search for the MLE, because they are separated in the parameter space. The
search will find just one of them, or it will wander off into nowhere, depending on the
starting value and the topography of the likelihood function. It does not really matter
which one we find. The plan is to apply a rotation later to find a more interpretable set
of factor loadings, so the meaning of the parameter estimates is not an issue at this point.
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To see what happens in higher dimension, it is enough to examine the case of p = 3.
Denoting the orthogonal matrix by R = [rij] and insisting that it preserve the constraints
λij = 0 for j > i, we require

λ11 0 0
λ21 λ22 0
λ31 λ32 λ33
...

...
...


 r11 r12 r13

r21 r22 r23

r31 r32 r33

 =


λ′11 0 0
λ′21 λ′22 0
λ′31 λ′32 λ′33
...

...
...

 (2.16)

Carrying out the row by column multiplications that yield the three zeros, conclude
r12 = r13 = r23 = 0. Then use the fact that RR> = 0. Conclude that r21 = r31 = r32 = 0,
and that  r2

11 0 0
0 r2

22 0
0 0 r2

33

 =

 1 0 0
0 1 0
0 0 1

 .

So, the off-diagonal elements of R are zero, and the diagonal elements are either plus
or minus one, with entries of minus one representing reflections. This is how it goes in
general, with 2p different orthogonal matrices preserving the restriction λij = 0 for j > i.
The result is 2p distinct minima of the minus log-likelihood function, all with the same
value at the local minimum. Again, no numerical difficulties are created, because the
multiple minima are separated in the parameter space, and the search for the MLE will
only go down one of the holes.

The restriction λij = 0 for j > i is fairly easy to understand, but the restriction most
used in practice is for J = Λ>Ω−1Λ to be diagonal. In Factor analysis as a statistical
method [42], Lawley and Maxwell (1971) show how this way of restricting Λ allows an
efficient iterative solution of the equations obtained by differentiating the log likelihood
and setting all the derivatives to zero.

Full details of Lawley’s method will not be given here, but a few remarks are in order.
First, since Λ is k × p, the matrix J is p × p. It is also symmetric, so insisting it be
diagonal places p(p−1)/2 restrictions on Λ. The restriction λij = 0 for j > i also induces
a little triangle of zeros, as in (2.16); there are p(p − 1)/2 of them, so the two methods
impose the same number of restrictions. This is useful when it comes to counting degrees
of freedom.

Second, let the p × p matrix R be a restricted kind of orthogonal matrix, a diagonal
matrix, with values of plus or minus one on the diagonal. Any diagonal element of R
equal to minus one reverses the signs of all the loadings in the corresponding column of
Λ. That’s a reflection.

Replacing Λ with ΛR,

(ΛR)>Ω−1ΛR = R>Λ>Ω−1ΛR

= R>JR

= J,

since J is diagonal. Therefore, as in the simpler case of λij = 0 for j > i, there are 2p
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different Λ matrices that satisfy the constraint, and also produce the same Σ = corr(z).
Again, there are 2p corresponding minima of the minus log likelihood function.

We need some notation. The initial (restricted) maximum likelihood estimates of the

factors will be denoted by λ̃ij, while λ̂ij will be reserved for the final estimates after

applying a rotation. In matrix form, Λ̂ = Λ̃R>.

The Heywood case It is by no means guaranteed that the numerical search for the
MLE will stop at a point that is in the parameter space. In fact, it is surprisingly
common for the estimates to violate the inequality constraints of the model, as in the
negative variance Example 1.5.1. Because the observed variables are standardized, an
application of invariance to (2.11) yields V ar(zi) = 1 =

∑p
j=1 λ̃

2
ij + ω̃i. A negative ω̃i

would thus induce
∑p

j=1 λ̃
2
ij > 1, an estimated communality greater than one. Since the

communality is the proportion of variance that comes from the common factors, this is
a bit of a problem. It is sometimes called a Heywood case. Or sometimes,

∑p
j=1 λ̃

2
ij = 1

is called a Heywood case, and
∑p

j=1 λ̃
2
ij > 1 is called an ultra-Heywood case. You have

to feel sorry for the user, and also for Mr. Heywood, since his name has been so often
cursed10. Rotation will not solve this problem, because communality is unaffected by
rotation (2.15).

Provided that an acceptable MLE has been located, the result is a set of estimated
factor loadings that might be interpretable if the restrictions on Λ made sense in terms
of the problem, but not otherwise. With respect to the original parameter space (without
the restrictions), the set of estimated factor loadings we have found is only one of an
uncountable infinity, all with the same value of the (minus log) likelihood function. There
is one such set of factor loadings for every p× p orthogonal matrix. The last step in the
5-step recipe given earlier is to pick a good one, and go with that.

In the final step, the factors are rotated, so that Λ̂ = Λ̃R> has a “simple structure”
that is easy to interpret. The concept of simple structure is not precisely defined, which
in the past made factor analysis a bit subjective. There were many fruitless arguments
in which researchers came to different conclusions because they used different rotations,
even though they all claimed to have rotated to “simple structure.”

It is helpful to lift the criteria for simple structure from Harman [28], 1976, p. 98;
Harman takes them from Thurstone’s highly influential (1947) book [64], which I cannot
get my hands on right now11. Here are Thurstone’s criteria for simple structure, using
our notation.

1. Each row of Λ̂ should have at least one zero.

10Heywood [29] gets the blame because of a 1931 paper in which he proves, among other things, that
there can be legitimate correlation matrices that would imply a communality greater than one. It’s one
of the “cases” he considers, so I assume that’s why they call it a Heywood case. From the perspective of
this book, the factor analysis model implies inequality constraints that are not true of all positive definite
correlation matrices. There is no mystery here.

11I am writing this in the Spring of 2021. The covid-19 pandemic is going strong, and the library is
closed. One could not ask for a better excuse.
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2. Each column of Λ̂ should have at least p zeros, where p is the number of factors.

3. For every pair of columns of Λ̂, there should be several variables with loadings that
vanish in one column but not in the other.

4. For every pair of columns of Λ̂, a large proportion of the variables should have
loadings in both columns that are small in absolute value, when there are four or
more factors.

5. For every pair of columns of Λ̂, there should be only a small number of variables
with non-vanishing loadings in both columns.

There are various ways of trying to approximate these goals in an objective manner. The
methods are all iterative, taking a number of steps to approach some criterion. The most
popular rotation method is varimax rotation. As described by Harman [28], the initial
version of varimax was based on the following reasonable idea. To move the loadings in a
particular column of Λ̂ toward zero or ±1, maximize the sample variance of the squared
factor loadings. That is, maximize

1

k

k∑
i=1

(
λ̂ 2
ij

)2

− 1

k2

(
k∑
i=1

λ̂ 2
ij

)2

for column j. Adding up the columns yields the criterion

1

k

p∑
j=1

k∑
i=1

λ̂ 4
ij −

1

k2

p∑
j=1

(
k∑
i=1

λ̂ 2
ij

)2

.

In empirical tests, maximizing this criterion often yielded results that were less pleasing
than a subjective rotation. In particular, the loadings near plus and minus one tended
to be concentrated in just a few columns, which is inconsistent with properties three
through five of simple structure given above. Not bothering with the intuitive justification
(see Harman [28], p. 291), the work-around was to give somewhat less weight to factor
loadings from variables with higher communality. This is accomplished by dividing by
the communalities. The whole expression is also multiplied by k2, which does not affect
the point where the maximum occurs. The resulting criterion is

V = k

p∑
j=1

k∑
i=1

(
λ̂ij

ĥi

)4

−
p∑
j=1

(
k∑
i=1

λ̂ 2
ij

ĥ 2
i

)2

, (2.17)

where ĥ 2
i =

∑p
j=1 λ̂

2
ij. That’s the communality of variable i, the proportion of variance

explained by the common factors. Another way to express (2.17) is to say the squared
(estimated) factor loadings are adjusted so that each row adds to one. This is sometimes
called “Kaiser normalization” after the guy who came up with the idea of varimax.

Expression (2.17) is not directly maximized over the factor loadings. Rather, the
process starts with an initial set of estimated loadings (say, from constrained maximum
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likelihood), and then rotates the factors two at a time as in Figure 2.3, picking the angle
of rotation θ that maximizes V at each step. An iteration consists of going through p− 1
steps, rotating factors 1 and 2, factors 2 and 3, and so on12. The process contines to
iterate until V does not increase any more, to some specified number of decimal places.
You might see a message like “Varimax converged in 5 iterations.”

Varimax solutions are not unique. Suppose the rotation matrix R yields a solution
Λ̂ = Λ̃R> that minimizes the varimax criterion (2.17). Let M be a p×p diagonal matrix,
with each diagonal element equal to plus or minus one. M is an orthogonal matrix, and
so is R>M. Therefore, Λ̂M = Λ̃R>M is another orthogonal rotation/reflection. In Λ̂M,

the columns of Λ̂ are multiplied by the corresponding diagonal elements of M. Potentially,
this reverses the signs of the coefficients in one or more columns of Λ̂. There is no effect
on the value of the varimax criterion (2.17), because the varimax criterion is based on
squared factor loadings. With p factors, the varimax criterion has 2p minima, as each
element of M switches between ±1. The solution obtained from software will depend on
where the numerical search happens to start.

Perhaps surprisingly, this does not make interpretation of results more difficult.. Re-
flecting a factor (multiplying by minus one) reverses the signs of the correlations between
that factor and all the observable variables. It also directly reverses the meaning of the
factor. So for example (recalling that the factors are standardized), if a factor represents
wealth, then minus the factor represents poverty. After a varimax rotation, factors may
be reflected at will if that makes it easier to think about the results.

In practice, varimax rotation tends to maximize the squared loading of each observable
variable with just one underlying factor. In the typical varimax solution, each variable has
a big loading on (correlation with) just one of the factors, and small loadings on the rest.
It’s usually not hard to look at the loadings and decide what the factors mean. Naming
the factors is a fun game that is easy to play. In fact, the whole exercise is so satisfying
that many casual users of exploratory factor analysis do not go beyond an orthogonal
solution with a varimax rotation. Even the most casual class of users, who carry out a
principal components analysis thinking it’s factor analysis, often apply a varimax rotation
to the correlations between variables and components, and are very happy with the result.
Later, it will be seen that applying a rotation to principal components is really not such
a bad idea, since the rotated components explain the same total amount of variance as
the original set, and are easier to talk about.

Exploratory factor analysis of the Mind-body data We will start by re-reading
the Mind-body data for the described in Example 2.1.

> # Factor analysis with orthogonal rotation

> rm(list=ls())

> bodymind = read.table(’http://www.utstat.toronto.edu/~brunner/openSEM/data/bodymind.data.txt’)

> dat = as.matrix(bodymind[,2:10]) # Omit sex. dat is now a numeric matrix.

> help(factanal)

12The result would seem to depend on the order in which the factors are sorted. I don’t know of any
proof that all orderings of factors yield the same varimax solution, but I expect that they are all pretty
similar.
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The built-in factanal function does maximum likelihood factor analysis with orthogonal
factors. The first argument is an input data matrix, covariance matrix or correlation
matrix. The second argument is the number of factors. How many factors should we have?
We know from the principal components analysis that two eigenvalues of the correlation
matrix are greater than two. That’s one reason to try fitting a two-factor model. Another
reason is that some of the variables are educational measurements (mental), while the rest
are physical measures. Since the input comes from two distinct domains, I would expect
two factors13. We’ll start with two factors. Because there are only nine variables, the
guideline of at least three variables per factor implies a maximum of three factors. The
scree plot in Figure 2.2 suggests three factors, so we’ll definitely consider a three-factor
model after this.

> # Maximum likelihood, varimax, 2 factors

> fit2 = factanal(dat,factors=2) # rotation=’varimax’ is the default

> fit2

Call:

factanal(x = dat, factors = 2)

Uniquenesses:

progmat reason verbal headlng headbrd headcir bizyg weight height

0.616 0.274 0.264 0.324 0.618 0.016 0.473 0.577 0.633

Loadings:

Factor1 Factor2

progmat 0.181 0.592

reason 0.124 0.843

verbal 0.160 0.843

headlng 0.806 0.161

headbrd 0.618

headcir 0.963 0.238

bizyg 0.687 0.236

weight 0.638 0.129

height 0.588 0.144

Factor1 Factor2

SS loadings 3.257 1.948

Proportion Var 0.362 0.216

Cumulative Var 0.362 0.578

Test of the hypothesis that 2 factors are sufficient.

The chi square statistic is 87.55 on 19 degrees of freedom.

The p-value is 8.97e-11

First, look at the (estimated) factor loadings. We’ll go over other details later. Notice that
the loading for head breadth on Factor 2 appears to be missing. This happens because
the matrix of factor loadings is a special kind of R object with its own elaborate print

13This kind of reasoning often works. To steal a joke from Tom Lehrer, factor analysis is like a sewer.
What you get out of it depends on what you put into it.

https://en.wikipedia.org/wiki/Tom_Lehrer


230 CHAPTER 2. EXPLORATORY FACTOR ANALYSIS

method. By default, loadings below 0.1 in absolute value are not displayed. The objective
is to make the loadings easier to understand by hiding trivial ones. As an SPSS jock in
a past life, I am more used to loadings under 0.3 being blanked out, which works better
in the present case. The cutoff is controlled by the cutoff option on print, as shown
below.

> L2 = fit2$loadings

> print(L2,cutoff=0.3)

Loadings:

Factor1 Factor2

progmat 0.592

reason 0.843

verbal 0.843

headlng 0.806

headbrd 0.618

headcir 0.963

bizyg 0.687

weight 0.638

height 0.588

Factor1 Factor2

SS loadings 3.257 1.948

Proportion Var 0.362 0.216

Cumulative Var 0.362 0.578

Looking at this, it’s a little difficult to believe that L2 is just a matrix.

> is.matrix(L2)

[1] TRUE

> dim(L2)

[1] 9 2

So L2 really just a 9× 2 matrix. The little table under the loadings is produced automat-
ically by the print method. It will be discussed presently.

With the small loadings hidden, it is easy to see that the mental measurements
(progmat, reason and verbal) load primarily on the second factor, while the other vari-
ables (all physical) load on the first factor. One could name Factor One “Physical” and
Factor Two “Mental.” Or perhaps they could me named “Size” and “Smarts.” This is a
typical case. Often, the meaning of the factors jumps out at you, and they are easy to
name. This is because of the varimax rotation. Unrotated factor loadings are often very
difficult to interpret.

At the bottom of the output displayed for the fit2 object, there is a chi-squared test
for goodness of fit. The p-value is very small, indicating that the model does not fit well
at all. For this reason and also for other reasons mentioned earlier, we need to look at a
three-factor model. First, however, let’s back up and look at some details, to clarify what
the software is doing.
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We will begin with an unrotated two-factor model, displaying all the factor loadings14.
Note how the cutoff=0 option on print(fit2a) is passed down to the printing of the
factor loadings.

> fit2a = factanal(dat,factors=2,rotation=’none’)

> print(fit2a,cutoff=0)

Call:

factanal(x = dat, factors = 2, rotation = "none")

Uniquenesses:

progmat reason verbal headlng headbrd headcir bizyg weight height

0.616 0.274 0.264 0.324 0.618 0.016 0.473 0.577 0.633

Loadings:

Factor1 Factor2

progmat 0.335 0.521

reason 0.348 0.778

verbal 0.383 0.768

headlng 0.820 -0.064

headbrd 0.600 -0.149

headcir 0.992 -0.033

bizyg 0.725 0.040

weight 0.649 -0.049

height 0.605 -0.021

Factor1 Factor2

SS loadings 3.708 1.497

Proportion Var 0.412 0.166

Cumulative Var 0.412 0.578

Test of the hypothesis that 2 factors are sufficient.

The chi square statistic is 87.55 on 19 degrees of freedom.

The p-value is 8.97e-11

For an orthogonal factor model, squared factor loadings are components of explained
variance. If you square the factor loadings and add, the row totals are commonalities, or
proportions of variance explained by the common factors. The column totals are amounts
of variance explained by each factor. The addmargins function is a convenient way to
add row and column totals to a matrix.

> L2a = fit2a$loadings

> CompVar = addmargins(L2a^2) # Squared factor loadings are components of variance

> round(CompVar,3)

Factor1 Factor2 Sum

progmat 0.112 0.271 0.384

reason 0.121 0.605 0.726

verbal 0.147 0.589 0.736

headlng 0.672 0.004 0.676

14They are estimated factor loadings, of course. Everything here is an estimate.
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headbrd 0.360 0.022 0.382

headcir 0.983 0.001 0.984

bizyg 0.526 0.002 0.527

weight 0.421 0.002 0.423

height 0.366 0.000 0.367

Sum 3.708 1.497 5.205

Factor One explains a whopping 98.3% of the variance in head circumference, and 52.6%
of the variance head length. Maybe the unrotated version it could be called “Head size”
rather than just “Size.” Anyway, the last column of numbers contains the commonalities.
Checking that communality plus uniqueness equals one,

> fit2a$uniquenesses + CompVar[1:9,3] # Should equal ones

progmat reason verbal headlng headbrd headcir bizyg weight height

0.9999884 0.9999994 1.0000003 0.9999984 0.9999912 1.0000000 1.0000001 1.0000041 1.0000124

Close enough. The column totals of CompVar are the amounts of variance explained by
each factor, and indeed they match SS loadings in the display of fit2a. To convert these
amounts of explained variance to proportions, divide by the number of variables (since
the variables are standardized, the total amount of variance to explain is k, the number
of variables). This yields the Proportion Var line. Cumulative Var is self-explanatory.

Notice that the Proportion Var lines are different for fit2 (the rotated solution)
and fit2a (unrotated). Rotation affects the amounts of variance explained by the fac-
tors. However, rotation does not affect the commonalities. So, it does not affect the
uniquenesses or the total amount of variance explained.

To obtain the unrotated solution by maximum likelihood, factanal uses Lawley’s [41]

constraint that Λ̃
>
Ω̃
−1

Λ̃ must be diagonal15. Checking that the unrotated solution obeys
this restriction,

> Omegahat = diag(fit2a$uniquenesses) # Diagonal matrix of uniquenesses little-omega-hat

> J = t(L2a) %*% solve(Omegahat) %*% L2a

> round(J,10)

Factor1 Factor2

Factor1 69.10492 0.000000

Factor2 0.00000 5.002347

It’s diagonal, as advertised. There is no reason to expect the rotated loadings to obey

this constraint. Using the fact that Ω̂ is unaffected by rotation,

> J = t(L2) %*% solve(Omegahat) %*% L2; round(J,10)

Factor1 Factor2

Factor1 64.36786 16.769564

Factor2 16.76956 9.739412

15Remember that Λ̃ and Ω̃ are the initial estimates before rotation, obtained by constrained maximum
likelihood. Of course, Ω̃ = Ω̂, because rotation does not affect the uniquenesses.
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It is standard to specify the rotation when fitting the model, as in fit2. However, one
may also fit a model without rotation as we have done here, and then rotate the factors
as a separate step. R has a built-in varimax function (and also promax, which will not
be discussed).

> varimax(L2a)

$loadings

Loadings:

Factor1 Factor2

progmat 0.181 0.592

reason 0.124 0.843

verbal 0.160 0.843

headlng 0.806 0.161

headbrd 0.618

headcir 0.963 0.238

bizyg 0.687 0.236

weight 0.638 0.129

height 0.588 0.144

Factor1 Factor2

SS loadings 3.257 1.948

Proportion Var 0.362 0.216

Cumulative Var 0.362 0.578

$rotmat

[,1] [,2]

[1,] 0.9623418 0.2718422

[2,] -0.2718422 0.9623418

The loadings are identical to the rotated factor matrix from fit2 on page 229. The
varimax function returns a list with two items, the factor loadings and the rotation
matrix that maximizes the varimax criterion (2.17). The same matrix is also available as
fit2$rotmat. Note that in our notation, rotmat is R>, not R.

More factors Next, we will try a model with three factors, as suggested by the scree plot
and the highly significant chi-squared test for the the two-factor model. The sort=TRUE

option re-orders the variables in the table of factor loadings, in an attempt to make the
output easier to read.

> # Try a 3-factor model

> fit3 = factanal(dat,factors=3)

> print(fit3,cutoff=0.30, sort=TRUE)

Call:

factanal(x = dat, factors = 3)

Uniquenesses:

progmat reason verbal headlng headbrd headcir bizyg weight height

0.606 0.215 0.309 0.005 0.268 0.094 0.256 0.560 0.565
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Loadings:

Factor1 Factor2 Factor3

headbrd 0.852

bizyg 0.787

weight 0.523 0.387

progmat 0.583

reason 0.879

verbal 0.811

headlng 0.959

headcir 0.631 0.669

height 0.465 0.445

Factor1 Factor2 Factor3

SS loadings 2.318 1.945 1.859

Proportion Var 0.258 0.216 0.207

Cumulative Var 0.258 0.474 0.680

Test of the hypothesis that 3 factors are sufficient.

The chi square statistic is 30.89 on 12 degrees of freedom.

The p-value is 0.00205

This is more challenging. Factor 2 still definitely represents the mental measurements,
while Factors 1 and 3 seem to reflect different aspects of head size. Factor 1 loads most
highly on head breadth, followed closely by bizygomatic breadth, which is basically how
far apart the eyes are. One could call Factor 1 “Face width.” Factor 3 loads primarily on
head length, and that’s what it appears to be. Head circumference, which includes both
face width and led length, loads about equally on the two factors. This makes pretty
good sense. Height and weight, aspects of overall body size, also load on both of the head
factors, though not as highly. We can live with this.

The chi-squared test for lack of fit is still significant, though the p-value of 0.00205 is
a lot closer to 0.05 than 8.97e-11 is. Strictly speaking, the model still does not fit. Let’s
check the degrees of freedom. There are nine observed variables, so the correlation matrix
Σ has 9(9-1)/2 = 36 unique elements. There would be 36 covariance structure equations
in 9× 3 = 27 unknown parameters, except that some of the unknown factor loadings are
functions of the others, because of the constraint that Λ>Ω−1Λ is diagonal. There are
p(p− 1)/2 = 3 such functional connections among the factor loadings. Thus, the degrees
of freedom for the test of fit should be 36− 27 + 3 = 12. That’s what the printout says;
okay.

Which model is better, the two-factor or the three-factor? The two-factor model
explains an estimated 58% of the total variance, while the three-factor model explains an
estimated 68%. Since there are nine observed variables, that 10% gain is worth about
one variable. It’s borderline. The two-factor model is a bit easier to talk about, but the
three-factor model makes sense too. The three-factor model fits better, but it still does
not fit in an absolute sense. How about a four-factor model? We would be violating the
reasonable rule of at least three variables per factor, and we are almost running out of
degrees of freedom, but it’s worth a try.
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> # A four-factor model?!

> print( factanal(dat,factors=4), cutoff=0.30, sort=TRUE)

Call:

factanal(x = dat, factors = 4)

Uniquenesses:

progmat reason verbal headlng headbrd headcir bizyg weight height

0.580 0.216 0.305 0.005 0.005 0.109 0.248 0.356 0.437

Loadings:

Factor1 Factor2 Factor3 Factor4

bizyg 0.633 0.527

weight 0.761

height 0.672

progmat 0.599

reason 0.872

verbal 0.813

headbrd 0.957

headlng 0.423 0.886

headcir 0.555 0.418 0.582

Factor1 Factor2 Factor3 Factor4

SS loadings 2.037 1.946 1.433 1.321

Proportion Var 0.226 0.216 0.159 0.147

Cumulative Var 0.226 0.443 0.602 0.749

Test of the hypothesis that 4 factors are sufficient.

The chi square statistic is 8.98 on 6 degrees of freedom.

The p-value is 0.175

Now it seems that Factor 1 is overall body size, Factor 2 is educational test performance
(or “intelligence,” if you want to walk down that dark path), Factor 3 is face width, and
Factor 4 is head length. Furthermore, the model technically fits. As for choice among the
models, it’s really a judgement call. As I see it, the clearest part of the picture is that
the mental measurements form one cluster, and the physical measurements form another
cluster, but one that may be more differentiated. I’m really torn between the two-factor
model (appealing because of its simplicty), and the four-factor model, which may reveal
the most detail. But is that detail real, or is it the result of over-fitting? If I had to
choose, I suppose I would choose the two-factor model. It does not fully fit the data, but
it tells a simple story that makes sense.

If you disagree, it does not mean that you are wrong. In the end, the choice of a model
is quite subjective, though the way these analyses are written up, the semi-arbitrary final
choice will probably seem like the only possibility. This is especially true because only one
set of factor loadings will be presented. If you were looking for the truth here, I’m sorry
to disappoint you. This is in the nature of the beast called exploratory factor analysis.

In spite of all the uncertainty, this enterprise has been blessed with apparent success.
There are many hundreds of published factor analytic studies in the social sciences, es-
pecially in psychology. For example, in their book The measurement of meaning [50],
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Osgood Suci and Tannenbaum (1957) describe a series of investigation into how people
describe objects, using 7-point scales ranging from Ugly to Beautiful, Strong to Weak,
Fast to Slow and so on. Exploratory factor analysis revealed the same three factors
across many different domains. One of the factors had high factor loadings for Good-Bad,
Beautiful-Ugly, and similar adjective pairs. The investigators named the factor evalua-
tive. Similar considerations led them to identify the other two main factors as potency
and activity. Osgood et al. proposed that these are the main dimensions of connotative
(as opposed to denotative) meaning in the English language.

In another famous application [24], Hans Eysenck16 (1947) factor analyzed questions
from a large number of personality scales, arriving at two factors, neuroticism and ex-
traversion. It’s a bit interesting that in order to get a high score on neuroticism, you have
to be willing to say bad things about yourself, while if you say mostly good things you will
get a low neuroticism score. Perhaps it’s just Osgood et al.’s evaluative factor, reversed.
In any case, there are hordes of other examples, including Cattell’s Sixteen Personality
Factor Questionnaire [16] mentioned earlier. The earlier work, including the examples
cited here, tended to use estimation methods that are less computationally demanding
than maximum likelihood. Varimax rotation also caught on gradually, as computing
equipment became more available. Rotation to a “simple structure” used to be graphical
and more than a little subjective.

2.4 Oblique Rotations

Correlated Factors Naturally, not everybody is comfortable with uncorrelated fac-
tors. The question of whether factors are correlated seems like something that should be
decided based on the data, and not simply assumed. The problem is that by the calcula-
tion (2.8), any correlation matrix of the factors is equally compatible with any data set.
This means that estimating Φ = cov(F) is futile. However, there is almost no limit to
human ingenuity.

An early subjective method (as usual, see Harman [28]) for the history) is well adapted
to a setting in which there are several clusters of variables, highly correlated within sets,
and much less so between sets. Compare the formula for the sample correlation coefficient
to the formula for the cosine of the angle between two vectors.

cos θ = ~x·~y
|~x| |~y| r =

∑n
i=1(xi−x)(yi−y)√∑n

i=1(xi−x)2
√∑n

i=1(yi−y)2
(2.18)

Now consider the vector of n values for a variable as a point in Rn. Suppose that the
data are centered by subtracting off sample means, as they are in the standardized case
we are considering. Then the correlation between two variables equals the cosine of the
angle between the two data vectors. This means that considered as points in Rn, a set of
highly correlated variables are physically clustered together. To estimate the factor that

16Eminent research psychologist, racist scum, running dog of the tobacco companies, fabricator of data
and student of Sir Cyril Burt, who was also racist scum and a fabricator of data. See the Wikipedia
article.

https://en.wikipedia.org/wiki/Hans_Eysenck
https://en.wikipedia.org/wiki/Hans_Eysenck
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gives rise to them, run a vector through the center of the cluster. The natural choice is to
have the estimated factor pass through the centroid — that is, through the multivariate
sample mean of the data vectors belonging to that particular cluster. Then the estimated
factor is normalized, giving it variance one.

Figure 2.4 shows a hypothetical example in two dimensions. Since the variables are
standardized, they all have length one. This means that in Rn, the data points lie on the
surface of a hyper-sphere of radius one, centered at the origin. Since Figure 2.4 is in two
dimensions, all the points are on the unit circle.

Figure 2.4: Correlated factors estimated by centroids

The estimated correlations between factors are the cosines of the angles between the
arrows, and the correlations of variables with factors are the cosines of the angles between
data points and the arrows. It all makes sense, and looking at this example, it is hard to
see why the parameters cannot be estimated successfully by this method. The trick is that
by calculating the arrows based only on the points in a single cluster, we are implicitly
assuming that the points in that cluster arise from only one common factor (plus random
error). Under this assumption, lots of the λij values are zero, and in fact the remaining
factor loadings and the correlations between factors are uniquely identifiable — provided
there are at least three variables in each cluster. Chapter 3 treats confirmatory factor
analysis models in which the parameters are identifiable, including the one just indicated.

The informal centroid method just described does work under some circumstances, but
the big problem is cluster membership. When the variables form distinct, highly correlated
clusters then everything is fine. More often, it will not be really clear how many clusters
there are, and some variables will be difficult to classify. This uncertainty makes the
method subjective, and led the developers of factor analysis to look for something more
objective.
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Oblique Rotations An oblique rotation is one in which the axes17 need not remain at
right angles. Starting with an initial orthogonal solution, the axes are rotated separately
so as to achieve a simple structure in the factor loadings. There are various criteria for
what “simple” means, leading to various flavours of the method.

The following account leads to the classical results, by a route that statisticians should
be able to follow. The original explanations are much more complicated. Everything here
is based on a model with equations z = ΛF + e. The factors are standardized, and they
are potentially correlated. Because the variance of each factor equals one, cov(F) = Φ
is a correlation matrix. All other model specifications are the same as in Model (2.9) on
page 219.

In an orthogonal factor model, the factor loadings in Λ are also the correlations be-
tween the observed variables and the factors. This is no longer true when the factors are
correlated. With correlated factors, the calculations in (2.10) lead to

corr(z,F) = cov(z,F) = ΛΦ.

It is common to call the matrix of coefficients Λ the factor pattern matrix, while the matrix
of correlations between variables and factors in ΛΦ is called the factor structure matrix. In
the factor analysis literature, these terms are applied to both the true parameter matrices
and to their estimates.

When factors are correlated, some of the pleasing simplicity of the orthogonal model
disappears. In particular, the explained variance of an observed variable no longer neatly
splits itself into the variance explained by each factor. In scalar terms,

V ar(zi) = var (λi1F1 + · · ·+ λipFp + ei)

=

p∑
j=1

λ2
ijV ar(Fj) +

∑
`6=j

λijλi`cov(F`, Fj) + V ar(ei)

=

p∑
j=1

λ2
ij +

∑
` 6=j

λijλi`φ`j + ωi.

So, while the variance of zi is still decomposed into an explained part and an unexplained
part, the explained variance includes terms that come from each pair of factors, with the
contribution governed by the correlation between factors as well as the factor loadings.
Notice that while the factor loadings and correlations between factors may be mutually
adjusted as in the re-parameterizations (2.8), the amount of unexplained variance ωi is not
affected. The choice of an oblique rotation is one such re-parameterization, and we will
presently see that oblique rotations do not affect estimates of the uniqueness (explained
variance) for any variable.

Oblique rotations are carried out using a p × p transformation matrix T = [tij] sat-
isfying T>T = Φ. Denote column j of T by tj, so that T = (t1|t2| · · · |tp). Because Φ
is a correlation matrix, t>j tj = 1. Thinking of t1, . . . , tp as vectors in Rp and using the
formula in (2.18), the cosine of the angle between ti and tj is t>i tj = Corr(Fi, Fj).

The matrix T is not unique. For p = 2, we have the picture in Figure 2.5. Spin the

17Think of the factors as dimensions, or axes of a co-ordinate system.
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Figure 2.5: Columns of the T matrix

t1
t2

vectors t1 and t2 around the unit circle18 while keeping the angle between them constant.
The cosine of the angle remains constant too, so there are infinitely many transformation
matrices T that yield the same Φ. The square root matrix Φ1/2 is just one of them. By
the way, based on the similarity of Figure 2.5 to Figure 2.4, it would be easy to mistake
the arrows in Figure 2.5 for factors. They are not. They are columns of the T matrix.

For a general number of factors p, the same spinning idea applies. Let R be a p × p
orthogonal matrix. Then (RT)>RT = T>R>RT = T>T = Φ, and RT is another
transformation matrix that produces Φ.

The next theorem says that, as Figure 2.5 suggests, all the transformation matrices
for a given Φ arise from spinning or reflecting a set of column vectors.

Theorem 2.1 Let T1 and T2 be square matrices satisfying T>1 T1 = Φ = T>2 T2, where
Φ is symmetric and positive definite. Then T2 = R T1, where R is an orthogonal matrix.

Proof. Because Φ is positive definite, T1 and T2 are both full rank, and have inverses.

T>2 T2 = ΦT−1
1 T1

=⇒ T2 =
(
(T>2 )−1ΦT−1

1

)
T1 = R T1

18If the axes were being rotated, the rotation matrix R in (2.12) would be employed. Here, the axes
are remaining in position, while the points are being rotated through an angle θ. From the perspective
of one of the points, it looks like the axes are being rotated through an angle of −θ. So, to rotate the
points, one would use the matrix R> in (2.13). Actually, in this case it does not matter which direction
you spin the points.
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Showing that R is an orthogonal matrix,

R>R =
(
(T>2 )−1ΦT−1

1

)> (
(T>2 )−1ΦT−1

1

)
= T−1>

1 Φ>T>−1>
2 (T>2 )−1ΦT−1

1

= T>−1
1 ΦT−1

2 (T>2 )−1ΦT−1
1

= T>−1
1 Φ

(
T>2 T2

)−1
ΦT−1

1

= T>−1
1 ΦΦ−1ΦT−1

1

= T>−1
1 ΦT−1

1

= T>−1
1

(
T>1 T1

)
T−1

1

= I · I = I �

You might be thinking that representing a set of unknown parameters in a way that is
not unique will just make estimation more difficult. In fact, estimation of Φ cannot be
successful by conventional standards anyway, because Φ is not identifiable. As you will
see, the matrix T will be chosen to yield a nice simple factor structure. The fact that T
is not unique just provides a wider range of options.

In the meantime, consider a standard orthonormal basis for Rp, with basis vectors
b1, . . . ,bp, where bi has a one in position i, and zeros elsewhere. Noting that

tj =


t1j
t2j
...
tpj

 ,

the cosine of the angle between bi and tj is b>i tj = tij. Now suppose we were to adopt
t1, . . . , tp as an alternative basis for Rp. Column j of the transformation matrix T contains
the cosines of the angles between tj and the original basis vectors.

Geometrically, changing to the basis t1, . . . , tp corresponds to rotating each of the
original basis vectors through a set of angles satisfying the cosines in T. It is an oblique
rotation rather than an orthogonal rotation, because the new basis vectors need not be
at right angles. The operation can be represented as a matrix multiplication:

T>bj = tj.

This rotation can be applied to a = [aj], a general point in Rp. We have

a = a1b1 + · · ·+ apbp,

so that

T>a = T>(a1b1 + · · ·+ apbp)

= a1T
>b1 + · · ·+ apT

>bp

= a1t1 + · · ·+ aptp,



2.4. OBLIQUE ROTATIONS 241

representing the point a in terms of the new co-ordinate system. The main point here is
that it makes sense to describe pre-multiplication by T> as a rotation, one that is not
necessarily orthogonal.

Here is how oblique rotation may be used19 to estimate the unknown parameters Λ
and Φ. Returning to the model equations, we start by applying a change of variables to
the factors.

z = ΛF + e

= ΛT>(T>)−1F + e

= AF′ + e,

where A = ΛT> and F′ = (T>)−1F. We have

cov(F′) = cov
(
(T>)−1F

)
= (T>)−1cov(F)

(
(T>)−1

)>
= (T>)−1ΦT−1

= (T>)−1T>TT−1

= I,

so the change of variables and the accompanying re-parameterization results in an orthog-
onal factor model. The new parameter matrix A = [aij] is not identifiable, but it can
be estimated up to an orthogonal rotation, perhaps by constrained maximum likelihood.
This yields Â. (In Section 2.3, the symbol Ã was employed for the constrained MLE.
Here, we return to a more standard notation.)

Now perform another change of variables, to return to a version of the original model
with correlated factors.

z = AF′ + e

= A (T>)−1T>F′ + e

= A(T>)−1 T>(T>)−1F + e

= A(T>)−1 F + e

Instead of expanding A and simplifying back to the original model, we will use our earlier

estimate of A, which is an estimate of ΛT>. Symbolically, Â = Λ̂T>. The matrix of
original factor loadings Λ (the factor pattern matrix) is estimated by

Λ̂ = Λ̂T>(T>)−1 = Â(T>)−1. (2.19)

The factor structure matrix corr(z,F) = ΛΦ is estimated by

Λ̂Φ = Â(T>)−1Φ

= Â(T>)−1T>T

= ÂT (2.20)

19I say “may be” used, because this is not the typical way of describing the process. However, it is
clear to me and it leads to the usual estimates.
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The problem is that the estimates (2.19) and (2.20) both depend on the transformation
matrix T, which unknown and un-knowable20. The solution, as in the case of orthogonal
rotation, is to choose a T matrix that results in a nice simple structure, – either in the
factor pattern (2.19) or the factor structure (2.20). As a by-product, the choice of T

yields an estimate of Φ. Using T̂ to denote the chosen T matrix, Φ̂ = T̂>T̂.
The way in which T is chosen does not affect the estimated uniqueness, the portion

of the variance in an observed variable that comes from the factors. From cov(z) =
ΛΦΛ> + Ω, the estimated explained variances of the observed variables are the diagonal
elements of

Λ̂Φ̂Λ̂
>

= Â
(
T̂>
)−1

T̂>T̂

(
Â
(
T̂>
)−1
)>

= ÂT̂

((
T̂>
)−1
)>

Â>

= ÂT̂T̂−1Â>

= ÂÂ>,

which does not depend on the oblique rotation T̂.
The choice of T depends on what criterion is optimized in search of “simple structure.”

A variety of criteria have been proposed, each with its own impressive name and cadre of
enthusiastic supporters — most of whom, sad to say, are no longer with us. Harman [28]
describes the oblimax, oblimin (including quartimin, covarimin, and biquartimin), direct
oblimin, binormamin and orthoblique methods, and I may have missed some. Confronted
with this wealth of alternatives, I have decided to present the oblimin family, mostly
because of its connection to varimax.

Oblimin rotation Initially, oblimin rotation sought to simplify the factor structure
matrix, while later work focused on simplifying the factor pattern. Logically but not
chronologically, the story begins with the covarimin method. Consider any two columns
of the estimated factor structure matrix in Expression 2.20, but square all the elements
in the matrix. Suppose that all the squared correlations in the matrix are either close to
one or close to zero, and that large squared correlations in one column are beside near-
zero squared correlations in the other column. If this could be achieved for every pair of
columns, it would be a nice simple structure in which each observed variable has a large
correlation (positive or negative) with just one factor, and near zero correlations with the
others. In other words, we want negative relationships between the squared correlations
in all the columns.

Accordingly, square all the estimated correlations in Expression 2.20, and think of
the resulting k × p matrix as a kind of data file, with k observations on p “variables.”

20The matrix T is constrained by the fact the its columns are vectors of length one, and also by
T>T = Φ. This does not help us get at T, because the correlation matrix Φ is not just unknown, it
is not even identifiable. In addition, it has previously been shown that uncountably many T matrices
produce a given Φ. Therefore, even if Φ were known exactly, recovery of the “true” T would be impossible.
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Calculate the p× p sample covariance matrix for these “data.” The covarmin criterion is
the sum of unique off-diagonal elements (multiplied by k2):

p∑
i=1

p∑
j=i+1

(
k

k∑
`=1

c2
`ic

2
`j −

k∑
`=1

c2
`i

k∑
`=1

c2
`j

)
, (2.21)

where c is an estimated correlation. Minimize (2.21) over the elements of the matrix
T. This can be done one column (axis) at a time, literally rotating the axes. As an
option, it is possible to adjust for communalities as in (2.17). Again, one divides squared
correlations by the communality, that is, by the total amount of variance in the variable
that is explained by the common factors.

Covarimin is similar in approach to varimax, and in fact they are both described in the
same 1958 paper by H. F. Kaiser [38]. Both methods treat a matrix of squared estimated
correlations as data. Varimax maximizes the sum of sample variances of the columns, and
covarimin minimizes the sum of sample covariances of the columns.

Covarimin was a nice idea, but based on application to real data sets, it did not yield
satisfactory results. The problem was that it tended to produce solutions that were “too
orthogonal.” That is, the estimated correlation matrix of the factors Φ̂ = T>T tended
to be quite close to the identity, regardless of the data. Perhaps as a way of reducing
how negative the covariances were, a modification was to drop the negative part of (2.21).
This yielded a criterion called quartimin, which had been proposed some years earlier:

p∑
i=1

p∑
j=i+1

(
k∑
`=1

c2
`ic

2
`j

)
. (2.22)

The quartimin criterion tended to yield solutions that were “too oblique.” As a compro-
mise, putting back the k that was omitted from (2.22) and then averaging the two criteria
yielded the biquartimin criterion:
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, (2.23)

effectively retaining half of the second term in the covarimin criterion (2.21). Some viewed
the biquartimin compromise as “just right,” but it is a matter of taste how much of the
second term to retain. To accommodate all preferences, the general oblimin criterion
replaces the fraction 1

2
with a number between zero and one inclusive, symbolized by γ.
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)
, (2.24)

where 0 ≤ γ ≤ 1. Setting γ = 0 yields quartimin, while γ = 1
2

yields biquartimin, and
γ = 1 yields covarimin.
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Direct oblimin The oblimin method just described seeks to simplify the factor struc-
ture (the matrix of estimated correlations between variables and rotated factors). In
contrast, direct oblimin seeks to simplify the factor pattern, the matrix of estimated fac-
tor loadings21. Both versions of oblimin find a transformation matrix T that minimizes a
criterion of the form (2.24), subject to the restriction that the column vectors of T have

length one. In the original oblimin, the c`j are elements of ÂT (see Expression 2.20),

while for direct oblimin, the c`j are elements of Â(T>)−1 (Expression 2.19). It can make

a difference, because there is no reason to expect the T that optimizes Â(T>)−1 will also

optimize ÂT, unless T is close to the identity.

The name “direct” oblimin seems to be something of a historical accident. The original
oblimin algorithm really was very complicated and indirect. In the paper that introduced
direct oblimin [33], Jennrich and Sampson (1966) provided a much more straightforward
algorithm for minimizing the factor pattern version of (2.24). With more than a half
century of hindsight, it seems that there was a failure to distinguish between directness in
the criterion to be minimized and directness in the algorithm used to get the job done. At
any rate, everyone seems to have bought it, and the original “indirect” version of oblimin
has faded away.

The direct oblimin of Jennrich and Sampson (1966) came to full fruition almost 40
years later [7] in Bernaards and Jennrich (2005). Yes, it’s the same Jennrich. Bernaards
and Jennrich do the optimization directly over the columns of the T matrix, alternating
between a gradient descent step and a projection onto the set of column vectors with length
one. The mathematical expressions are remarkably simple and elegant when written in
matrix form.

Bernaards and Jennrich have provided the R package GPArotation, which implements
their method for a variety of orthogonal and oblique rotations. The options naturally
include direct oblimin, but they do not include indirect oblimin, as far as I can tell. R’s
built-in factanal function has a rotation= option, and it can use all the methods in
GPArotation, provided that the GPArotation package is loaded. Otherwise, factanal
only knows about varimax and promax. The widely used psych package does factor
analysis with oblique rotation using functions from GPArotation, so oblimin rotation in
psych is direct oblimin. This has a lot of prominence because in psych’s workhorse fa

function (fa for factor analysis), the default is to apply an oblimin rotation unless the
user specifies otherwise. The EFAtools package [61] uses GPArotation and psych. I have
been unable to find any R packages that do the original “indirect” oblimin.

In terms of commercial software, online documentation suggests that in SAS and
SPSS, oblimin means direct oblimin. The once-great BMDP package had both direct and
indirect oblimin options, but it is no longer available. In practical terms, direct oblimin
rotation is your only choice unless you write your own function.

There is no obvious reason why the Bernaards and Jennrich algorithm could not
be applied to the factor structure matrix instead of the factor pattern matrix. The
result would be a very direct version of indirect oblimin. Should you bother to write the

21Again, the factor loadings are constants that are like regression coefficients, linking the rotated factors
to the observed variables.
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code? In my judgement, the answer is no, because simplicity in the factor loadings is
probably more desirable than simplicity in the correlations between variables and factors
anyway. Thinking of factor analysis as a causal model (that’s the structural equation
model perspective), the factors are literally producing the observed variables through the
factor loadings in the factor pattern matrix. On the other hand, the factor structure
matrix ÂT is estimating corr(z,F). From the formula corr(z,F) = ΛΦ, the correlation
between an observed variable and a factor depends on the correlations between factors as
well as the direct connection of the factor to the variable.

Consider the two-factor example of Figure 2.1 and Equations (2.7), except with the
observed variables di,j standardized. We have, for example,

corr(zi,4, Fi,1) = cov(zi,4, Fi,1)

= cov(λ41Fi,1 + λ42Fi,2 + ei,4, Fi,1)

= λ41 cov(Fi,1, Fi,1) + λ42 cov(Fi,1, Fi,2) + cov(ei,4, Fi,1)

= λ41 V ar(Fi,1) + λ42 corr(Fi,1, Fi,2) + 0

= λ41 + λ42φ1,2.

If there were p factors, the formula would be corr(zi,4, Fi,1) = λ41 +
∑p

j=2 λ4jφ1,j.
We see that the correlation between an observed variable and a factor includes the

direct link between the variable and the factor, but mixed together with the links be-
tween the variable and all the other factors, in a way that depends on the correlations
between factors. This means that the interpretation of such a correlation may not be
straightforward at all. For example, a high correlation could come from a strong direct
link between the variable and the factor, but it could also come from a weak or zero direct
link, accompanied by strong indirect effects of the other factors. Conversely, evidence of
a strong direct link could be suppressed by the operation of the other factors, resulting in
a near zero correlation. It’s very much like the correlation-causation picture in general.
Though they did not suggest this argument, Jennrich and Sampson showed good taste
when they decided to focus on the factor pattern matrix.

It is important to mention that the effect of the γ parameter is vastly different for
the two oblimin methods. Recall that 0 ≤ γ ≤ 1 for indirect oblimin, with γ = 0
producing the most oblique solutions (largest estimated correlations between factors),
and γ = 1 producing the most orthogonal solutions. For direct oblimin, the connection
is reversed, with obliqueness increasing as a function of γ, rather than decreasing. For
direct oblimin, very large negative γ values yield near zero correlations between factors,
while the estimated correlations between factors rapidly approach ±1 for fairly small
positive values of γ. Then, still for very modest positive γ values, the matrix T becomes
numerically singular, and the algorithm fails to converge. The usual recommendation is
that γ should be zero or negative for direct oblimin.

To avoid confusion, Harman [28] uses the symbol δ instead of γ for direct oblimin,
reserving the symbol γ for indirect oblimin. While SPSS follows Harman’s notation,
R does not. In the oblimin function of the GPArotation package, the gam= argument
controls the value of γ for direct oblimin. Similarly, rotate=quartimin means direct
quartimin; that is, direct oblimin with γ = 0.
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If you happen to know about indirect oblimin, the vocabulary in the GPArotation

documentation can be a trap for the unwary. In help(oblimin), the gam= argument is
documented by “0=Quartimin, .5=Biquartimin, 1=Covarimin.” These are all the direct
oblimin versions. It’s a bit strange because, while γ = 0 is reasonable and in fact is the
default, γ = 1/2 does not correspond to anything interesting for direct oblimin, and the
value γ = 1 frequently leads to convergence problems.

Here is an illustration of factor analysis with oblique rotation for the Mind-body
data. To make the example complete, we begin by reading the data. Then, loading the
GPArotation package makes rotate=oblimin available in factanal.

> rm(list=ls())

> bodymind = read.table(’http://www.utstat.toronto.edu/~brunner/openSEM/data/bodymind.data.txt’)

> dat = as.matrix(bodymind[,2:10]) # Omit sex. dat is now a numeric matrix.

> # install.packages("GPArotation", dependencies=TRUE) # Only need to do this once

> library(GPArotation)

> ob2 = factanal(dat, factors=2, rotation=’oblimin’); print(ob2, cutoff=0)

Call:

factanal(x = dat, factors = 2, rotation = "oblimin")

Uniquenesses:

progmat reason verbal headlng headbrd headcir bizyg weight height

0.616 0.274 0.264 0.324 0.618 0.016 0.473 0.577 0.633

Loadings:

Factor1 Factor2

progmat 0.081 0.584

reason -0.027 0.862

verbal 0.012 0.853

headlng 0.829 -0.019

headbrd 0.655 -0.125

headcir 0.982 0.025

bizyg 0.688 0.088

weight 0.656 -0.014

height 0.600 0.014

Factor1 Factor2

SS loadings 3.353 1.836

Proportion Var 0.373 0.204

Cumulative Var 0.373 0.577

Factor Correlations:

Factor1 Factor2

Factor1 1.000 0.384

Factor2 0.384 1.000

Test of the hypothesis that 2 factors are sufficient.

The chi square statistic is 87.55 on 19 degrees of freedom.

The p-value is 8.97e-11

Note the matrix Φ̂ under Factor Correlations, with an estimated correlation between
factors of 0.348. For comparison, here is a repeat of the analysis with a varimax rotation.
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> print( factanal(dat, factors=2, rotation=’varimax’), cutoff=0) # For comparison

Call:

factanal(x = dat, factors = 2, rotation = "varimax")

Uniquenesses:

progmat reason verbal headlng headbrd headcir bizyg weight height

0.616 0.274 0.264 0.324 0.618 0.016 0.473 0.577 0.633

Loadings:

Factor1 Factor2

progmat 0.181 0.592

reason 0.124 0.843

verbal 0.160 0.843

headlng 0.806 0.161

headbrd 0.618 0.019

headcir 0.963 0.238

bizyg 0.687 0.236

weight 0.638 0.129

height 0.588 0.144

Factor1 Factor2

SS loadings 3.257 1.948

Proportion Var 0.362 0.216

Cumulative Var 0.362 0.578

Test of the hypothesis that 2 factors are sufficient.

The chi square statistic is 87.55 on 19 degrees of freedom.

The p-value is 8.97e-11

The estimated uniquenesses are the same, as they should be. The factor loadings are
quite similar; they are perhaps a bit sharper for the oblique rotation, so the oblique
rotation allowed a closer approach to simple structure. The little sub-table under the
factor loadings, starting with SS loadings, is also similar for the varimax and oblimin
rotations. However, this is deceiving. That subtable, generated as part of the print
method for an object of class loadings, is appropriate only when factors are orthogonal. In
that case, squared factor loadings are separate components of variance, and SS loadings

makes sense. With an oblique rotation there is no such interpretation, and the next
example will make that table look as nonsensical as it really is.

First, just note that the test for number of factors (the chi-squared test for goodness
of fit) is identical for the varimax and oblimin rotations. That is because displays for all
rotations, orthogonal or oblique, simply report the test for the initial solution, which is
orthogonal.

Now let us return to the SS loadings table under the factor loadings for oblimin
rotation. With higher values of γ in (2.24), estimated correlations between factors become
larger, and the factor pattern matrix becomes more dissimilar to the factor structure
matrix. Now, R’s built-in factanal function will not accept a γ argument (at least not
in a natural way), but the fa function in the psych package will.
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> # Try fa with gam: Check SS loadings

> # install.packages("psych", dependencies=TRUE) # Only need to do this once

> library(psych); library(psychTools)

> # fa(dat,nfactors=2, fm=’ml’, rotate = ’oblimin’, gam=0) # Same results as ob2

> psych0 = fa(dat,nfactors=2, fm=’ml’, rotate = ’oblimin’, gam=1)

> psych0$loadings

Loadings:

ML1 ML2

progmat -0.503 -1.064

reason -1.030 -1.733

verbal -0.943 -1.672

headlng 1.640 0.952

headbrd 1.420 0.969

headcir 1.888 1.033

bizyg 1.243 0.585

weight 1.295 0.750

height 1.155 0.634

ML1 ML2

SS loadings 15.031 11.149

Proportion Var 1.670 1.239

Cumulative Var 1.670 2.909

I rest my case. The matrix of factor loadings is definitely a factor pattern and not a factor
structure matrix, because its elements are not correlations. The SS loadings table still
squares them, adds them up and divides by nine (the number of variables) in order to get
proportions of explained variance. This is nonsense, because the resulting proportions are
greater than one.

One does not need to use the psych package to be able to specify the γ parameter.
It’s better to use the oblimin function in the GPArotation package22. To do this, first
fit an initial, orthogonal model. Then use the oblimin function on the unrotated factor
loadings Â.

> fit2a = factanal(dat,factors=2,rotation=’none’)

> Ahat = fit2a$loadings

> O2b = oblimin(Ahat); O2b # Matches ob2 (gamma=0)

Oblique rotation method Oblimin Quartimin converged.

Loadings:

Factor1 Factor2

progmat 0.0810 0.5837

reason -0.0271 0.8619

verbal 0.0121 0.8533

headlng 0.8293 -0.0194

headbrd 0.6554 -0.1249

headcir 0.9822 0.0251

bizyg 0.6880 0.0876

weight 0.6558 -0.0140

22Of course the people who wrote the psych package might not agree. psych can do a lot of things,
and if you need or want to do them, you should use the psych package.



2.4. OBLIQUE ROTATIONS 249

height 0.6001 0.0141

Rotating matrix:

[,1] [,2]

[1,] 0.975 0.0608

[2,] -0.471 1.0813

Phi:

[,1] [,2]

[1,] 1.000 0.384

[2,] 0.384 1.000

The factor loadings match ob2, with a default value of γ = 0. Note that the rotation
is described as Oblimin Quartimin, which is accurate as long as it’s understood to be

direct oblimin. The so-called Rotating matrix is
(
T̂>
)−1

. Looking at the list of items

produced by the oblimin function,

> ls(O2b)

[1] "convergence" "Gq" "loadings" "method" "orthogonal" "Phi" "Table"

[8] "Th"

The Th item is T̂, so the following matches the “Rotating matrix.”

> solve(t(O2b$Th))

[,1] [,2]

[1,] 0.9750642 0.06083524

[2,] -0.4713192 1.08129141

The loadings item is the rotated factor pattern matrix. Fortunately, it is not an object
of class “loadings,” so it does not use the misleading print method.

> O2b$loadings

Factor1 Factor2

progmat 0.08096306 0.58366083

reason -0.02710434 0.86193259

verbal 0.01213684 0.85326892

headlng 0.82927554 -0.01942290

headbrd 0.65541656 -0.12490579

headcir 0.98223567 0.02510846

bizyg 0.68800789 0.08760370

weight 0.65576088 -0.01399468

height 0.60011168 0.01406469

It is instructive to look at the results for γ = 1/2, described as (direct) Oblimin Biquartimin.

> O2c = oblimin(Ahat, gam = 0.5); O2c

Oblique rotation method Oblimin Biquartimin converged.

Loadings:

Factor1 Factor2

progmat -0.0399 0.6440

reason -0.2201 0.9756

verbal -0.1751 0.9593
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headlng 0.9153 -0.1604

headbrd 0.7476 -0.2502

headcir 1.0734 -0.1358

bizyg 0.7364 -0.0162

weight 0.7234 -0.1253

height 0.6561 -0.0844

Rotating matrix:

[,1] [,2]

[1,] 1.058 -0.0944

[2,] -0.756 1.2969

Phi:

[,1] [,2]

[1,] 1.000 0.639

[2,] 0.639 1.000

The estimated correlation between factors is larger, and so are the estimated factor load-
ings. It still tells the same general story, with the first factor representing physical size,
the the second factor reflecting performance on the mental tests.

To give an idea of how the correlation between factors varies as a function of γ, I fit
a series of models with different γ values, covering a wide range.

> # Correlation between factors as a function of gamma

> options(scipen=999) # To suppress scientific notation

> gammaval = c(-500, -100, -50, -10, 0, 0.25, 0.50, 0.75, 1)

> ngamma = length(gammaval); phi12 = numeric(ngamma)

> for(j in 1:ngamma) phi12[j] = oblimin(Ahat, gam = gammaval[j])$Phi[1,2]

> round(rbind(gammaval,phi12),3)

[,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8] [,9]

gammaval -500.000 -100.000 -50.000 -10.000 0.000 0.250 0.500 0.750 1.000

phi12 0.002 0.011 0.022 0.105 0.384 0.481 0.639 0.802 0.935

Observe how the correlation between factors approaches zero very slowly as γ → −∞, and
approaches one rapidly for positive values of γ ; it could also approach -1 for increasing
gamma, depending on the data and the starting values for the oblimin minimization.

One might well ask, what’s the right γ value? The answer is that there is no right
answer. γ is not an unknown parameter of the statistical model, and it is not something
that can be estimated. It’s a setting that determines the criterion to be minimized in
order to seek a simple structure in the estimated factor loadings. Typically, users try
different γ values, and settle on one that produces results that seem reasonable for the
data. Or, they just use the software default of γ = 0.

As a final example, consider a three-factor model for the Mind-body data. Before
doing this, I will disclose that I expect one mental factor and two physical factors, and
that the physical factors will be more correlated with one another than either of them is
with the mental factor.

> fit3a = factanal(dat,factors=3,rotation=’none’)

> A3hat = fit3a$loadings
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> oblimin(A3hat)

Oblique rotation method Oblimin Quartimin converged.

Loadings:

Factor1 Factor2 Factor3

progmat 0.18819 -0.0948 0.5686

reason -0.07027 -0.0170 0.9104

verbal -0.00706 0.0312 0.8253

headlng 1.02610 -0.0549 -0.0135

headbrd -0.10556 0.9136 -0.0746

headcir 0.59540 0.4652 0.1061

bizyg 0.11682 0.7509 0.1408

weight 0.31027 0.4429 0.0422

height 0.38873 0.3609 0.0477

Rotating matrix:

[,1] [,2] [,3]

[1,] 1.0070 -0.0171 0.00256

[2,] -0.5830 0.8516 0.60471

[3,] 0.0544 -0.7553 0.87791

Phi:

[,1] [,2] [,3]

[1,] 1.000 0.465 0.327

[2,] 0.465 1.000 0.254

[3,] 0.327 0.254 1.000

The third factor is definitely mental, and could be called “academic ability” without
raising much controversy. The first factor is dominated by head length and to a lesser
extent by head circumference; it could be called “head size.” The second factor has its
highest loadings on head breadth and bizygomatic breadth. It could be called “face
width.” The picture is quite similar to what appeared with an orthogonal (varimax)
rotation. The correlation between the two physical factors is higher than the others in
the Φ̂ matrix, but not notably so.

2.5 Factor Scores

My man Harman [28] suggests that there are two potential reasons for doing factor analy-
sis. One is to understand how certain unobservable factors give rise to a set of observable
data. The other reason is data reduction. You have a lot of variables, and you’d like to
work with a smaller set that contains essentially the same information. So you do a factor
analysis, and then somehow “estimate” the values of the factors for all the members of
your sample. The estimates are called factor scores. They may be more interpretable
than the original data, in the sense that they might represent the underlying quantities
that the data were intended to measure. Certainly, there will be fewer of them. If only for
this reason, they may be easier to think about and to incorporate into subsequent data
analyses.

Principal components Frequently,
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2.6 A Dose of Reality

Let us take a step back from all these interesting details, and consider what we have. In
Sections 2.2 and 2.3, it was shown that the parameters of the exploratory factor analysis
model are not identifiable, even if they are constrained by making the factors uncorrelated.
Infinitely many sets of parameter values are consistent with any data set, so that using
the data alone to distinguish between them is hopeless. The solution in exploratory
factor analysis is rotation. After locating a family of parameter sets that are all equally
reasonable given the data (and arguably better than other values outside the family), one
rotates the factors in such a way that the factor loadings achieve a simple structure, one
that is scientifically meaningful.

The problem is that in statistics, there is such a thing as a true parameter value23.
If the truth resembles simple structure, rotation will take you closer to the truth. If the
truth does not resemble simple structure, rotation will take you farther away. The factor
analysts have a deep philosophical answer to this, but before dealing with that I will give
a few examples using simulated data. The advantage of simulated data is that we know
exactly what the true parameter values are.

In the first example, the truth corresponds to simple structure. There are two uncor-
related factors and eight observed variables. The first four variables load only on factor
one, and the last four load only on factor two. This is an extreme case of simple struc-
ture, and looks very much like varimax. All the distributions are normal, so that the
model underlying maximum likelihood estimation is exactly correct. All the variables are
centered, and the true variances of both factors and observed variables are exactly equal
to one. In the code, the factor loadings (the only parameters) are denoted by Lij. The
sample size is huge, so that sampling error does not make the pattern of results harder to
see.

> rm(list=ls())

> n = 50000 # Huge sample size

> # True factor loadings have a simple structure like varimax (All communalities = 0.49)

> # Factor loadings

> L11 = 0.7; L12 = 0.0

> L21 = 0.7; L22 = 0.0

> L31 = 0.7; L32 = 0.0

> L41 = 0.7; L42 = 0.0

> L51 = 0.0; L52 = 0.7

> L61 = 0.0; L62 = 0.7

> L71 = 0.0; L72 = 0.7

> L81 = 0.0; L82 = 0.7

> # Error Variances

> v1 = 1 - L11**2 - L12**2

> v2 = 1 - L21**2 - L22**2

> v3 = 1 - L31**2 - L32**2

> v4 = 1 - L41**2 - L42**2

> v5 = 1 - L51**2 - L52**2

> v6 = 1 - L61**2 - L62**2

23Except maybe in the mind of the most radical subjective Bayesian.
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> v7 = 1 - L71**2 - L72**2

> v8 = 1 - L81**2 - L82**2

> # Generate data

> set.seed(9999)

> F1 = rnorm(n,0,1); F2 = rnorm(n,0,1)

> d1 = L11*F1 + L12*F2 + rnorm(n,0,sqrt(v1))

> d2 = L21*F1 + L22*F2 + rnorm(n,0,sqrt(v2))

> d3 = L31*F1 + L32*F2 + rnorm(n,0,sqrt(v3))

> d4 = L41*F1 + L42*F2 + rnorm(n,0,sqrt(v4))

> d5 = L51*F1 + L52*F2 + rnorm(n,0,sqrt(v5))

> d6 = L61*F1 + L62*F2 + rnorm(n,0,sqrt(v6))

> d7 = L71*F1 + L72*F2 + rnorm(n,0,sqrt(v7))

> d8 = L81*F1 + L82*F2 + rnorm(n,0,sqrt(v8))

> dmat = cbind(d1,d2,d3,d4,d5,d6,d7,d8)

We fit a two-factor model by maximum likelihood, with a varimax rotation.

> factanal(dmat,factors=2,rotation=’varimax’)

Call:

factanal(x = dmat, factors = 2, rotation = "varimax")

Uniquenesses:

d1 d2 d3 d4 d5 d6 d7 d8

0.506 0.510 0.519 0.511 0.507 0.505 0.508 0.510

Loadings:

Factor1 Factor2

d1 0.698

d2 0.694

d3 0.688

d4 0.695

d5 0.697

d6 0.699

d7 0.696

d8 0.695

Factor1 Factor2

SS loadings 1.971 1.953

Proportion Var 0.246 0.244

Cumulative Var 0.246 0.491

Test of the hypothesis that 2 factors are sufficient.

The chi square statistic is 10.22 on 13 degrees of freedom.

The p-value is 0.676

It is arbitrary which factor is called Factor 1 and which is called Factor 2. Other than that,
all the estimates are right on the money. The model is correct, and it fits. Everything is
perfect.

In the second example, the true pattern of factor loadings is not at all like varimax.
Everything else is very similar to the first example.
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> # Truth is not like varimax (All communalities = 0.50)

> # Factor loadings

> L11 = 0.5; L12 = -0.5

> L21 = 0.5; L22 = -0.5

> L31 = 0.5; L32 = -0.5

> L41 = 0.5; L42 = -0.5

> L51 = 0.5; L52 = 0.5

> L61 = 0.5; L62 = 0.5

> L71 = 0.5; L72 = 0.5

> L81 = 0.5; L82 = 0.5

> # Error Variances

> v1 = 1 - L11**2 - L12**2

> v2 = 1 - L21**2 - L22**2

> v3 = 1 - L31**2 - L32**2

> v4 = 1 - L41**2 - L42**2

> v5 = 1 - L51**2 - L52**2

> v6 = 1 - L61**2 - L62**2

> v7 = 1 - L71**2 - L72**2

> v8 = 1 - L81**2 - L82**2

> # Generate data

> set.seed(8888)

> F1 = rnorm(n,0,1); F2 = rnorm(n,0,1)

> d1 = L11*F1 + L12*F2 + rnorm(n,0,sqrt(v1))

> d2 = L21*F1 + L22*F2 + rnorm(n,0,sqrt(v2))

> d3 = L31*F1 + L32*F2 + rnorm(n,0,sqrt(v3))

> d4 = L41*F1 + L42*F2 + rnorm(n,0,sqrt(v4))

> d5 = L51*F1 + L52*F2 + rnorm(n,0,sqrt(v5))

> d6 = L61*F1 + L62*F2 + rnorm(n,0,sqrt(v6))

> d7 = L71*F1 + L72*F2 + rnorm(n,0,sqrt(v7))

> d8 = L81*F1 + L82*F2 + rnorm(n,0,sqrt(v8))

> dmat = cbind(d1,d2,d3,d4,d5,d6,d7,d8)

Again we fit a two-factor model with a varimax rotation.

> notsimple = factanal(dmat,factors=2,rotation=’varimax’); notsimple

Call:

factanal(x = dmat, factors = 2, rotation = "varimax")

Uniquenesses:

d1 d2 d3 d4 d5 d6 d7 d8

0.496 0.496 0.504 0.504 0.497 0.495 0.503 0.499

Loadings:

Factor1 Factor2

d1 0.708

d2 0.708

d3 0.702

d4 0.702

d5 0.708

d6 0.709

d7 0.703

d8 0.706
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Factor1 Factor2

SS loadings 2.007 2.000

Proportion Var 0.251 0.250

Cumulative Var 0.251 0.501

Test of the hypothesis that 2 factors are sufficient.

The chi square statistic is 9.58 on 13 degrees of freedom.

The p-value is 0.728

This time, only the estimates of communality (which are identifiable) and the goodness of
fit test perform well. Everything else is awful. In particular, the estimates of the loadings
are very similar to the estimates in the first example, and very far from the truth.

While the factor analysis for this second example clearly failed to yield a good estimate,
it did yield a set of numbers that are only an orthogonal rotation away from an estimate
that is very good indeed. If you think of the likelihood function as a high-dimensional
mountain range, the maximum elevation is attained on a sort of ridge, with all points on
the ridge at the same altitude. As the sample size increases, the ridge gets higher and
higher, and its location changes a little bit, but less and less with increasing n. Meanwhile,
the rest of the landscape melts into a featureless plain. The initial constrained maximum
likelihood estimation lands you at one point on the ridge, and then an orthogonal rotation
walks you along the ridge (say there is a path along the ridge)24. In these simulated data,
the path actually passes very close to the true parameter value — very close indeed, since
the sample size in this simulated data set is so large.

To find the point on the path that is closest to where the treasure is hidden, we
will rotate the factor solution in the second example using a criterion that has not been
mentioned before now. We will carry out a Procrustes rotation25. In Procustes rotation,
the rotation matrix is chosen to minimize the difference between the matrix of estimated
loadings and a target matrix, using least squares. There are orthogonal and oblique
versions of Procrustes rotation. For our present purposes we want an orthogonal version.
The MCMCpack package has a good one.

> # Procrustes rotation

> # install.packages("MCMCpack", dependencies=TRUE) # Only need to do this once

> library(MCMCpack)

Loading required package: coda

Loading required package: MASS

##

## Markov Chain Monte Carlo Package (MCMCpack)

24In this picture of the likelihood function, what is simple structure? Parameter values are literally
coordinates, like latitude and longitude. This means that choosing a simple structure is like choosing a
“good” location on the path, based on pleasing numerical values for the co-ordinates. For example, both
latitude and longitude are integers, or divisible by eight. It’s a lucky spot; let’s stop here.

25Procrustes is a character in classic Greek mythology. He was a very bad man who would invite
travellers to a free dinner and bed at his castle. Everybody fit the bed in the guest room, one way or
the other. If travellers were too short, Procrustes would hammer them and stretch them with ropes until
they fit. If they were too tall, he would cut off their feet. The survival rate for his guests was essentially
zero. Then one day Theseus came along and gave Procrustes a taste of his own medicine.
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## Copyright (C) 2003-2021 Andrew D. Martin, Kevin M. Quinn, and Jong Hee Park

##

## Support provided by the U.S. National Science Foundation

## (Grants SES-0350646 and SES-0350613)

##

> # help(procrustes)

> L = notsimple$loadings; print(L,cutoff=0) # Factor loadings for the second example

Loadings:

Factor1 Factor2

d1 0.047 0.708

d2 0.056 0.708

d3 0.054 0.702

d4 0.052 0.702

d5 0.708 -0.050

d6 0.709 -0.054

d7 0.703 -0.052

d8 0.706 -0.052

Factor1 Factor2

SS loadings 2.007 2.000

Proportion Var 0.251 0.250

Cumulative Var 0.251 0.501

The target matrix will be the matrix of true factor loadings. Of course we can only do
this because it’s a simulation, and we know what the true parameter values are.

> Lambda = rbind(c(L11,L12), # True factor loadings

+ c(L21,L22),

+ c(L31,L32),

+ c(L41,L42),

+ c(L51,L52),

+ c(L61,L62),

+ c(L71,L72),

+ c(L81,L82) )

> Lambda # True Lambda -- How close can we get to this?

[,1] [,2]

[1,] 0.5 -0.5

[2,] 0.5 -0.5

[3,] 0.5 -0.5

[4,] 0.5 -0.5

[5,] 0.5 0.5

[6,] 0.5 0.5

[7,] 0.5 0.5

[8,] 0.5 0.5

Now carry out the Procrustes rotation.

> pro = procrustes(X = L, Xstar = Lambda) # Rotate X to approximate Xstar.

> pro$X.new

[,1] [,2]

d1 0.4981332 -0.5056613

d2 0.5049341 -0.4994469

d3 0.4994946 -0.4962512
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d4 0.4978127 -0.4979441

d5 0.5033950 0.5000182

d6 0.5014220 0.5038790

d7 0.4986956 0.4981095

d8 0.5003778 0.5008127

That’s very close to the target. To see how close, look at it rounded and compare the
result to Lambda above.

> round(pro$X.new,2)

[,1] [,2]

d1 0.5 -0.51

d2 0.5 -0.50

d3 0.5 -0.50

d4 0.5 -0.50

d5 0.5 0.50

d6 0.5 0.50

d7 0.5 0.50

d8 0.5 0.50

To really see how impressive this is, note that a Procruste rotation cannot fit an arbitrary
target very well. In the final part of this example, the matrix M contains factor loadings
that produce a covariance matrix very different from the one produced by Lambda. Can
we rotate to fit this one?

> M = rbind(c(0.30,0.64),

+ c(0.30,0.64),

+ c(0.30,0.64),

+ c(0.30,0.64),

+ c(0.30,0.64),

+ c(0.30,0.64),

+ c(0.30,0.64),

+ c(0.30,0.64) ); M

[,1] [,2]

[1,] 0.3 0.64

[2,] 0.3 0.64

[3,] 0.3 0.64

[4,] 0.3 0.64

[5,] 0.3 0.64

[6,] 0.3 0.64

[7,] 0.3 0.64

[8,] 0.3 0.64

> procrustes(X = L, Xstar = M)$X.new

[,1] [,2]

d1 -0.2470153 0.6654424

d2 -0.2385050 0.6689701

d3 -0.2379146 0.6626890

d4 -0.2401607 0.6618827

d5 0.6661897 0.2441638

d6 0.6688511 0.2407410

d7 0.6624699 0.2407156

d8 0.6656312 0.2410942
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So the closest one can get to this particular target with an orthogonal rotation is ridicu-
lously far away.

The main point here that for the second simulated data example, the one where
varimax rotation failed, an excellent estimate is actually somewhere in the collection of
factor matrices that can be reached by an orthogonal rotation. The problem is that
we don’t know which one. This is true for real data sets, too. I cannot think of any
exceptions.

Oblique rotations If anything, the problem is a bit worse with oblique rotations,
because they can miss the truth and find an inferior solution, even if the true factor
loadings typify simple structure. For the next example, there will be three factors. The
first factor is independent of the others, but factors two and three are highly correlated.
There are nine observed variables. The first three variables load only on factor one, the
second three load only on factor two, and the last three load only on factor three. That’s
a clear example of simple structure.

> Phi = rbind(c(1.0, 0.0, 0.0),

+ c(0.0, 1.0, 0.9),

+ c(0.0, 0.9, 1.0))

>

> Lambda = rbind(c(0.9, 0.0, 0.0),

+ c(0.9, 0.0, 0.0),

+ c(0.9, 0.0, 0.0),

+ c(0.0, 0.9, 0.0),

+ c(0.0, 0.9, 0.0),

+ c(0.0, 0.9, 0.0),

+ c(0.0, 0.0, 0.9),

+ c(0.0, 0.0, 0.9),

+ c(0.0, 0.0, 0.9) )

The standardized model will hold exactly in the population. For this, it is necessary to
calculate the matrix Ω in cov(z) = cov(ΛF + e) = ΛΦΛ> + Ω.

> # Calculate Omega, the 9 x 9 covariance matrix of the error terms.

> Lambda %*% Phi %*% t(Lambda)

[,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8] [,9]

[1,] 0.81 0.81 0.81 0.000 0.000 0.000 0.000 0.000 0.000

[2,] 0.81 0.81 0.81 0.000 0.000 0.000 0.000 0.000 0.000

[3,] 0.81 0.81 0.81 0.000 0.000 0.000 0.000 0.000 0.000

[4,] 0.00 0.00 0.00 0.810 0.810 0.810 0.729 0.729 0.729

[5,] 0.00 0.00 0.00 0.810 0.810 0.810 0.729 0.729 0.729

[6,] 0.00 0.00 0.00 0.810 0.810 0.810 0.729 0.729 0.729

[7,] 0.00 0.00 0.00 0.729 0.729 0.729 0.810 0.810 0.810

[8,] 0.00 0.00 0.00 0.729 0.729 0.729 0.810 0.810 0.810

[9,] 0.00 0.00 0.00 0.729 0.729 0.729 0.810 0.810 0.810

> diag(Lambda %*% Phi %*% t(Lambda))

[1] 0.81 0.81 0.81 0.81 0.81 0.81 0.81 0.81 0.81

> Omega = diag(1-0.81,nrow=9,ncol=9); Omega

[,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8] [,9]
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[1,] 0.19 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

[2,] 0.00 0.19 0.00 0.00 0.00 0.00 0.00 0.00 0.00

[3,] 0.00 0.00 0.19 0.00 0.00 0.00 0.00 0.00 0.00

[4,] 0.00 0.00 0.00 0.19 0.00 0.00 0.00 0.00 0.00

[5,] 0.00 0.00 0.00 0.00 0.19 0.00 0.00 0.00 0.00

[6,] 0.00 0.00 0.00 0.00 0.00 0.19 0.00 0.00 0.00

[7,] 0.00 0.00 0.00 0.00 0.00 0.00 0.19 0.00 0.00

[8,] 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.19 0.00

[9,] 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.19

Now we will generate the random data set. We need a function for simulating multivariate
normal data. Such a function is available in several packages, but I prefer one that I wrote;
it is available for download and free for public use under the usual GNU conditions. As
you can see from the code, it uses spectral decomposition to transform a set of standard
normals into a multivariate normal.

> rm(list=ls())

> # Need function for simulating multivariate normal data.

> source("http://www.utstat.toronto.edu/~brunner/Rfunctions/rmvn.txt")

> rmvn # Type the function name to see the code.

function(nn,mu,sigma)

# Returns an nn by kk matrix, rows are independent MVN(mu,sigma)

kk <- length(mu)

dsig <- dim(sigma)

if(dsig[1] != dsig[2]) stop("Sigma must be square.")

if(dsig[1] != kk) stop("Sizes of sigma and mu are inconsistent.")

ev <- eigen(sigma)

sqrl <- diag(sqrt(ev$values))

PP <- ev$vectors

ZZ <- rnorm(nn*kk) ; dim(ZZ) <- c(kk,nn)

rmvn <- t(PP%*%sqrl%*%ZZ+mu)

rmvn

In the simulation below, the large sample size of n = 10, 000 means that the results will
not be blurred much by sampling error.

> # Generate data

> set.seed(9999)

> n = 10000

> Fac = rmvn(n,mu=c(0,0,0),sigma=Phi) # n x 3 matrix of factor values

> err = rmvn(n,mu=numeric(9),sigma=Omega) # n x 9 matrix of error terms

>

> # n x 3 3 x 9 n x 9

> dat = Fac %*% t(Lambda) + err

Compare the sample correlation matrix to the true correlation matrix. They are close, as
one would expect with this sample size. Of course this is a way to check for mistakes in
calculation or programming.
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> round(cor(dat),3)

[,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8] [,9]

[1,] 1.000 0.808 0.806 -0.004 -0.001 0.008 0.004 0.003 -0.002

[2,] 0.808 1.000 0.809 -0.001 -0.006 0.000 -0.002 -0.003 -0.006

[3,] 0.806 0.809 1.000 -0.002 -0.007 0.003 -0.002 -0.001 -0.004

[4,] -0.004 -0.001 -0.002 1.000 0.811 0.809 0.731 0.732 0.730

[5,] -0.001 -0.006 -0.007 0.811 1.000 0.812 0.726 0.728 0.725

[6,] 0.008 0.000 0.003 0.809 0.812 1.000 0.729 0.730 0.726

[7,] 0.004 -0.002 -0.002 0.731 0.726 0.729 1.000 0.810 0.809

[8,] 0.003 -0.003 -0.001 0.732 0.728 0.730 0.810 1.000 0.808

[9,] -0.002 -0.006 -0.004 0.730 0.725 0.726 0.809 0.808 1.000

> Lambda %*% Phi %*% t(Lambda) + Omega # Compare

[,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8] [,9]

[1,] 1.00 0.81 0.81 0.000 0.000 0.000 0.000 0.000 0.000

[2,] 0.81 1.00 0.81 0.000 0.000 0.000 0.000 0.000 0.000

[3,] 0.81 0.81 1.00 0.000 0.000 0.000 0.000 0.000 0.000

[4,] 0.00 0.00 0.00 1.000 0.810 0.810 0.729 0.729 0.729

[5,] 0.00 0.00 0.00 0.810 1.000 0.810 0.729 0.729 0.729

[6,] 0.00 0.00 0.00 0.810 0.810 1.000 0.729 0.729 0.729

[7,] 0.00 0.00 0.00 0.729 0.729 0.729 1.000 0.810 0.810

[8,] 0.00 0.00 0.00 0.729 0.729 0.729 0.810 1.000 0.810

[9,] 0.00 0.00 0.00 0.729 0.729 0.729 0.810 0.810 1.000

When I decided on this example, I thought that common methods for determining the
number of factors might fail, because it could be hard to tell the two highly correlated
factors from a single factor. Indeed, there are two eigenvalues greater than one, and the
others are not even close; this points to two factors. Other common tests for number of
factors give varying results. However, testing for goodness of fit performed really well.
Fitting a model with just two factors,

> factanal(dat,factors=2)

Call:

factanal(x = dat, factors = 2)

Uniquenesses:

[1] 0.195 0.189 0.192 0.235 0.239 0.238 0.240 0.239 0.243

Loadings:

Factor1 Factor2

[1,] 0.897

[2,] 0.900

[3,] 0.899

[4,] 0.875

[5,] 0.872

[6,] 0.873

[7,] 0.872

[8,] 0.873

[9,] 0.870

Factor1 Factor2

SS loadings 4.566 2.424
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Proportion Var 0.507 0.269

Cumulative Var 0.507 0.777

Test of the hypothesis that 2 factors are sufficient.

The chi square statistic is 3179.9 on 19 degrees of freedom.

The p-value is 0

Varimax was fooled into thinking that the last six variables all came from the same factor,
but the two-factor model did not come close to fitting. Trying a three-factor model,

> factanal(dat,factors=3)

Call:

factanal(x = dat, factors = 3)

Uniquenesses:

[1] 0.195 0.189 0.192 0.193 0.185 0.190 0.188 0.192 0.193

Loadings:

Factor1 Factor2 Factor3

[1,] 0.897

[2,] 0.900

[3,] 0.899

[4,] 0.878 -0.191

[5,] 0.878 -0.212

[6,] 0.877 -0.201

[7,] 0.877 0.205

[8,] 0.877 0.197

[9,] 0.875 0.204

Factor1 Factor2 Factor3

SS loadings 4.615 2.424 0.244

Proportion Var 0.513 0.269 0.027

Cumulative Var 0.513 0.782 0.809

Test of the hypothesis that 3 factors are sufficient.

The chi square statistic is 12.73 on 12 degrees of freedom.

The p-value is 0.389

This model fits nicely; the goodness of fit test located the true number of factors. This
has been my experience with uncorrelated factors, too. The chi-squared test for goodness
of fit is an excellent tool for determining the number of factors, and the larger the sample
size, the better it gets — with simulated data. Of course that’s the problem. We must
bear in mind the suggestion that for any real data set, there could easily be hundreds of
common factors. When this is true, no model will fit if the sample size is large enough.

In any case, suppose we know that there are three factors. The true matrix of factor
loadings is an extreme example of simple structure. Can oblimin find it? If the factors
were uncorrelated, one coud trust varimax to locate this easy truth. The first attempt
will use the default setting of γ = 0.
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> # install.packages("GPArotation", dependencies=TRUE) # Only need to do this once

> library(GPArotation)

>

> threefac = factanal(dat,factors=3,rotation=’none’); Ahat = threefac$loadings

> options(scipen=999) # Suppress scientific notation for now

> oblimin(Ahat)

Oblique rotation method Oblimin Quartimin converged.

Loadings:

Factor1 Factor2 Factor3

[1,] 0.002820 0.89720 0.0024216

[2,] -0.001803 0.90038 -0.0022990

[3,] -0.000956 0.89891 0.0000235

[4,] 0.878590 -0.00141 -0.1905515

[5,] 0.878124 -0.00382 -0.2111222

[6,] 0.877928 0.00538 -0.2005067

[7,] 0.876644 0.00142 0.2058478

[8,] 0.876572 0.00120 0.1972533

[9,] 0.874316 -0.00314 0.2046256

Rotating matrix:

[,1] [,2] [,3]

[1,] 1.00000 -0.001673 -0.0003306

[2,] 0.00307 1.000000 -0.0000706

[3,] -0.00201 0.000551 1.0000028

Phi:

[,1] [,2] [,3]

[1,] 1.00000 -0.001395 0.002345

[2,] -0.00140 1.000000 -0.000484

[3,] 0.00234 -0.000484 1.000000

Both the Λ̂ and Φ̂ matrices are way off. Φ̂ is nearly the identity, and Λ̂ is essentially the
varimax solution. Increasing the value of γ to encourage more highly correlated factors,

> oblimin(Ahat, gam = 0.5) # For more highly correlated factors (truth).

Oblique rotation method Oblimin Biquartimin converged.

Loadings:

Factor1 Factor2 Factor3

[1,] 0.117 1.0222 0.220

[2,] 0.114 1.0234 0.215

[3,] 0.114 1.0227 0.217

[4,] 0.978 0.0304 -0.291

[5,] 0.983 0.0197 -0.317

[6,] 0.981 0.0342 -0.301

[7,] 0.864 0.1860 0.195

[8,] 0.866 0.1825 0.184

[9,] 0.861 0.1801 0.193

Rotating matrix:

[,1] [,2] [,3]

[1,] 1.052 0.118 -0.0661

[2,] 0.131 1.138 0.2414
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[3,] -0.286 0.385 1.2240

Phi:

[,1] [,2] [,3]

[1,] 1.000 -0.313 0.396

[2,] -0.313 1.000 -0.551

[3,] 0.396 -0.551 1.000

Once again, the results are nowhere near the true parameter values. Increasing the value
of γ once again,

> oblimin(Ahat, gam = 0.75)

Oblique rotation method Oblimin g=0.75 NOT converged.

Loadings:

Factor1 Factor2 Factor3

[1,] 4.31 9.678 4.72

[2,] 4.28 9.650 4.72

[3,] 4.28 9.662 4.73

[4,] 7.81 -0.429 -8.08

[5,] 7.76 -0.685 -8.30

[6,] 7.82 -0.468 -8.14

[7,] 8.43 4.017 -4.01

[8,] 8.42 3.919 -4.10

[9,] 8.39 3.950 -4.03

Rotating matrix:

[,1] [,2] [,3]

[1,] 9.23 1.93 -6.99

[2,] 4.80 10.76 5.24

[3,] 1.57 11.15 10.21

Phi:

[,1] [,2] [,3]

[1,] 1.000 -0.995 0.994

[2,] -0.995 1.000 -0.997

[3,] 0.994 -0.997 1.000

Warning message:

In GPFoblq(L, Tmat = Tmat, normalize = normalize, eps = eps, maxit = maxit, :

convergence not obtained in GPFoblq. 1000 iterations used.

This time, the algorithm did not converge (this is common with “large” positive values
of γ), and the estimates are to be ignored. They are just the current values when the job
ran out of iterations. The value of the oblimin criterion was marching off to −∞.

Lowering the value of γ a bit,

> oblimin(Ahat, gam = 0.6)

Oblique rotation method Oblimin g=0.6 converged.

Loadings:

Factor1 Factor2 Factor3

[1,] 0.306 1.3650 0.427736

[2,] 0.301 1.3641 0.423094

[3,] 0.301 1.3642 0.425963
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[4,] 1.213 0.1018 -0.651437

[5,] 1.216 0.0792 -0.686801

[6,] 1.217 0.1028 -0.664617

[7,] 1.138 0.4683 0.013499

[8,] 1.140 0.4600 -0.000951

[9,] 1.134 0.4595 0.010177

Rotating matrix:

[,1] [,2] [,3]

[1,] 1.341 0.314 -0.379

[2,] 0.341 1.519 0.472

[3,] -0.188 0.915 1.673

Phi:

[,1] [,2] [,3]

[1,] 1.000 -0.669 0.659

[2,] -0.669 1.000 -0.812

[3,] 0.659 -0.812 1.000

This time, the maximum absolute correlation between factors is in the right vicinity, but
the values of the estimated correlations are way off, and the estimated factor loadings are
nowhere near the truth.

It is clear that adjusting the value of γ does not help at all. Possibly the numerical
search is getting caught in a local minimum. By default, the search starts with the
transformation matrix T equal to the identity. Using a combination of calculation and
guesswork (the details are not important), I came up with a promising T matrix, denoted
by T try.

> T_try

[,1] [,2] [,3]

Factor1 -0.001603061 0.975610583 0.973941825

Factor2 0.999998098 0.002998459 0.002938147

Factor3 0.001110803 -0.219488039 0.226778941

This transformation matrix reproduces the true correlations between factors and the true
factor loadings quite well. Checking T>T = Φ,

# Test T_try

> M = t(T_try) %*% T_try; round(M,2)

[,1] [,2] [,3]

[1,] 1 0.0 0.0

[2,] 0 1.0 0.9

[3,] 0 0.9 1.0

> Phi

[,1] [,2] [,3]

[1,] 1 0.0 0.0

[2,] 0 1.0 0.9

[3,] 0 0.9 1.0

The match is perfect, to two decimal places. Now try Λ = A
(
T>
)−1

.
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> round(Ahat %*% solve(t(T_try)), 2) # Compare Lambda

[,1] [,2] [,3]

[1,] 0.9 0.00 0.00

[2,] 0.9 0.01 -0.01

[3,] 0.9 0.00 0.00

[4,] 0.0 0.88 0.02

[5,] 0.0 0.93 -0.03

[6,] 0.0 0.91 -0.01

[7,] 0.0 0.00 0.90

[8,] 0.0 0.01 0.89

[9,] 0.0 0.00 0.90

> Lambda

[,1] [,2] [,3]

[1,] 0.9 0.0 0.0

[2,] 0.9 0.0 0.0

[3,] 0.9 0.0 0.0

[4,] 0.0 0.9 0.0

[5,] 0.0 0.9 0.0

[6,] 0.0 0.9 0.0

[7,] 0.0 0.0 0.9

[8,] 0.0 0.0 0.9

[9,] 0.0 0.0 0.9

The reason it’s possible to approximate Φ and Λ so well is the large sample size. Of
course, as in the orthogonal case, there are infinitely many other T matrices that fit the
data equally well. When T try is used as a starting value, the simple structure in Λ̂
ensures that the numerical search stays very close to where it started.

> # Use T_try as a starting value

> oblimin(Ahat, Tmat=T_try, gam=0)

Oblique rotation method Oblimin Quartimin converged.

Loadings:

Factor1 Factor2 Factor3

[1,] 0.89721 -0.003859 0.00671

[2,] 0.90038 0.004258 -0.00617

[3,] 0.89891 -0.000471 -0.00056

[4,] -0.00139 0.876491 0.02450

[5,] -0.00381 0.922002 -0.02156

[6,] 0.00540 0.898292 0.00198

[7,] 0.00159 -0.006151 0.90648

[8,] 0.00136 0.012927 0.88730

[9,] -0.00297 -0.004632 0.90257

Rotating matrix:

[,1] [,2] [,3]

Factor1 -0.001572 0.51597 0.51025

Factor2 1.000000 0.00182 0.00127

Factor3 0.000933 -2.22516 2.22648

Phi:

[,1] [,2] [,3]

[1,] 1.00000 -0.00122 -0.00159
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[2,] -0.00122 1.00000 0.89908

[3,] -0.00159 0.89908 1.00000

One could not ask for nicer results. Notice how a large value of γ is not necessary to
get a high estimated correlation between factors. Furthermore, the oblimin criterion is
actually lower for this solution than for the one with the default starting value, so the
earlier search found a local minimum that was higher than the global minimum. Here’s
how to tell.

An oblimin object is a list, and one of the items in the list is a table showing the
iteration history. For some reason, the table is called Table. The second column of the
table gives the value of the oblimin criterion. There is one row in the table for each
iteration, so tables can be quite long. We will use R’s tail function to look at just the
last four lines of the tables. First comes the one with the default starting value for T (the
identity), and then the one starting with T try.

> tail(oblimin(Ahat, gam=0)$Table)

[,1] [,2] [,3] [,4]

[91,] 90 0.09396019 -4.936630 0.50

[92,] 91 0.09396019 -4.947460 0.50

[93,] 92 0.09396019 -4.958262 0.50

[94,] 93 0.09396019 -4.969037 0.50

[95,] 94 0.09396019 -4.745909 1.00

[96,] 95 0.09396019 -5.054387 0.25

> tail(oblimin(Ahat, Tmat=T_try, gam=0)$Table)

[,1] [,2] [,3] [,4]

[38,] 37 0.0005909207 -4.741182 0.1250

[39,] 38 0.0005909207 -4.949552 0.0625

[40,] 39 0.0005909207 -4.985353 0.1250

[41,] 40 0.0005909207 -4.991386 0.1250

[42,] 41 0.0005909207 -4.950799 0.1250

[43,] 42 0.0005909207 -5.158412 0.0625

Starting with T try was possible only because I knew the true Λ matrix. The key to find-
ing such a hidden solution with real data (if one exists) is to try different starting values for
T. The GPArotation package has a useful function called Random.Start, which generates
a random orthogonal matrix. The single argument of the function Random.Start is the
number of rows and columns. While the transformation matrix T is not constrained to
be orthogonal, the non-zero off-diagonal elements mix things up enough so that it works
quite well. What I did was to execute the following code repeatedly until something
interesting happened.

> oblimin(Ahat, Tmat=Random.Start(3))

After just three tries, I got the following.

Oblique rotation method Oblimin Quartimin converged.

Loadings:

Factor1 Factor2 Factor3

[1,] -0.89721 0.006711 0.003860
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[2,] -0.90038 -0.006167 -0.004258

[3,] -0.89891 -0.000561 0.000472

[4,] 0.00139 0.024497 -0.876491

[5,] 0.00381 -0.021562 -0.922002

[6,] -0.00540 0.001983 -0.898292

[7,] -0.00159 0.906484 0.006151

[8,] -0.00136 0.887303 -0.012927

[9,] 0.00297 0.902572 0.004632

Rotating matrix:

[,1] [,2] [,3]

[1,] 0.001572 0.51025 -0.51597

[2,] -1.000000 0.00127 -0.00182

[3,] -0.000933 2.22648 2.22516

Phi:

[,1] [,2] [,3]

[1,] 1.00000 0.00159 -0.00122

[2,] 0.00159 1.00000 -0.89908

[3,] -0.00122 -0.89908 1.00000

This is the same solution obtained using T try as a starting value, except that the the
signs of all the factor loadings for factors one and three are reversed, and the correlation
between factors two and three is negative instead of positive. This is perfectly good. Since
the oblimin criterion is a function of the squared factor loadings, switching the signs of
the loadings in any column produces the same value of the function being minimized,
and the function has at least 2p local minima. As in orthogonal factor analysis, one may
reflect factors at will, and the only consequence is the word one uses to describe the factor.
One may call it “anti-racism” instead of “racism,” or “mental health” instead of “mental
illness.” It is entirely a matter of convenience. Naturally, when one does this one must
also switch the signs of the correlations between the factor in question and all the other
factors. That is what has happened here.

Continuing to execute the code, on the eleventh try I got a version of the correct
solution with only factor three reflected, and on the thirteenth try I got a version with
only factor one reflected.

The conclusion is that if the true factor pattern has a simple structure, oblimin rotation
may miss it unless one tries numerous starting values26. In fact, even if the truth has a
fairly simple structure, there may be another solution that fits the data just as well and
which has a structure that is even simpler. In this case, multiple starting values will lead
you to the answer that is prettier, but wrong. Of course, if the truth does not happen to
be simple, there is no hope at all.

Frequently, simulation studies involve thousands, or even millions of random data sets.
Here, you really only need two simulated data sets to see how unsuccessful exploratory

26I tried Random.Start a large number of times with the Mind-body data, and got the same results
each time apart from reflections.
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factor analysis can be. It all depends on how closely the true pattern of factor loadings
approximates simple structure. If the truth looks like the result of a varimax rotation,
then a varimax rotation will probably find it – or it will find something equivalent, with
one or more factors reflected. If the truth does not resemble a varimax rotation, then a
varimax rotation will settle on a simple structure that may be quite different from the
truth. Should we expect the truth in any particular field to resemble simple structure? I
really can’t see why.

The factor analysts have an answer, and it goes back to the early days, from the time
when the indeterminacy of factor solutions was first recognized. The argument is that a
factor solution is essentially a scientific theory of the data. In the philosophy of science, it
is widely accepted that there can be many different theories that fit a set of data equally
well. In this situation, a principle known as Occam’s razor says that all other things being
equal, a simpler explanation is better. Thus, the simple structure located by a varimax
or some other good rotation method is the preferred estimate.

My response is that while the factor analysis model itself is like a scientific theory, the
unknown constants in the model are numerical quantities that are subject to estimation,
like the speed of light in relativity theory. In the case of unconstrained exploratory factor
analysis, lack of parameter identifiability means that there are infinitely many potential
estimates that are equally reasonable given the data. Choosing a set of numerical values
that tells a pleasing story is one option, but the truth may be much closer to a completely
different set of values – one that is equally compatible with the data. Viewed as a method
of statistical estimation, exploratory factor analysis is a failure, period. It is something a
statistician should never do, except perhaps for money.

2.7 Rotating Principal Components

Something can be salvaged from all this. Rotation is what makes factor analysis results
understandable. In R, a nice thing about the stand-alone varimax function is that it can
also be used to rotate principal components. The result is a set of uncorrelated linear
combinations of the variables that explain exactly the same amount of variance as the
original components, but are easier to interpret. This section is a bit of a digression, but
the end product is a useful data analysis trick.

From Section 2.1, we have the k×1 standardized data vector z, the correlation matrix
cov(z) = Σ, the spectral decomposition Σ = CDC>, and the vector of principal compo-
nents y = C>z. The ordered eigenvalues in the diagonal matrix D are both the variances
of the principal components and the amounts of variance in z that they explain. It is

https://en.wikipedia.org/wiki/Occam%27s_razor
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helpful to calculate the matrix of correlations

corr(z,y) = cov(z,D−1/2y)

= cov(z,D−1/2C>z)

= cov(z)
(
D−1/2C>

)>
= ΣCD−1/2

= CD C>C︸ ︷︷ ︸
I

D−1/2

= CDD−1/2

= CD1/2, (2.25)

a formula equivalent to the scalar version (2.3).
We don’t retain all the principal components. Instead, we summarize the variables

with a smaller set of p principal components that explain a good part of the total variance.
Typically, components associated with eigenvalues greater than one are retained. This
may be accomplished with a p×k selection matrix that will be denoted by S (for selection),
and is not to be mistaken for a sample covariance matrix. Each row of S has a one in the
position of a component to be retained, and the rest zeros. For example, if there were five
principal components, the first two may be selected as follows.

Sy =

(
1 0 0 0 0
0 1 0 0 0

)
y1

y2

y3

y4

y5

 =

(
y1

y2

)
.

If A is any k × k matrix, then SAS> is the p × p sub-matrix with rows and columns
indicated by S. A sub-matrix of the identity is another (smaller) identity matrix, so
SS> = Ip. Selection matrices are quite flexible and can even be used to re-order variables,
but here they will just be used to select the first p principal components.

Simply rotating a set of selected principal components is not a good choice, because
the resulting linear combinations are correlated.

cov(RSy) = RScov(y) (RS)>

= RSDS>R>,

a matrix that in general will not be diagonal unless all the eigenvalues equal one. Because
the eigenvalues are the variances of the principal components, this suggests standardizing
the principal components before rotating them. It is more convenient (mathematically,
not computationally) to standardize first, and then select. The result is

f = SD−1/2y

= SD−1/2C>z.
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The notation f is meant to suggest that the standardized principal components are anal-
ogous to factors, even though they are not really factors.

Applying a rotation to f , we have f ′ = Rf , with covariance matrix

cov(f ′) = cov(RSD−1/2C>z)

= RSD−1/2C>cov(z)
(
RSD−1/2C>

)>
= RSD−1/2C>ΣCD−1/2S>R>

= RSD−1/2C>CDC>CD−1/2S>R>

= RSD−1/2 C>C︸ ︷︷ ︸
I

D C>C︸ ︷︷ ︸
I

D−1/2S>R>

= RS D−1/2DD−1/2︸ ︷︷ ︸
I

S>R>

= R SS>︸︷︷︸
I

R>

= RR>

= I. (2.26)

Thus, by scaling27 the selected principal components and then rotating, we obtain lin-
ear combinations that are uncorrelated. Since their expected values are zero and their
variances are one, they are still standardized after rotation.

The k × p matrix of correlations between the original variables and the rotated com-
ponents is

corr(z, f ′) = cov(z, f ′) = cov(z,RSD−1/2C>z)

= cov(z)
(
RSD−1/2C>

)>
= Σ CD−1/2S>R>

= CD C>C︸ ︷︷ ︸
I

D−1/2S>R>

= CDD−1/2S>R>

= CD1/2S>R>

= corr(z,y)S>R>

from (2.25).
Since corr(z,y)S> is just the first p columns of the k × k matrix corr(z,y), we can

select principal components first and then compute the correlations, yielding

corr(z, f ′) = corr(z,Sy)R>. (2.27)

Furthermore, scaling and rotation does not affect the amount of variance explained by
the first p components. By (2.2) and (2.3), the variance in zj explained by the first

27Scaling the components to have variance one is the same as standardizing, because they already have
expected value zero.
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p components is the sum of the squared correlations between zj and those components.
There are k such quantities, one for each observed variable. They are the diagonal elements
of the matrix corr(z,Sy)corr(z,Sy)>.

By (2.27), the corresponding sums of squared correlations between the variables and
the scaled and rotated components are on the main diagonal of

corr(z, f ′)corr(z, f ′)> = corr(z,Sy)R>
(
corr(z,Sy)R>

)>
= corr(z,Sy) R>R︸ ︷︷ ︸

I

corr(z,Sy)>

= corr(z,Sy)corr(z,Sy)>.

That is, for each variable, the sum of squared correlations with the first p original com-
ponents is the same as the sum of squared correlations with the scaled and rotated com-
ponents f ′.

It remains to show that the sum of squared correlations of the variables with f ′ is the
variance explained by f ′. This is true because

1. Following the calculations leading to (2.3), we have this general result. Let the
random variable w = a1x1 + · · · + akxk, where a, . . . , ak are non-zero constants,
V ar(xj) = σ2

j , and Cov(xi, xj) = 0 for i 6= j. Then the variance in w that is
explained by a subset of x variables is the sum of their squared correlations with w.

2. For i = 1, . . . , k, zi = ai,1f
′
1 + · · ·+ ai,pf

′
p + ci,p+1yp+1 + · · ·+ ci,kyk, where f ′ = [f ′j].

It is a homework problem to write a matrix expression for the ai,j.

3. The matrix of covariances between f ′ and the principal components yp+1, . . . , yk is
zero.

The conclusion is that for each variable, the variance explained by the rotated linear
combinations f ′ is equal to the variance explained by the first p original components.

To summarize, one can select the first p out of k principal components, and then
scale them to have variance one. This yields f . Applying a rotation (or reflection) yields
f ′ = Rf . The random variables in f ′ have these properties:

• They are uncorrelated.

• They explain the same amount of variance as the first p principal components.

• Their correlations with the observed variables are equal to the correlations of the
first p principal components with the observed variables, but post-multiplied by the
transpose of the rotation matrix. This is equation (2.27).

All this holds for any p× p rotation matrix — that is, for any orthogonal matrix R.
Now, it is not at all mandatory to scale and rotate the principal components, but

it can be useful, because the original components, though unique, are often difficult to
understand in terms of the input variables. Rotation to something approaching simple
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structure can result in linear combinations of the variables that are uncorrelated, collec-
tively just as good as the principal components in terms of explaining variance, and also
easy to understand. The only thing that is lost is the property that the first one explains
the most possible variance, and so on.

The mechanics of rotation can be directly borrowed from factor analysis. Recalling
factor analysis with rotation,

z = ΛF + e

= (ΛR>)(RF) + e

= (ΛR>)F′ + e,

where F′ denotes the rotated factors. Based on an initial solution Λ̂, the rotation matrix
R is chosen so that Λ̂R> has a simple structure.

Comparing Equation (2.27) to the corresponding results for factor analysis,

corr(z, f ′) = corr(z,Sy)R> corr(z,F′) = corr(z,F)R>.

So, one can simply take the matrix of sample correlations between the variables and the
first p principal components, and hand it to a rotation algorithm like varimax. The result
will be simplified matrix of correlations between the variables and and a set of rotated
components f ′ – as well as the rotation matrix that gets the job done.

Illustrating with the Mind-body data, we begin with pc2, the earlier prcomp object
that retained just the two principal components, the ones with eigenvalues greater than
one.

> pc2 = prcomp(dat, scale = T, rank=2)

> ls(pc2)

[1] "center" "rotation" "scale" "sdev" "x"

The list element pc2$x is an n × 2 matrix of the two principal components that are
retained. Looking at the correlations of these principal components with the variables,

> cor(dat,pc2$x)

PC1 PC2

progmat -0.4709330 -0.6299014

reason -0.4981509 -0.7277446

verbal -0.5519561 -0.6910097

headlng -0.7500678 0.1156757

headbrd -0.6073970 0.3689507

headcir -0.9063741 0.1686041

bizyg -0.8298157 0.2293757

weight -0.7274347 0.2792455

height -0.7364050 0.2490749

Correlations of raw (unrotated) principal components with variables are always hard to
understand, but the minus signs make it worse. We can just flip the signs and everything
still correct, because correlations between variables and principal components have the
same signs as eigenvector elements. The definition of an eigenvector and corresponding
eigenvalue is Ax = λx. Thus, if x is an eigenvector corresponding to λ, so is −x. The
choice of sign is arbitrary.
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> y = - pc2$x # Principal components (reflected, still unrotated)

> M1 = cor(dat,y); M1 # Correlations between variables and components

PC1 PC2

progmat 0.4709330 0.6299014

reason 0.4981509 0.7277446

verbal 0.5519561 0.6910097

headlng 0.7500678 -0.1156757

headbrd 0.6073970 -0.3689507

headcir 0.9063741 -0.1686041

bizyg 0.8298157 -0.2293757

weight 0.7274347 -0.2792455

height 0.7364050 -0.2490749

Applying a rotation to these correlations is very easy.

> vmax1 = varimax(M1); print(vmax1, cutoff=0)

$loadings

Loadings:

PC1 PC2

progmat 0.122 0.777

reason 0.100 0.876

verbal 0.165 0.869

headlng 0.717 0.248

headbrd 0.709 -0.042

headcir 0.880 0.274

bizyg 0.841 0.185

weight 0.774 0.093

height 0.767 0.124

PC1 PC2

SS loadings 3.739 2.323

Proportion Var 0.415 0.258

Cumulative Var 0.415 0.674

$rotmat

[,1] [,2]

[1,] 0.8841526 0.4671982

[2,] -0.4671982 0.8841526

The pattern of correlations is clear. After rotation, the first component represents physical
size, and the second component represents performance on the mental tests. The 67.4%
of variance explained is the same as the percentage of variance explained before rotation:

> sum(M1^2)/9

[1] 0.6735697

As a quick cross-check, we calculate the scaled principal components f , apply the rotation
from vmax1 to obtain f ′, and verify that corr(z, f ′) corresponds to the “loadings” produced
by the varimax function. In fprime = f %*% t(R), note the post-multiplication by R>,
rather than pre-multiplication by R. This is because the n random f vectors are in the
rows of a matrix, and thus are transposed.
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> f = scale(y)

> # Note that pc2$rotmat is the transpose of the rotation matrix that is applied to the factors

> R = t(vmax1$rotmat) # Transpose it for notation consistent with the text.

> fprime = f %*% t(R)

> round(cor(dat,fprime),3)

[,1] [,2]

progmat 0.122 0.777

reason 0.100 0.876

verbal 0.165 0.869

headlng 0.717 0.248

headbrd 0.709 -0.042

headcir 0.880 0.274

bizyg 0.841 0.185

weight 0.774 0.093

height 0.767 0.124

> print(vmax1$loadings,cutoff=0) # For comparison

Loadings:

PC1 PC2

progmat 0.122 0.777

reason 0.100 0.876

verbal 0.165 0.869

headlng 0.717 0.248

headbrd 0.709 -0.042

headcir 0.880 0.274

bizyg 0.841 0.185

weight 0.774 0.093

height 0.767 0.124

PC1 PC2

SS loadings 3.739 2.323

Proportion Var 0.415 0.258

Cumulative Var 0.415 0.674

This works so well that I really can’t see why anyone would want to do principal compo-
nents without rotation. In fact, rotating principal components is a fairly common practice.
Social scientists do it all the time. Many are led down this path by the default “factor
analysis” method in SPSS and SAS being principal components (!) and the default rota-
tion method being varimax.

It’s interesting what these users do when they obtain a new data set with the same
variables, or when they use a set of variables that have previously been “factor analyzed”
by another author. Rather than using the weights (eigenvectors) from the first study,
they tend to form “scales” by simply adding up the variables that correlate primarily
with the same component, or possibly adding up z values if the variables are on really
different scales (as the physical variables are in our example). Thus, they would get a
“size” variable and a “smart” variable from the Mind-body data. The reasoning is usually
not explicit, but I believe they may be thinking that the particular weights may be quite
specific to the sub-population from which they obtained the data, and the weights may
also be subject to sampling error. They want something more portable and generalizable,
so they go with a cruder linear combination. In my view, this may be pretty good practice.
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Generally speaking, the more sophisticated the user, the less likely he or she is to apply
a rotation to principal components. After all, rotation is a central tool in exploratory
factor analysis, and principal components analysis definitely is not factor analysis. So
why do it? This little section provides the answer. I hope it establishes that scaling
and then rotating a set principal components makes them easier to interpret, without
sacrificing anything important.



Chapter 3

Confirmatory Factor Analysis

In confirmatory factor analysis, as in exploratory factor analysis, a set of unobservable
latent variables called “factors” give rise to a set of observable variables. The princi-
pal difference between exploratory and confirmatory factor analysis is in the treatment
of parameter identifiability. Exploratory factor analysis models include a link between
every factor and every observable variable, and attempt to deal with the resulting lack
of identifiability by rotating the factor solutions. Confirmatory factor analysis behaves
much more like a traditional statistical method. Based on substantive considerations and
re-parameterizations, the dimension of the parameter space is reduced so as to make the
parameters identifiable. Then, estimation and inference proceed as usual. Confirmatory
factor analysis models are directly imported as the measurement model in the general
two-stage model of Chapter 1.

Given a set of data (or proposed set of data), it is generally quite easy to come up with
a confirmatory factor analysis model. Such a model may be blessed with identifiability, or
it may not. If not, it’s back to the drawing board. The primary objective of this chapter
is to develop a set of rules that will allow the reader to determine the identifiability status
of a model without elaborate calculation – usually by just examining the path diagram.
As in Chapters 0 and 1, identifiable almost always means identifiable from the covariance
matrix. The rules for parameter identifiability from throughout the book, including this
chapter, are collected in Appendix D.

Using the conceptual framework of Chapter 1, underlying everything is a regression-
like original model. The parameters of the original model will not be identifiable, so it
is simplified and re-parameterized to obtain a surrogate model whose parameters may be
identifiable. The parameters of the surrogate model bear a systematic relationship to
the the parameters of the original model, and by keeping track of what that relationship
is, it will be possible to draw conclusions about the parameters of the original model.
For example, suppose a parameter θj of the surrogate model is a positive multiple of a
parameter in the original model. Then if a test determines that θj > 0, it can also be
concluded that the parameter of the original model is positive.

276
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Here is the original model for confirmatory factor analysis. It is a part of the general
two-stage model (1.1). Independently for i = 1, . . . , n, let

di = ν + ΛFi + ei, (3.1)

where

• di is a k × 1 observable random vector. The expected value of di will be denoted
by µ, and the covariance matrix of di will be denoted by Σ.

• ν is a k × 1 vector of constants.

• Λ is a k × (p+ q) matrix of constants.

• Fi (F for Factor) is a p× 1 latent random vector whose expected value is denoted
by µF , and whose variance-covariance matrix is denoted by Φ.

• ei is a k × 1 vector of error terms that is independent of Fi. It has expected value
zero and covariance matrix Ω, which need not be positive definite.

This looks a lot like a multivariate regression model, and it is more or less acceptable for
all the reasons that regression is acceptable. It may not be exactly correct, but there is
hope that it’s a reasonable approximation of the truth, at least within the range of the
data.

As discussed in Section A.6.1 of Chapter 1, the parameter vectors ν and µF will almost
never be identifiable separately based on µ, even if it were possible to identify Λ, Φ and
Ω from Σ. Accordingly, we re-parameterize, obtaining a surrogate centered model. As a
warm-up for what is to come, it is helpful to express the re-parameterization as a change
of variables.

di = ν + ΛFi + ei

⇐⇒ di = ν + ΛFi + (ΛµF −ΛµF ) + ei

⇐⇒ di − (ν + ΛµF ) = Λ(Fi − µF ) + ei

⇐⇒ (di − µ) = Λ(Fi − µF ) + ei

⇐⇒
c

di= Λ
c

Fi + ei, (3.2)

where the superscript c indicates centered versions of the random vectors, in which di
and Fi are expressed as deviations from their expected values. The centering notation is
dropped, and the result is a model from which ν and µF have been eliminated. We are
glad to see them go. They are not identifiable separately anyway, and the function of ν
and µF that is identifiable, ν + ΛµF , is of very little interest. The parameters we really
care about are the factor loadings in Λ and the correlations between factors in Φ. These
quantities are unaffected by centering.
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Here is a full statement of the centered surrogate model. Independently for i =
1, . . . , n,

di = ΛFi + ei, (3.3)

where

• All expected values are zero.

• di is a k × 1 observable random vector, with cov(di) = Σ.

• Λ is a k × (p+ q) matrix of constants (factor loadings).

• Fi (F for Factor) is a p× 1 latent random vector with cov(Fi) = Φ.

• ei is a k × 1 random vector of error terms that is independent of Fi. Its covariance
matrix is Ω.

In practice, special cases of this model will be fit to data sets where the expected values
of the variables are definitely not zero. There are two ways to justify this, equivalent
in practice. The first solution is to leave di uncentered in the model, and estimate the
nuisance parameters in µ = ν + ΛµF with the vector of sample means d̄. The other
solution is to center di in the data set, by subtracting off d̄. In either case, inference
about Λ and Φ will be based on the sample covariance matrix Σ̂.

Readers of Chapter 2 will recognize Model (3.3) as almost identical to the “general
factor analysis model” (2.6) on page 213. The only difference is that here, cov(ei) = Ω
need not be diagonal, though it is diagonal in many of the simpler models. One could say
that, recognizing exploratory factor analysis as a failure, we are starting over.

It was shown in Chapter 2 (especially Sections 2.2 and 2.3) that the parameters of the
centered surrogate are not identifiable without some further restrictions on the parameter
space. These restrictions are of two kinds. The first kind of restriction is substantive,
based on the nature of the data. Setting parameters equal to one another (for example,
equal factor loadings) or equal to zero are invariably substantive restrictions, and must
be justified in terms of the data set.

The other kind of restriction involves setting certain parameters to the value one.
Thinking of the original Model (3.1) as the “true model,” this might seem like an arbitrary
restriction of the parameter space. However, it will turn out that the resulting model is
a surrogate model, in which the centered model (3.3) has been re-parameterized by a
change of variables. The parameters of the surrogate model are identifiable functions of
the original model parameters. By making the process of re-parameterization explicit, we
will be able to tell what the surrogate model parameters mean.

Again, the primary objective of this chapter is to build up a set of simple rules for de-
ciding whether the parameters of a proposed model are identifiable. Two important rules
have already been established. They are the Parameter Count Rule (Rule 1, first stated
on page 61) and the Double Measurement Rule (Rule 2a, page 178). The parameter count
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rule gives a simple necessary condition for identifiability1, while the double measurement
rule, like most of the other standard rules in this book, describes a sufficient condition.
The double measurement rule fits neatly into the next section.

3.1 Setting Some Factor Loadings to One

In both the original Model (3.1) and the centered surrogate model (3.3), the factor load-
ings in the matrix Λ are unrestricted. In this section, parameter identifiability will be
obtained by setting some factor loadings to one. We will start by just accepting these
models as given, focusing on the technical details of identifiability. Then later, it will be
shown how these seemingly arbitrary restrictions of the parameter space are actually re-
parameterizations that result in surrogate model, one whose parameters have a systematic
relationship to the parameters of the original model.

Double Measurement Recall the double measurement model (1.22) on page 177,
which arose in the course of checking identifiability for the brand awareness data. Fig-
ure 3.1 shows a simple scalar example.

Each factor is measured by two observable variables; the factor loadings are all equal
to one. There are two sets of measurements, with potentially non-zero covariances within
sets, but not between sets. As in the brand awareness Example 1.2 on page 139, common
extraneous influences on the measurements within each set are to be expected, but pains
have been taken to make the two sets of measurements independent. In general there
can be any number of factors, but it becomes challenging to draw the path diagram.
Figure 1.10 on page 184 is a try with five factors.

To re-state the double measurement model in matrix form, let

di,1 = Fi + ei,1

di,2 = Fi + ei,2,

where E(Fi) = 0, cov(Fi) = Φ, Fi has zero covariance with ei,1 and ei,2, cov(ei,1) = Ω1,
cov(ei,2) = Ω2 and cov(ei,1, ei,2) = O.

The parameters in this model (which will be most useful as part of a larger model)
are the unique elements of the matrices Φ, Ω1 and Ω2. The double measurement rule
(Rule 2a) says that these parameters are identifiable.

Three observed variables We now develop an identifiability rule in which for each
factor, there are three observable variables of a certain kind. Figure 3.2 shows the path
diagram when there is one factor. Here is a statement of the model. Independently for

1“Suppose identifiability is to be decided based on a set of moment structure equations. If there are
more parameters than equations, the parameter vector is identifiable on at most a set of volume zero in
the parameter space.”
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Figure 3.1: Scalar Double Measurement
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i = 1, . . . , n, let

di,1 = Fi + ei,1

di,2 = λ2Fi + ei,2 (3.4)

di,3 = λ3Fi + ei,3,

with all expected values zero, V ar(Fi) = φ > 0, V ar(ei,j) = ωj > 0, and Fi and ei,j all
independent. Note that this is a centered model, and that in the first equation, a factor
loading that would be denoted λ1 has been set to one. Centered variables and parameters
equal to one are signs that it’s a surrogate model.

The parameter vector is θ = (φ, λ2, λ3, ω1, ω2, ω3). There are six unknown parameters,
and the covariance matrix of (di,1, di,2, di,3)> has six unique elements. This means that
there are six covariance structure equations in six unknown parameters. If the parameters
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Figure 3.2: One Unstandardized Factor, Three Observed Variables
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are identifiable, they are just identifiable. Calculating the covariance matrix,

Σ =

 σ11 σ12 σ13

σ22 σ23

σ33

 =

d1 d2 d3

d1 φ+ ω1 λ2φ λ3φ
d2 λ2

2φ+ ω2 λ2λ3φ
d3 λ2

3φ+ ω3

.

The covariance structure equations are

σ11 = φ+ ω1

σ12 = λ2φ

σ13 = λ3φ

σ22 = λ2
2φ+ ω2

σ23 = λ2λ3φ

σ33 = λ2
3φ+ ω3.

If λ2 = λ3 = 0, that fact can be determined from σ12 = σ13 = 0, so that λ2 and λ3 are
identifiable. The parameters ω2 = σ22 and ω3 = σ33 are also identifiable. However, only
the equation σ11 = φ + ω1 remains, and there are infinitely many solutions. This means
that at points in the parameter space where λ2 = λ3 = 0, only four of the six parameters
are identifiable.

Suppose just one of λ2 and λ3 equals zero, say, λ2. In that case, λ2 and ω2 are
identifiable, but the equation σ23 = 0 is essentially lost. By the parameter count rule,
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the remaining three equations in four unknowns do not have a unique solution, except
possibly on a set of volume zero in that four-dimensional section of the parameter space.
The conclusion is that the parameter vector is not identifiable at points where λ2 = 0,
λ3 = 0, or both.

So assume that λ2 6= 0 and λ3 6= 0. This “assumption” means that we are considering
points in the parameter space where both λ2 and λ3 are non-zero. In practical situations,
it means that the variables d2 and d3 (and d1 too, of course) need to be chosen so that
they unquestionably reflect the underlying factor F . In this case, the covariance structure
equations have the unique solution

φ =
σ12σ13

σ23

λ2 = σ23/σ13

λ3 = σ23/σ12

ω1 = σ11 −
σ12σ13

σ23

(3.5)

ω2 = σ22 −
σ12σ23

σ13

ω3 = σ33 −
σ13σ23

σ13

.

Suppose we add another observed variable to the model: di,4 = λ4Fi+ei,4. The covariance
matrix is now

Σ =


φ+ ω1 λ2φ λ3φ λ4φ

λ2
2φ+ ω2 λ2λ3φ λ2λ4φ

λ2
3φ+ ω3 λ3λ4φ

λ2
4φ+ ω4

 .

Whether or not λ4 = 0, all the parameters are easily identifiable. For five observed
variables, two loadings can be zero, and so on.

With more than three observed variables, the parameters are over-identified. In this
case, testing model fit is a possibility. For example, if there are four observed variables,
then there are eight parameters and ten covariance structure equations, giving rise to
10− 8 = 2 equality constraints on the covariance matrix.

Now add another factor to Model (3.4), as in Figure 3.3. A single factor loading has
been set to one for each factor, cov(Fi) = Φ = [φ`j], and V ar(ej) = ωj for j = 1, . . . , 6.

The model equations are

d1 = F1 + e1

d2 = λ2F1 + e2

d3 = λ3F1 + e3

d4 = F2 + e4

d5 = λ5F2 + e5

d6 = λ6F2 + e6,
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Figure 3.3: Two Unstandardized Factors
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and the covariance matrix of the observable variables is

Σ =


ω1 + φ11 λ2φ11 λ3φ11 φ12 λ5φ12 λ6φ12

λ2
2φ11 + ω2 λ2λ3φ11 λ2φ12 λ2λ5φ12 λ2λ6φ12

λ2
3φ11 + ω3 λ3φ12 λ3λ5φ12 λ3λ6φ12

ω4 + φ22 λ5φ22 λ6φ22

λ2
5φ22 + ω5 λ5λ6φ22

λ2
6φ22 + ω6


Typesetting that covariance matrix would have been a chore. SageMath kindly agreed to
do it for me; then I manually removed the lower triangle to make the matrix easier to
look at. Here is the code.

sem = ’http://www.utstat.toronto.edu/~brunner/openSEM/sage/sem.sage’

load(sem)

# Two unstandardized factors

L = ZeroMatrix(6,2)

L[0,0]= 1; L[1,0]= var(’lambda2’); L[2,0]= var(’lambda3’)

L[3,1]= 1; L[4,1]= var(’lambda5’); L[5,1]= var(’lambda6’); L

P = SymmetricMatrix(2,’phi’); P

O = DiagonalMatrix(6,symbol=’omega’); O

Sig = FactorAnalysisCov(L,P,O); Sig

print(latex(Sig))

Assuming λ2, λ3, λ5 and λ6 to be non-zero, these factor loadings along with φ11, φ22 and
ω1, . . . ω6 may be recovered as for the one-factor model. The remaining parameter, φ12,
is identified from φ12 = σ14. Thus, all the parameters are identifiable. Identifiability
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is preserved when more factors are added under these same conditions. Adding more
variables in any set also does no harm.

Reference variables We are at the point of stating an important general rule, but
first, please notice a special feature of the observed variables in the models we have been
considering. Each observed variables is influenced by only one factor and an error term.
This is almost never seen in exploratory factor analysis, except that it might be considered
an extreme case of Thurstone’s “simple structure.” In confirmatory factor analysis models,
such variables are quite common, and it helps to have a name for them. The term is taken
from Jöreskog’s (1969) classic article in Psychmetrika [36].

Definition 3.1 A reference variable for a latent variable is an observable variable that is
a function only of that latent variable and an error term. The factor loading is non-zero.

Obviously, not all observable variables are reference variables by this definition. For
example, in the two-factor model of Figure 2.1 on page 214, there are no reference variables
at all. In the latent variable regression model of Figure 13 on page 49, W1 and W2 are
reference variables, but Y is not. Reference variable are very useful for establishing
identifiability, and many of the standard sufficient conditions for parameter identifiability
involve reference variables for the latent variables.

Before the introduction of reference variables, the following rule was established. If
the conditions seem overly restrictive, I agree. We can and will do better.

Three-variable Rule for Unstandardized Factors The parameters of a factor anal-
ysis model are identifiable provided

• There are at least three reference variables for each factor.

• For each factor, the factor loading of at least one reference variable is equal to one.

• Errors are independent of one another and of the factors.

Only one reference variable per factor is really needed. The three-variable rule
is widely used in practice, but it is more restrictive than it needs to be. It is a lot to ask
that each factor have three observed variables that are influenced by that factor and none
of the others. It’s tough enough to come up with one such pure measurement for each
factor. Fortunately, it turns out that only one of the three observed variables for each
factor needs to be a reference variable. The other two can be influenced by all the factors.

The reference variable rule is a matrix version of the three-variable rule. For it to
apply, there must be at least three observable variables for every factor, including one
reference variable per factor. The observable variables are collected into three or possibly
four vectors. For case i (there are n cases), di,1 contains reference variables for the factors,
with the factor loadings for the reference variables set to one. The number of variables
in di,2 and di,3 is also equal to the number of factors. If there are any more observable
variables, they are placed in di,4.
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Here is the model. Independently for i = 1, . . . , n,

di,1 = Fi + ei,1

di,2 = Λ2Fi + ei,2 (3.6)

di,3 = Λ3Fi + ei,3

di,4 = Λ4Fi + ei,4,

where

• di,1, di,2 and di,3 are p × 1 observable random vectors. If di,4 is present, it is an
m× 1 observable random vector.

• Fi (F for Factor) is a p×1 latent random vector with expected value zero cov(Fi) =
Φ.

• Λ2 and Λ3 are p× p non-singular matrices of constants.

• Λ4, if it is present, is an m by p matrix of constants.

• ei,1, . . . , ei,4 are vectors of error terms, with expected value zero, covariance matrix
cov(ei,j) = Ωj,j for j = 1, . . . , 4, and

– cov(ei,1, ei,2) = cov(ei,1, ei,3) = cov(ei,2, ei,3) = O, all p× p matrices.

– cov(ei,1, ei,4) = O, a p×m matrix.

– cov(ei,2, ei,4) = Ω2,4 and cov(ei,3, ei,4) = Ω3,4.

The parameters of this model are the unique elements of the matrices Φ, Λ2, Λ3, Ω1,1,
Ω2,2 and Ω3,3. If there are more than 3p observable variables and di,4 is necessary, the
list of parameter matrices also includes Λ4, Ω2,4, Ω3,4 and Ω4,4.

Detailed discussion of this model is deferred until Section 3.4. For now, just note that
while the three-variable rule allows observable variables to be influenced by only a single
factor, Model (3.6) says that at least two-thirds of the variables can be influenced by all
the factors, through the matrices Λ2 and Λ3 (and possibly Λ4). Also, the three-variable
rule requires all error terms to have zero covariance. In Model (3.6), however, the first 3p
variables are divided into sets; error terms are allowed to have non-zero covariance within
sets, but not between sets. If there is a fourth set of variables, its set of error terms may
be correlated with the error terms of sets two and three, as well as with each other — but
not with the error terms of set one.
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Identifiability The covariance matrix of the observable variables may be written as a
partitioned matrix.

Σ = cov


di,1

di,2

di,3

di,4

 =


Σ1,1 Σ1,2 Σ1,3 Σ1,4

Σ2,2 Σ2,3 Σ2,4

Σ3,3 Σ3,4

Σ4,4

 (3.7)

=


Φ + Ω1,1 ΦΛ>2 ΦΛ>3 ΦΛ>4

Λ2ΦΛ>2 + Ω2,2 Λ2ΦΛ>3 Λ2ΦΛ>4 + Ω2,4

Λ3ΦΛ>3 + Ω3,3 Λ3ΦΛ>4 + Ω3,4

Λ4ΦΛ>4 + Ω4,4

 .

Viewing (3.7) as a compact way to express the covariance structure equations, one obtains
solutions that are directly analogous to (3.5). To avoid transpose signs, the solutions use
Σ>i,j = Σj,i.

Φ = Σ1,3Σ
−1
2,3Σ2,1

Λ2 = Σ2,3Σ
−1
1,3

Λ3 = Σ3,2Σ
−1
1,2 (3.8)

Ω1,1 = Σ1,1 −Σ1,3Σ
−1
2,3Σ2,1

Ω2,2 = Σ2,2 −Σ2,1Σ
−1
3,1Σ3,2

Ω3,3 = Σ3,3 −Σ3,2Σ
−1
1,2Σ1,3.

In case there are more than 3p observed variables and di,4 is needed, solutions for the
additional parameter matrices are

Λ4 = Σ4,1Σ
−1
2,1Σ2,3Σ

−1
1,3

Ω2,4 = Σ2,4 −Σ2,3Σ
−1
1,3Σ1,4 (3.9)

Ω3,4 = Σ3,4 −Σ3,2Σ
−1
1,2Σ1,4

Ω4,4 = Σ4,4 −Σ4,1Σ
−1
3,1Σ3,2Σ

−1
1,2Σ1,4.

This establishes identifiability of all the parameters, except on that set of volume zero in
the parameter space where Λ2 and Λ3 do not have inverses. This is like the requirement
that λ2 and λ3 be non-zero in the three-variable model (1usfactor), so that one may
“divide” by them. It’s a set of volume zero because if Λ2 or Λ3 were singular, then the
columns would be linearly dependent, and at least one column would be a perfect linear
combination of the others.

We have the following important rule. Full discussion will be deferred until Section 3.4,
where an even stronger version will be given.



3.1. SETTING SOME FACTOR LOADINGS TO ONE 287

The Reference Variable Rule for Unstandardized Factors The parameters of
a factor analysis model are identifiable except possibly on a set of volume zero in the
parameter space, provided

• The number of observable variables (including reference variables) is at least three
times the number of factors.

• For each factor, there is at least one reference variable, with a factor loading of one.

• Divide the observable variables into sets. The first set contains one reference variable
for each factor; the factor loadings all equal one. The number of variables in the
second set and the number in the third set is also equal to the number of factors.
The fourth set may contain any number of additional variables, including zero. The
error terms for the variables in the first three sets may have non-zero covariance
within sets, but not between sets. The error terms for the variables in the fourth set
may have non-zero covariance within the set, and with the error terms of sets two
and three, but they must have zero covariance with the error terms of the reference
variables.

Two reference variables per factor In some models, a factor may influence fewer
than three observable variables, a condition that would force either Λ2 or Λ3 to be singular
in the preceding discussion. If the model has at least two such factors and non-zero
covariance between the factors, we can get away with two reference variables for each
factor. Understanding that this may be only part of a larger model, the model equations
would be

d1 = F1 + e1

d2 = λ2F1 + e2

d3 = F2 + e3

d4 = λ4F2 + e4,

with all expected values zero, cov

(
F1

F2

)
= Φ = [φij], V ar(ej) = ωj, and the error

terms independent of the factors and each other. An additional critical stipulation is that
Cov(F1, F2) = φ12 6= 0.

The covariance matrix of the observable variables is
σ11 σ12 σ13 σ14

σ22 σ23 σ24

σ33 σ34

σ44

 =


φ11 + ω1 λ2φ11 φ12 λ4φ12

λ2
2φ11 + ω2 λ2φ12 λ2λ4φ12

φ22 + ω3 λ4φ22

λ2
4φ22 + ω4

 (3.10)

Provided φ12 6= 0, all the parameters are easily identifiable. If φ12 = 0, then that pa-
rameter is identifiable, but then identifying the other parameters would require a unique
solution to six equations in eight unknowns. By the parameter count rule, this is impos-
sible in most of the parameter space. Thus, identifiability requires φ12 6= 0.
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With more factors and two observed variables per factor, identifiability is maintained
provided that each factor has a non-zero covariance with at least one other factor. Nat-
urally, three or more variables for some of the factors is okay. We have the following
rule.

Two-varisble Rule for Unstandardized Factors The parameters of a factor analysis
model are identifiable provided

• There are at least two factors.

• There are at least two reference variables per factor.

• For each factor, the factor loading of at least one reference variable is equal to one.

• Each factor has a non-zero covariance with at least one other factor.

• Errors are independent of one another and of the factors.

Re-parameterization and surrogate models Setting some of the factor loadings to
one is a useful technical device for obtaining identifiability, but does the resulting model
make sense? When a factor loading is set to one, it means that the observed variable is
just the factor plus a piece of random noise. Models like this were common in Chapter 0,
but the regression-like “original” model with a slope possibly not equal to unity is much
easier to believe. While it may be true that “all models are wrong2,” it is still not a good
idea adopt models that are obviously unrealistic, unless there is a good reason.

A common justification for setting factor loadings to one to to describe the process
as “setting the scale,” as in Bollen [10] (p. 198). Suppose the latent variable is length,
and it is measured twice. One measurement is in inches, and the other is in centimeters.
What’s the scale of measurement of the latent variable? This is un-knowable3 and not
very interesting anyway, so the scale of the latent variable is arbitrarily made to agree
with one of the observed variables, by setting its factor loading to one.

As I see it, this “setting the scale” interpretation does not really hold up. Suppose
the latent variable is amount of debt, measured in dollars. One of the observed variables
is reported debt, also in dollars. Clearly, the latent and observed variables are on the
same scale. I think the factor loading could easily be a constant strictly less than one,
so that, for example, for every one dollar increase in true debt, the average person might
report 75 cents. Setting the factor loading to one when it is really 0.75 would be to model
an interesting phenomenon out of existence. There must be some other explanation for
setting a factor loading to one.

To see what is really going on, consider the following one-factor example. None of the
factor loadings is necessarily equal to one.

Example 3.1.1 A centered model with one factor.

2The famous quote is from Box and Draper (1987, p. 424) who said, “Essentially all models are wrong,
but some are useful.” [11]

3A symptom of non-identifiability.
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Independently for i = 1, . . . , n, let

di,1 = λ1Fi + ei,1

di,2 = λ2Fi + ei,2

di,3 = λ3Fi + ei,3

di,4 = λ4Fi + ei,4,

with all expected values zero, V ar(Fi) = φ, V ar(ei,j) = ωj, and Fi and ei,j all indepen-
dent.

As usual, identifiability is to be established by solving the covariance structure equa-
tions for the unknown parameters. There are nine unknown parameters, and the co-
variance matrix of the observable variables has ten unique variances and covariances.
The parameter count rule says that identifiability is possible, but not guaranteed. The
covariance matrix is

Σ =


σ11 σ12 σ13 σ14

σ22 σ23 σ24

σ33 σ34

σ44

 =


λ2

1φ+ ω1 λ1λ2φ λ1λ3φ λ1λ4φ
λ2

2φ+ ω2 λ2λ3φ λ2λ4φ
λ2

3φ+ ω3 λ3λ4φ
λ2

4φ+ ω4

 (3.11)

If two distinct parameter sets yield the same covariance matrix, the parameter vector is
not identifiable. Table 3.1 shows two such parameter sets — actually, infinitely many.

Table 3.1: Non-identifiability

θ1 φ λ1 λ2 λ3 λ4 ω1 ω2 ω3 ω4

θ2 φ/c2 cλ1 cλ2 cλ3 cλ4 ω1 ω2 ω3 ω4

For any c 6= 0, both θ1 and θ2 yield the covariance matrix in (3.11).
As usual when parameters are not identifiable, this is a serious problem. Regardless

of what the true parameter values are, there are infinitely many sets of untrue parameter
values that yield exactly the same Σ. Since inference is based on the covariance matrix
of the observable data, there is no way to even approach the full truth based on the data,
no matter how large the sample size. However, there is a way to get at the partial truth,
because certain functions of the parameter vector are identifiable. For example, at points
in the parameter space where λ1, λ2, λ3 6= 0,

• σ11 − σ12σ13
σ23

= ω1, and the other error variances are identifiable by a similar calcu-
lation.

• σ13
σ23

= λ1λ3φ
λ2λ3φ

= λ1
λ2

, so ratios of factor loadings are identifiable.
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• If the sign of one factor loading is known (say by naming the factor4), then the signs
of the others can be identified from the covariances in (3.11).

• σ12σ13
σ23σ11

=
λ21φ

λ21φ+ω1
, the reliability of d1 as a measure of F . Reliabilities are identifiable

for this model.

The point here is that while the entire parameter vector may not be identifiable, the
covariance matrix still contains useful information about the parameters. It’s difficult
to get at, though. If we try to fit a model like the one in Example (3.1) by maximum
likelihood, lack of identifiability will cause the likelihood function to have a maximum
that is not unique, and unpleasant numerical things will happen.

The solution is re-parameterization. It cannot be a one-to-one re-parametrization,
because that would leave the identifiability of the model parameters unchanged. Instead,
it’s a sort of collapsing re-parameterization, one that results in a parameter space of lower
dimension. It is accomplished by a change of variables, and the resulting model is a
surrogate model. We have already seen how a change of variables is used to transform
the original model (3.1) into the centered surrogate model (3.3).

In the model of Example 3.1, assume λ1 6= 0. It can be made positive by naming the
factor appropriately, so let λ1 > 0. Setting F ′ = λ1F , we have d1 = F ′ + e1, and it looks
as if λ1 has been set to one (if you ignore the prime). The consequences for the other
factor loadings are, for example,

d2 = λ2F + e2

=

(
λ2

λ1

)
(λ1F ) + e2

= λ′2F
′ + e2,

and we have

d1 = F ′ + e1

d2 = λ′2F
′ + e2

d3 = λ′3F
′ + e3, etc.

Losing the primes, the result looks exactly like Model (3.4). It is a surrogate for the
model of Example 3.1, except that there are three factors instead of four. In terms of the
original model parameters, the parameter λ2 is really λ2/λ1. The variance parameter φ
is really λ2

1φ. As shown in Table 3.2, these are identifiable functions of the parameters of
the original model.

4Suppose that the factor is left-right political orientation. Do extremely high scores reflect right-wing
ideology, or left-wing ideology? Nobody knows. However, you have an observed variable, score on a
questionnaire asking about politics. It is scored so that agreement with certain statements gets you a
higher Left score or a higher Right score. Which one? It’s up to the investigator. So just make a choice,
and assume that the factor loading is positive. This way, you have decided whether to call the factor
”Left-wing orientation” or “Right-wing orientation.” This always works, but you only want to do it when
the connection between the factor and the observable variable is completely clear and non-controversial.
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Table 3.2: Identifiable Functions in Model (3.4)

Value under model
Function of Σ Surrogate Original

σ23/σ13 λ2 λ2/λ1

σ23/σ12 λ3 λ3/λ1

σ12σ13/σ23 φ λ2
1φ

Suppose there is more than one factor, with a factor loading set to one for each factor.
Then

φ′12 = Cov(F ′1, F
′
2)

= Cov(λ1F1, λ4F2)

= λ1λ4Cov(F1, F2)

= λ1λ4φ12.

To summarize, setting a factor loading to one for each factor is not an arbitrary restriction
of the parameter space. It is a very useful re-parameterization, resulting in a surrogate
model. The parameters of the surrogate model are identifiable functions of the original
model parameters. Their meanings are limited but clear. Everything is relative to the
values of the parameters that have apparently been suppressed. The error variances ωj
are unaffected, but all the other parameters are positive multiples of the corresponding
parameters of the original model. Any estimated factor loading or covariance is really
an estimate of that quantity times an unknown positive constant. If the latent vari-
able model has a causal structure (rather than just covariances between factors), the
re-parameterization has cascading effects that run down the chain of causality.

Unless one is actually interested in ratios of factor loadings, point and interval esti-
mates of the surrogate model parameters are not very meaningful. However, a test of
whether a surrogate model parameter is positive, negative or zero is also a valid test
about the original model parameter. This is good enough for many applications. In the
social and biological sciences, the primary research question is often whether a relation-
ship between variables exists, and if so, whether the relationship is positive or negative.
In such cases, setting factor loadings to one can be an excellent way to achieve parameter
identifiability and get on with the data analysis.

3.2 Standardized Factors

Setting a factor loading to one for each factor is path to identifiability. The other common
trick is to set the variances of the factors to one. Please consider again the one-factor
model of Example 3.1 on page 288. Recall that this model is centered, but otherwise it has
not been re-parameterized, and its parameters are not identifiable. To obtain V ar(F ′) = 1
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in a re-parameterized model, let F ′ = 1
φ1/2

F . Then V ar(F ′) = 1
φ
V ar(F ) = 1 as desired,

and

dj = λjF + ej

= λjφ
1/2 1

φ1/2
F + ej

= λ′jF
′ + ej.

Under the new, re-parameterized model, the factor loading is expressed as a multiple of
the unknown standard deviation of the factor; λ′j = λjφ

1/2 is the expected increase in
dj when F is increased by one standard deviation unit. Since the standard deviation is
unknown (and un-knowable) except for being positive, this means that an estimate of λ′j
could be informative about the sign of the original factor loading, but that’s all.

Discarding the primes, we have a surrogate model. Consider the following three-
variable version. Independently for i = 1, . . . , n, let

di,1 = λ1Fi + ei,1

di,2 = λ2Fi + ei,2

di,3 = λ3Fi + ei,3,

with all expected values zero, V ar(Fi) = 1, V ar(ei,j) = ωj and Fi and ei,j all independent.

The covariance matrix of an observable data vector is,

Σ =

 σ11 σ12 σ13

σ22 σ23

σ33

 =

 λ2
1 + ω1 λ1λ2 λ1λ3

λ2
2 + ω2 λ2λ3

λ2
3 + ω3

 . (3.12)

There are six covariance structure equations in six unknown parameters. If two or three
of the factor loadings are equal to zero, all three covariances equal zero, it’s impossible to
tell whether two loadings or three equal zero, and none of the parameters is identifiable.
So, consider what happens when just one factor loading equals zero – say, λ1. Since
σ12 = σ13 = 0 but σ23 6= 0, it is clear that λ1 = 0. That is, its value is identifiable. Also,
σ11 = ω1, and ω1 is identifiable. However, the covariance structure equation σ23 = λ2λ3

has infinitely many solutions; identification of ω2 and ω3 is also impossible.

Accordingly, assume that λ1, λ2 and λ3 are all non-zero. As in Section 1.3 of Chapter 1,
this is an acknowledgement that parameter identifiability need not be the same in different
regions of the parameter space. Viewing (3.12) as a compact statement of the covariance
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structure equations and trying to solve, we have

λ2
1 =

σ12σ13

σ23

=
λ1λ2 λ1λ3

λ2λ3

λ2
2 =

σ12σ23

σ13

λ2
3 =

σ13σ23

σ12

(3.13)

ω1 = σ11 −
σ12σ13

σ23

ω2 = σ22 −
σ12σ23

σ13

ω3 = σ33 −
σ13σ23

σ12

The error variances are identifiable, but only the squares of the factor loadings can be
uniquely identified. To see this clearly, note that if all three λj are replaced with −λj, we
get same Σ. The likelihood function will have two maxima, of the same height. Which
one is located will depend on where the numerical search starts.

The solution is to decide on the sign of one factor loading. It really is a decision that
is up to the user, and it’s based on the meaning of the hypothesized factor. If the three
variables are scores on three math tests, is F math ability, or math inability? You decide.
Once the sign of one loading is fixed, the signs of the other two may be determined from
the signs of the σij. Identifiability is purchased by cutting the parameter space in half,
but it really doesn’t cost anything.

Now suppose we add another observed variable to the model: di,4 = λ4Fi + ei,4. The
covariance matrix is

Σ =


λ2

1 + ω1 λ1λ2 λ1λ3 λ1λ4

λ2
2 + ω2 λ2λ3 λ2λ4

λ2
3 + ω3 λ3λ4

λ2
4 + ω4

 . (3.14)

The parameters will all be identifiable as long as three out of four loadings are non-zero,
and one sign is known. For example, if only λ1 = 0 then the top row = 0, and it is
possible to solve for λ2, λ3, λ4 as before. For five observed variables, two loadings can
be zero, and so on. With more than three observed variables, the parameters are over-
identified. For example, with four observed variables, there are eight parameters and
ten covariance structure equations, giving rise to 10 − 8 = 2 equality constraints on the
covariance matrix.

Returning to three observed variables per factor, add another factor as in Figure 3.4.
The variances of both factors equal one, and V ar(ej) = ωj for j = 1, . . . , 6. The model
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Figure 3.4: Two factors
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equations are

d1 = λ1F1 + e1

d2 = λ2F1 + e2

d3 = λ3F1 + e3

d4 = λ4F2 + e4

d5 = λ5F2 + e5

d6 = λ6F2 + e6,

and the covariance matrix of the observable variables is

Σ =


λ2

1 + ω1 λ1λ2 λ1λ3 λ1λ4φ12 λ1λ5φ12 λ1λ6φ12

λ2
2 + ω2 λ2λ3 λ2λ4φ12 λ2λ5φ12 λ2λ6φ12

λ2
3 + ω3 λ3λ4φ12 λ3λ5φ12 λ3λ6φ12

λ2
4 + ω4 λ4λ5 λ4λ6

λ2
5 + ω5 λ5λ6

λ2
6 + ω6


Assuming that all the factor loadings are non-zero and the sign of one factor loading is
known in each set (one set per factor), λ1, λ2, λ3 may be identified from set One and
λ4, λ5, λ6 may be identified from set Two. Then φ12 may be identified from any unused
covariance, and the ωj are identifiable from the variances. Thus, all the parameters are
identifiable.

Adding more standardized factors, the parameters remain identifiable provided there
are at least three variables for each factor with non-zero factor loadings, and the sign of
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one factor loading is known in each set. Adding more variables in any set also does no
harm.

This establishes the three-variable rule for standardized factors. The parameters will
be identifiable provided that there are at least three reference variables per factor, and the
errors are independent of one another and of the factors. Comparing these conditions to
the three-variable rule for unstandardized factors on page 284, we see the only difference
is that the variance of the factor equal to one (and one sign known) is substituted for
the factor loading of one (in which case its sign is positive). The result is the following
widely-used rule.

Rule 2b: Three-variable Rule The parameters of a factor analysis model are identi-
fiable provided

• There are at least three reference variables for each factor.

• For each factor, either the variance equals one and the sign of one factor loading is
known, or the factor loading for at least one reference variable is equal to one.

• Errors are independent of one another and of the factors.

3.3 Equivalence of the Surrogate Models

The three-variable rules for standardized and unstandardized factors were very similar,
and it was quite easy to combine them into a single rule. The extreme similarity suggests
that the two common surrogate models — the one with a factor loading set to one for
each factor, and the one with the variances of the factors set to one — might be the same
thing in disguise. In fact, this is correct. The surrogate models in question are one-to-one.

What this means is that if the parameters of the two surrogate models are expressed
in terms of the parameters of the original model, then there is a one-to-one (injective)
function connecting their parameter vectors. There are two important consequences.
First, if the parameters of one surrogate model are shown to be a function of Σ and hence
identifiable, then the parameters of the other surrogate model are immediately identified
as well. This means that it is permissible to check identifiability for one surrogate model
even when you intend to fit the other one to your data. Usually, this means doing
calculations for a model with factor loadings set to one.

The other consequence is that since the parameter vectors of the two surrogate models
are one to one, they capture the same information about the the parameters of the original
model — and again, the original model is what we really care about. In this sense, the
two surrogate models are equally good. However, the form of the information may be
more convenient for one of the models, depending on the interests and research objectives
of the investigator. Section 3.8 includes examples of extracting the same information the
easy way and the hard way.
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3.3.1 Demonstration of Equivalence

The following is fully rigorous, but much too long and chatty to be called a proof. It
is based on three surrogate models. All three models have p factors and k observable
variables, and error terms independent of the factors. The first model will be called the
centered original model. In this model, the intercepts and non-zero expected values in
the original model have been swallowed by a re-parameterization, as in the “centered
surrogate model” (3.3) on page 278. Note that while the centered original model is
a surrogate model, the factor loadings, the covariance matrix of the factors, and the
covariance matrix of the error terms are all identical to their counterparts in the original
model.

In the centered original model, the observed variables are sorted into two vectors; this
is the only difference between the present centered original model and the earlier centered
surrogate model. For case i, (there are n cases), di,1 consists of p reference variables for
the factors. These are the best available representatives of the factors. If the factors
are named appropriately, the factor loadings linking each factor to its reference variable
may be assumed strictly positive. The remaining k − p observed variables are collected
into di,2. In the equations for the centered original model, the subscript i is suppressed5

to reduce notational clutter. Implicitly, everything is independent for i = 1, . . . , n. The
model equations are

d1 = Λ1F + e1 (3.15)

d2 = Λ2F + e2,

where all expected values are zero, the p× p matrix Λ1 is diagonal with positive diagonal
elements, cov(F) = Φ, cov(e1) = Ω1, cov(e2) = Ω2 and cov(e1, e2) = Ω1,2. The parameter
vector for this model is

θ = (Λ1,Λ2,Φ,Ω1,Ω2,Ω1,2).

Of course, only the non-redundant elements of the covariance matrices are intended as
part of the parameter vector.

The centered original model is then re-parameterized in two different ways, leading to
two further surrogate models. These models will cleverly be called Model One and Model
Two. Figure 3.5 indicates the process.

In Model One, the number one figures prominently, because it looks like the non-zero
factor loadings in Λ1 have all been set to one. That is, a factor loading appears to have
been set to one for each factor. Actually, it is a re-parameterization accomplished by a
change of variables. Letting F′ = Λ1F yields

d1 = F′ + e1

d2 = Λ2Λ
−1
1 Λ1F + e2 (3.16)

= Λ′2F
′ + e2,

5For di,1, di,2, Fi, ei,1 and ei,2
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Figure 3.5: Surrogate Models

Original Model Centered Original Model

Model One

Model Two

where Λ′2 = Λ2Λ
−1
1 . The covariance matrix of the transformed factors is

Φ′ = cov(Λ1F) = Λ1ΦΛ>1 ,

and the covariance matrices of the error terms are the same as for the centered original
model. The parameters of Model One are

θ1 = ( Λ′2, Φ′, Ω′1, Ω′2, Ω′1,2 )

= ( Λ2Λ
−1
1 , Λ1ΦΛ>1 , Ω1, Ω2, Ω1,2 ).

(3.17)

In Model Two, the factors are scaled to have variance one. Since they are already have
expected value zero, this means they are standardized. Let V denote a diagonal matrix
with the variances of the factors (the diagonal elements of Φ) on the main diagonal.
Transforming the factors by F′′ = V−1/2F,

d1 = Λ1F + e1

= Λ1V
1/2V−1/2F + e1

= Λ′′1F
′′ + e1,

and

d2 = Λ2F + e2

= Λ2V
1/2V−1/2F + e2

= Λ′′2F
′′ + e2.

Summarizing, the equations for Model Two are

d1 = Λ′′1F
′′ + e1 (3.18)

d2 = Λ′′2F
′′ + e2,

where Λ′′1 = Λ1V
1/2 and Λ′′2 = Λ2V

1/2. The covariance matrix of the transformed factors
for Model Two is

Φ′′ = cov(V−1/2F) = V−1/2ΦV−1/2,
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and the parameter vector is

θ2 = ( Λ′′1, Λ′′2, Φ′′, Ω′′1, Ω′′2, Ω′′1,2 )

= ( Λ1V
1/2, Λ2V

1/2, V−1/2ΦV−1/2, Ω1, Ω2, Ω1,2 ).
(3.19)

The objective here is to show that θ1 in Expression (3.17) and θ2 in Expression (3.19) are
connected by a one-to-one function; that is, θ1 is a function of θ2, and θ2 is a function of
θ1.

To find θ1 as a function of θ2, it is enough to express Λ′2 and Φ′ in terms of the
elements of θ2. We have

Λ′′2Λ
′′ −1
1 = Λ2V

1/2
(
Λ1V

1/2
)−1

= Λ2V
1/2V−1/2Λ−1

1

= Λ2Λ
−1
1

= Λ′2 (3.20)

and

Λ′′1Φ
′′Λ′′>1 =

(
Λ1V

1/2
) (

V−1/2ΦV−1/2>) (Λ1V
1/2
)>

= Λ1ΦV−1/2V1/2Λ>1
= Λ1ΦΛ>1
= Φ′. (3.21)

Notice that going in this direction, the assumption that Λ1 is diagonal is not used. All
that’s necessary is the existence of an inverse. Also notice that by the invariance principle
of maximum likelihood estimation, one could simply place hats on the parameter matrices
of (3.20) and (3.21) to obtain estimates for Model One from those for Model Two, without
re-fitting the model. Similarly, expressions (3.22), (3.23) and (3.24) below may be used
to obtain Model Two estimates directly from Model One estimates.

To go from Model One to Model Two, a bit of background is required. Let A and
B be diagonal (and square) matrices of the same size. Then AB = BA, and if all the
elements are non-negative, (AB)1/2 = A1/2B1/2. Also, let A be a square matrix, and let
dg(A) denote the diagonal matrix with diagonal elements equal to the diagonal elements
of A. For example, in the current problem, dg(Φ) = V.

Now, suppose the diagonal elements of Λ1 are labelled λ1, . . . , λp. Because Λ1 is
diagonal, the jth diagonal element of Φ′ = Λ1ΦΛ>1 is λjφj,jλj = λ2

jφj,j. This is also
the jth diagonal element of Λ1VΛ1, which is diagonal because the product of diagonal
matrices is diagonal. In short, dg(Φ′) = Λ1VΛ1.

The task is to find θ2 as a function of θ1. That is, we need to express Λ′′1, Λ′′2 and Φ′′

in terms of single-prime quantities. The variances and covariances in Ω′′1, Ω′′2 and Ω′′1,2 are
automatic, because the transformations considered here do not affect these error matrices.
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Using the special properties of diagonal matrices indicated above,

dg(Φ′)1/2 = (Λ1VΛ1)1/2

=
(
Λ1V

1/2V1/2Λ1

)1/2

=
(
Λ1V

1/2Λ1V
1/2
)1/2

= Λ1V
1/2

= Λ′′1 (3.22)

and

Λ′2dg(Φ′)1/2 = (Λ2Λ
−1
1 )(Λ1V

1/2)

= Λ2V
1/2

= Λ′′2 (3.23)

and

dg(Φ′)−1/2 Φ′ dg(Φ′)−1/2 = (Λ1V
1/2)−1(Λ1ΦΛ>1 )(Λ1V

1/2)−1

= V−1/2Λ−1
1 Λ1ΦΛ1V

−1/2Λ−1
1

= V−1/2ΦΛ1Λ
−1
1 V−1/2

= V−1/2ΦV−1/2

= Φ′′. (3.24)

This establishes that the parameters of Models One and Two are one to one. In Figure 3.5,
there could be a two-headed arrow between Model One and Model Two6. As a corollary,
we have the following useful rule.

Rule 2i: The Equivalence Rule For a centered factor analysis model with at least
one reference variable for each factor, suppose that surrogate models are obtained by
either standardizing the factors, or by setting the factor loading of a reference variable
equal to one for each factor. Then the parameters of one surrogate model are identifiable
if and only if the parameters of the other surrogate model are identifiable.

6The student may be like, Okay, this is all correct, but how would anyone even think of some of these
functions, especially the formula for Φ′′ in (3.24)? The key is that surprisingly, if you standardize F′

you get F′′. This makes it easy to write the double-prime matrices in terms of the single-prime matrices.
Going in the other direction, try a change of variables in which Λ′′1 is absorbed into F′′, effectively setting
a factor loading to one for each factor. The change of variables is F′′′ = Λ′′1F′′, which happens to equal
F′.

This is so remarkable that it bears repeating. If you set a factor loading to one for each factor in
the centered original model, you get Model One. If you standardize the factors in the centered original
model, you get Model Two. If you standardize the factors in Model One, you get Model Two. If you set
a factor loading to one for each factor in Model Two, you get Model One. It feels like a projection of
some kind.
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3.3.2 Choosing a Surrogate Model

So, the two standard surrogate models are equivalent. Their identifiability status is the
same, and they contain the same information about the parameters of the original model.
In actual data analysis, which one should you use?

An advantage of unit factor loadings Certainly, when factor loadings are set to
one it’s easier to calculate Σ by hand as a function of the surrogate model parameters.
It’s also easier to solve for model parameters in terms of σij quantities – again, if the
calculations are done by hand. For models to which the standard identifiability rules do
not apply, this can be very helpful.

An advantage of standardized factors Recall that the identifiable parameters of
a surrogate model are actually identifiable functions of the parameters of the original
model. It’s helpful if these functions correspond directly to something you want to know
about. When a factor loading is seemingly set to one, the other factor loadings (which
would appear on the other arrows coming from that factor) are actually ratios of factor
loadings, with the invisible factor loading in the denominator. Thus, all the other factor
loadings are relative to the one that disappeared, making the invisible factor loading a
kind of reference quantity. When such ratios of factor loadings are of interest, setting a
factor loading to one for each factor is a good choice.

On the other hand, the variances and covariances of the factors under the surrogate
model are the original quantities multiplied by the reference factor loadings. This pre-
serves nothing of interest from the original model, apart from the signs of the covariances.

In contrast, consider the covariances between factors when the factors are standard-
ized. For a general factor analysis model, suppose that the factor Fj has been stan-
dardized. Using double primes for consistency with the notation of Section 3.3.1, let
F ′′j = 1√

φj,j
Fj. As well, the factor F` has been standardized by F ′′` = 1√

φ`,`
F`. Then the

covariance between the transformed factors is

φ′′j,` = cov(F ′′j , F
′′
` )

= cov(
1√
φj,j

Fj,
1√
φ`,`

F`)

=
1√

φj,jφ`,`
cov(Fj, F`)

=
φj,`√
φj,jφ`,`

= Corr(Fj, F`).

The covariances between factors under the surrogate model are not just correlations,
which they must be since the factors have variance one. They are the correlations — that
is, they are exactly the correlations between factors under the original model. As such,
those φ′′j,` quantities are very easy to understand and interpret. Confidence intervals are
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meaningful. This is a significant advantage to standardizing the factors, though it’s more
helpful for pure factor analysis than for general structural equation models with a causal
structure in the latent variables.

While it might be tempting to set a factor loading to one for a factor and also stan-
dardize that same factor, it’s a very bad idea. You can do it, but this reduction of the
original parameter space cannot be accomplished by a change of variables. Consequently
the connection of the resulting model parameters to the parameters of the original model
would be mysterious. Furthermore, doing both at once usually implies equality constraints
on Σ that do not follow from the original model, invalidating the goodness of fit test. It’s
something you just should not do.

To summarize, setting a factor loading to one for each factor (Model One) is attractive
because it makes calculations easier. Standardizing factors (Model Two) is attractive be-
cause the resulting covariances between factors are the correlations between factors under
the original model. As the following example shows, it is possible to enjoy the benefits
of both surrogate models. If identifiability is unclear and you prefer the interpretability
of the model with standardized factors, you can safely show identifiability for Model One
and then Fit Model Two to the data.

Example 3.3.1 The Political Democracy Example

This data set is discussed by Bollen [10] and other authors. Based on news reports and
other sources, a panel of experts rated a sample of 72 developing countries on the following
variables.

d1: Freedom of the press in 1960

d2: Freedom of political opposition in 1960

d3: Fairness of elections in 1960

d4: Effectiveness of the elected legislature in 1960

The variables d5 through d8 represent the same quantities for the year 1965. There are
two hypothesized factors, strength of political democracy in 1960, and strength of political
democracy in 1965. Figure 3.6 shows a path diagram, which in my humble opinion is an
improvement on Bollen’s Figure 7.3 on page 235 — even though they contain the same
information. The factor F1 is political democracy in 1960, and F2 is political democracy in
1965. The factor loadings are hypothesized to be the same in 1960 and 1965, though the
variances of the error terms might not be. Though the variables d5 through d8 correspond
directly to d1 through d4, they are sorted in the opposite order to allow for the curved
arrows between arrow terms.

It is those curved arrows, representing covariances between error terms, that make
this model unusual. There are two sources of covariance between the 1960 and 1965
variables, only one of which the covariance between factors. Even so, it turns out that all
the parameters are identifiable.



302 CHAPTER 3. CONFIRMATORY FACTOR ANALYSIS

Figure 3.6: Political Democracy Factor Model
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The curved arrows between error terms reflect really thoughtful, good modelling. For
example, freedom of the press in 1960 and freedom of the press in 1965 are assessed based
on similar information from mostly the same sources, so that both observed variables are
impacted by similar sources of bias. The latent variables involved are not part of the
model, so they are represented by a covariance between error terms. The same applies to
the other three pairs of variables (d2 and d6, d3 and d7, d4 and d8). Covariances within
years are in red just for visual contrast. The measurement of d2 and d4 have something
extra in common, as do d6 and d8. I’m not sure what it is. Anyway, this is good. Most
people just assume error terms uncorrelated without really thinking about it.

We are interested in a surrogate model with standardized factors, and we need to
verify identifiability before trying to fit the model. Identifiability will be a lot easier to
check for a surrogate model with λ1 = 1. The equivalence rule says that it’s okay to check
one model and then feel comfortable fitting the other one.

Without the curved arrows, this model would be identifiable at a glance by the three-
variable rule. With the curved arrows, it will be possible to get the job done by combining
rules and a few simple calculations. Bear in mind that once a parameter has been iden-
tified, it may be used in the solutions for other parameters.
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Here are the model equations for the model with factor loadings set to one.

d1 = F1 + e1

d2 = λ2F1 + e2

d3 = λ3F1 + e3

d4 = λ4F1 + e4

d5 = F2 + e5

d6 = λ2F2 + e6

d7 = λ3F2 + e7

d8 = λ4F2 + e8

First, apply the three-variable rule to the submodel with F1, d1, d2 and d3
7. The

parameters λ2, λ3, φ11, ω11, ω22 and ω33 are identified.
Adding d4 to the system is non-standard, because of the covariance between e4 and

e2. However,

σ14 = cov(d1, d4)

= cov(F1 + e1)(λ4F1 + e4)

= λ4V ar(F1) + 0 + 0 + 0

= λ4φ11,

and λ4 = σ14/φ11 is identified. Then,

σ24 = cov(d2, d4)

= cov(λ2F1 + e2)(λ4F1 + e4)

= λ2λ4V ar(F1) + 0 + 0 + cov(e2, e4)

= λ2λ4φ11 + ω24,

and ω24 = σ24 − λ2λ4φ11 is identified.
Repeating these operations for the submodel with F2, d5, d6, d7 and d8, the variance

parameters ω55, . . . , ω88 are identified. Also, it is clear that if the factor loadings for 1965
were different from 1960, they would be identified as well.

Now we turn to the sources of covariance between the 1960 and 1965 measurements.

σ18 = cov(d1, d8)

= cov(F1 + e1)(λ4F2 + e8)

= λ4cov(F1, F2)

= λ4φ12.

Then, φ12 = σ18/λ4 is identified.

7What about the curved arrows? There are no curved arrows connecting e1, e2 and e3, so the
calculations for this subsystem, if we had to re-do them, would be unaffected.



304 CHAPTER 3. CONFIRMATORY FACTOR ANALYSIS

Now it’s straightforward to solve for the remaining covariances between errors.

σ15 = cov(d1, d5)

= cov(F1 + e1)(F2 + e5)

= cov(F1, F2) + cov(e1, e5)

= φ12 + ω15

=⇒ ω15 = σ15 − φ12,

and

σ26 = cov(d2, d6)

= cov(λ2F1 + e2)(λ2F2 + e6)

= λ2
2cov(F1, F2) + cov(e2, e6)

= λ2
2φ12 + ω26

=⇒ ω26 = σ26 − λ2
2φ12,

and similarly for ω37 and ω48.

I got a bit carried away here, and showed elementary details that you are probably
able to do in your head. This may obscure the fact that establishing identifiability for
this interesting model is really pretty easy, especially when working with the surrogate
model in which factor loadings are set to one. It’s not necessary to calculate the whole
covariance matrix Σ, and all the calculations that are really needed could be done on a
sheet of scratch paper.

3.4 The Reference Variable rule

This rule comes from applying the equivalence rule to the reference variable rule for
unstandardized factors, on page 286, so that it holds for both the common surrogate
factor analysis models. It says that under some other conditions that are fairly mild and
easy to satisfy, the parameters of a model with three observable variables per factor will
be identifiable, provided that one of the variables is a reference variable. The other two
variables may be influenced by all the factors. Here is the rule.
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Rule 2c: The Reference Variable Rule The parameters of a factor analysis model
are identifiable except possibly on a set of volume zero in the parameter space, provided

• The number of observable variables (including reference variables) is at least three
times the number of factors.

• There is at least one reference variable for each factor.

• For each factor, either the variance equals one and the sign of the reference variable’s
factor loading is known, or the factor loading of the reference variable is equal to
one.

• Divide the observable variables into sets. The first set contains one reference variable
for each factor. The number of variables in the second set and the number in the
third set is also equal to the number of factors. The fourth set may contain any
number of additional variables, including zero. The error terms for the variables in
the first three sets may have non-zero covariance within sets, but not between sets.
The error terms for the variables in the fourth set may have non-zero covariance
within the set, and with the error terms of sets two and three, but they must have
zero covariance with the error terms of the reference variables.

The last condition is unusually long. It describes patterns of permissible covariances
between error terms. That’s important and we will get back to it, but for now just observe
that the condition is satisfied for models in which all the error terms are independent –
something that is almost the default for factor analysis models8.

The rule with independent errors Figure 3.7 illustrates the reference variable rule
with independent errors, and also gives an idea of the modelling flexibility the rule per-
mits. The black part of the model is a direct copy of the unrestricted exploratory factor
analysis model of Figure 2.1 in Chapter 2. Then, reference variables for the factors (the
observable variables d9 and d10) have been added in red. The resulting model is immedi-
ately identifiable, assuming the factors are standardized or the factor loadings on the red
arrows are set to one.

This shows that with a few extra variables of the right kind, the parameters of an
exploratory factor analysis can be estimated without any fuss. If the factors are stan-
dardized, the covariances between factors are the correlations between factors under the
original model. The factor loadings under the surrogate model are positive multiples of
the the corresponding factor loadings under the original model. While the actual values
of the original factor loadings are not knowable, it is possible to estimate and test whether
their signs are positive, negative or zero. That’s enough for many purposes. All the tech-
nical gymnastics from Chapter 2, like rotation to simple structure, viewing the resulting
factor solution as a scientific theory and invoking Occam’s Razor from the philosophy of

8Independent errors are universal in exploratory factor analysis, and many confirmatory factor analysis
models seem to have inherited this feature. In Chapter 2 on page 214, independent errors are traced to
Spearman’s (1904) “Law of the Universal Unity of the Intellective Function.” [60]
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Figure 3.7: Adding reference variables to an unrestricted factor model
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science to justify it on the grounds of simplicity — all of that is unnecessary if you have
the right kind of data set. The reference variable rule tells you what kind of data set you
need.

There is a general point here. Lack of identifiability is often a problem with the study
design, not the model. This makes sense. Identifiability is literally about what can be
known. Naturally, there is an intimate connection to research design.

One other observation is that while the black part of Figure 3.7 is an exploratory
factor analysis model, the whole analysis can’t be completely exploratory. You really
need to have a good idea of what the factors are before designing measurement procedures
(reference variables) that clearly tap one factor but not any of the others.

Statement of the model Rule 2c goes on and on about covariances between error
terms. To clarify the discussion, a full statement of the model will be helpful. This is an
adaptation of Model 3.1 on page 286. Independently for i = 1, . . . , n,

di,1 = Λ1Fi + ei,1

di,2 = Λ2Fi + ei,2 (3.25)

di,3 = Λ3Fi + ei,3

di,4 = Λ4Fi + ei,4,

where

• di,1, di,2 and di,3 are p× 1 observable random vectors.
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• di,4 need not be present. If it is present, it is an m× 1 observable random vector.

• Fi (F for Factor) is a p×1 latent random vector with expected value zero cov(Fi) =
Φ.

• Λ1 is a p× p diagonal of constants, with non-zero diagonal elements. The diagonal
elements may be assumed positive.

• Λ2 and Λ3 are p× p non-singular matrices of constants.

• Λ4, if it is present, is an m by p matrix of constants.

• ei,1, . . . , ei,4 are vectors of error terms, with expected value zero, covariance matrix
cov(ei,j) = Ωj,j for j = 1, . . . , 4, and

– cov(ei,1, ei,2) = cov(ei,1, ei,3) = cov(ei,2, ei,3) = O, all p× p matrices.

– cov(ei,1, ei,4) = O, a p×m matrix.

– cov(ei,2, ei,4) = Ω2,4 and cov(ei,3, ei,4) = Ω3,4.

• Either the diagonal elements of Λ1 or the diagonal elements of Φ are equal to one.

What’s happening here is that the reference variables for the factors are being placed
in di,1, and then the remaining observable variables are being allocated to di,2, di,3, and
possibly di,4, depending on the potential for non-zero covariance between their error terms.

Figure 3.8 is a re-arranged version of Figure 3.7, showing the covariances between
errors that the rule allows. The reference variables d9 and d10 are grouped together in
di,1, while di,2 contains d1 and d2, and di,3 contains d3 and d4. The remaining observed
variables, d5 through d8, are placed in di,4. With the colour coding, perhaps you can see
it. e9 and e10 are correlated, e1 and e2 are correlated, e3 and e4 are correlated, e5 through
e8 are correlated, and there are four blue connectors running to each of e1, e2, e3 and e4.

Correlated error terms To understand how error terms might be correlated, consider
what an error term represents. In a path diagram, suppose that a variable y has three
arrows pointing toward it from x1, x2 and x3, and one more arrow coming from e, an error
term. The model is saying that y is influenced by the x variables, but it’s not completely
determined by them. There are other, unmeasured variables that affect y. We don’t know
what they all are, or even how many there are. Anyway, we roll them together and call
them e. That is, the error term in a model equation is everything else that affects the
endogenous variable, apart from the other variables on the right side of the equation.

Thinking of an error term as a giant linear combination of unmeasured and perhaps
even unimagined variables (probably not a bad approximation), it is clear that if any
variables appear in more than one such linear combination, or if some of the variables in
two different linear combinations have non-zero covariance, then the error terms will have
non-zero covariance as well. This is how the curved arrows between error terms arise.
“Everthing else” includes some of the same influences, or related influences.
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Figure 3.8: Allowable covariances between error terms
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When observable variables are recorded at roughly the same time and by the same
method, then correlated errors of measurement are practically unavoidable. For example,
suppose that a sample of high school students takes a standardized test, consisting of sub-
tests on mathematical and verbal material. Scores on the sub-tests will be two different
observable variables. Some students will suffer from test anxiety more than others, some
will be more test-wise than others, some will have gotten more sleep the night before,
and some students will simply be having a better day than others. The list goes on. The
point is that these unmeasured factors are not explicitly part of the model, but they will
influence performance on both the math test and the verbal test. They are a source of
covariance between the two measures, over and above any covariance between the factors
(say, verbal ability and mathematical ability) that the tests seek to measure. All this
would be represented by a curved, double-headed arrow between the error terms.

If the variables in a study come from questionnaires, the case for correlated error terms
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is even stronger. Consider a questionnaire with a lot of questions about the respondent’s
workplace. Mixed together are questions from several sub-scales that seek to assess the
quality of relations with co-workers, the perceived overall fairness of management, op-
portunities for advancement, and the respondent’s job satisfaction. In the model, these
sub-scales are going to be separate observed variables, each with its own error term. The
respondent’s current mood will certainly affect all the responses, as may happy or unhappy
events outside the workplace. Some respondents will not really believe their responses will
not get back to the employer, and will play it safe by saying that everything is great — on
all the questions. Others will take the opportunity to vent their frustrations, and paint
a picture of everything that is darker than the one they actually experience from day to
day.

Also, one should not minimize the extent to which social science research (including
market research and behavioural economics) is a social transaction between the participant
and the investigator. Many people answering questionnaires certainly seek to represent
themselves in a favourable light [19],[52] and often politely tell the investigator what they
think the investigator wants to hear [49]. All these dynamics (which are only rarely what
the investigator wants to study) push the responses to clusters of questions up or down
together. In the path diagram they are represented by curved, double-headed arrows
connecting error terms.

It would be nice if all error terms could have covariances with one another that are
unknown parameters, and not assumed zero. This is how it goes in ordinary multivariate
regression, with all variables observable. Once there are latent variables, however, iden-
tifiability becomes an issue. Certainly, if all the error terms in a factor analysis model
have non-zero covariance with each other, then the parameter count rule establishes that
all the parameters of the model cannot be identifiable. So, what should we do?

One alternative is to assume the covariances are zero, and hope. Just hope that
the processes involving the variables in the model are a lot stronger than the processes
leading to correlated error terms. The model is not quite correct and everyone knows
it, but it should not be too misleading. I think it’s fair to say that almost all the usual
factor analysis models with independent error terms are based on this kind of hope. Too
often, the model does not fit; this can include negative variance estimates, the so-called
Heywood case described on page 226. Note that the negative variance in Example 1.5.1
was produced by correlated error terms.

There is another, better solution: careful research design. This means doing some
thinking about the model to before collecting the data. The first thing to note is that
some error terms can legitimately be assumed to have zero covariance – on the basis of
reasonable modelling, not just hope. For example, suppose that a medical technician
records the height of a patient, and also asks about occupation (later to be converted into
a numerical index of occupational prestige). There is surely measurement error in both
operations, but no particular reason to suspect that the errors might vary systematically
with one another. Again, suppose a participant in a study fills out several questionnaires
designed to assess racism and other social attitudes. The error terms are correlated,
without a doubt. But if the person also grants access to her cell phone data, then a
racism measure derived from Facebook likes (again imperfect, as always) could arguably
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have an error term independent of the error terms of the self-report data.

As another example, here’s a quote from page 84 in Section 0.10.3 on the double
measurement design in Chapter 0: “. . . farmers who overestimate their number of pigs
may also overestimate their number of cows. On the other hand, if the number of pigs is
counted once by the farm manager at feeding time and on another occasion by a research
assistant from an areal photograph, then it would be fair to assume that the errors of
measurement for the different methods are uncorrelated.” There are more examples in
the BMI Health Study (Section 0.10.4 of Chapter 0, page 89). The point is that error
terms need not always be correlated. If two observable variables are measured by different
methods, on different occasions and ideally by different personnel, it’s usually reasonable
to assume that their errors are independent.

This is where the reference variable rule comes in. Like the double measurement rule,
it allows correlated errors within certain sets of observed variables, as long as there is
zero covariance between sets — and identifiability is still preserved. It requires advance
planning, and the data collection will inevitably be more demanding. However, it’s not
really a lot to ask. In experimental research (with random assignment of cases to treatment
conditions), it is quite common to plan the data collection and statistical analysis at the
same time, and to take a lot of care about the details of procedure. The same thing
applies to good research using strictly observational data. It’s not enough to just hand
out a bunch of questionnaires.

Example 3.4.1 Student Mental Health

Let’s give some content to Figure 3.8. The result will be a re-arrangement of the
observed variables, with some of the curved, double-headed arrows eliminated. Suppose
it’s a study of student mental health. The investigators believe that anxiety and depression
are the two main mental health problems that many young people face. They mean long-
lasting, chronic anxiety and depression, not just getting anxious or sad about something,
and then the feeling passes. The investigators are interested in how these traits are related
to one another. Specifically, they want to estimate the correlation between true (not just
reported) long-term anxiety and true long-term depression.

The participants are volunteer High School students. They all take part in a one-on-
one interview with a clinical psychologist, who asks some very carefully chosen questions,
and assesses them on level of persisting anxiety and level of persisting depression. I am
willing to believe that the anxiety assessment reflects true anxiety plus error, and is not
directly influenced by true depression. I also can believe that the depression assessment
reflects true depression plus error, and is not directly influenced by true anxiety. So both
clinical assessments are reference variables.

Regardless of what the clinical psychologist might claim, it’s unavoidable that common
extraneous factors will affect both assessments. For example, regardless of how skilled and
non-threatening the psychologist might be, some people will just be less likely to report
symptoms; it’s a matter of personal style. The measurement errors of the two clinical
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assessments are correlated, but we can live with it. The variables in the first set are:

d9: Clinical rating of anxiety.

d10: Clinical rating of depression.

Using security camera recordings of students eating lunch in the cafeteria (with everyone’s
permission, of course), the investigators record four social behaviour variables during a
designated twenty-minute period. Correlated errors within this set are very likely.

d1: Speaking time (not on phone).

d2: Listening time (head turned toward speaker).

d5: Number of smiles/laughs while not on cell phone solo9.

d6: Time solo on cell phone.

The following variables are obtained from school records. Measurement errors may not
be correlated within this set, but we will be conservative, and assume they might be. In
any case, it wll be testable.

d3: Grade point average last academic session.

d4: Attendance last academic session.

d7: Hours per week playing school sports.

d8: Hours per week spent on extra-curricular activities, not including school sports.

Comparing the variable numbering and colour coding to Figure 3.8, it can be seen that
two blue variables (d5 and d6) have been grouped with the social behaviour variables, and
the other two blue ones (d7 and d8) have been grouped with the school record variables.
The flexibility of the reference variable rule has been exploited to assemble a model that
makes substantive sense, and still has identifiable parameters because it’s a special case
of what’s allowed. The result is the model of Figure 3.9. This is a good way to apply
the reference variable rule in practice. The proof requires three sets of observed variables,
each with as many observed variables as there are factors, and it allows an additional set
with as many variables as you like. But in practice, one may have an arbitrary number
of variable sets, each with error terms correlated only within the set — provided the
following conditions are met.

• One set consists of a reference variable for each factor.

• Two or more of the other sets of variables have at least as many variables as there
are factors.

9If two people are looking at a phone together, it’s not “solo,” and if they smile or laugh it would be
counted
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Figure 3.9: Model for the student mental health example (Example 3.4)
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Again, the sets of observed variables are defined by having error terms that are correlated
with one another, and uncorrelated with the error terms of variables in the other sets.
The uncorrelated error terms are to be justified by specific features of the research design.
This is both an opportunity and an obligation.

The reference variable rule is much stronger than the three-variable rules (also called
three-indicator rules) given in other textbooks I have seen. For example, in Bollen’s classic
text [10] the “three-indicator” rule on p. 244 is exactly our three-variable rule (Rule 2b).
All the observed variables are reference variables, and the covariance matrix of the error
terms is diagonal. The result is a very restrictive model like the one in Figure 3.4, where
observable variables can be influenced by only one factor. Surely it is better to hypothesize
that certain factor loadings are zero and then test the hypothesis, than to simply assume
that they are zero. Of course the assumption of independent errors is hard to justify as
well, for most data sets. The reference variable rule is a welcome alternative.
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Overfitting There is potential for abuse here. Suppose that as usual, data are collected
without much thought to the confirmatory factor analysis model that will be fit. The error
terms all could be correlated; who knows? All the factors could potentially affect all the
observable variables; who knows? So the data analyst (who knows about the reference
variable rule) picks some variables to be reference variables for the factors, assumes all
the error terms to be independent, and runs the software. The model does not fit. So
he picks some different variables as reference variables, and also semi-arbitrarily groups
the observable variables into clusters, allowing non-zero covariance between error terms
within a cluster. Now the fit is a lot better. The chi-squared test for lack of fit might
even be non-significant. If it is still significant and the investigator keeps trying different
combinations, then sooner or later, one of the models will almost surely fit the data. It is
sort of like ordinary p-hacking10 in reverse. The data analyst keeps trying different things
until the result is not statistically significant.

Has something real been discovered, or is it just an exploitation of random features of
the data? The boundary between data snooping and legitimate exploratory data analysis
is often fuzzy, and this is no exception. The solution, if you engage in this kind of practice,
is replication and cross-validation. An example will be given in Section 3.8.

3.5 More Identification Rules

Combining the two-variable rule for unstandardized factors (page 288) with the equiva-
lence rule yields

Rule 2d: Two-variable Rule The parameters of a factor analysis model are identifi-
able provided

• There are at least two factors.

• There are at least two reference variables for each factor.

• For each factor, either the variance equals one and the sign of one factor loading is
known, or the factor loading of at least one reference variable is equal to one.

• Each factor has a non-zero covariance with at least one other factor.

• Errors are independent of one another and of the factors.

The two-variable rule requires at least two factors, each with two reference variables. In
practice, factors that influence only two observable variables are often part of a larger
system, and there might be only one such factor in the model. The following shows how a
factor with two reference variables can be combined with a model whose parameters have
already been identified in some other way.

10Simonsohn et al. [59] deserve credit for the catchy term “p-hacking. I do not necessarily endorse their
work on the “p-curve.”
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Rule 2e: Two-variable Addition Rule A factor with just two reference variables may
be added to a measurement model whose parameters are identifiable, and the parameters
of the combined model will be identifiable provided

• The errors for the two additional reference variables are independent of one another
and of the error terms already in the model.

• For each factor, either the variance equals one and the sign of one factor loading is
known, or the factor loading of at least one reference variable is equal to one.

• In the existing model with identifiable parameters,

– There is at least one reference variable for each factor, and

– At least one factor has a non-zero covariance with the new factor.

The proof of this rule will be given for standardized factors; the equivalence rule says that
it also applies when a factor loading is set to one for each factor. Assume that there are
already p factors and k observable variables in the model. The additional factor is Fp+1,
and its reference variables are dk+1 and dk+2.

In the existing model, there is a factor that has non-zero covariance with Fp+1. Without
loss of generality, label this factor F1, and let its reference variable be d1. We have

d1 = λ1F1 + e1

dk+1 = λk+1Fp+1 + ek+1 (3.26)

dk+2 = λk+2Fp+1 + ek+2.

The new parameters that need to be identified are λk+1, λk+2, ωk+1, ωk+2, and the covari-
ances between the existing factors and the new factor: φj,p+1 for j = 1, . . . , p.

The covariance matrix of

 d1

dk+1

dk+2

 is

 σ1,1 σ1,k+1 σ1,k+2

σk+1,k+1 σk+1,k+2

σk+2,k+2

 =

 λ2
1 + ω1 λ1λk+1φ1,p+1 λ1λk+2φ1,p+1

λ2
k+1 + ωk+1 λk+1λk+2

λ2
k+2 + ωk+2

 .

Since the signs of λ1 and λk+1 are known, the sign of φ1,p+1 can be determined from σ1,k+1.
Also, note that since λ1 is already identified, it may used along with the σi,j to solve for
new parameters. Then,

σ1,k+1σ1,k+2

σk+1,k+2

=
λ2

1λk+1λk+1φ
2
1,p+1

λk+1λk+2

= λ2
1φ

2
1,p+1.

Assuming λ1 and λk+1 are positive (which they can always be, by naming the factors

appropriately), φ1,p+1 = sign(σ1,k+1)
√

σ1,k+1σ1,k+2

λ21σk+1,k+2
. Since φ1,p+1 is now identified, it can be
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used to solve for other parameters, and

λk+1 =
σ1,k+1

λ1φ1,p+1

λk+2 =
σ1,k+2

λ1φ1,p+1

ωk+1 = σk+1,k+1 − λ2
k+1

ωk+2 = σk+2,k+2 − λ2
k+2.

To identify the covariances of the other factors with Fp+1, place the primary reference
variables for those factors into positions 2, . . . , p of the covariance matrix of observable
variables. Then, for j = 2, . . . , p,

cov(dj, dk+1) = σj,k+1 = λjλk+1φj,p+1 =⇒ φj,p+1 =
σj,k+1

λjλk+1

.

This establishes the two-variable addition rule.

The Combination Rule The two-variable addition rule reflects how parameter identi-
fiability is usually established in practice for big measurement models. Parts of the model
are identified, and then they are combined with other factors and variables to produce
larger sub-models whose parameters are identifiable. Then the sub-models are combined.
The combination rule says that sub-models with identifiable parameters may be combined,
provided that the error terms of the two models have zero covariance.

Rule 2f: Combination Rule Suppose that two factor analysis models are based on
non-overlapping sets of observable variables from the same data set, and that the param-
eters of both models are identifiable. The two models may be combined into a single
model provided that the error terms of the first model are independent of the error terms
in the second model. The additional parameters of the combined model are the covari-
ances between the two sets of factors. These are all identifiable, except possibly on a set
of volume zero in the parameter space.

Proof. Let the first model have p1 factors and k1 observable variables, and let the second
model have p2 factors and k2 observable variables. Separate the first set of observable
variables into two subsets, with p1 variables in the first subset, and k1 − p1 variables in
the other subset. Do the same thing for the other model. The criteria for separating the
variables into subsets will be described presently. The model equations are now

d1 = Λ1F1 + e1

d2 = Λ2F1 + e2

d3 = Λ3F2 + e3

d4 = Λ4F2 + e4
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The matrix of factor loadings Λ1 is p1×p1. The variables in d1 are selected to ensure that
Λ1 has an inverse. The variables in d3 are selected so that Λ3 has an inverse. Suppose
it is impossible to select a subset of observable variables so that Λ1 has an inverse. If
so, the columns of the combined matrix of factor loadings for the first model are linearly
dependent. This holds only a set of volume zero in the parameter space. The same applies
to the second model.

In the combined model, the only new parameters are contained in the p1 × p2 matrix
cov(F1,F2), which will be denoted by Φ12. We have

cov(d1,d3) = cov(Λ1F1 + e1,Λ3F2 + e3)

= Λ1cov(F1,F2)Λ>3 + O + O + O

= Λ1Φ12Λ
>
3

Since the matrices Λ1 and Λ3 are already identified, they may be used to solve for Φ12.
Denoting cov(d1,d3) by Σ13,

Λ−1
1 Σ13

(
Λ>3
)−1

= Λ−1
1 Λ1Φ12Λ

>
3

(
Λ>3
)−1

= Φ12,

completing the proof.

Note that if the factor analysis sub-models have been identified using any of the rules
given so far in this chapter, then there is at least one reference variable for each factor.
In this case, Λ1 and Λ3 are diagonal matrices with non-zero diagonal elements, and both
inverses exist. If factor loadings have been set to one in the surrogate models, then Λ1 and
Λ3 are identity matrices. In practice, the part of the combination rule that says “except
possibly on a set of volume zero” does not come into play.

The Extra Variables Rule The extra variables rule says that if the parameters of
a factor analysis model are identifiable, more observable variables may be added to the
model without adding any new factors. Identifiability is preserved, provided that the error
terms for the new variables are uncorrelated with the error terms for observable variables
already in the model (as well as being uncorrelated with the factors, of course). It is okay
for the error terms of the additional variables to be correlated with one another. Straight
arrows with factor loadings on them may point from each existing factor to each new
variable. It is not necessary to include all such arrows. There are no restriction on the
factor loadings of the variables that are being added to the model.There are no restriction
on the covariances of error terms for the new set of variables, except that they must not
be correlated with error terms already in the model.

The extra variable rule and the reference variable rule have something in common.
They both allow inclusion of an additional set of observable variables that are influenced
by all factors, and whose error terms need not be independent. When both rules apply,
the reference variable rule may be preferable, because it allows some covariances between
the error terms of the new variables and the error terms of variables already in the model;
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hence; it is more flexible. On the other hand, to add more observable variables to a non-
standard model like the one in the political democracy Example 3.3.2, the extra variables
rule is the way to go.

Rule 2g: Extra Variables Rule If the parameters of a factor analysis model are
identifiable, then a set of additional observable variables (without any new factors) may
be added to the model. In the path diagram, straight arrows with factor loadings on
them may point from each existing factor to each new variable. Error terms for the new
variables may have non-zero covariances with each other. If the error terms of the new
set have zero covariance with the error terms of the initial set and with the factors, then
the parameters of the combined model are identifiable, except possibly on a set of volume
zero in the parameter space.

Proof. In the initial model, there are p factors and k1 observed variables. All parameters
of the initial model are identifiable. The observed variables of the initial model are divided
into two subsets, one with p variables, and the other with k1 − p variables. The model
equations are

d1 = Λ1F + e1

d2 = Λ2F + e2

d3 = Λ3F + e3,

where the observed variables from the initial model are in d1 and d2, and the new variables
are in d3. The variables in d1 are chosen so that the p× p matrix Λ1 has an inverse. This
will be impossible if and only if the entire matrix of factor loadings for the initial model
has columns that are linearly dependent, a condition that holds on a set of volume zero
in the parameter space.

We have cov(F) = Φ and

cov

 e1

e2

e3

 =

 Ω11 Ω12 0
Ω22 0

Ω33

 .

The parameters to be identified are in the matrices Λ3 and Ω33. The covariance matrix
of the observable variables is

cov

 d1

d2

d3

 = Σ =

 Σ11 Σ12 Σ13

Σ22 Σ23

Σ33


=

 Φ + Ω11 ΦΛ>2 ΦΛ>3
Λ2ΦΛ>2 + Ω22 Λ2ΦΛ>3

Λ3ΦΛ>3 + Ω33

 .
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The parameters of the initial model are all identifiable, so they may be used to solve for
the matrices Λ3 and Ω33. This is straightforward:

Λ3 = Σ>13Φ
−1

Ω33 = Σ33 −Λ3ΦΛ>3 �

The Error-free Rule Starting with a factor analysis model with identifiable parame-
ters, add an observable variable to the factors. Often it’s an observed exogenous variable
(like sex or a dummy variable for experimental condition) that is hypothesized to affect
some of the latent variables in a general structural equation model. It is convenient to
make such variables part of the latent variable model.

Suppose parameters of an existing factor analysis model with p factors) are all iden-
tifiable. Add an observable scalar variable x that is independent of the error terms, and
may have non-zero covariances with the factors. Thinking of x as an additional factor,
we are adding a row (and column) to Σ, and a row (and column) to Φ. There are p + 1
additional parameters that need to be identified. One of these is the variance of x, which
is obtained immediately as φp+1,p+1 = σk+1,k+1. The other new parameters are covariances
between x and the factors, which are identified as follows.

As in a couple of earlier proofs, the observed variables from the existing model are
divided into two vectors d1 and d2, yielding the model equations

d1 = Λ1F + e1

d2 = Λ2F + e2

where the variables in d1 are chosen so that the p× p matrix Λ1 has an inverse. This will
be impossible if and only if the entire matrix of factor loadings for the existing model has
columns that are linearly dependent, a condition that holds on a set of volume zero in
the parameter space.

Let Σx,d1 denote the vector of covariances between x and the variables in d1, and let
Φx,F denote the vector of covariances between x and the other factors. Σx,d1 is part of
the last row (column) of Σ, and Φx,F is part of the last row (column) of Φ. We have

Σx,d1 = cov(x,d1)

= cov(x,Λ1F + e1)

= Λ1cov(x,F + cov(x, e1))

= Λ1Φx,F + 0,

so that Φx,F = Λ−1
1 Σx,d1 . Since Λ1 is already identified, this completes the proof of the

error-free rule. The rule will be stated as it applies to a vector of new observed variables.

Rule 2h: The Error-free Rule A set of observable variables may be added to the
factors of a measurement model whose parameters are identifiable, provided that the new
observed variables are independent of the error terms that are already in the model. The
parameters of the resulting model are identifiable, except possibly on a set of volume zero
in the parameter space.
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3.6 Putting the Rules Together

Figure 3.10 shows a big, hairy confirmatory factor analysis model. Trying to establish

Figure 3.10: A Confirmatory Factor Analysis Model
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identifiability by solving covariance structure equations would be a huge clerical task;
instead, we will use the identifiability rules. See Appendix D for a collection of the
identifiability rules in outline form.

There are twelve observable variables, so that Σ has 12(12+1)/2 = 78 unique elements.
The number one on some of the straight arrows tells us that this is a surrogate model in
which at least one factor loading has been set to one for each factor. Counting parameters,
there are 4 variances of the factors (denoted φj,j), 4 possibly non-zero covariances between
factors, and 7 factor loadings that are not fixed to the value one. There are 12 error
variances (denoted ωj,j), and 2 possibly non-zero covariances between error terms. In all,
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that’s 78 covariance structure equations in 4 + 4 + 7 + 12 + 2 = 29 unknown parameters.
Because there are more covariance structure equations than parameters, the model passes
the test of the parameter count rule, and identifiability cannot be ruled out.

We will establish identifiability in two ways, first without using the reference variable
rule, and then using it.

Without using the reference variable rule The strategy will be to apply the rules to
parts of the model, and then put the sub-models together. First, consider the sub-model
involving F1, d1, d2 and d3. Its parameters are identifiable by the three-variable rule,
provided that λ2 and λ3 are both non-zero. This could be verified empirically by testing
H0 : Corr(d1, d2) = 0 and H0 : Corr(d1, d3) = 0. We have identified six parameters: φ1,1,
λ2, λ3, ω1,1, ω2,2 and ω3,3.

Next, look at the part involving F3, F4, and d5 through d8. The double measurement
rule covers this, including the covariance between e6 and e7. Just consider d6 and d7 to
be part of the same “set” of measurements, perhaps conducted at the same time by the
same personnel. This identifies eight more parameters: φ3,3, φ4,4, φ3,4, ω5,5, ω6,6, ω7,7, ω8,8

and ω6,7.

Now put the two sub-models together using the combination rule. Notice that the
variables d4 and d12 are not included yet; they are being saved for later. Also, the zero
covariance between F1 and the other factors presents no obstacle. No new parameters
have been identified in this case, but merging the sub-models helps with the next step.

The next step is to add the part involving F2, d9 and d10 to the combined sub-model.
The two-variable addition rule allows this, provided φ1,2, φ2,3 and φ2,4 are not all zero.
According to the model, if φ1,2 were zero, then d9 and d10 would be uncorrelated with d1,
d2 and d3; this is testable. The conditions φ2,3 6= 0 and φ2,4 6= 0 could be verified in a
similar way, and only one of the three covariances with F2 needs to be non-zero for the
two-variable addition rule to apply. In this way, seven more parameters are identified:
φ2,2, φ1,2, φ2,3, φ2,4, λ6, ω9,9 and ω10,10.

At this point, we have a (big) sub-model whose parameters are all identifiable, and
which includes all the factors. Now use the extra variables rule to add the remaining
observable variables d4, d11 and d12, quickly checking that their error terms are not cor-
related with any of the error terms already in the model. Eight more parameters are
identified: λ4, λ5, λ7, λ8, ω4,4, ω11,11, ω12,12 and ω11,12.

That does it. There were 29 parameters to identify, and we identified 6+8+7+8 = 29.
Notice how, at several points in the argument, empirical tests were proposed to verify that
the true parameter vector was in a region of the parameter space where the parameters
involved were identifiable. One can extend this dual strategy of identification checking
and empirical testing, by testing sub-models for fit, and then testing fit again as the sub-
models are combined. This way, if the final model does not fit the data, you probably
will have a good idea why.

Checking identifiability using the reference variable rule The rule requires that
the number of observable variables be at lest three times the number of factors. The model
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has four factors and twelve observable variables, so the first requirement is satisfied —
just barely. The next requirement is that every factor have at least one reference variable.
A quick glance verifies this condition. In fact, every factor has at least two reference
variables. At least one reference variable for every factor has a factor loading of one, so
this is a nice unstandardized surrogate model; the third condition of the rule is satisfied.

The model has only two non-zero covariances between error terms, so as long as d6 and
d7 go in the same set of variables and d11 and d12 do in the same set, all the parameters
are identifiable except possibly on a set of volume zero in the parameter space. Let’s take
a closer look at this issue.

Referring back to Model (3.25) on page 306, observe that the lowerdimensional set of
parameter values where identifiability fails is the set where the square sub-matrices Λ2

and Λ3 do not have inverses. Mathematically, this could happen just because of the values
that the factor loadings happen to have, and there’s really nothing we can do about it.
More concerning would be if it happened because of definite zeros in a model we more
or less believe, like the model of Figure 3.10. To check this, I wrote down the factor
matrix, shown in (3.27). The rows are re-arranged (there is more than one way to do it)
so that Λ2 and Λ3 both have inverses, provided that most of the λj are non-zero. The
only exception I see is that λ4 could be zero. The other way of proving identifiability
(without the reference variable rule) also requires that most of the λj be non-zero.

 Λ1

Λ2

Λ3

 =

F1 F2 F3 F4

d1 1 0 0 0
d9 0 1 0 0
d6 0 0 1 0
d7 0 0 0 1
d2 λ2 0 0 0
d10 0 λ6 0 0
d5 0 0 1 0
d8 0 0 0 1
d4 λ4 0 λ5 0
d3 λ3 0 0 0
d11 0 λ7 0 0
d12 0 0 0 λ8

(3.27)

Most of the time, it is not necessary to write down the complete factor matrix in order to
verify that the reference variable rule applies — but it’s quite informative here. The main
lesson is that while the model of Figure 3.10 seems to have a lot of arrows, it is actually
a very sparse special case of the model (Model 3.25) that underlies the reference variable
rule. In (3.27), 25 factor loadings are set to zero or one, while they are unconstrained under
Model (3.25). These all represent testable null hypotheses11 rather than assumptions. In
addition, Figure 3.10 has only two potentially non-zero covariances between error terms,
while Model (3.25) allows 3× p(p− 1) = 36. In all, that’s 25 + 34 = 59 ways in which the

11A factor loading will equal one under this surrogate model if and only if two factor loadings are equal
under the original model.
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model of Figure 3.10 might fail to fit the data, while Model (3.25) could fit very well.
This raises a question. What should be done if the model does not fit? If one is using

the reference variable rule, the answer is pretty obvious. Fit a model with the factor
loadings in Λ2 and Λ3 unconstrained, and test the 25 null hypotheses with z-tests. Any
null hypothesis that is rejected points to a constraint on the parameter values that is
contributing to the lack of fit. If the model with unconstrained factor loadings still does
not fit, a second line of attack is to start testing hypotheses about covariances between
error terms. This is tough to do in an honest way without more information about how
the data were collected. The observable variables may not naturally divide themselves
into subsets whose error terms can be assumed independent, because the study may not
have been planned with this in mind.

This is all possible with the reference variable rule in hand. Without the rule, it would
be hard to know what to do. The only real choice would be to start guessing and trying
to solve equations. Good luck.

More examples of applying the rules

Example 3.6.1 A latent variable regression

This example is based on the fact that a regression model with latent explanatory variables
and observed response variables may be viewed as a confirmatory factor analysis model.
Figure 3.11 reproduces Figure 19 on page 117. The reference variable rule does not apply

Figure 3.11: Regression with latent explanatory variables as a confirmatory factor analysis
(Reproduction of Figure 19)
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because there are two factors and only 5 < 6 observable variables, but the parameters are
immediately identifiable by the two-variable rule, except at points in the parameter space
where φ1,2 = 0. Detailed calculations like the ones in Chapter 0 are usually unnecessary
if you know some identifiability rules.
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Example 3.6.2 A second-order factor analysis

Figure 3.12 shows a simple second-order factor analysis model. The idea behind higher
order factor analysis is that the observed variables reflect a set of unobservable factors,
and those factors in turn reflect the operation of another set of factors at a deeper level.
In principle, there could be third-order factors influencing the second-order factors, and

Figure 3.12: Second-order factor analysis
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so on.
In a higher-order factor analysis model, the higher-order factors (second order and

above) have no direct influence on the observed variables. Perhaps surprisingly, it is still
possible to apply the identifiability rules we have. In Figure 3.12, none of the factor
loadings is explicitly set to one, so assume the factors are standardized, and that the sign
of one factor loading is known for each factor. This includes the set λ10, λ11 and λ12.

To check identifiability, adopt a two-stage approach. First, look at the first-order
factors F1, F2 and F3. Imagine curved, double headed arrows connecting them. The
covariances will be determined by λ10, λ11 and λ12, but ignore F4 and the straight arrows
from F4 to the first-order factors for now.

It’s clear that the system involving F2, F3 and d3 through d8 is identified by the three-
variable rule, and then the system involving F1, d1 and d2 can be brought in with the
two-variable addition rule. The factor loadings λ1 through λ9 and the error variances ω1

through ω9 have all been identified, as have the covariances (correlations) of F1, F2 and
F3.

Now think of F1 through F3 as observed variables, and let their correlation matrix
(identified by the argument above) play the role of Σ. By the three-variable rule, the
factor loadings λ10 through λ12 are all identifiable, provided they are non-zero. That’s it,
and that’s how it goes in general. The stages in the identifiability proof follow the stages
in the model.
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Example 3.6.3 Another higher-order model

Figure 3.13 shows another confirmatory factor analysis model. This one is a sort of
hybrid, with both first-order and second-order features. A picture like this could arise

Figure 3.13: Mixed first-order and second-order factor analysis
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quite naturally in the course of model development. The investigator has several factors
in mind, and several observed variables designated to measure each one. For example in
Figure 3.13, d1 through d4 could be measures of left-right political orientation, d5 through
d11 could be measures of academic performance (which would be called “intelligence” by
some), and d12 through d14 could be measures of self-esteem. To check uni-dimensionality,
the investigator carries out separate exploratory factor analyses (yes, exploratory) on the
three subsets of observable variables. If everything is okay, a single-factor model should
fit each one.

It works out okay for political orientation and self esteem, but for d5 through d11, two
factors are required. After rotation, it looks like d5 through d7 load primarily on one
factor, while d8 through d11 load on the other. The first set of variables depend on solving
puzzles and math problems, while the second set depend on knowing the definitions of
words and on reading a brief passage and then answering questions about it. One could
call these factors “Math” and “Verbal,” and nobody would argue.

Unfortunately, the factors are orthogonal, because it’s a generic exploratory factor
analysis model. It may fit the data, but only because of the arrows running from F1 to
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d8 through d11, and from F2 to d5 through d7. This crossover pattern is not identifiable
(the extra variables rule does not apply), and it’s incompatible with the path diagram
in Figure 3.13. Also, separate Math and Verbal factors do not accord with the investi-
gator’s theory or research questions, which are about a single thing called “intelligence.”
Figure 3.13 shows a really nice solution, which allows the Math and Verbal factors to be
somewhat distinct, but correlated because they both reflect a second-order factor — and
that factor is what the investigator wants to study.

Two comments are in order. First, I did not think of this cute data analysis trick. I
saw it in a low-grade empirical research paper, and I am still searching for the source of the
idea so I can give proper credit. Second, the forgoing discussion points out the fact that
like most statistical methods, confirmatory factor analysis is often used in an exploratory
way. In practice, the user will try quite a few models until finding one that fits the data
adequately, and then carry out a boatload of statistical tests. In the end, only one model
and a few of the tests will be reported, and the discussion will make it seem like it was
planned all along. There is lots of opportunity for overfitting, and for apparent findings
that actually reflect coincidences in the data. The solution is to replicate the results on
a second, independent set of data. Without this kind of cross-validation, the so-called
“conclusions” should be treated as data-driven hypotheses. Again, this situation is not
limited to confirmatory factor analysis and structural equation models. It is true of most
statistical applications.

Now consider identifiability for Figure 3.13. Parameters of the first-order system
involving F1 and F2 (with a curved, double-headed arrow between the factors) and d5

through d11 are identifiable by the three-variable rule. Now bring d1 through d4 and
d12 through d14 into the first-order model, using the error-free rule. That is, treat these
observable variables as factors that are measured without error. The result is an ordinary
second-order factor analysis model in which the second-order factors are F3, F4 and F5.
The system involving F3 and F5 is identified12 by the three-variable rule. The system
involving F1, F2 and F4 is then brought in with the two-variable addition rule.

All the parameters are identifiable except on a set of volume zero in the parameter
space, so it’s mission accomplished — sort of. In this case, the set of volume zero where
identifiability fails happens to include some interesting points, namely the points where
Cov(F3, F4) = 0 and Cov(F4, F5) = 0. At least one of these covariances needs to be
nonzero in order for the two-variable addition rule to work in the last stage of the proof.

The whole point of the study is probably the connections between F3, F4 and F5. If
the investigator tries to test the null hypothesis that all three covariances are zero using a
likelihood ratio test, the process will fail. It will be impossible to fit the restricted model,
because the likelihood function will have a non-unique maximum on an infinte connected
set. If in reality part of the null hypothesis is true, with both Cov(F3, F4) = 0 and
Cov(F4, F5) = 0, then there could easily be numerical difficulties in fitting the unrestricted
model. Fortunately, the model says that Cov(F3, F4) = 0 if and only if the matrix of
covariances between (d1, d2, d3, d4)> and (d5, . . . , d11)> consists only of zeros. This can

12That is, the parameters are a function of the variances and covariances of the first-order factors,
which in turn are functions of the variances and covariances of the observable variables.
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be tested with off-the-shelf canonical correlation methods (see R’s CCP package), and
Cov(F4, F5) = 0 can be diagnosed in a similar way.

3.7 Standardized Observed Variables

Standardizing the observed variables is familiar from exploratory factor analysis; see
Chapter 2. In confirmatory factor analysis, it is a change of variables that leads to another
level of surrogate model, beyond the standard choices of standardizing factors or setting
factor loadings to one. Figure 3.14 shows the most common situation. Standardizing

Figure 3.14: Standardizing the Observed Variables

Original Model Centered Original Model

Model One

Model Two Model Three

the observed variables just means dividing them by their standard deviations, since they
already have expected value zero under the common centered surrogate models. While
this operation may be applied at any point in the re-parameterization process, it is most
commonly applied to a model with standardized factors (Model Two). The surrogate
model with both standardized factors and standardized observed variables will be called
Model Three.

Consider the model equations d = ΛF + e, with the double primes (if any) hidden,
and not bothering to separate the data vector into d1 and d2. Let W = dg(Σ), where as
usual, Σ = cov(d). Then,

z = W−1/2d

= W−1/2(ΛF + e)

= (W−1/2Λ)F + (W−1/2e)

= Λ′′′F + e′′′,

where
Λ′′′ = W−1/2Λ and cov(e′′′) = Ω′′′ = W−1/2ΩW−1/2. (3.28)

One thing to notice about standardizing the observed variables is that while it affects Λ
and Ω, the covariances between factors in the matrix Φ are unaffected. This is a fortunate,
since observed variables are usually standardized only if the factors are standardized, and
when the factors are standardized, covariances between factors equal correlations under
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the original model. The nice interpretation is preserved – so at least, standardizing the
observed variables does no harm.

It can also do some good. We will now see that when the observed variables are
standardized, the factor loading for a reference variable is the correlation of the reference
variable with the latent variable it measures, under the original model. Also, the variance
of the error term (for all observed variables, not just reference variables) is the proportion
of variance in that variable that is due to error — again, under the original model.

Correlations between factors and their reference variables Let d` be a refer-
ence variable for factor j, so that under the centered original model, d` = λ`,jFj + e`.
Choosing explicitness over simplicity, we will employ the notation of Section 3.3.1, and
use double primes to indicate quantities under Model Two, in which the factors have been
standardized. We have

cov(Fj, d`) = cov(Fj, λ`,jFj + e`)

= cov(Fj, λ
′′′
`,j Fj + e′′′` )

= λ`,jcov(Fj, Fj) + cov(Fj, e`)

= λ`,jφj,j,

so that

corr(Fj, d`) =
λ`,jφj,j√
φj,j
√
σ`,`

=
λ`,j
√
φj,j

√
σ`,`

. (3.29)

Consider the model with both Fj and d` standardized. Recalling how we got there,

d` = λ`,jFj + e`

= λ`,j
√
φj,j

(
1√
φj,j

)
Fj + e`

= λ′′`,jF
′′
j + e`.

Then standardizing d` as well,

z` =
1
√
σ`,`

λ′′`,jF
′′
j +

1
√
σ`,`

e`

= λ′′′`,j F
′′
j + e′′′` .
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Now un-wrap λ′′′`,j, the factor loading of the reference variable under this “completely
standardized” model13.

λ′′′`,j =
1
√
σ`,`

λ′′`,j

=
1
√
σ`,`

λ`,j
√
φj,j,

which is exactly expression (3.29) for the correlation between the factor and its reference
variable, under the original model. Squaring the factor loading yields the reliability of the
reference variable — the proportion of variance in the reference variable that arises from
the quantity it is measuring, and not error. It is always helpful when the parameters of a
surrogate model correspond to something important about the original model.

Uniqueness As discussed in Chapter 2, the uniqueness of an observed variable is the
proportion of its variance that comes from error (the unique factor) and not the common
factors. For reference variables, the uniqueness is one minus the reliability.

Let λ` denote row ` of the factor matrix Λ in the original model. This is the row
corresponding to the observed variable d`. If d` is a reference variable, λ` has only one
non-zero element, but that need not be the case here. If the observed variables are not
standardized, d` = λ`F + e`. When the observed variables are standardized (whether or
not the factors are standardized as well), z` = λ′′′` F + e′′′` , and

V ar(z`) = cov(λ′′′` F + e′′′` )

= λ′′′` Φλ′′′>` + ω′′′`,`. (3.30)

By (3.28), ω′′′`,` = ω`,`/σ`,`. It is exactly the uniqueness of d` under the original model. That
is, it is the proportion of variance in the observed variable d` that comes from error (the
unique factor) and not the common factors. For example, if the value of such a parameter
is something like 0.85, it means that the variable in question is 85% noise. Uniqueness
is worth estimating, and standardizing the observed variables makes the process more
convenient.

Reduction of the parameter space Because var(z` = 1), expression (3.30) says that
ω′′′`,` = V ar(e′′′` ) = 1 − Λ′′′` ΦΛ′′′>` . That is, the variances of the error terms are functions
of the other parameters in the model. The dimension of the parameter space has been
reduced by k, the number of observed variables. We will now see that for almost all models
used in practice, this reduction of the parameter space has no effect on identifiability or
model fit.

13Some software, including lavaan, calls models and their estimates “completely” standardized when
both the factors and the observable variables are standardized
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A modest assumption As in 3.30, d` = λ`F+e` implies V ar(d`) = σ`,` = λ`Φλ
>
` +ω`,`.

That is, the variances of the observed variables are something plus an ω`,`. Suppose that
this is the only place in Σ where ω`,` appears, and also suppose that for ` = 1, . . . , j, the
error variance ω`,` is not subject to any constraints, such as some of them being equal to
one another or to other model parameters. This is typical of most models used in practice,
and it leads to some useful conclusions.

Identifiability When solving covariance structure equations to prove identifiability, it
is natural to set the diagonal elements of Ω aside and solve for the other parameters
first. If it works, one can then obtain the error variances by subtraction. When the
observed variables are standardized, the whole process is the same except that the last
step is omitted. This implies that the identifiability status of a model is not changed if the
observed variables are standardized — given the “modest assumption” of the paragraph
above.

Equal diagonals Recall the meaning of Σ(θ). It’s just the covariance matrix of the
observable variables (that is, Σ), written as a function of the model parameters θ.

As mentioned back on page 171, maximum likelihood estimation often proceeds by
minimizing the objective function g(θ) = tr(Σ̂Σ(θ)−1) − log |Σ̂Σ(θ)−1| − k, which is
equivalent to minimizing the minus log likelihood. The function g(θ) is a lot like a

distance between Σ(θ) and Σ̂14. Other things being equal, anything that brings Σ(θ)

closer to Σ̂ will reduce the value of g(θ). In particular, for any fixed values of the matrices
Λ and Φ (and regardless of the the off-diagonal elements of Ω), letting ω`,` = σ̂`,`−λ`Φλ>`
for ` = 1, . . . , k will make the main diagonals of Σ(θ) and Σ̂ coincide, resulting in a lower

value of g(θ). This also holds when Λ = Λ̂ and Φ = Φ̂. The conclusion is that for

` = 1, . . . , k, we have σ̂`,` = λ̂`Φ̂λ̂
>
` + ω̂`,`. The right-hand side is a diagonal element of

Σ(θ̂), so that dg(Σ(θ̂)) = dg(Σ̂). Another way to express this is

W(θ̂) = Ŵ. (3.31)

This equality will come in handy very shortly. Once again, it holds when the error
variances ω`,` appear only in the diagonal of Ω, and are otherwise unconstrained15.

14It is non-negative, and it equals zero if and only if Σ(θ) = Σ̂. I’m not sure whether it obeys the
triangle inequality. This gap makes the argument less rigorous.

15Of course the model implies some constraints on the ω`,`. Since they are variances, they are must be
non-negative. Also, if the covariance matrix Ω has any non-zero off-diagonal elements, the fact that it
must be non-negative definite places additional limitations on the possible values of ω`,`. However, these
constraints are not automatically enforced in a numerical search for the MLE, unless the user explicitly
specifies inequality constraints. The result is that as the numerical optimization forces dg(Σ(θ̂)) toward

dg(Σ̂), an ω̂`,` or two can easily become negative for some models and some data sets. This is the dreaded
Heywood case (see p. 226). For a sufficiently large sample size, the consistency of maximum likelihood
estimation guarantees that it cannot happen if the model is correct and the true parameter vector is in
the interior of the parameter space. Negative variance estimates are a sign of poor model fit.
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Estimation Parameter estimates for a model in which the observed variables are stan-
dardized may be obtained without re-fitting the model. The key is Expression (3.28),
which is reproduced here for convenience. In most applications, Λ and Ω contain pa-
rameters from a surrogate model with standardized factors, so one could say they have
invisible double primes.

Λ′′′ = W−1/2Λ and cov(e′′′) = Ω′′′ = W−1/2ΩW−1/2.

It is tempting to just put hats on everything and invoke invariance, but you need to watch
out. While Ŵ = dg(Σ̂) and Σ̂ is an MLE, it’s an MLE based on a generic multivariate
normal model, not the same as the factor analysis model with Λ and Ω. What we really
want is

Λ̂
′′′

= W(θ̂)−1/2Λ̂ and Ω̂
′′′

= W(θ̂)−1/2 Ω̂ W(θ̂)−1/2. (3.32)

The distinction between Ŵ and W(θ̂) does not matter when (3.31) holds, which is most
of the time. Still, it’s nice to know that lavaan uses (3.32). It took me a fair amount of
work to verify this, because it’s not that easy to come up with a model where (3.31) fails
badly enough to have a noticeable effect.

To obtain standard errors and tests for a model with standardized observed variables,
it is necessary to re-fit the model. There are two natural ways to proceed. The most
obvious way is to literally standardize the observed variables; subtract off the sample
means and then divide by the sample standard deviations16. The same results may be
obtained by analyzing the sample correlation matrix rather than the covariance matrix.
This will be illustrated in Section 3.8.

Testing goodness of fit When Expression (3.31) holds, standardizing the observed
variables has no effect on the likelihood ratio test for model fit. This is established in the
following theorem.

Theorem 3.1 For a centered confirmatory factor analysis model, let θ denote the pa-
rameter vector, and let Σ = Σ(θ) denote the k × k variance covariance matrix of the

observable variables. The unique MLE of θ is θ̂, and the sample variance-covariance
matrix of the observable variables is Σ̂. Let Ŵ = dg(Σ̂) and W(θ̂) = dg(Σ(θ̂)). If

Ŵ = W(θ̂), then the test statistic of the likelihood ratio test for goodness of model fit is
unchanged when the observed variables are standardized.

Proof As given in (1.18), the test statistic for a model with unstandardized observed

variables is G2 = n(tr{Σ̂Σ(θ̂)−1} − log |Σ̂Σ(θ̂)−1| − k). In the model with standardized

observed variables, Σ̂ is replaced by the sample correlation matrix Ŵ− 1
2 Σ̂ Ŵ− 1

2 , and

16Make sure you have n rather than n− 1 in the denominators of the standard deviations. This way,
you are working with true MLEs.
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Σ(θ̂) is replaced by W(θ̂)−
1
2 Σ(θ̂) W(θ̂)−

1
2 . The resulting test statistic is

G2
s = n

(
tr

{
Ŵ− 1

2 Σ̂ Ŵ− 1
2

(
W(θ̂)−

1
2 Σ(θ̂) W(θ̂)−

1
2

)−1}
− log

∣∣∣∣Ŵ− 1
2 Σ̂ Ŵ− 1

2

(
W(θ̂)−

1
2 Σ(θ̂) W(θ̂)−

1
2

)−1∣∣∣∣− k)
= n

(
tr

{
Ŵ− 1

2 Σ̂ Ŵ− 1
2

(
Ŵ− 1

2 Σ(θ̂) Ŵ− 1
2

)−1}
− log

∣∣∣∣Ŵ− 1
2 Σ̂ Ŵ− 1

2

(
Ŵ− 1

2 Σ(θ̂) Ŵ− 1
2

)−1∣∣∣∣− k)
= n

(
tr
{

Ŵ− 1
2 Σ̂ Ŵ− 1

2 Ŵ
1
2︸ ︷︷ ︸ Σ(θ̂)−1 Ŵ

1
2

}
− log

∣∣∣Ŵ− 1
2 Σ̂ Ŵ− 1

2 Ŵ
1
2︸ ︷︷ ︸ Σ(θ̂)−1 Ŵ

1
2

∣∣∣− k)
= n

(
tr
{

Ŵ− 1
2 Σ̂ Σ(θ̂)−1 Ŵ

1
2

}
− log

∣∣∣Ŵ− 1
2 Σ̂ Σ(θ̂)−1 Ŵ

1
2

∣∣∣− k)
= n

(
tr
{

Ŵ
1
2 Ŵ− 1

2 Σ̂ Σ(θ̂)−1
}
− log

(∣∣∣Ŵ− 1
2

∣∣∣ ∣∣∣Σ̂ Σ(θ̂)−1
∣∣∣ ∣∣∣Ŵ 1

2

∣∣∣)− k)
= n

tr{Σ̂ Σ(θ̂)−1
}
− log


∣∣∣Σ̂ Σ(θ̂)−1

∣∣∣ ∣∣∣Ŵ 1
2

∣∣∣∣∣∣Ŵ 1
2

∣∣∣
− k


= n

(
tr
{

Σ̂ Σ(θ̂)−1
}
− log

∣∣∣Σ̂ Σ(θ̂)−1
∣∣∣− k) .

= G2 �

Normal inference is unaffected by standardizing Theorem 3.1 depends on W(θ̂)

being equal to Ŵ. As indicated in the discussion leading up to (3.31), this condition holds
when the error variances ω`,` appear only in the diagonal of Ω and are not functions of one
another or of other parameters in the model. Most confirmatory factor analysis models
employed in practice enjoy this property. Likelihood ratio tests are differences in G2 fit
statistics between a restricted and an unrestricted model. Wald tests are asymptotically
equivalent to likelihood ratio tests under the null hypothesis. Confidence intervals can be
obtained by inverting tests. The result is that for most confirmatory factor analyses, infer-
ence based on the normal model is unaffected by standardizing the observable variables.
The choice to standardize or not is entirely a matter of convenience and interpretability.

3.8 The Holzinger and Swineford Data with lavaan

The Holzinger and Swineford (1939) data is a classic data set that is used in multiple
textbooks and journal articles. It is included in the lavaan package, and is used in a
confirmatory factor analysis example in the lavaan tutorial. The data were collected on
students in grades seven and eight from two different schools. As in the lavaan tutorial,
attention will be limited to nine tests of “mental ability” that are thought to reflect three
factors: visualization (tests 1, 2 and 3), verbal or text processing (test 4, 5 and 6) and
speed (tests 7, 8 and 9).

Visual Verbal Speed
x1 Visual Perception x4 Paragraph Comprehension x7 Addition
x2 Cubes x5 Sentence Completion x8 Counting Dots
x3 Lozenges x6 Word Meaning x9 Straight-Curved Capitals
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The students actually took 24 tests; the full data set is available in the MBESS package.
Figure 3.15 shows a path diagram. It’s pretty straightforward; all the parameters

are identifiable at a glance by the three-variable rule. As in Jöreskog’s 1969 article [36],
the analyses here will be limited to just the 145 children from the Grant-White school.
This will provide a valuable cross-check of the numbers we obtain. Figure 3.15 represents
Jöreskog’s model (d).

Figure 3.15: Holzinger and Swineford Mental Test Data
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As usual, the R code that follows is not just an example of how to do the job efficiently.
Instead, it explores the capabilities of the software, and seeks to make connections between
the computations and the ideas in the rest of the text. Students who imitate all these
operations to do an assignment are missing the point. The examples you are most likely
to want to follow tend to come near the end. The hope is by that point, you will know
what’s going on.

Acquiring the data

> rm(list=ls())

> # install.packages("lavaan", dependencies = TRUE) # Only need to do this once

> library(lavaan)

This is lavaan 0.6-7

lavaan is BETA software! Please report any bugs.

> # help(HolzingerSwineford1939)

> hs = HolzingerSwineford1939

> hs = subset(hs,school==’Grant-White’); dim(hs) # 145 rows, 15 columns

[1] 145 15

> print(head(hs),digits=3)

id sex ageyr agemo school grade x1 x2 x3 x4 x5 x6 x7 x8 x9

157 201 1 13 0 Grant-White 7 3.83 4.75 0.50 3.33 4.25 1.43 3.00 4.10 4.33

158 202 2 11 10 Grant-White 7 5.50 5.50 2.12 2.67 4.25 1.43 2.83 4.90 5.42
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159 203 1 12 6 Grant-White 7 5.67 6.00 2.75 3.67 4.75 2.71 2.17 4.30 6.33

160 204 1 11 11 Grant-White 7 4.83 5.75 1.12 3.00 4.75 1.57 4.96 5.15 4.00

161 205 1 12 5 Grant-White 7 2.67 6.25 1.25 2.67 6.25 3.43 4.87 6.10 4.44

162 206 2 12 6 Grant-White 7 5.00 6.25 2.50 3.33 5.75 2.57 4.09 5.65 5.58

Standardized factors, complete model specification First, a model will be spec-
ified using the full lavaan syntax, giving names to all the parameters. This is the way it
was done in Chapters 0 and 1. It will be seen presently that there is an easier way to get
the job done.

> swine1 = ’

# Measurement model

+ visual =~ lambda1*x1 + lambda2*x2 + lambda3*x3

+ verbal =~ lambda4*x4 + lambda5*x5 + lambda6*x6

+ speed =~ lambda7*x7 + lambda8*x8 + lambda9*x9

+ # Variances of error terms

+ x1 ~~ omega1*x1; x2 ~~ omega2*x2; x3 ~~ omega3*x3

+ x4 ~~ omega4*x4; x5 ~~ omega5*x5; x6 ~~ omega6*x6

+ x7 ~~ omega7*x7; x8 ~~ omega8*x8; x9 ~~ omega9*x9

+ # Variances of factors equal one

+ visual ~~ 1*visual; verbal ~~ 1*verbal ; speed ~~ 1*speed

+ # Covariances of factors

+ visual ~~ phi12*verbal ; visual ~~ phi13*speed

+ verbal ~~ phi23*speed

+ ’

> smodel1 = lavaan(swine1, data=hs); summary(smodel1)

lavaan 0.6-7 ended normally after 19 iterations

Estimator ML

Optimization method NLMINB

Number of free parameters 21

Number of observations 145

Model Test User Model:

Test statistic 51.542

Degrees of freedom 24

P-value (Chi-square) 0.001

Parameter Estimates:

Standard errors Standard

Information Expected

Information saturated (h1) model Structured

Latent Variables:
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Estimate Std.Err z-value P(>|z|)

visual =~

x1 (lmb1) 0.777 0.103 7.525 0.000

x2 (lmb2) 0.572 0.101 5.642 0.000

x3 (lmb3) 0.719 0.093 7.711 0.000

verbal =~

x4 (lmb4) 0.971 0.079 12.355 0.000

x5 (lmb5) 0.961 0.083 11.630 0.000

x6 (lmb6) 0.935 0.081 11.572 0.000

speed =~

x7 (lmb7) 0.679 0.087 7.819 0.000

x8 (lmb8) 0.833 0.087 9.568 0.000

x9 (lmb9) 0.719 0.086 8.357 0.000

Covariances:

Estimate Std.Err z-value P(>|z|)

visual ~~

verbal (ph12) 0.541 0.085 6.355 0.000

speed (ph13) 0.523 0.094 5.562 0.000

verbal ~~

speed (ph23) 0.336 0.091 3.674 0.000

Variances:

Estimate Std.Err z-value P(>|z|)

.x1 (omg1) 0.715 0.126 5.675 0.000

.x2 (omg2) 0.899 0.123 7.339 0.000

.x3 (omg3) 0.557 0.103 5.409 0.000

.x4 (omg4) 0.315 0.065 4.870 0.000

.x5 (omg5) 0.419 0.072 5.812 0.000

.x6 (omg6) 0.406 0.069 5.880 0.000

.x7 (omg7) 0.600 0.091 6.584 0.000

.x8 (omg8) 0.401 0.094 4.248 0.000

.x9 (omg9) 0.535 0.089 6.010 0.000

visual 1.000

verbal 1.000

speed 1.000

The output is pretty much self-explanatory to a reader who is familiar with the lavaan
examples in Chapters 0 and 1. The estimated covariances (correlations) of the factors
match Jöreskog’s (1969, p. 192) values for Model (d). The factor loadings do not match,
because Jöreskog standardizes the observed variables; we have not done that yet. The
chi-squared test for model fit (χ2(24) = 51.542, df = 21, p = 0.001) indicates that the
model is not fully compatible with the data17. A model based on the reference variable

17Jöreskog’s value for the test of fit is 51.19. That’s close, but not quite equal to the lavaan value. The
reason is that in the formula for the likelihood ratio test test statistic (see Expression (1.18) on page 171)
Jöreskog has a multiplier of n− 1 out in front, in place of n. This makes no difference asymptotically, of
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rule performs better; we will get to that later.

The cfa function The same job can be accomplished with less work, using lavaan’s cfa
(confirmatory factor analysis) function with the default settings. Only the measurement
part of the model needs to be given, and all the Greek letters are gone. There is a lot less
typing. There are also fewer opportunities to make mistakes.

> swine2 = ’visual =~ x1 + x2 + x3

+ verbal =~ x4 + x5 + x6

+ speed =~ x7 + x8 + x9

+ ’

> smodel2 = cfa(swine2, data=hs); summary(smodel2)

lavaan 0.6-7 ended normally after 34 iterations

Estimator ML

Optimization method NLMINB

Number of free parameters 21

Number of observations 145

Model Test User Model:

Test statistic 51.542

Degrees of freedom 24

P-value (Chi-square) 0.001

Parameter Estimates:

Standard errors Standard

Information Expected

Information saturated (h1) model Structured

Latent Variables:

Estimate Std.Err z-value P(>|z|)

visual =~

x1 1.000

x2 0.736 0.155 4.760 0.000

x3 0.925 0.166 5.584 0.000

verbal =~

x4 1.000

x5 0.990 0.087 11.418 0.000

x6 0.963 0.085 11.377 0.000

course. To obtain Jöreskog’s value from the lavaan output, (n− 1)/nG2 = 144/145 ∗ 51.542 = 51.18654.
Jöreskog’s likelihood approach is based on a Wishart distribution for a version of the sample covariance

matrix with n − 1 in the denominator. Some software, including SAS and Amos, follow Jöreskog’s old
LISREL software in this matter. Both lavaan and mplus, like this book, assume a multivariate normal
likelihood for the original data, rather than starting with the covariance matrix.
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speed =~

x7 1.000

x8 1.226 0.187 6.569 0.000

x9 1.058 0.165 6.429 0.000

Covariances:

Estimate Std.Err z-value P(>|z|)

visual ~~

verbal 0.408 0.098 4.153 0.000

speed 0.276 0.076 3.639 0.000

verbal ~~

speed 0.222 0.073 3.022 0.003

Variances:

Estimate Std.Err z-value P(>|z|)

.x1 0.715 0.126 5.675 0.000

.x2 0.899 0.123 7.339 0.000

.x3 0.557 0.103 5.409 0.000

.x4 0.315 0.065 4.870 0.000

.x5 0.419 0.072 5.812 0.000

.x6 0.406 0.069 5.880 0.000

.x7 0.600 0.091 6.584 0.000

.x8 0.401 0.094 4.248 0.000

.x9 0.535 0.089 6.010 0.000

visual 0.604 0.160 3.762 0.000

verbal 0.942 0.152 6.177 0.000

speed 0.461 0.118 3.910 0.000

Let’s take a close look to see what we have. The number of free parameters equals 21, as
in the summary of smodel1. The chi-squared statistics for model fit are the same. This
is promising.

Now compare the estimated factor loadings under Latent Variables in the sum-
maries of smodel1 and smodel2. The numbers are different, but don’t worry about that
yet. The abbreviations for the parameter names are missing for smodel2; this is really
no great loss. The output is quite readable if you understand =~ as standing for “is
measured by.” Under Variances, note that when an observable variable is preceded by
a dot, it means this is the estimated variance not of the variable, but of its error term.
Comparison with the smodel1 summary, which has labels, helps to confirm this. Once
you get used to lavaan output, the parameter labels are really not necessary. If you wish,
you can compromise by supplying names for just some of the parameters. This can be a
convenient way to set two parameters equal; just give them the same name.

In the summary of smodel2, the estimated factor loadings for x1, x4 and x7 are all
equal to one, and there are no standard errors or tests. By default, lavaan is fitting a
surrogate model with a factor loading set to one for each factor; that’s the model described
as “Model One” in Section 3.3.1. The factor loadings of one could be mysterious for users
who don’t know about parameter identifiability, but lavaan is making a choice that’s
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designed to be helpful. It probably is helpful, most of the time.
Just to confirm the meaning of the parameter estimates, recall that under Model One,

the factor loading for x2 is λ′2 = λ2/λ1. Under Model Two,

λ′′2
λ′′1

=
λ2

√
φ11

λ1

√
φ11

=
λ2

λ1

= λ′2.

By invariance, this equality must also be true of the MLEs. This means that λ̂′2 = 0.736
(the factor loading for x2 in the smodel2 summary) can be recovered from the smodel1

output, as follows. λ̂′′2/λ̂
′′
1 =

> 0.572/0.777

0.7361647

We are on the right track. It is clear that the default model fit in smodel2 is the surrogate
model in which a factor loading has been set to one for each factor.

Equal diagonals As given in (3.31), the main diagonal of the reproduced covariance

matrix Σ(θ̂) is able to match the main diagonal of the sample covariance matrix.

> # Checking that the diagonal of Sigma(thetahat) = diagonal of Sigmahat

> x = hs[,7:15]; n = dim(x)[1]

> Sigmahat = (n-1)/n * var(x)

> SigOfThetahat = fitted(smodel2)$cov

> rbind(diag(Sigmahat),diag(SigOfThetahat))

x1 x2 x3 x4 x5 x6 x7 x8 x9

[1,] 1.318647 1.226379 1.073365 1.257212 1.341665 1.280142 1.0618 1.09438 1.051048

[2,] 1.318647 1.226379 1.073365 1.257212 1.341665 1.280142 1.0618 1.09438 1.051048

It worked perfectly, as it does in all but the most peculiar models. Even when they fit
badly overall, confirmatory factor analysis models almost always fit the diagonal of Σ̂
perfectly.

Standardized parameter estimates One often encounters this expression in write-
ups of confirmatory factor analysis and structural equation modelling. It’s a bit mis-
leading, because it’s not the parameter estimates that are standardized. The statistics in
question are parameter estimates for a model with the factors standardized — or both the
factors and the observed variables standardized. The easiest way to get these numbers
from lavaan is by adding the standardized=TRUE option to summary. Notice that the
model does not to be re-fit.

> summary(smodel2, standardized=TRUE)

lavaan 0.6-7 ended normally after 34 iterations
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Estimator ML

Optimization method NLMINB

Number of free parameters 21

Number of observations 145

Model Test User Model:

Test statistic 51.542

Degrees of freedom 24

P-value (Chi-square) 0.001

Parameter Estimates:

Standard errors Standard

Information Expected

Information saturated (h1) model Structured

Latent Variables:

Estimate Std.Err z-value P(>|z|) Std.lv Std.all

visual =~

x1 1.000 0.777 0.677

x2 0.736 0.155 4.760 0.000 0.572 0.517

x3 0.925 0.166 5.584 0.000 0.719 0.694

verbal =~

x4 1.000 0.971 0.866

x5 0.990 0.087 11.418 0.000 0.961 0.829

x6 0.963 0.085 11.377 0.000 0.935 0.826

speed =~

x7 1.000 0.679 0.659

x8 1.226 0.187 6.569 0.000 0.833 0.796

x9 1.058 0.165 6.429 0.000 0.719 0.701

Covariances:

Estimate Std.Err z-value P(>|z|) Std.lv Std.all

visual ~~

verbal 0.408 0.098 4.153 0.000 0.541 0.541

speed 0.276 0.076 3.639 0.000 0.523 0.523

verbal ~~

speed 0.222 0.073 3.022 0.003 0.336 0.336

Variances:

Estimate Std.Err z-value P(>|z|) Std.lv Std.all

.x1 0.715 0.126 5.675 0.000 0.715 0.542

.x2 0.899 0.123 7.339 0.000 0.899 0.733

.x3 0.557 0.103 5.409 0.000 0.557 0.519
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.x4 0.315 0.065 4.870 0.000 0.315 0.251

.x5 0.419 0.072 5.812 0.000 0.419 0.312

.x6 0.406 0.069 5.880 0.000 0.406 0.317

.x7 0.600 0.091 6.584 0.000 0.600 0.566

.x8 0.401 0.094 4.248 0.000 0.401 0.367

.x9 0.535 0.089 6.010 0.000 0.535 0.509

visual 0.604 0.160 3.762 0.000 1.000 1.000

verbal 0.942 0.152 6.177 0.000 1.000 1.000

speed 0.461 0.118 3.910 0.000 1.000 1.000

The standardized=TRUE option has added two columns to the smodel2 summary output:
Std.lv and Std.all. Naturally, Std.lv means that the latent variables (factors) have
been standardized. These numbers perfectly match the Estimate column of the smodel1

summary. The Std.all column gives estimates for a model where the observable variables
as well as the latent variables are standardized. This is sometimes called the “completely
standardized” model.

This time, the estimated factor loadings as well as the correlations between factors
match Jöreskog’s (1969, p. 192) “(d) Restricted Oblique Solution” [36]. This confirms
that the Std.all values are what we think they are – estimates for a model in which both
the factors and the observed variables have been standardized.

Producing the numbers with matrix operations It is instructive to see how the
Std.lv and Std.all values could have been obtained18 from the smodel2 model fit. In
the notation of Section 3.3.1, we are calculating double and triple-prime matrices from
single-prime matrices.

First consider Std.lv. An application of the invariance principle to (3.22), (3.23) and
(3.24) yields

Λ̂
′′
1 = dg(Φ̂

′
)1/2

Λ̂
′′
2 = Λ̂

′
2dg(Φ̂

′
)1/2 (3.33)

Φ̂
′′

= dg(Φ̂
′
)−1/2 Φ̂

′
dg(Φ̂

′
)−1/2.

How can one obtain those single-prime matrices? The parameter estimates in matrix form
are located in “slots” in the fitted lavaan model object. Slots are like properties of the
object, or something. There can be slots within slots. One can refer to a slot of an object
using the @ sign, as in object@slotname. In the object smodel2, the slot called Model is
an object with 59 slots. One of these is named GLIST; it is a list containing the estimated
parameter matrices we want. In the following, single primes are represented by p, and
double primes are represented by pp. After some experimenting,

> Lambda_p = (smodel2@Model)@GLIST$lambda; Lambda_p

[,1] [,2] [,3]

18In the lavaan code, it may be done in a slightly different but equivalent way. I have not lookrd at
the source code.
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[1,] 1.0000000 0.0000000 0.000000

[2,] 0.7361563 0.0000000 0.000000

[3,] 0.9247953 0.0000000 0.000000

[4,] 0.0000000 1.0000000 0.000000

[5,] 0.0000000 0.9897921 0.000000

[6,] 0.0000000 0.9633398 0.000000

[7,] 0.0000000 0.0000000 1.000000

[8,] 0.0000000 0.0000000 1.225840

[9,] 0.0000000 0.0000000 1.057888

Comparing with the numbers in the smodel2 summary, this is definitely Λ̂
′
. Of course, it

doesn’t have the observed variables in d1 and d2 separated. Extracting Λ̂
′
2 and then the

other estimated parameter matrices,

> Lambda2_p = Lambda_p[-c(1,4,7),]; Lambda2_p

[,1] [,2] [,3]

[1,] 0.7361563 0.0000000 0.000000

[2,] 0.9247953 0.0000000 0.000000

[3,] 0.0000000 0.9897921 0.000000

[4,] 0.0000000 0.9633398 0.000000

[5,] 0.0000000 0.0000000 1.225840

[6,] 0.0000000 0.0000000 1.057888

> Omega = (smodel2@Model)@GLIST$theta; Omega

[,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8] [,9]

[1,] 0.7148977 0.0000000 0.0000000 0.0000000 0.0000000 0.00000 0.0000000 0.0000000 0.000000

[2,] 0.0000000 0.8991918 0.0000000 0.0000000 0.0000000 0.00000 0.0000000 0.0000000 0.000000

[3,] 0.0000000 0.0000000 0.5570105 0.0000000 0.0000000 0.00000 0.0000000 0.0000000 0.000000

[4,] 0.0000000 0.0000000 0.0000000 0.3153055 0.0000000 0.00000 0.0000000 0.0000000 0.000000

[5,] 0.0000000 0.0000000 0.0000000 0.0000000 0.4188895 0.00000 0.0000000 0.0000000 0.000000

[6,] 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000 0.40603 0.0000000 0.0000000 0.000000

[7,] 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000 0.00000 0.6004945 0.0000000 0.000000

[8,] 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000 0.00000 0.0000000 0.4011844 0.000000

[9,] 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000 0.00000 0.0000000 0.0000000 0.534789

> Phi_p = (smodel2@Model)@GLIST$psi; Phi_p

[,1] [,2] [,3]

[1,] 0.6037495 0.4077212 0.2761904

[2,] 0.4077212 0.9419068 0.2215664

[3,] 0.2761904 0.2215664 0.4613051

Notice that except for Λ, lavaan is using a different Greek letter notation for the parameter
matrices. Nobody cares.

The matrix dg(Φ̂
′
)1/2 appears four times in (3.33). To carry out the calculations, it is

convenient to give it a simple name. Call it M.

> M = sqrt(diag(diag(Phi_p))); M # = Lambda1_pp, the factor loadings of the leading reference variables.

[,1] [,2] [,3]

[1,] 0.7770132 0.0000000 0.0000000
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[2,] 0.0000000 0.9705188 0.0000000

[3,] 0.0000000 0.0000000 0.6791945

> Lambda2_pp = Lambda2_p %*% M; Lambda2_pp # the other factor loadings

[,1] [,2] [,3]

[1,] 0.5720032 0.0000000 0.0000000

[2,] 0.7185782 0.0000000 0.0000000

[3,] 0.0000000 0.9606119 0.0000000

[4,] 0.0000000 0.9349394 0.0000000

[5,] 0.0000000 0.0000000 0.8325836

[6,] 0.0000000 0.0000000 0.7185117

> # Putting the full factor matrix Lambda_pp together,

> Lambda_pp = rbind(M[1,],Lambda2_pp[1:2,], M[2,],Lambda2_pp[3:4,], M[3,],Lambda2_pp[5:6,])

> Lambda_pp

[,1] [,2] [,3]

[1,] 0.7770132 0.0000000 0.0000000

[2,] 0.5720032 0.0000000 0.0000000

[3,] 0.7185782 0.0000000 0.0000000

[4,] 0.0000000 0.9705188 0.0000000

[5,] 0.0000000 0.9606119 0.0000000

[6,] 0.0000000 0.9349394 0.0000000

[7,] 0.0000000 0.0000000 0.6791945

[8,] 0.0000000 0.0000000 0.8325836

[9,] 0.0000000 0.0000000 0.7185117

These numbers match the estimated factor loadings in the Std.lv column of the smodel2

model summary. For example, the loading of x8 on the speed factor is 0.833 in the Std.lv
column, and it is 0.8325836 in the matrix Lambda pp above.

> Phi_pp = solve(M) %*% Phi_p %*% solve(M); Phi_pp

[,1] [,2] [,3]

[1,] 1.0000000 0.5406683 0.5233425

[2,] 0.5406683 1.0000000 0.3361288

[3,] 0.5233425 0.3361288 1.0000000

These estimated correlations match the contents of the Std.lv column under Covariances.
For the “completely standardized” estimates in the Std.all column — that is, for the

estimates from a model with both the factors and the observed variables standardized,
Expression (3.28) implies

Λ̂
′′′

= Ŵ−1/2Λ̂
′′

Ω̂
′′′

= Ŵ−1/2Ω̂Ŵ−1/2.

Calculating,

> # Standardized observed variables

> n = dim(hs)[1]; n

[1] 145
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> Sigma = var(hs[,7:15]) * (n-1)/n # Actually Sigma-hat of course

> W = diag(diag(SigmaHat))

> Lambda_ppp = solve(sqrt(W)) %*% Lambda_pp; Lambda_ppp

[,1] [,2] [,3]

[1,] 0.6766500 0.0000000 0.0000000

[2,] 0.5165187 0.0000000 0.0000000

[3,] 0.6935860 0.0000000 0.0000000

[4,] 0.0000000 0.8655649 0.0000000

[5,] 0.0000000 0.8293273 0.0000000

[6,] 0.0000000 0.8263318 0.0000000

[7,] 0.0000000 0.0000000 0.6591327

[8,] 0.0000000 0.0000000 0.7958731

[9,] 0.0000000 0.0000000 0.7008460

> Omega_ppp = solve(sqrt(W)) %*% Omega %*% solve(sqrt(W)); Omega_ppp

[,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8] [,9]

[1,] 0.5421448 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000 0.000000

[2,] 0.0000000 0.7332085 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000 0.000000

[3,] 0.0000000 0.0000000 0.5189386 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000 0.000000

[4,] 0.0000000 0.0000000 0.0000000 0.2507973 0.0000000 0.0000000 0.0000000 0.0000000 0.000000

[5,] 0.0000000 0.0000000 0.0000000 0.0000000 0.3122162 0.0000000 0.0000000 0.0000000 0.000000

[6,] 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000 0.3171758 0.0000000 0.0000000 0.000000

[7,] 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000 0.5655441 0.0000000 0.000000

[8,] 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000 0.3665861 0.000000

[9,] 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000 0.508815

The numbers in these matrices match the Std.all output. For example, the estimated
factor loading of z2 on visual is 0.517 in the Std.all column, and it is 0.5165187 in
Lambda ppp above. The estimated variance of e′′′6 is 0.317 in the Std.all column, and
0.3171758 in Omega ppp — so, the x2 variable is estimated to be around 32% noise.

It goes without saying (and yet I find myself saying it anyway) that in a practical data
analysis job, these matrix calculations would almost never be necessary. It’s much easier
to just use standardized=TRUE, and let lavaan do the work. The purpose of doing the
matrix calculations here was to show where those Std.lv and Std.all numbers come
from, and to provide a bridge between the theory and what the software is producing.
It’s also nice to know how to get at those estimated parameter matrices. I didn’t know
about slots before I did this.

Fitting a model with standardized factors the easy way The main disadvantage
of the standardized=TRUE option is that one gets estimates, but not standard errors. In
the summary output for smodel2, the standard errors in the output still apply to the
surrogate model in which some loadings were set to one. So for example, if you wanted a
confidence interval for a correlation between factors, you would still have a bit of work to
do. It is possible to choose a model with standardized factors at the model fitting stage,
by using the std.lv (standardized latent variables) option, as follows.

> smodel3 = cfa(swine2, data=hs, std.lv=TRUE); summary(smodel3, standardized=TRUE)
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lavaan 0.6-7 ended normally after 19 iterations

Estimator ML

Optimization method NLMINB

Number of free parameters 21

Number of observations 145

Model Test User Model:

Test statistic 51.542

Degrees of freedom 24

P-value (Chi-square) 0.001

Parameter Estimates:

Standard errors Standard

Information Expected

Information saturated (h1) model Structured

Latent Variables:

Estimate Std.Err z-value P(>|z|) Std.lv Std.all

visual =~

x1 0.777 0.103 7.525 0.000 0.777 0.677

x2 0.572 0.101 5.642 0.000 0.572 0.517

x3 0.719 0.093 7.711 0.000 0.719 0.694

verbal =~

x4 0.971 0.079 12.355 0.000 0.971 0.866

x5 0.961 0.083 11.630 0.000 0.961 0.829

x6 0.935 0.081 11.572 0.000 0.935 0.826

speed =~

x7 0.679 0.087 7.819 0.000 0.679 0.659

x8 0.833 0.087 9.568 0.000 0.833 0.796

x9 0.719 0.086 8.357 0.000 0.719 0.701

Covariances:

Estimate Std.Err z-value P(>|z|) Std.lv Std.all

visual ~~

verbal 0.541 0.085 6.355 0.000 0.541 0.541

speed 0.523 0.094 5.562 0.000 0.523 0.523

verbal ~~

speed 0.336 0.091 3.674 0.000 0.336 0.336

Variances:

Estimate Std.Err z-value P(>|z|) Std.lv Std.all

.x1 0.715 0.126 5.675 0.000 0.715 0.542
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.x2 0.899 0.123 7.339 0.000 0.899 0.733

.x3 0.557 0.103 5.409 0.000 0.557 0.519

.x4 0.315 0.065 4.870 0.000 0.315 0.251

.x5 0.419 0.072 5.812 0.000 0.419 0.312

.x6 0.406 0.069 5.880 0.000 0.406 0.317

.x7 0.600 0.091 6.584 0.000 0.600 0.566

.x8 0.401 0.094 4.248 0.000 0.401 0.367

.x9 0.535 0.089 6.010 0.000 0.535 0.509

visual 1.000 1.000 1.000

verbal 1.000 1.000 1.000

speed 1.000 1.000 1.000

The Estimate column now matches the Std.lv column; std.lv=TRUE had its intended
effect. All is well.

Analyzing the correlation matrix There is also a std.ov option for the cfa func-
tion, and one would think the observed variables could be standardized by specifying
std.ov=TRUE. However, as of this writing19 it does not quite work as expected. When
the observed variables are standardized, they are divided by a sample standard deviation
with n − 1 in the denominator, rather than n. This makes no difference asymptotically,
so the estimates, tests and confidence intervals are just as good either way. However,
if std.lv and std.ov are both TRUE, the numbers in the Estimate column don’t quite
don’t quite match the Std.all column. It’s a bit unsettling.

One option is to standardize the observed variables yourself, making sure you divide
by n to get the true MLEs. This works, but it’s awkward. It’s easier to use the sample
correlation matrix as input.

The lavaan software allows a sample covariance matrix and a sample size as input,
in place of the raw data20. When you give lavaan a correlation matrix, it treats it as a
sample covariance matrix. There are two consequences, both a bit subtle. The first is that
lavaan assumes the sample variances just happen to be all equal to one (an event of zero
probability, by the way), and it treats the error variances (the ω′′′j,j) as free parameters to
be estimated, rather than using the fact that they are functions of the other parameters.
This actually works out very well. The standard errors are correct, and it’s a lot easier to
obtain confidence intervals for uniquenesses and commonalities than it would be otherwise.

The second consequence of treating the correlation matrix as a covariance matrix is
the issue of whether the sample variances and covariances have n in the denominator,
or n − 1. Actually, this question should not apply to sample correlations. Thinking of
a sample correlation as a sample covariance divided by a product of sample standard
deviations, the denominators, whether they are n or n − 1, are already cancelled. To
lavaan, though, it’s just a sample covariance matrix. Many sample covariance matrices
(for example, the ones produced by R’s var function) have n − 1 in the denominators,

19September 2021, lavaan version 0.6-7.
20This is really handy for re-analyzing published data, because books and journal articles often display

covariance matrices or correlation matrices even when they do not provide access to the raw data.
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so that the estimates are unbiased, but not quite true MLEs. The cfa function has
an option to deal with this. By default, sample.cov.rescale is set to TRUE, meaning
please correct the input sample covariance matrix, multiplying all entries by (n− 1)/n. If
the input matrix is a sample correlation matrix, you want sample.cov.rescale=FALSE.
Here’s how it goes with the Holzinger-Swineford data. I think factor analysis is nicer
with standardized observed variables, so to me, this is a good example of how to do a
confirmatory factor analysis with lavaan21.

> # Analyze the correlation matrix

> x = hs[,7:15] # Columns 7 through 15 of the data frame: Just the x variables.

> xcorr = cor(x); round(xcorr,3)

x1 x2 x3 x4 x5 x6 x7 x8 x9

x1 1.000 0.326 0.449 0.342 0.309 0.317 0.104 0.308 0.487

x2 0.326 1.000 0.417 0.228 0.159 0.195 0.066 0.168 0.248

x3 0.449 0.417 1.000 0.328 0.287 0.347 0.075 0.239 0.373

x4 0.342 0.228 0.328 1.000 0.719 0.714 0.209 0.104 0.314

x5 0.309 0.159 0.287 0.719 1.000 0.685 0.254 0.198 0.356

x6 0.317 0.195 0.347 0.714 0.685 1.000 0.179 0.121 0.272

x7 0.104 0.066 0.075 0.209 0.254 0.179 1.000 0.587 0.418

x8 0.308 0.168 0.239 0.104 0.198 0.121 0.587 1.000 0.528

x9 0.487 0.248 0.373 0.314 0.356 0.272 0.418 0.528 1.000

> smodel4 = cfa(swine2, sample.cov=xcorr, sample.nobs=145,

+ std.lv=TRUE, sample.cov.rescale=FALSE)

> summary(smodel4, standardized=TRUE)

lavaan 0.6-7 ended normally after 20 iterations

Estimator ML

Optimization method NLMINB

Number of free parameters 21

Number of observations 145

Model Test User Model:

Test statistic 51.542

Degrees of freedom 24

P-value (Chi-square) 0.001

Parameter Estimates:

Standard errors Standard

Information Expected

Information saturated (h1) model Structured

Latent Variables:

21The reader may be thinking “Well, it’s about time!”
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Estimate Std.Err z-value P(>|z|) Std.lv Std.all

visual =~

x1 0.677 0.090 7.525 0.000 0.677 0.677

x2 0.517 0.092 5.642 0.000 0.517 0.517

x3 0.694 0.090 7.711 0.000 0.694 0.694

verbal =~

x4 0.866 0.070 12.355 0.000 0.866 0.866

x5 0.829 0.071 11.630 0.000 0.829 0.829

x6 0.826 0.071 11.572 0.000 0.826 0.826

speed =~

x7 0.659 0.084 7.819 0.000 0.659 0.659

x8 0.796 0.083 9.568 0.000 0.796 0.796

x9 0.701 0.084 8.357 0.000 0.701 0.701

Covariances:

Estimate Std.Err z-value P(>|z|) Std.lv Std.all

visual ~~

verbal 0.541 0.085 6.355 0.000 0.541 0.541

speed 0.523 0.094 5.562 0.000 0.523 0.523

verbal ~~

speed 0.336 0.091 3.674 0.000 0.336 0.336

Variances:

Estimate Std.Err z-value P(>|z|) Std.lv Std.all

.x1 0.542 0.096 5.675 0.000 0.542 0.542

.x2 0.733 0.100 7.339 0.000 0.733 0.733

.x3 0.519 0.096 5.409 0.000 0.519 0.519

.x4 0.251 0.051 4.870 0.000 0.251 0.251

.x5 0.312 0.054 5.812 0.000 0.312 0.312

.x6 0.317 0.054 5.880 0.000 0.317 0.317

.x7 0.566 0.086 6.584 0.000 0.566 0.566

.x8 0.367 0.086 4.248 0.000 0.367 0.367

.x9 0.509 0.085 6.010 0.000 0.509 0.509

visual 1.000 1.000 1.000

verbal 1.000 1.000 1.000

speed 1.000 1.000 1.000

# That’s it!

There we go. The Estimate and Std.lv both match Std.all. These numbers are very
interpretable. For example, the estimate of 0.733 for ω2,2 (triple prime deleted) means
we estimate that x2 is around 73.3% noise. Because maximum likelihood estimates are
asymptotically normal, an approximate 95% confidence interval to go with this estimate
is just the estimate plus or minus 1.96 times the standard error.

> c(0.733-1.96*0.1, 0.733+1.96*0.1)

[1] 0.537 0.929

This confidence interval is produced automatically by parameterEstimates(smodel4).
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Also, notice that in obedience to Theorem 3.1, the chi-squared statistic for lack of
model fit is still 51.542. It is unaffected by standardizing the observed variables.

A confidence interval for uniqueness, the hard way Suppose you do not stan-
dardize the observed variables, and you want a point estimate and confidence interval
for the uniqueness of x2 — under the original model. Assume the lavaan model swine1
on page 333, the very explicit model with standardized factors. Under this model (with
double primes, as in Section 3.3.1),

V ar(x2) = V ar(λ′′2F
′′
1 + e2)

= λ′′ 22 V ar(F ′′1 ) + ω2

= λ′′ 22 φ′′1,1 + ω2.

Bearing in mind that λ′′2 = λ2φ
1/2
1,1 and φ′′1,1 = 1, the proportion of unexplained variance

under the surrogate model is

ω2

λ′′ 22 φ′′1,1 + ω2

=
ω2(

λ2φ
1
2
1,1

)2

× 1 + ω2

=
ω2

λ2
2φ1,1 + ω2

. (3.34)

For the centered original model, V ar(x2) = λ2
2φ1,1 + ω2, so that the proportion of unex-

plained variance is exactly Expression (3.34). Remarkably, this identifiable function of
the original model parameters is the same under the surrogate model with standardized
factors. It’s not the kind of thing you can depend on in general.

In any case, we want a point estimate and confidence interval for ω2

λ′′ 22 +ω2
. The point

estimate can be easily obtained from numbers in the output of summary(smodel1). On
a test or quiz, you could do it with a calculator.

> 0.899/(0.572^2 + 0.899)

[1] 0.7331689

That’s exactly the ω̂2 of 0.733 from the model with both factors and observed variables
standardized. We also want a confidence interval, something that cannot be calculated
from the summary(smodel1) output.

As a nice smooth function of asymptotically normal MLEs, ω̂2

λ̂′′ 22 +ω̂2
is asymptotically

normal. All we need is a standard error — an estimated standard deviation. We can get
it easily using lavaan’s := syntax for estimating non-linear functions of model parameters.
Include this line at the end of the swine1 model string:

x2uniqueness := omega2 / (lambda2^2 + omega2)

The lovely := feature is only available if you explicitly provide names (labels) for the
parameters. It is incompatible with the shorthand syntax of model smodel2.
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One is tempted to just copy-paste the entire swine1 string, and add the line at the
end and call the result swine1b or something. This is not ideal, because it’s not a good
idea to have more than one slightly different version of the same code floating around.
What if you found an error in swine1, or decided to change it for some other reason?
Would you remember to make the same change(s) in swine1b? Here’s a better option.

> swine1b = paste(swine1, "x2uniqueness := omega2 / (lambda2^2 + omega2)")

Take a look at the result.

> cat(swine1b)

# Measurement model

visual =~ lambda1*x1 + lambda2*x2 + lambda3*x3

verbal =~ lambda4*x4 + lambda5*x5 + lambda6*x6

speed =~ lambda7*x7 + lambda8*x8 + lambda9*x9

# Variances of error terms

x1 ~~ omega1*x1; x2 ~~ omega2*x2; x3 ~~ omega3*x3

x4 ~~ omega4*x4; x5 ~~ omega5*x5; x6 ~~ omega6*x6

x7 ~~ omega7*x7; x8 ~~ omega8*x8; x9 ~~ omega9*x9

# Variances of factors equal one

visual ~~ 1*visual; verbal ~~ 1*verbal; speed ~~ 1*speed

# Covariances of factors

visual ~~ phi12*verbal; visual ~~ phi13*speed

verbal ~~ phi23*speed

x2uniqueness := omega2 / (lambda2^2 + omega2)

The non-linear function is added neatly to the end. If swine1 changes, swine1b will also
be changed when the code is re-run. Now fit the new model and look at the results.

> smodel1b = lavaan(swine1b, data=hs); summary(smodel1b)

The estimate and standard error for x2uniqueness appears at the end of the summary

output. everything else is the same as the output of summary(smodel1). Showing just
the last part,

Defined Parameters:

Estimate Std.Err z-value P(>|z|)

x2uniqueness 0.733 0.081 9.078 0.000

The estimated uniqueness (73% noise) is exactly the same as the ω̂′′′2 obtained from
smodel4, the model with both factors and observed variables standardized. The stan-
dard errors are a bit different, 0.081 for x2uniqueness, versus 0.10 for ω̂′′′2 in smodel4.
The reason is that by default, lavaan uses the multivariate delta method (See Appendix A,
page 564) to estimate the standard deviations of non-linear functions of the parameter
estimates. These numbers are close to the ones that come from re-parameterization, in
the sense that the difference goes to zero in probability as the sample size tends to infinity.
They need not be the same for finite sample sizes, but they are equally valid.
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Another option is to use the se = "bootstrap" option in the cfa or lavaan function.
This yields standard errors based on the bootstrap, which is distribution-free. Because
the bootstrap is a randomization technique, the standard errors will be slightly different
every time you run your code, unless you set the seed of the random number generator
with the set.seed function.

A model that fits Let’s not get too carried away here. We got the lavaan software to
do what we want, but the model still does not fit (χ2 = 51.542, df = 24, 0 = 0.001). This
means that the estimates, and especially the tests and confidence intervals, are open to
question. Jöreskog’s analysis in [36] includes several models that fit the data, including
model (c), described as the “Reference variables solution.” This is exactly the model of
the reference variable rule, except that it’s a special case with the errors independent22.

Starting over for completeness,

> rm(list=ls())

> # install.packages("lavaan", dependencies = TRUE) # Only need to do this once

> library(lavaan)

This is lavaan 0.6-7

lavaan is BETA software! Please report any bugs.

> hs = subset(HolzingerSwineford1939,school==’Grant-White’)

> x = hs[,7:15]; xcorr = cor(x)

Now specify the reference variable model. The reference variables (x1, x4 and x7) are out
front, while the other observed variables, which are influenced by all factors, are grouped
together, identically in each line of the model string.

> swine3 = ’

+ visual =~ x1 + x2+x3+x5+x6+x8+x9

+ verbal =~ x4 + x2+x3+x5+x6+x8+x9

+ speed =~ x7 + x2+x3+x5+x6+x8+x9

+ ’

Now fit the model, analyzing the correlation matrix because it is the easiest way to
standardize the observed variables.

> smodel5 = cfa(swine3, sample.cov=xcorr, sample.nobs=145,

+ std.lv=TRUE, sample.cov.rescale=FALSE)

> summary(smodel5) # standardized=TRUE is not necessary.

lavaan 0.6-7 ended normally after 32 iterations

Estimator ML

Optimization method NLMINB

Number of free parameters 33

22Actually, I discovered the reference variable rule by attempting to generalize Jöreskog’s model (c).
Others may have known about this rule, but I did not.
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Number of observations 145

Model Test User Model:

Test statistic 9.846

Degrees of freedom 12

P-value (Chi-square) 0.629

Parameter Estimates:

Standard errors Standard

Information Expected

Information saturated (h1) model Structured

Latent Variables:

Estimate Std.Err z-value P(>|z|)

visual =~

x1 0.708 0.087 8.144 0.000

x2 0.538 0.123 4.362 0.000

x3 0.674 0.125 5.392 0.000

x5 -0.033 0.093 -0.350 0.726

x6 0.013 0.092 0.137 0.891

x8 0.415 0.115 3.612 0.000

x9 0.557 0.113 4.916 0.000

verbal =~

x4 0.871 0.070 12.434 0.000

x2 -0.031 0.118 -0.265 0.791

x3 0.042 0.119 0.354 0.724

x5 0.808 0.090 8.939 0.000

x6 0.819 0.090 9.055 0.000

x8 -0.298 0.111 -2.673 0.008

x9 -0.061 0.110 -0.552 0.581

speed =~

x7 0.782 0.096 8.161 0.000

x2 -0.075 0.107 -0.700 0.484

x3 -0.086 0.108 -0.790 0.429

x5 0.128 0.074 1.729 0.084

x6 -0.007 0.075 -0.093 0.926

x8 0.731 0.109 6.690 0.000

x9 0.413 0.096 4.321 0.000

Covariances:

Estimate Std.Err z-value P(>|z|)

visual ~~

verbal 0.543 0.112 4.850 0.000
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speed 0.240 0.148 1.626 0.104

verbal ~~

speed 0.284 0.116 2.439 0.015

Variances:

Estimate Std.Err z-value P(>|z|)

.x1 0.499 0.091 5.498 0.000

.x2 0.740 0.102 7.245 0.000

.x3 0.535 0.095 5.661 0.000

.x5 0.302 0.054 5.589 0.000

.x6 0.322 0.054 5.924 0.000

.x8 0.317 0.095 3.323 0.001

.x9 0.456 0.071 6.421 0.000

.x4 0.241 0.052 4.626 0.000

.x7 0.388 0.113 3.428 0.001

visual 1.000

verbal 1.000

speed 1.000

This model fits (χ2 = 9.846, df = 12, p = 0.629). The estimated factor loadings (and the
associated tests) suggest that the model of Figure 3.15 did not fit because x8 (Counting
Dots) and x9 (Straight-curved Capitals) are positively influenced by the speed factor.
There is also evidence that x8 may be negatively influenced by the verbal factor F2.

It is interesting that under the model of Figure 3.15, the estimated correlation between
the visual and speed factors is substantial (φ̂1,3 = 0.523) and undeniably significant (z =
5.562, p ≈ 0). See for example the output of summary(smodel4, standardized=TRUE).
This is an important conclusion, because it might reflect something fundamental about
cognition and the human nervous system. However, for the model that fits the data,
there is not enough evidence to conclude a non-zero correlation (φ̂1,3 = 0.24, z = 1.626,
p = 0.104): see the output of summary(smodel5) starting on page 349. When a model
does not fit the data, conclusions from the significance tests are highly suspect. This issue
is discussed in Chapter 7.

A second-order model It is fairly reasonable to hypothesize that there is a general
factor underlying the visual, verbal and speed factors; it might be called mental ability.
Figure 3.16 shows the path diagram. The top part is Jöreskog’s [36] Reference Variables
model c (also smodel4), identified by the reference variable rule. In the lower part,
the curved arrows representing correlations between factors have been replaced by the
hypothesized second-order ability factor, with arrows pointing from the ability factor to
the first-order visual, verbal and speed factors. There are also arrows that seem to come
from nowhere, pointing at the first-order factors. These represent error terms. One might
think that their variances would introduce three additional parameters, but because the
factors are standardized (including ability), the variances are functions of the second-order
factor loadings.



352 CHAPTER 3. CONFIRMATORY FACTOR ANALYSIS

Figure 3.16: A second-order model for the Holzinger and Swineford Data

Ability

Textual

x
5 x

6
x
4

λ
2

λ
3

λ
4

λ
5

λ
6λ

1
λ
4

λ
5

λ
6 λ

4
λ
5

λ
6

ϕ
12

Visual

x
2 x

3
x
1

Speed

x
8 x

9
x
7

e
1

There are three of these second-order factor loadings. They replace the three cor-
relations between first-order factors. Expression (3.13) on page 293 in the proof of the
three-variable rule shows that there is a one-to-one connection between the second-order
factor loadings and the correlations between first-order factors, provided that the sign of
at least second-order loadings is known. Here, there is no problem; theoretically, they are
all positive.

To incorporate the second-order ability factor into the model, it’s enough to add a line
that says ability if measured by visual, verbal and speed.

> swine4 = paste(swine3, "ability =~ visual + verbal + speed"); cat(swine4)

visual =~ x1 + x2+x3+x5+x6+x8+x9

verbal =~ x4 + x2+x3+x5+x6+x8+x9

speed =~ x7 + x2+x3+x5+x6+x8+x9

ability =~ visual + verbal + speed

For the sake of interpretability, I wanted to stay with a “completely standardized” model,
in which both the observed and latent variables are standardized.

> smodel6 = cfa(swine4, sample.cov=xcorr, sample.nobs=145,

+ std.lv=TRUE, sample.cov.rescale=FALSE)

Before looking at any output, let’s consider what to expect. First, since the parameters of
smodel5 and smodel6 are one-to-one, the fit should be the same and and we should get
the same chi-squared value of 9.846 with 12 degrees of freedom. Second, all the estimated
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first-order factor loadings (and consequently, the error variances) should be the same in
the two fitted models. Third, the invariance principle of maximum likelihood estimation23

dictates a very specific connection between the estimated second-order factor loadings and
the estimated correlations between first-order factors. To make this explicit, denote the
ability factor by F0, and write the second-order model equations as follows.

F1 = γ1F0 + ε1

F2 = γ2F0 + ε2 (3.35)

F3 = γ3F0 + ε3

Then, basically transcribing material from 3.12 on page 292, we must have

φ̂1,2 = γ̂1γ̂2 φ̂1,3 = γ̂1γ̂3 φ̂2,3 = γ̂2γ̂3, (3.36)

where the φ̂i,j are from the Covariances part of the output from summary(smodel5); the
output begins on page 349.

Now we know what to expect from summary(smodel6).

> summary(smodel6, standardized=TRUE)

lavaan 0.6-7 ended normally after 43 iterations

Estimator ML

Optimization method NLMINB

Number of free parameters 33

Number of observations 145

Model Test User Model:

Test statistic 9.846

Degrees of freedom 12

P-value (Chi-square) 0.629

Parameter Estimates:

Standard errors Standard

Information Expected

Information saturated (h1) model Structured

Latent Variables:

Estimate Std.Err z-value P(>|z|) Std.lv Std.all

visual =~

x1 0.520 0.170 3.063 0.002 0.708 0.708

x2 0.396 0.127 3.116 0.002 0.538 0.538

23Roughly, the MLE of a function is that function of the MLE.
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x3 0.496 0.141 3.508 0.000 0.674 0.674

x5 -0.024 0.068 -0.355 0.723 -0.033 -0.033

x6 0.009 0.068 0.137 0.891 0.013 0.013

x8 0.305 0.127 2.397 0.017 0.415 0.415

x9 0.409 0.139 2.937 0.003 0.557 0.557

verbal =~

x4 0.522 0.286 1.827 0.068 0.871 0.871

x2 -0.019 0.071 -0.264 0.792 -0.031 -0.031

x3 0.025 0.073 0.343 0.731 0.042 0.042

x5 0.484 0.264 1.832 0.067 0.808 0.808

x6 0.491 0.265 1.851 0.064 0.819 0.819

x8 -0.178 0.097 -1.847 0.065 -0.298 -0.298

x9 -0.036 0.064 -0.568 0.570 -0.061 -0.061

speed =~

x7 0.731 0.105 6.971 0.000 0.782 0.782

x2 -0.070 0.099 -0.707 0.480 -0.075 -0.075

x3 -0.080 0.100 -0.803 0.422 -0.086 -0.086

x5 0.119 0.070 1.706 0.088 0.128 0.128

x6 -0.007 0.070 -0.093 0.926 -0.007 -0.007

x8 0.683 0.105 6.495 0.000 0.731 0.731

x9 0.386 0.096 4.031 0.000 0.413 0.413

ability =~

visual 0.923 0.575 1.605 0.108 0.678 0.678

verbal 1.336 1.133 1.179 0.238 0.801 0.801

speed 0.379 0.182 2.085 0.037 0.355 0.355

Variances:

Estimate Std.Err z-value P(>|z|) Std.lv Std.all

.x1 0.499 0.091 5.498 0.000 0.499 0.499

.x2 0.740 0.102 7.245 0.000 0.740 0.740

.x3 0.535 0.095 5.661 0.000 0.535 0.535

.x5 0.302 0.054 5.589 0.000 0.302 0.302

.x6 0.322 0.054 5.924 0.000 0.322 0.322

.x8 0.317 0.095 3.323 0.001 0.317 0.317

.x9 0.456 0.071 6.421 0.000 0.456 0.456

.x4 0.241 0.052 4.626 0.000 0.241 0.241

.x7 0.388 0.113 3.428 0.001 0.388 0.388

.visual 1.000 0.540 0.540

.verbal 1.000 0.359 0.359

.speed 1.000 0.874 0.874

ability 1.000 1.000 1.000

Comparing this to the smodel5 output that begins on page 349, we do get the same
chi-squared fit test value of 9.846 with 12 degrees of freedom, so that is okay. However,
the estimated first-order factor loadings are quite different. For example, the estimated
loading that links the visual factor to x1 is 0.520 for smodel6, compared to 0.708 for
smodel5. It’s way off.



3.8. THE HOLZINGER AND SWINEFORD DATA WITH LAVAAN 355

After a while, I finally saw a hint pointing to the source of the problem. At the end of
the smodel6 output directly above, there are dots in front of visual, verbal and speed.
This indicates that we are not looking at estimated variances of variables, but at estimated
variances of error terms. It would appear that the variances of the first-order factors were
not set to one after all. Instead, the variances of the error terms (that is, ε1, ε2 and ε3 in
Expression 3.35) were set to one. I verified this by doing some calculations on numbers
from the output. The result is a surrogate model that, while it’s technically correct and
has identifiable parameters, is just strange and does not correspond to anything we want.

On the other hand, the Std.lv and Std.all columns do contain the desired estimates.
Unlike the std.lv=TRUE option in the cfa function, the standardized=TRUE option in
summary is working as expected. The estimated factor loadings match summary(smodel5)

perfectly.
To check (3.36), we first obtain φ̂1,2 = 0.543, φ̂1,3 = 0.240 and φ̂2,3 = 0.284 from

the Covariances part of summary(smodel5). Then, obtaining γ̂1 = 0.678 (not 0.923),
γ̂2 = 0.801 and γ̂3 = 0.355 from summary(smodel6),

> 0.678*0.801 # Should equal phihat12 = 0.543

[1] 0.543078

> 0.678*0.355 # Should equal phihat13 = 0.240

[1] 0.24069

> 0.801*0.355 # Should equal phihat13 = 0.284

[1] 0.284355

So, the Std.all column clearly has the estimates from a model with both the observed
variables and the latent variables (not the error terms of the latent variables) standardized.
It means, for example, that the estimated correlation between the ability factor and the
visual factor equals 0.678 — the same as the factor loading. This is also the estimated
correlation for the original model.

There is a slightly easier way to get these numbers, and that is to use the default
surrogate model with a factor loading set to one for each factor, including second-order
factors. The model string swine4 is fine as it is.

> cat(swine4)

visual =~ x1 + x2+x3+x5+x6+x8+x9

verbal =~ x4 + x2+x3+x5+x6+x8+x9

speed =~ x7 + x2+x3+x5+x6+x8+x9

ability =~ visual + verbal + speed

The cfa function call is simpler.

> smodel7 = cfa(swine4, data=hs)

> summary(smodel7, standardized=TRUE)

lavaan 0.6-7 ended normally after 48 iterations

Estimator ML

Optimization method NLMINB
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Number of free parameters 33

Number of observations 145

Model Test User Model:

Test statistic 9.846

Degrees of freedom 12

P-value (Chi-square) 0.629

Parameter Estimates:

Standard errors Standard

Information Expected

Information saturated (h1) model Structured

Latent Variables:

Estimate Std.Err z-value P(>|z|) Std.lv Std.all

visual =~

x1 1.000 0.813 0.708

x2 0.733 0.191 3.841 0.000 0.596 0.538

x3 0.859 0.196 4.378 0.000 0.699 0.674

x5 -0.046 0.133 -0.350 0.727 -0.038 -0.033

x6 0.018 0.128 0.137 0.891 0.014 0.013

x8 0.534 0.162 3.302 0.001 0.434 0.415

x9 0.702 0.167 4.197 0.000 0.571 0.557

verbal =~

x4 1.000 0.977 0.871

x2 -0.035 0.134 -0.265 0.791 -0.035 -0.031

x3 0.045 0.126 0.354 0.724 0.044 0.042

x5 0.958 0.112 8.534 0.000 0.936 0.808

x6 0.948 0.109 8.684 0.000 0.926 0.819

x8 -0.319 0.120 -2.666 0.008 -0.312 -0.298

x9 -0.064 0.115 -0.552 0.581 -0.062 -0.061

speed =~

x7 1.000 0.806 0.782

x2 -0.103 0.147 -0.698 0.485 -0.083 -0.075

x3 -0.110 0.140 -0.786 0.432 -0.089 -0.086

x5 0.184 0.108 1.696 0.090 0.148 0.128

x6 -0.010 0.105 -0.093 0.926 -0.008 -0.007

x8 0.949 0.200 4.747 0.000 0.765 0.731

x9 0.525 0.135 3.882 0.000 0.423 0.413

ability =~

visual 1.000 0.678 0.678

verbal 1.418 0.862 1.644 0.100 0.801 0.801

speed 0.518 0.238 2.173 0.030 0.355 0.355
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Variances:

Estimate Std.Err z-value P(>|z|) Std.lv Std.all

.x1 0.657 0.120 5.498 0.000 0.657 0.499

.x2 0.907 0.125 7.245 0.000 0.907 0.740

.x3 0.575 0.101 5.661 0.000 0.575 0.535

.x5 0.405 0.073 5.589 0.000 0.405 0.302

.x6 0.412 0.069 5.924 0.000 0.412 0.322

.x8 0.347 0.104 3.323 0.001 0.347 0.317

.x9 0.480 0.075 6.421 0.000 0.480 0.456

.x4 0.303 0.065 4.626 0.000 0.303 0.241

.x7 0.412 0.120 3.428 0.001 0.412 0.388

.visual 0.357 0.233 1.532 0.126 0.540 0.540

.verbal 0.343 0.375 0.914 0.361 0.359 0.359

.speed 0.568 0.163 3.486 0.000 0.874 0.874

ability 0.304 0.208 1.460 0.144 1.000 1.000

Notice how all the leading factor loadings are set to one, including for the second-order
factor. The Std.all column has the same numbers obtained from smodel6. If we want
the estimates for a completely standardized model and don’t care about standard errors,
this is all we need. If necessary, one could define custom non-linear functions of the
parameters using the := notation, as on page 348, and get standard errors based on the
delta method.

Constraining the error variances It is possible (but not very convenient) to actually
fit a model with the variances of the first-order factors set to one. This is accomplished by
constraining the variances of the error terms that feed into the first-order factors in Fig-
ure 3.16. The model equations for the latent variable part are given in Expression (3.35);
they are repeated below for convenience.

F1 = γ1F0 + ε1

F2 = γ2F0 + ε2

F3 = γ3F0 + ε3

Denote V ar(εj) by ψj. With the variance of F0 (ability) equal to one, we have V ar(Fj) =
γ2
j + ψj, so that V ar(Fj) will equal one provided ψj = 1 − γ2

j for j = 1, 2, 3. Here is the
lavaan model string. It will be considered one piece at a time.

> swine5 = ’

+ # Measurement model

+ visual =~ NA*x1 + x2+x3+x5+x6+x8+x9

+ verbal =~ NA*x4 + x2+x3+x5+x6+x8+x9

+ speed =~ NA*x7 + x2+x3+x5+x6+x8+x9

+ ability =~ NA*visual + gamma1*visual +

+ gamma2*verbal + gamma3*speed

+ # Variances
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+ ability ~~ 1*ability

+ visual ~~ psi1*visual; verbal ~~ psi2*verbal; speed ~~ psi3*speed

+ # Constraints to make variances of 1st order factors = 1

+ psi1 == 1 - gamma1^2

+ psi2 == 1 - gamma2^2

+ psi3 == 1 - gamma3^2

+ ’

The first minor hurdle to overcome is that the std.lv=TRUE option would standardize
the εj rather than the Fj, which is not what we want. However, if std.lv=TRUE is not
specified, then the cfa function will set the leading factor loadings to one for each factor,
whether or not parameter names are provided. It would be possible to specify the model
more completely and use the lavaan function as in the swine1 model string on page 333,
but that’s a lot of typing. Here’s a better way. Look at the first three lines of the
measurement model.

visual =~ NA*x1 + x2+x3+x5+x6+x8+x9

verbal =~ NA*x4 + x2+x3+x5+x6+x8+x9

speed =~ NA*x7 + x2+x3+x5+x6+x8+x9

Pre-multiplying the reference variables by NA has the effect of freeing the factor loading —
making it a free parameter to be estimated. The next statement shows that this facility
can co-exist with providing a name for the factor loading, by naming the variable twice.
This is similar to how starting values are specified — see page 80. It’s not enough to
name the parameter, when you are using cfa.

ability =~ NA*visual + gamma1*visual +

gamma2*verbal + gamma3*speed

After fixing the variance of ability equal to one, we give names to the variances of ε1, ε2
and ε3. The rule is that if you want to use a parameter in a constraint, you must name
it.

ability ~~ 1*ability

visual ~~ psi1*visual; verbal ~~ psi2*verbal; speed ~~ psi3*speed

Last come the constraints, set with double equals signs.

psi1 == 1 - gamma1^2

psi2 == 1 - gamma2^2

psi3 == 1 - gamma3^2

Analyzing the correlation matrix in order to obtain standardized observed variables while
avoiding the std.ov option24,

24You are forgiven if you forgot that std.ov divides by a sample standard deviation with n− 1 in the
denominator.
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> smodel8 = cfa(swine5, sample.cov=xcorr, sample.nobs=145, sample.cov.rescale=FALSE)

> summary(smodel8, standardized=TRUE)

lavaan 0.6-7 ended normally after 190 iterations

Estimator ML

Optimization method NLMINB

Number of free parameters 36

Number of observations 145

Model Test User Model:

Test statistic 9.846

Degrees of freedom 12

P-value (Chi-square) 0.629

Parameter Estimates:

Standard errors Standard

Information Expected

Information saturated (h1) model Structured

Latent Variables:

Estimate Std.Err z-value P(>|z|) Std.lv Std.all

visual =~

x1 0.708 0.087 8.144 0.000 0.708 0.708

x2 0.538 0.123 4.362 0.000 0.538 0.538

x3 0.674 0.125 5.392 0.000 0.674 0.674

x5 -0.033 0.093 -0.350 0.726 -0.033 -0.033

x6 0.013 0.092 0.137 0.891 0.013 0.013

x8 0.415 0.115 3.612 0.000 0.415 0.415

x9 0.557 0.113 4.916 0.000 0.557 0.557

verbal =~

x4 0.871 0.070 12.434 0.000 0.871 0.871

x2 -0.031 0.118 -0.264 0.791 -0.031 -0.031

x3 0.042 0.119 0.354 0.724 0.042 0.042

x5 0.808 0.090 8.939 0.000 0.808 0.808

x6 0.819 0.090 9.055 0.000 0.819 0.819

x8 -0.298 0.111 -2.673 0.008 -0.298 -0.298

x9 -0.061 0.110 -0.552 0.581 -0.061 -0.061

speed =~

x7 0.782 0.096 8.161 0.000 0.782 0.782

x2 -0.075 0.107 -0.700 0.484 -0.075 -0.075

x3 -0.086 0.108 -0.790 0.429 -0.086 -0.086

x5 0.128 0.074 1.729 0.084 0.128 0.128

x6 -0.007 0.075 -0.093 0.926 -0.007 -0.007
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x8 0.731 0.109 6.690 0.000 0.731 0.731

x9 0.413 0.096 4.321 0.000 0.413 0.413

ability =~

visual (gmm1) 0.678 0.228 2.971 0.003 0.678 0.678

verbal (gmm2) 0.801 0.244 3.284 0.001 0.801 0.801

speed (gmm3) 0.355 0.149 2.385 0.017 0.355 0.355

Variances:

Estimate Std.Err z-value P(>|z|) Std.lv Std.all

ability 1.000 1.000 1.000

.visual (psi1) 0.540 0.309 1.746 0.081 0.540 0.540

.verbal (psi2) 0.359 0.390 0.920 0.358 0.359 0.359

.speed (psi3) 0.874 0.105 8.295 0.000 0.874 0.874

.x1 0.499 0.091 5.498 0.000 0.499 0.499

.x2 0.740 0.102 7.245 0.000 0.740 0.740

.x3 0.535 0.095 5.661 0.000 0.535 0.535

.x5 0.302 0.054 5.589 0.000 0.302 0.302

.x6 0.322 0.054 5.924 0.000 0.322 0.322

.x8 0.317 0.095 3.323 0.001 0.317 0.317

.x9 0.456 0.071 6.421 0.000 0.456 0.456

.x4 0.241 0.052 4.626 0.000 0.241 0.241

.x7 0.388 0.113 3.428 0.001 0.388 0.388

Constraints:

|Slack|

psi1 - (1-gamma1^2) 0.000

psi2 - (1-gamma2^2) 0.000

psi3 - (1-gamma3^2) 0.000

The Estimate column is identical to the Std.all column, so it worked. This example
shows that explicitly constraining error variances is an effective way to standardize en-
dogenous latent variables. However, it can be tedious for large, multistage models. By
using parameterEstimates(smodel8), one could automatically obtain 95% confidence
intervals for all the parameters, including the ones (ψ1, ψ2 and ψ3) that have been made
functionally dependent on other parameters.

Testing equal factor loadings Constraints are a handy way to specify null hypotheses
for likelihood ratio tests. They may be placed in the model string, but it’s preferable to
give them in the cfa or lavaan statement. That way, the same model string can be used
to specify the full model and the restricted model.

Suppose we wish to test equality of the second order factor loadings; the null hypothesis
is H0 : γ1 = γ2 = γ3. The model under this null hypothesis is expressed as
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> smodel8H0 = cfa(swine5, sample.cov=xcorr,

+ sample.nobs=145, sample.cov.rescale=FALSE,

+ constraints = ’gamma1 == gamma2

+ gamma2 == gamma3’)

It’s often advisable to look at a summary of the restricted model, just to be sure that
nothing obvious has gone wrong. That step is not shown here. Then, the anova function
generates a likelihood ratio test. If p < 0.5, the null hypothesis given in the restricted
model is rejected at the 0.05 significance level.

> anova(smodel8H0,smodel8)

Chi-Squared Difference Test

Df AIC BIC Chisq Chisq diff Df diff Pr(>Chisq)

smodel8 12 3273.5 3371.7 9.8461

smodel8H0 14 3273.5 3365.8 13.8616 4.0155 2 0.1343

So, there’s insufficient evidence to conclude that the second-order factor loadings are
different. Or, one could say that the results are consistent with equal second-order factor
loadings25.

To do this test with smodel7 (in which leading factor loadings equal one), realize
that under smodel8, the γj are exactly the correlations of F0 with Fj. They are also the
correlations of F0 with Fj, under the original model, and under the model of smodel7.
So for the model of smodel7, we seek to test the null hypothesis of equal correlations.
This implies some constraints on the parameters that are not at all intuitive. The result
is either a good homework problem or a place where I need to show my work26.

For smodel7, the equations of the latent part of the model are

F1 = F0 + ε1

F2 = γ2F0 + ε2

F3 = γ3F0 + ε3,

with V ar(F0) = φ, V ar(εj) = ψj for j = 1, 2, 3, and of course F0 independent of the εj.
The variances of the first-order factors are

V ar(F1) = φ+ ψ1, V ar(F2) = γ2
2φ+ ψ2, V ar(F3) = γ2

3φ+ ψ3,

and
Cov(F0, F1) = Cov(F0, F0 + ε1) = φ

Cov(F0, F2) = Cov(F0, γ2F0 + ε2) = γ2φ

Cov(F0, F3) = Cov(F0, γ3F0 + ε3) = γ3φ,

25As usual in applied statistics, we are not actively accepting the null hypothesis. For example, if we
say that the results are consistent with equal second-order factor loadings, what we really mean is that
they are not inconsistent with equal factor loadings. That is, the null hypothesis was not rejected.

26Maybe it’s both. Some students are surprised when they discover that the answers to many homework
problems are directly in the textbook. It’s a sneaky way to encourage students to read the text.
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so that
Corr(F0, F1) = φ√

φ(φ+ψ1)
=

√
φ√

φ+ψ1

Corr(F0, F2) = γ2φ√
φ(γ22φ+ψ2)

= γ2
√
φ√

γ22φ+ψ2

Corr(F0, F3) = γ3φ√
φ(γ23φ+ψ3)

= γ3
√
φ√

γ23φ+ψ3

.

Since Corr(F0, F1) > 0, the null hypothesis of equal correlations implies γ2 > 0 and
γ3 > 0. Using this,

Corr(F0, F1) = Corr(F0, F2) ⇐⇒
√
φ√

φ+ ψ1

=
γ2

√
φ√

γ2
2φ+ ψ2

⇐⇒ 1√
φ+ ψ1

=
γ2√

γ2
2φ+ ψ2

⇐⇒ γ2

√
φ+ ψ1 =

√
γ2

2φ+ ψ2

⇐⇒ γ2
2(φ+ ψ1) = γ2

2φ+ ψ2

⇐⇒ γ2
2φ+ γ2

2ψ1 = γ2
2φ+ ψ2

⇐⇒ ψ2 = γ2
2ψ1. (3.37)

Similarly,

Corr(F0, F1) = Corr(F0, F3) ⇐⇒
√
φ√

φ+ ψ1

=
γ3

√
φ√

γ2
3φ+ ψ3

⇐⇒ 1√
φ+ ψ1

=
γ3√

γ2
3φ+ ψ3

⇐⇒ γ3

√
φ+ ψ1 =

√
γ2

3φ+ ψ3

⇐⇒ γ2
3(φ+ ψ1) = γ2

3φ+ ψ3

⇐⇒ γ2
3φ+ γ2

3ψ1 = γ2
3φ+ ψ3

⇐⇒ ψ3 = γ2
3ψ1. (3.38)

Finally,

Corr(F0, F2) = Corr(F0, F3) ⇐⇒ γ2

√
φ√

γ2
2φ+ ψ2

=
γ3

√
φ√

γ2
3φ+ ψ3

⇐⇒ γ2√
γ2

2φ+ ψ2

=
γ3√

γ2
3φ+ ψ3

⇐⇒ γ2

√
γ2

3φ+ ψ3 = γ3

√
γ2

2φ+ ψ2

⇐⇒ γ2
2(γ2

3φ+ ψ3) = γ2
3(γ2

2φ+ ψ2)

⇐⇒ γ2
2γ

2
3φ+ γ2

2ψ3 = γ2
2γ

2
3φ+ γ2

3ψ2

⇐⇒ γ2
2ψ3 = γ2

3ψ2 (3.39)
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Only two of these constraints are necessary; any two imply the remaining one. One thing
that’s clear from all this so far is that even though the calculations are elementary, this
is a lot of work to set up just one null hypothesis. When the interest is in correlations, a
model with standardized variables is preferable. Since most of the work has been done,
let’s proceed.

In order to impose constraints on parameters in lavaan, the parameters involved must
be named in the model string. It’s convenient to assemble a new model string by adding
to swine3.

> cat(swine3)

visual =~ x1 + x2+x3+x5+x6+x8+x9

verbal =~ x4 + x2+x3+x5+x6+x8+x9

speed =~ x7 + x2+x3+x5+x6+x8+x9

> part2 = ’# Second order measurement model

+ ability =~ visual + gamma2*verbal + gamma3*speed

+ # Variances of error terms (epsilons)

+ visual ~~ psi1*visual; verbal ~~ psi2*verbal; speed ~~ psi3*speed ’

> swine6 = paste(swine3,part2)

> cat(swine6)

visual =~ x1 + x2+x3+x5+x6+x8+x9

verbal =~ x4 + x2+x3+x5+x6+x8+x9

speed =~ x7 + x2+x3+x5+x6+x8+x9

# Second order measurement model

ability =~ visual + gamma2*verbal + gamma3*speed

# Variances of error terms (epsilons)

visual ~~ psi1*visual; verbal ~~ psi2*verbal; speed ~~ psi3*speed

To test this code, I verified that it produced the same fit and parameter estimates as
smodel7 (starting on page 355), except with a few extra labels. Then I tried to fit the
model with the constraints (3.37) and (3.38).

> # Constraints are equivalent to equal correlations of F0 with F_j. This is H0.

> smodel7H0 = cfa(swine6, data = hs, constraints = ’psi2 == gamma2^2 * psi1

+ psi3 == gamma2^3 * psi1 ’ )

It took a long time to run, which is almost always a bad sign. Then,
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Warning messages:

1: In lav_model_estimate(lavmodel = lavmodel, lavpartable = lavpartable, :

lavaan WARNING: the optimizer warns that a solution has NOT been found!

2: In lav_model_vcov(lavmodel = lavmodel, lavsamplestats = lavsamplestats, :

lavaan WARNING:

The variance-covariance matrix of the estimated parameters (vcov)

does not appear to be positive definite! The smallest eigenvalue

(= -2.656966e-21) is smaller than zero. This may be a symptom that

the model is not identified.

3: In lav_object_post_check(object) :

lavaan WARNING: some estimated lv variances are negative

The parameters are identifiable in most of the parameter space, and the regions where they
are not identifiable do not correspond to the constraints. So, we can discount suggestion
that possibly “the model is not identified”— though typos can accidentally specify a model
that is not what one intends, and whose parameters are not identifiable. The warning
about negative variance estimates is helpful. Let’s look at a summary.

> summary(smodel7H0, standardized=TRUE)

lavaan 0.6-7 ended normally after 1336 iterations

Estimator ML

Optimization method NLMINB

Number of free parameters 33

Number of observations 145

Model Test User Model:

Test statistic 671.784

Degrees of freedom 14

P-value (Chi-square) 0.000

Parameter Estimates:

Standard errors Standard

Information Expected

Information saturated (h1) model Structured

Latent Variables:

Estimate Std.Err z-value P(>|z|) Std.lv Std.all

visual =~

x1 1.000 NA NA

x2 -0.002 0.001 -3.092 0.002 NA NA

x3 -0.004 0.000 -9.062 0.000 NA NA

x5 -0.005 0.000 -10.974 0.000 NA NA

x6 -0.001 0.001 -2.249 0.025 NA NA
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x8 -0.001 0.000 -1.795 0.073 NA NA

x9 -0.004 0.000 -10.413 0.000 NA NA

verbal =~

x4 1.000 NA NA

x2 2.116 0.000 32578611.185 0.000 NA NA

x3 3.977 0.000 39039739.233 0.000 NA NA

x5 8.504 0.000 15717415.576 0.000 NA NA

x6 5.219 0.000 94329059.781 0.000 NA NA

x8 -0.891 0.000 -5466418.974 0.000 NA NA

x9 1.521 0.000 14915452.630 0.000 NA NA

speed =~

x7 1.000 3.528 0.815

x2 0.116 0.000 18821.703 0.000 0.410 0.335

x3 0.217 0.000 34832.277 0.000 0.765 0.620

x5 0.394 0.000 11697.369 0.000 1.390 0.934

x6 0.317 0.000 63860.916 0.000 1.117 0.747

x8 0.101 0.000 7754.555 0.000 0.357 0.337

x9 0.218 0.000 19810.814 0.000 0.768 0.649

ability =~

visual 1.000 NA NA

verbal (gmm2) 0.004 0.000 190959.565 0.000 NA NA

speed (gmm3) -14577.264 -1.000 -1.000

Variances:

Estimate Std.Err z-value P(>|z|) Std.lv Std.all

.visual (psi1) -129.680 0.000 -20649480.153 0.000 NA NA

.verbal (psi2) -0.002 0.001 -1.772 0.076 NA NA

.speed (psi3) -0.000 -0.000 -0.000

.x1 131.055 0.000 20972882.910 0.000 131.055 95.304

.x2 1.334 0.000 4375786.419 0.000 1.334 0.894

.x3 0.973 0.000 847631.935 0.000 0.973 0.640

.x5 0.441 0.000 33863.868 0.000 0.441 0.199

.x6 1.047 0.000 893652.826 0.000 1.047 0.468

.x8 0.992 0.000 929543.299 0.000 0.992 0.888

.x9 0.820 0.000 498369.776 0.000 0.820 0.584

.x4 1.533 0.000 13735738.550 0.000 1.533 1.001

.x7 6.310 0.000 5932823.378 0.000 6.310 0.336

ability 0.000 1.000 1.000

Constraints:

|Slack|

psi2 - (gamma2^2*psi1) 0.000

psi3 - (gamma2^3*psi1) 0.000

# parTable(smodel7H0) # Start obeyed the constraints.

It can be beneficial too look at something this ugly. There are several indications that
the numerical search for the MLE went off the rails. The number of iterations was 1336,
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which is too many; smodel7 took 48 iterations, and smodel8 took 190. Also, many of
the supposed parameter estimates are really huge. Then there’s the ψ̂3 of -20649480.153.
This is an estimated variance. The output shows all the signs of a numerical search
that accidentally left the parameter space, found a direction that was slightly less bad
than where it landed, and then wandered off into nowhere until lavaan (or actually, the
underlying nlminb function) pulled the plug because of too many iterations.

The standard cure for this disease is better starting values. As we saw in the BMI
Health Study (Section 0.10.4, starting on page 89), providing a large number of starting
values can be a lot of work. There is an alternative that is promising in this case, but
which I have not tried. It’s to use the imposeStart function from the semTools package.
Using imposeStart, you are able to start a numerical search where another similar model
successfully finished. Just provide names for the parameters involved. Here, I would start
with the most of the estimates from smodel7; it would be necessary to provide labels for
the parameters whose estimates were to be used as starting values.

I did not do this, because it turned out that I did not need to. Hoping for the best,
I imposed the constraints (3.37) and (3.39) in place of (3.37) and (3.38). Even though
these two ways of expressing the null hypothesis are mathematically equivalent, numerical
software does not do all the math. I was guessing that the numerical details of imposing
the constraints would be sufficiently different so that the search would not get lost at the
same point as before. Presumably because I have been a good person my entire life, it
worked.

> # Try again, with different expression of the same constraints

> smodel7H0 = cfa(swine6, data = hs,

+ constraints = ’psi2 == gamma2^2 * psi1

+ gamma2^2 * psi3 == gamma3^2 * psi2 ’)

>

> # summary(smodel7H0) # Commented out

> anova(smodel7H0,smodel7)

Chi-Squared Difference Test

Df AIC BIC Chisq Chisq diff Df diff Pr(>Chisq)

smodel7 12 3494.1 3592.3 9.8461

smodel7H0 14 3494.1 3586.4 13.8616 4.0155 2 0.1343

The results are exactly the same as for anova(smodel8H0,smodel8) on page 361.
Two lessons may be learned from this last excursion. The first lesson is that it’s too

much work. If you are interested in an identifiable function of the original model parame-
ters, try to use a surrogate model in which that identifiable function is a model parameter.
Expressions (3.17) and (3.19) may be helpful, as may the discussion in Section 3.7. If
there is no such surrogate model, okay. But don’t make things more complicated than
they need to be.

The second lesson is narrow and technical, but unexpected. Suppose a restricted
model is being tested against an unrestricted model, and that the unrestricted model fits,
while the restricted model does not. Re-expressing the constraints in a mathematically
equivalent (and not necessarily simpler) way may be helpful.
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3.9 The Importance of Planning and Design

In the typical factor analytic study, the investigator hands out a bunch of questionnaires27,
or invites people to complete the questionnaires online. Either way, the observable vari-
ables in the study are derived from the responses of the participants. Values of the
variables are all generated at more or less the same time and under more or less the same
circumstances. This unleashes a flood of very predictable common influences. The re-
spondents’ mood, recent experiences, view of the investigator, self-presentation strategies,
and guesses about the real purpose of the study — all of these latent variables and many
more may be assumed to affect the observable variables.

Chances are very good that such variables are not the focus of the study, and are
not among the hypothesized factors. That means they are incorporated into the error
terms, and because the same extraneous variables will impact more than one observable
variable, the result is non-zero covariances between error terms. These common influences
are numerous and we don’t know exactly what they are, so the most reasonable model
will include all possible covariances between error terms.

Such a model may be reasonable, but it is not useable. There are k observable vari-
ables, and an error term for each one. The covariance matrix of the observable variables,
Σ, is k × k, and the covariance matrix of the errors, Ω, is also k × k. There are already
as many unknown parameters as covariance structure equations, so the presence of even
a single common factor will violate the parameter count rule. Parameter identifiability
is out of reach, and so is consistent estimation. Trying to fit the model by maximum
likelihood is guaranteed to fail.

Of course, model with all possible covariances between the errors is not what the factor
analyst will try to fit. Instead, it is very common to assume a model in which all the
error terms are independent. The parameters of such a model may be identifiable, but the
model is mis-specified. That is, it’s not correct. Correlations between observable variables
will be taken as evidence for the operation of common factors, when in reality they are
due to correlations between errors.

How bad will it be? It’s really impossible to say. Certainly, parameter estimates will
be at least a little off, even for very large sample sizes. Maybe, the effects of the extraneous
unmeasured variables will be small compared to the effects of the common factors, and the
picture that emerges will be a fair reflection of reality in all essential respects. Or maybe,
the correlations between observed variables will be largely determined by the correlations
between error terms, making any conclusions from the analysis scientifically worthless.
It is impossible to tell, precisely because, apart from the background noise of sampling
error, what identifiable means is knowable.

When the model with independent errors is applied to data, it may fit and it may not.
If it does not fit, it could be that the correlations between errors have created a sample
covariance matrix that is inconsistent with the common factor part of the model. At least
there is a clue that something is wrong. If the model does fit, it may be that everything
is fairly close to being okay, but not necessarily. This is the case with the Holzinger and

27Or educational tests.
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Swineford data of Section 3.8.
In any observational study, there will inevitably be omitted variables that can distort

the results. See Section 0.4 in Chapter 0 for a discussion of how this can affect ordinary
regression. However, the focus here is on a set of processes that specifically corrupt the
measurement process, and can be controlled.

First, the problem is worst when human subjects are involved, and are aware that
their behaviour is being assessed. In contrast, imagine a physical anthropology study in
which 14 measurements are to be conducted on a sample of 273 fossilized bones and bone
fragments. Measurement error is certainly going to occur, but it’s easy enough to minimize
correlations among the errors. Just randomize the order in which the measurements are
taken, over both bones and features. So for example, the person collecting the data will
first measure characteristic 6 on bone 47, then characteristic 11 on bone 122, and so
on. It’s a bit of extra work, but it would make a model with independent errors quite
reasonable.

Research design The key to the last example was collecting the data a bit differently.
This is an aspect of research design. That’s true in more difficult cases as well. This
chapter has introduced a good number of rules for establishing parameter identifiability,
but there are two big ones — the double measurement rule and the reference variable
rule28. In both cases, the rules allow for subsets of variables whose error terms might
be correlated, but require zero correlation of the error terms for different subsets. For
examples, see the BMI health study of Section 0.10.4 and the Brand Awareness study
of Section 1.6. Section 3.4 on the reference variable rule also has examples, as well as
extended discussion of correlated measurement error and how the design allows for it.

The point here is that there are good alternatives to just handing out a bunch of
questionnaires and hoping for the best, but they require advance planning. In other
applications of statistics, especially in experiments with random assignment, it is com-
monplace to think of the research question, the statistical analysis and the details of data
collection all at the same time. Factor analysis should be no different. Of course, this
principle also holds when a factor analysis model is part of a larger structural equation
model.

28Why are these two the “big ones?” Because they grant entry to the system, establishing the param-
eters of a model or sub-model as identifiable. Then other rules may be used to expand the model or put
sub-models together.



Chapter 4

Path Analysis

4.1 Introduction

Path analysis refers to a family of regression-like methods with multiple equations, in
which a response variable in one equation may be an explanatory variable in another
equation. The term was originated by the American geneticist Sewell Wright, who did his
primary work on the topic in the 1920s and 1930s. Wright was the author of numerous
influential papers on path analysis. For a statistician, his most noteworthy may be [73],
a 1934 paper in the Annals of mathemetical statistics. Historically, the field of structural
equation modeling arose as a fusion of path analysis and confirmatory factor analysis.

The two-stage model Let us begin with the general two-stage structural equation
model described in Chapter 1, Section 1.2. Copying from (1.1), the model equations are

yi = α+ βyi + Γxi + εi

Fi =

(
xi
yi

)
di = ν + ΛFi + ei,

where . . . , well a lot of things, given in the model specification that begins on page 137.
In this model, xi and yi are vectors of latent variables that are collected into Fi in line
two. Then line three is a confirmatory factor analysis model, as described in Chapter 3.
The presence of intercepts tells us that this is an original model, one that has not been
centered yet. The first line corresponds to the latent variable model, while the factor
analysis part is described as the measurement model.

The two-stage model is specifically designed to facilitate two-stage proofs of identifia-
bility. Suppose that all the variables have been been centered and the parameters of the
measurement model are identifiable, so that Φ = cov(Fi) is a function of Σ = cov(di). If
it can be shown that β, Γ and Ψ = cov(εi) are functions of Φ, then they too are functions
of Σ, and all the parameters are identifiable.

369
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Surface path analysis This chapter will focus on the latent variable part of the model,
but with a twist. We will pretend that the variables in xi and yi are observable, yielding
what could be called a surface path analysis model. The main reason for doing this is ease
of exposition. By making all the variables observable, it will be possible to give examples
without either providing details of the (irrelevant) measurement part of the model, or
leaving those details conspicuously absent.

Except for expected values and intercepts, everything we learn about surface path
models will apply directly to the latent variable part of the general structural equation
model. This is notably true of identifiability rules, because the process of identifying β,

Γ and Ψ from Σ = cov

(
xi
yi

)
is the same as the process of recovering them from Φ.

It is also true that surface path models are widely used in practice. Of course almost
nothing can be measured without error, and as in ordinary regression, ignoring measure-
ment error can have very bad consequences. See Chapter 0 and [14]. Applications of
surface path models to real data are no better and no worse than most applications of
regression and regression-like methods to observational data.

The surface path analysis model In this chapter, we shall adopt the following cen-
tered surrogate model. Independently for i = 1, . . . , n, let

yi = βyi + Γxi + εi, (4.1)

where

• yi is a q × 1 observable random vector.

• β is a q × q matrix of constants with zeros on the main diagonal.

• Γ is a q × p matrix of constants.

• xi is a p×1 observable random vector with expected value zero and positive definite
covariance matrix Φ.1

• εi is a q×1 random vector with expected value zero and positive definite covariance
matrix Ψ. It is an error term, so it is not observable.

• xi and εi are independent.

As mentioned in Chapter 1, the xi are called exogenous variables and the yi are called
endogenous variables. In a path diagram, endogenous variables are found at the ends of
straight arrows, while the exogenous (x) variables do not have any arrows pointing toward
them. Error terms are generically exogenous, but they are in a separate category.

Recalling that (4.1) is a model of influence, note that endogenous variables can influ-
ence other endogenous variables through the coefficients in the parameter matrix β. The

1In the general two-stage model, Φ is the covariance matrix of Fi and cov(xi) is denoted by Φx. So,
the notation in this chapter is not quite consistent with the rest of the book, but it is a bit simpler.
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stipulation that β has zeros on the main diagonal means that the endogenous variables
cannot influence themselves directly, though they may do so indirectly through other
variables.

Covariance matrix As usual, identifiability and estimation will be based on the co-
variance matrix of the observable variables. Slightly adapting (1.4),

Σ = cov

(
xi
yi

)
=

(
Φ ΦΓ>(I− β>)−1

(I− β)−1
(
ΓΦΓ> + Ψ

)
(I− β>)−1

)
, (4.2)

where the existence of the inverses is guaranteed by Theorem 1.1.

Example 4.1.1 Birth weight of guinea pigs

This is a simplified version of an example that Wright [72] gives in a 1921 paper2. The
example concerns birth weight of guinea pigs. There are three observable variables: birth
weight, number of days since mother’s last litter, and litter size. Number of days since
last litter is a stand-in for gestation period, or how long the guinea pig babies are in
the mother. In our conceptual framework, interval since last litter would be a reference
variable for the latent variable gestation period, but we’ll stick to observable variables
here.

The longer the gestation period, the bigger the baby guinea pig should be, because it
has more time to grow. Other considerations come into play. As Wright puts it, “a large
number in a litter has a fairly direct tendency to shorten the gestation period, but this
is probably balanced in part by its tendency to reduce the rate of growth of the foetuses,
slow growth permitting a longer gestation period. Large litters tend to reduce gestation
period and rate of growth before and after birth. ” (p. 561)

So in some way, litter size influences gestation period and gestation period influences
birth weight. Litter size also has a direct influence on birth weight. This is depicted in
Figure 4.1. In scalar form, the model equations are

y1 = γ1x+ ε1 (4.3)

y2 = βy1 + γ2x+ ε2.

To clarify the notation, it may be helpful to express the equations in the matrix form of
Equation (4.1).

y = β y + Γ x + ε(
y1

y2

)
=

(
0 0
β 0

) (
y1

y2

)
+

(
γ1

γ2

) (
x
)

+

(
ε1
ε2

)
(4.4)

2The title of the paper is “Correlation and causation.” When I first saw it, I thought I had found
the original source of the warning that correlation does not necessarily imply causation. Wright was
far beyond that. His point was that mere correlations ignore prior knowledge about the likely causal
connections among the variables. He proposed path analysis as a way of deriving a causal structure that
is logically consistent with a set of correlations. He described it as “a method of analysis by which the
knowledge that we have in regard to causal relations may be combined with the knowledge of the degree
of relationship furnished by the coefficients of correlation.” (p. 559)
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Figure 4.1: Guinea Pig Birth Weight
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with

Ψ = cov(ε) =

(
ψ1 0
0 ψ2

)
.

Identifiability As usual, parameter identifiability is to be established by solving the
covariance structure equations for the parameters, or showing that such a solution is
possible. To obtain Σ from the scalar version of the model equations, it is helpful to
express the endogenous variables only in terms of exogenous variables and error terms.
In the general matrix formulation, this process is the source of (I−β)−1 in (4.2). For the
guinea pig example, all that’s necessary is to substitute the first equation of (4.3) into the
second. Then, elementary calculations yield

Σ = cov

 x
y1

y2

 =

 φ γ1φ (βγ1 + γ2)φ
γ2

1φ+ ψ1 γ1 (βγ1 + γ2)φ+ βψ1

(βγ1 + γ2)2 φ+ β2ψ1 + ψ2

 . (4.5)

The parameters φ, γ1 and ψ1 are easily identified. After that it does not look very obvious,
until one notices that the expressions for σ1,3 and σ2,3 yield two linear equations in the
two unknowns β and γ2. Even without going into the details, we can still be assured
that a unique solution exists, at least in most of the parameter space. Finally, ψ2 may be
obtained from σ3,3 by subtraction. Thus, at least in a rough way, it is established that
the model parameters are identifiable.

Sage The calculations leading to (4.5) were elementary, but even for this simple example
they were a bit tedious. Also, for a detailed picture of where in the parameter space the
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parameters are identifiable, it’s necessary to solve the two linear equations for β and γ2.
This is also a chore, and most people would not bother. Sage can help. In the following,
quite a bit of the code follows Section 1.4.4.

The sem package has functions that make it easy to set up the matrices Φ, β, Γ and
Ψ as given in (4.4).

# Guinea pig example

sem = ’http://www.utstat.toronto.edu/~brunner/openSEM/sage/sem.sage’

load(sem)

# Set up Phi, Gamma, Beta, Psi

PHI = ZeroMatrix(1,1); PHI[0,0] = var(’phi’); show(PHI)

GAMMA = ZeroMatrix(2,1)

GAMMA[0,0] = var(’gamma1’); GAMMA[1,0] = var(’gamma2’); show(GAMMA)

BETA = ZeroMatrix(2,2); BETA[1,0] = var(’beta’); show(BETA)

# The default symbol for DiagonalMatrix is psi

PSI = DiagonalMatrix(2); show(PSI)

evaluate(
φ
)(

γ1

γ2

)
(

0 0
β 0

)
(
ψ1 0
0 ψ2

)
The PathCov function takes the Φ, β, Γ and Ψ matrices as input, and calculates (4.2) to
return the covariance matrix Σ. Type PathCov? in the Sage environment for details.

# Calculate the covariance matrix.

Sigma = PathCov(Phi=PHI,Beta=BETA,Gamma=GAMMA,Psi=PSI)

show(Sigma)

evaluate φ γ1φ (βγ1 + γ2)φ
γ1φ γ2

1φ+ ψ1 βγ2
1φ+ γ1γ2φ+ βψ1

(βγ1 + γ2)φ βγ2
1φ+ γ1γ2φ+ βψ1 β2γ2

1φ+ 2 βγ1γ2φ+ γ2
2φ+ β2ψ1 + ψ2


There are six covariance structure equations in six unknowns. With the same number
of equations and unknowns, Sage’s function is a powerful tool. First, it’s necessary to
set up the covariance structure equations. The SetupEqns does this, taking a symbolic
covariance matrix as input. See SetupEqns? for details and options.
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# Show identifiability by direct solution

param = [phi, beta, gamma1, gamma2, psi1, psi2] # List of model parameters

eqns = SetupEqns(Sigma)

for item in eqns: show(item)

evaluate

φ = σ11

γ1φ = σ12

(βγ1 + γ2)φ = σ13

γ2
1φ+ ψ1 = σ22

βγ2
1φ+ γ1γ2φ+ βψ1 = σ23

β2γ2
1φ+ 2 βγ1γ2φ+ γ2

2φ+ β2ψ1 + ψ2 = σ33

The solve function returns a list of solutions. How many are there?

solut = solve(eqns,param); len(solut)

evaluate

1

There is one solution; it is is number zero in the list (of lists).

solut = solut[0] # First and only item in the list

for item in solut: show(item)

evaluate

φ = σ11

β = σ12σ13−σ11σ23
σ2
12−σ11σ22

γ1 = σ12
σ11

γ2 = −σ13σ22−σ12σ23
σ2
12−σ11σ22

ψ1 = −σ2
12−σ11σ22

σ11

ψ2 =
σ2
13σ22−2σ12σ13σ23+σ2

12σ33+(σ2
23−σ22σ33)σ11

σ2
12−σ11σ22

Now it’s clear that the solution exists and we have identifiability except where σ2
12 −

σ11σ22 = 0. What is that in terms of the model parameters?

# For identifiability, this determinant must not be zero.

Sigma[0,0]*Sigma[1,1] - Sigma[0,1]*Sigma[1,0]
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evaluate

−γ2
1φ

2 + (γ2
1φ+ ψ1)φ

# Oh come on

expand(_)

evaluate

φψ1

This is very good. Both φ and ψ1 are variances, and they are never zero. That means the
unique solution exists for all valid parameter values, and we have identifiability everywhere
in the parameter space.

In this particular case, since the number of covariance structure equations equals the
number of unknowns, the model is called saturated, or just identified. It fits the sample
covariance matrix perfectly, and its fit is untestable by the likelihood ratio chi-squared
test. By the invariance principle, the maximum likelihood estimates may be calculated
exactly by putting hats on the Greek letters in the solution for the model parameters.

Standardized observed variables In classical path analysis as developed by Wright,
the observed variables are standardized, and we work with correlations rather than vari-
ances and covariances. For the guinea pig example, this means that φ = V ar(x) = 1, and
also that ψ1 and ψ2 are no longer free parameters, since V ar(y1) = V ar(y2) = 1 dictates
that ψ1 = 1−γ2

1φ and ψ2 = 1− (βγ1 +γ2)2φ−β2ψ1. It’s convenient to do the calculations
with Sage.

# Get correlation matrix for surrogate model with standardized variables.

Rho = Sigma(psi2 = 1-(beta*gamma1+gamma2)^2*phi-beta^2*psi1)

Rho = factor(Rho(phi=1, psi1=1-gamma1^2))

show(Rho)

evaluate 1 γ1 βγ1 + γ2

γ1 1 γ1γ2 + β
βγ1 + γ2 γ1γ2 + β 1


Even in this toy example, it was necessary to do the substitutions carefully in stages and
in the correct order in order to eliminate both ψ1 and ψ2. Especially for bigger models,
it it preferable to use the PathCorr function from the sem package.

PathCorr(Phi=PHI,Beta=BETA,Gamma=GAMMA,Psi=PSI)

evaluate
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 1 γ1 βγ1 + γ2

γ1 1 γ1γ2 + β
βγ1 + γ2 γ1γ2 + β 1


However one calculates it, this is a lot easier to look at and more informative than the co-
variance matrix of the unstandardized variables. In particular, notice ρ1,3 = Cov(x, y2) =
βγ1 + γ2. Looking back at Figure 4.1, observe that the correlation between x and y2 is
composed of two parts that add up. The two parts correspond to the direct effect of x on
y2, and the indirect effect of x on y2 through y1. Further, the indirect effect is obtained by
multiplying down the pathway from x to y2 through the mediating variable y2. Later in
this chapter, we will see the general version in Wright’s Theorem and the Multiplication
Theorem. First, we develop a couple of essential identifiability rules.

4.2 The Regression Rule and the Acyclic Rule

4.2.1 The Regression Rule

Taking β = 0 in (4.1) on page 370 means that endogenous variables have no influence on
other endogenous variables. The result is a centered multivariate regression model.

yi = Γxi + εi, (4.6)

where cov(xi) = Φ is p × p, cov(εi) = Ψ is q × q, and εi is independent of xi. The
covariance matrices Φ and Ψ are positive definite.

It is no surprise that the parameters of a regression model are identifiable. Letting

Σ1,1 = cov(xi) Σ1,2 = cov(yi) Σ2,2 = cov(yi),

we have
Σ1,1 = Φ Σ1,2 = ΦΓ> Σ2,2 = ΓΦΓ> + Ψ.

Because Φ = Σ1,1 is positive definite, Σ−1
1,1 exists. This makes it possible to solve for the

parameter matrices, yielding

Φ = Σ1,1 Γ = Σ>1,2Σ
−1
1,1 Ψ = Σ2,2 −Σ>1,2Σ

−1
1,1Σ1,2. (4.7)

Thus the model parameters are identifiable everywhere in the parameter space. The
following rule has been established3.

Rule 3a: Regression Rule The parameters of the regression model (4.6) are identifi-
able.

Furthermore, the parameters are just identifiable. In other words, the model is saturated.
Since the parameters are identifiable, this is established by showing that the number of

3It was also established earlier using a somewhat different notation; see (16) on page 26.



4.2. THE REGRESSION RULE AND THE ACYCLIC RULE 377

covariance structure equations equals the number of model parameters. Observe that
the q × p matrix Γ contains pq parameters, Φ contains p(p + 1)/2 parameters, and Ψ
contributes q(q + 1)/2 more. The covariance matrix Σ has (p + q)(p + q + 1)/2 unique
elements, equal to the number of covariance structure equations. A bit of high school
algebra can be skipped by using Sage.

# Regression model is just identified.

var(’p q’)

factor(expand( p*q + p*(p+1)/2 + q*(q+1)/2 ))

evaluate

1
2

(p+ q + 1)(p+ q)

By the invariance principle, exact formulas for the MLEs can be obtained by putting hats
on all the quantities in the solution (4.7). As given in expression (4) on page 14 (also see

page 26), Γ̂ also contains the ordinary least squares estimates of the slopes.

4.2.2 The Acyclic Rule

In the model equation yi = βyi + Γxi + εi, setting the diagonal elements of β to zero
means that no variable may directly influence itself. However, there could easily be
feedback loops, in which, for example, y1 influences y2, y2 influences y3, and y3 in turn
influences y1. Such a model is termed cyclic, because of the cycle of causality.

An acyclic model is one without any such feedback loops4. Some of the simplest
and most useful path models are acyclic – for example, the latent model of the Brand
Awareness example (Example 1.2 in Chapter 1; see Figure 1.1). The blood pressure model
of Figure 1.3 (page 149) and the guinea pig weight model of Figure 4.1 in this chapter are
also acyclic. The following rule gives conditions under which the parmeters of an acyclic
model are identifiable.

4Acyclic models are sometimes called recursive [10, 21].
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Rule 3b: Acyclic Rule The parameters of the path analysis model (4.1) are identifi-
able if the model is acyclic (no feedback loops through straight arrows) and the following
conditions hold.

? Organize the variables that are not error terms into sets. Set 0 consists of all the
exogenous variables. They may have non-zero covariances.

? For j = 1, . . . ,m, each endogenous variable in set j may be influenced by all the
variables in sets ` < j.

? Error terms for the endogenous variables in a set may have non-zero covariances.
All other covariances between error terms are zero5.

Figure 4.2 illustrates these features.

• Set zero consists of the exogenous variables x1, x2 and x3. They are correlated, as
allowed by the rule.

• Set one consists of y1 and y2. These variables are influenced by the variables in set
zero, and their error terms have non-zero covariance, as allowed (but not required).

• Set two is composed of y3, y4 and y5. Each variable in this set is influenced by the
variables in set one; y3 and y5 are also influenced by exogenous variables. Their
error terms are correlated.

• Set three consists of y6 and y7. Each one is influenced by one variable from set two,
and one exogenous variable from set zero. They also could have been influenced
by any or all the variables in set one, but in this model they are not6. Their error
terms are correlated.

Notice that the way the rule is stated, all the arrows (curved and double-headed as well as
straight) are optional, except for the straight arrows from error terms to the endogenous
variables. It would be possible to start drawing the path diagram without any of the
optional arrows. Endogenous variables would be placed into sets such that they definitely
are not influenced, directly or indirectly, by the variables in later sets. Variables with
correlated error terms must be placed into the same set. Then the remaining arrows
could be added to the picture, based on substantive modelling considerations. One could
say that “really,” there are arrows to each endogenous variable from all the variables in
earlier sets, but some of the coefficients have been set to zero, so the arrows are invisible.

The following lemma will be used to prove the acyclic rule.

Lemma: In the centered multivariate regression model (4.6), the matrix

Σ = cov

(
xi
yi

)
has an inverse.

5This condition is satisfied if Ψ is diagonal.
6It would have been too hard to draw.
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Figure 4.2: An Acyclic Model
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Proof of the lemma Following the notation of Seber [57], write Σ as a partitioned
matrix.

Σ = cov

(
xi

yi

)
=

(
Φ ΦΓ>

ΓΦ ΓΦΓ> + Ψ

)
=

(
A1,1 A1,2

A2,1 A2,2

)
Seber’s expression 14.17(a) on page 296 says that if A1,1 is non-singular,

|Σ| = |A1,1| |A2,2 −A2,1A
−1
1,1A1,2|

Since Φ = A1,1 is positive definite, its inverse exists and its determinant is positive.
Substituting for the other term,

A2,2 −A2,1A
−1
1,1A1,2 = (ΓΦΓ> + Ψ)− (ΓΦ)Φ−1(ΦΓ>)

= ΓΦΓ> + Ψ− ΓΦΓ>

= Ψ,

which has a positive determinant because it is positive definite. Thus the determinant of
Σ is positive. It follows that Σ has an inverse. �

Proof of the Acyclic Rule Sub-divide the endogenous variables in yi. For j =
1, . . . ,m, denote the endogenous variables in set j by yi,j, and the corresponding error
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terms by εi,j. Consider a set of regression models, in which yi,j are the response variables.
Let xi,j−1 denote the exogenous variables in x0, plus all the endogenous variables in yi,`
for ` < j, pooled. These are the explanatory variables. The model equation(s) may be
written

yi,j = Γjxi,j−1 + εi,j.

The collection of all parameters from these models correspond to the set of parameters of
the path model. Some matrix elements may be zero, but that presents no problem.

By the lemma, cov(xi,j−1) is non-singular for j = 2, . . . ,m. Each cov(εj) is also non-
singular. This is true because the zero covariance between sets of error terms gives the
overall covariance matrix of the errors a block diagonal structure, and the determinant of
a block diagonal matrix is the product of the determinants of the blocks.

Thus, the regression rule applies at each stage, and the parameters in each regression
model are identified. This identifies all the parameters of the acyclic path model. �

Because the parameters of each regression model are just identifiable, so are the param-
eters of the acyclic path model, provided that the model includes all permissible straight
arrows and covariances between error terms.

4.3 Cyclic Models

Like most of the identifiability rules, the acyclic rule gives a set of sufficient conditions
for parameter identifiability. They are not necessary. This is a good thing, because
cyclic models – models with one or more feedback loops – sometimes express something
we believe to be true, and want to incorporate into the model. Supply and demand in
economics is a prime example.

4.3.1 Duncan’s non-recursive just identified model

Figure 4.3 shows a cyclic model from Chapter 5 of Duncan’s Introduction to Structural
Equation Models [21]. From a quick glance, distinguishing between β1, β2 and ψ1,2 would
seem an impossibility, but this kind of intuition can be unreliable.

It’s always a good idea to check the parameter count rule first. There are three unique
φi,j, two γj, two βj and three unique ψi,j, for a total of ten parameters. The covariance
matrix of the observable variables has 4(4+1)/2 = 10 unique elements, so if the parameters
are identifiable, they are just identifiable.

Duncan spends most of a chapter solving the covariance structure equations, and he
does not really finish the job. It’s preferable to use Sage. This avoids most of the work,
but it’s still a fairly big job. Readers who are not interested in the details of how Sage
works may want to skip the rest of this section.
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Figure 4.3: Duncan’s Cyclic Model

ε
2

ε
1

y
1

y
2

y
1

y
2

y
1

x
1

x
2

γ
1

β
2

γ
2

β
1

β
1

γ
1

φ
1,2 ψ

1,2

The model equations are

yi = β yi + Γ xi + εi(
yi,1
yi,2

)
=

(
0 β1

β2 0

) (
yi,1
yi,2

)
+

(
γ1 0
0 γ2

) (
xi,1
xi,2

)
+

(
εi,1
εi,2

)
.

(4.8)

The first operation is to load the sem package. In the work that follows, note that if
a function has any capital letters, it’s part of the package7. If it’s all lower case, it’s a
generic Sage function.

# Duncan’s (1975) just identified non-recursive model

sem = ’http://www.utstat.toronto.edu/~brunner/openSEM/sage/sem.sage’

load(sem)

evaluate

Now set up the parameter matrices. Observe that the displayed matrices agree with (4.8).

# Set up Phi, Gamma, Beta, Psi

PHI = SymmetricMatrix(2,’phi’); show(PHI)

GAMMA = DiagonalMatrix(2,’gamma’); show(GAMMA)

BETA = ZeroMatrix(2,2)

BETA[0,1] = var(’beta1’); BETA[1,0] = var(’beta2’); show(BETA)

PSI = SymmetricMatrix(2,’psi’); show(PSI)

7 Calling Contents() (without any arguments) lists the functions in the sem package.
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evaluate(
φ11 φ12

φ12 φ22

)
(
γ1 0
0 γ2

)
(

0 β1

β2 0

)
(
ψ11 ψ12

ψ12 ψ22

)
The next step is to calculate Σ, the covariance matrix of the observable variables. It
would be a fairly big job by hand. In Sage, there is a scrollbar that lets you view the
whole matrix. Here, it is set in a tiny typeface and it still does not fit on the page.

# Calculate the covariance matrix.

Sigma = PathCov(Phi=PHI,Beta=BETA,Gamma=GAMMA,Psi=PSI)

show(Sigma)

evaluate



φ11 φ12 − β1γ2φ12+γ1φ11
β1β2−1

− β2γ1φ11+γ2φ12
β1β2−1

φ12 φ22 − β1γ2φ22+γ1φ12
β1β2−1

− β2γ1φ12+γ2φ22
β1β2−1

− β1γ2φ12+γ1φ11
β1β2−1

− β1γ2φ22+γ1φ12
β1β2−1

β21γ
2
2φ22+2 β1γ1γ2φ12+γ21φ11+β21ψ22+2 β1ψ12+ψ11

(β1β2−1)2

β1β2γ1γ2φ12+β2γ
2
1φ11+β1γ

2
2φ22+γ1γ2φ12+β1β2ψ12+β2ψ11+β1ψ22+ψ12

(β1β2−1)2

− β2γ1φ11+γ2φ12
β1β2−1

− β2γ1φ12+γ2φ22
β1β2−1

β1β2γ1γ2φ12+β2γ
2
1φ11+β1γ

2
2φ22+γ1γ2φ12+β1β2ψ12+β2ψ11+β1ψ22+ψ12

(β1β2−1)2

β22γ
2
1φ11+2 β2γ1γ2φ12+γ22φ22+β22ψ11+2 β2ψ12+ψ22

(β1β2−1)2



Clearly, solving the ten equations in 10 unknowns by hand would not be easy, though it’s
possible since Duncan did it. The importance of β1β2 6= 1 is also clear, because β1β2−1 is
in most of the denominators. This quantity is the determinant of I− β. It is guaranteed
not to equal zero by Theorem 1.1 on page 146. Thus, the covariance matrix exists, and
the set of parameter vectors satisfying β1β2 = 1 defines a surface that is interior to the
parameter space, but not part of it — a sort of hole in the parameter space.

Since the number of covariance structure equations is the same as the number of
unknowns in this case, Sage’s solve function is a good option8. The first task is to
assemble a list of model parameters. The Parameters function from the sem package
returns a list of the unique elements of a matrix that are not one or zero. This is a good
alternative to typing them in.

8When the number of equations exceeds the number of unknowns, as is usually the case, the two main
options are setting some of the equations aside, or using the Groebner basis methods of Chapter ??.
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# Solve 10 equations in 10 unknowns

# Assemble list of parameters

param = Parameters(PHI)

param.extend(Parameters(GAMMA)); param.extend(Parameters(BETA))

param.extend(Parameters(PSI)); param

evaluate

[φ11, φ12, φ22, γ1, γ2, β1, β2, ψ11, ψ12, ψ22]

Assembling the list of equations to solve consists of going through the unique elements
of Σ, and setting each expression to a σij. The SetupEqns function takes care of this
task.

# Set up equations to solve

eqns = SetupEqns(Sigma)

for item in eqns: show(item)

evaluate

φ11 = σ11

φ12 = σ12

−β1γ2φ12+γ1φ11
β1β2−1

= σ13

−β2γ1φ11+γ2φ12
β1β2−1

= σ14

φ22 = σ22

−β1γ2φ22+γ1φ12
β1β2−1

= σ23

−β2γ1φ12+γ2φ22
β1β2−1

= σ24

β2
1γ

2
2φ22+2β1γ1γ2φ12+γ21φ11+β2

1ψ22+2β1ψ12+ψ11

(β1β2−1)2
= σ33

β1β2γ1γ2φ12+β2γ21φ11+β1γ22φ22+γ1γ2φ12+β1β2ψ12+β2ψ11+β1ψ22+ψ12

(β1β2−1)2
= σ34

β2
2γ

2
1φ11+2β2γ1γ2φ12+γ22φ22+β2

2ψ11+2β2ψ12+ψ22

(β1β2−1)2
= σ44

Now try to solve the equations. The solve function returns a list of solutions (a list of
lists), so the length of the result should be the number of solutions. Naturally, we are
hoping for the length to be one.

# Try to solve

solut = solve(eqns,param); len(solut)

evaluate
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10

# Oh wow, 10?

for item in solut: show(item)

evaluate

φ11 = σ11

φ12 = σ12

−β1γ2φ12+γ1φ11
β1β2−1

= σ13

−β2γ1φ11+γ2φ12
β1β2−1

= σ14

φ22 = σ22

−β1γ2φ22+γ1φ12
β1β2−1

= σ23

−β2γ1φ12+γ2φ22
β1β2−1

= σ24

β2
1γ

2
2φ22+2β1γ1γ2φ12+γ21φ11+β2

1ψ22+2β1ψ12+ψ11

(β1β2−1)2
= σ33

β1β2γ1γ2φ12+β2γ21φ11+β1γ22φ22+γ1γ2φ12+β1β2ψ12+β2ψ11+β1ψ22+ψ12

(β1β2−1)2
= σ34

β2
2γ

2
1φ11+2β2γ1γ2φ12+γ22φ22+β2

2ψ11+2β2ψ12+ψ22

(β1β2−1)2
= σ44

Sage just returned the original ten equations; those were the ten items in the list. I
was confused. But according to a post on ask.sagemath.org, this happens when solve

can’t solve the problem. Come to think of it, this is also what it does when it can’t
evaluate an integral. The post suggests that if the equations are polynomials, try the
option to poly solve=True on solve. Now, our equations are not polynomials, but they
will be if we multiply through by the denominators. A disadvantage of doing this is that
it may introduce false solutions that hold when the denominators are zero. As long as
one is aware of this and willing to take care of it, it’s okay. Let us proceed.

# Multiply through by denominators

eqns[2] = eqns[2]*(beta1*beta2-1)

eqns[3] = eqns[3]*(beta1*beta2-1)

eqns[5] = eqns[5]*(beta1*beta2-1)

eqns[6] = eqns[6]*(beta1*beta2-1)

eqns[7] = eqns[7]*(beta1*beta2-1)^2

eqns[8] = eqns[8]*(beta1*beta2-1)^2

eqns[9] = eqns[9]*(beta1*beta2-1)^2

for item in eqns: show(item)

evaluate

https://ask.sagemath.org/questions
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φ11 = σ11

φ12 = σ12

−β1γ2φ12 − γ1φ11 = (β1β2 − 1)σ13

−β2γ1φ11 − γ2φ12 = (β1β2 − 1)σ14

φ22 = σ22

−β1γ2φ22 − γ1φ12 = (β1β2 − 1)σ23

−β2γ1φ12 − γ2φ22 = (β1β2 − 1)σ24

β2
1γ

2
2φ22 + 2 β1γ1γ2φ12 + γ2

1φ11 + β2
1ψ22 + 2 β1ψ12 + ψ11 = (β1β2 − 1)2σ33

β1β2γ1γ2φ12+β2γ
2
1φ11+β1γ

2
2φ22+γ1γ2φ12+β1β2ψ12+β2ψ11+β1ψ22+ψ12 = (β1β2 − 1)2σ34

β2
2γ

2
1φ11 + 2 β2γ1γ2φ12 + γ2

2φ22 + β2
2ψ11 + 2 β2ψ12 + ψ22 = (β1β2 − 1)2σ44

Trying the to poly solve=True option,

# Now they are polynomial equations

solut = solve(eqns,param, to_poly_solve=True); len(solut)

evaluate

4

Now there seem to be four solutions, which is promising. Let us examine them, one at a
time.

# First solution

for item in solut[0]: show(item)

evaluate

β1 = 1
c75

β2 = c75

γ1 = 0

γ2 = 0

φ11 = σ11

φ12 = σ12

φ22 = σ22

ψ11 = c76

ψ12 = c77
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ψ22 = −c2
75c76 − 2 c75c77

This is not a single solution, but an infinite set of solutions. The constant c75, which
appears in the first two lines, has not been seen before. It can be anything as long as it is
not zero. Regardless of what c75 happens to be, the first two lines dictate that β1β2 = 1.
So this is a false solution, introduced when we multiplied through by denominators. There
are other strange things about it (like γ1 = γ2 = 0), but it may be discarded without
further consideration.

# Second solution

for item in solut[1]: show(item)

evaluate

β1 = σ13
σ14

β2 = σ14
σ13

γ1 = 0

γ2 = 0

φ11 = σ11

φ12 = σ12

φ22 = σ22

ψ11 = c78

ψ12 = − c78σ14
σ13

ψ22 =
c78σ2

14

σ2
13

This infinite family of solutions also implies β1β2 = 1. Again, it is an artifact of multiplying
by denominators, and may be discarded.

# Third solution

for item in solut[2]: show(item)

evaluate

β1 = σ12σ23
σ14σ22

β2 = σ14σ22
σ12σ23

γ1 = 0

γ2 = 0

φ11 = σ11

φ12 = σ12
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φ22 = σ22

ψ11 =
σ2
14σ

2
22σ33−2σ12σ14σ22σ23σ34+σ2

12σ
2
23σ44

σ2
14σ

2
22

ψ12 = −σ2
14σ

2
22σ33−2σ12σ14σ22σ23σ34+σ2

12σ
2
23σ44

σ12σ14σ22σ23

ψ22 =
σ2
14σ

2
22σ33−2σ12σ14σ22σ23σ34+σ2

12σ
2
23σ44

σ2
12σ

2
23

At least this one is a single solution and not an infinite family, but again, multipkying
the expressions for β1 and β2 yields one, so it’s a false solution that may be discarded.

# Fourth and last solution.

for item in solut[3]: show(item)

evaluate

β1 = σ12σ13−σ11σ23
σ12σ14−σ11σ24

β2 = σ14σ22−σ12σ24
σ13σ22−σ12σ23

γ1 = σ14σ23−σ13σ24
σ12σ14−σ11σ24

γ2 = −σ14σ23−σ13σ24
σ13σ22−σ12σ23

φ11 = σ11

φ12 = σ12

φ22 = σ22

ψ11 =
(σ2

24σ33−2σ23σ24σ34+σ2
23σ44)σ2

11+(σ2
14σ33−2σ13σ14σ34+σ2

13σ44)σ2
12−(σ2

14σ
2
23−2σ13σ14σ23σ24+σ2

13σ
2
24−2 ((σ24σ34−σ23σ44)σ13−(σ24σ33−σ23σ34)σ14)σ12)σ11

σ2
12σ

2
14−2σ11σ12σ14σ24+σ2

11σ
2
24

ψ12 = − ((σ24σ34−σ23σ44)σ13−(σ24σ33−σ23σ34)σ14)σ2
12+((σ24σ34−σ23σ44)σ13σ22−(σ24σ33−σ23σ34)σ14σ22+(σ2

24σ33−2σ23σ24σ34+σ2
23σ44)σ12)σ11−((σ2

24−σ22σ44)σ2
13−2 (σ23σ24−σ22σ34)σ13σ14+(σ2

23−σ22σ33)σ2
14)σ12

σ12σ13σ14σ22−σ2
12σ14σ23−(σ13σ22σ24−σ12σ23σ24)σ11

ψ22 =
(σ2

24σ33−2σ23σ24σ34+σ2
23σ44)σ2

12−(σ22σ2
24−σ2

22σ44)σ2
13+2 (σ22σ23σ24−σ2

22σ34)σ13σ14−(σ22σ2
23−σ2

22σ33)σ2
14+2 ((σ24σ34−σ23σ44)σ13σ22−(σ24σ33−σ23σ34)σ14σ22)σ12

σ2
13σ

2
22−2σ12σ13σ22σ23+σ2

12σ
2
23

Well, at least the numerator of β1 is not the same as the denominator of β2, so this one
has a chance. In fact, the first four solutions agree with Duncan [21], pp. 69 and 70.
Duncan does not give solutions for the last three parameters, instead arguing that the
solutions exist. One can see why he gave up; the last three expressions are horrendous.
However, maybe they can be simplified. In order to work with the results more easily, it
is helpful to obtain the solutions in the form of a dictionary.

# Obtain solutions as dictionaries

solud = solve(eqns,param, to_poly_solve=True ,solution_dict=True)

len(solud)
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evaluate

4

It’s the same four solutions, but in the form of dictionaries rather than lists. A Sage
dictionary is really just a Python dictionary. In this case, the key is the parameter for
which the equations were solved, so solution[key] gives the solution in terms of the σij
values. For example,

# First extract the solution we want.

sol = solud[3]

sol[beta1] # beta1 acts like an index in an array

evaluate

σ12σ13−σ11σ23
σ12σ14−σ11σ24

There is another way to get the same thing.

# Another way: beta1 as a function of the dictionary

beta1(sol)

evaluate

σ12σ13−σ11σ23
σ12σ14−σ11σ24

The advantage of the second way (asking for what you want as a function of the dictionary,
with curved parentheses rather than square brackets) is that you can give it an expression
in the parameters, rather than just a single parameter.

# Evaluate an expression

(beta1*beta2)(sol)

evaluate

(σ12σ13−σ11σ23)(σ14σ22−σ12σ24)
(σ12σ14−σ11σ24)(σ13σ22−σ12σ23)

Well, at least it did not evaluate to one. We shall return to the product β1β2 later, but
first let’s try to simplify those solutions for ψij. Sage’s factor function will try to factor
both numerator and denominator, potentially resulting in some cancellations. In general,
factor does other good things too; it’s much more useful than simplify. We may as
well apply factor to all the items in the dictionary. It should affect only the ψij, but you
can never tell9, and it can do no harm.

9Well, of course you can, but not without some effort.
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# Factor the solution. Double = is for display, not assignment

for item in param: show( item == factor(sol[item]) )

evaluate

β1 = σ12σ13−σ11σ23
σ12σ14−σ11σ24

β2 = σ14σ22−σ12σ24
σ13σ22−σ12σ23

γ1 = σ14σ23−σ13σ24
σ12σ14−σ11σ24

γ2 = −σ14σ23−σ13σ24
σ13σ22−σ12σ23

φ11 = σ11

φ12 = σ12

φ22 = σ22

ψ11 = −σ11σ2
14σ

2
23−2σ11σ13σ14σ23σ24+σ11σ2

13σ
2
24−σ2

12σ
2
14σ33+2σ11σ12σ14σ24σ33−σ2

11σ
2
24σ33+2σ2

12σ13σ14σ34−2σ11σ12σ14σ23σ34−2σ11σ12σ13σ24σ34+2σ2
11σ23σ24σ34−σ2

12σ
2
13σ44+2σ11σ12σ13σ23σ44−σ2

11σ
2
23σ44

(σ12σ14−σ11σ24)2

ψ12 =
σ12σ2

14σ
2
23−2σ12σ13σ14σ23σ24+σ12σ2

13σ
2
24−σ12σ2

14σ22σ33+σ2
12σ14σ24σ33+σ11σ14σ22σ24σ33−σ11σ12σ2

24σ33+2σ12σ13σ14σ22σ34−σ2
12σ14σ23σ34−σ11σ14σ22σ23σ34−σ2

12σ13σ24σ34−σ11σ13σ22σ24σ34+2σ11σ12σ23σ24σ34−σ12σ2
13σ22σ44+σ2

12σ13σ23σ44+σ11σ13σ22σ23σ44−σ11σ12σ2
23σ44

(σ12σ14−σ11σ24)(σ13σ22−σ12σ23)

ψ22 = −σ2
14σ22σ

2
23−2σ13σ14σ22σ23σ24+σ2

13σ22σ
2
24−σ2

14σ
2
22σ33+2σ12σ14σ22σ24σ33−σ2

12σ
2
24σ33+2σ13σ14σ2

22σ34−2σ12σ14σ22σ23σ34−2σ12σ13σ22σ24σ34+2σ2
12σ23σ24σ34−σ2

13σ
2
22σ44+2σ12σ13σ22σ23σ44−σ2

12σ
2
23σ44

(σ13σ22−σ12σ23)2

The numerators of the ψij are still awful, but it appears that the factoring helped in the
denominators. The expressions run off the page and we don’t have the Sage scrollbar, but
it’s possible to take a look at just the denominator of ψ12.

# Factor the denominator of psi_12

factor(denominator(sol[psi12]))

evaluate

−(σ12σ14 − σ11σ24)(σ13σ22 − σ12σ23)

Now we have something helpful. When solutions to covariance structure equations are
fractions, it’s important to find out if the denominators can be zero, or more precisely,
for what parameter values they can be zero. All that’s necessary is to substitute for the
σij in terms of the original model parameters and simplify. For the present problem, it
seems that we only need to check two quantities: σ12σ14−σ11σ24 (the denominator of the
solution for β1) and σ13σ22 − σ12σ23, the denominator of the solution for β2.

In this case, the functions of σij in the denominators are small, and it would not be
too much trouble to type them in. However, sometimes they can be quite messy. The sem

package has a function called SigmaOfTheta, which goes through the unique elements of
a symbolic covariance matrix and makes a dictionary in which by default the keys are the
symbols σij, and the entries are the symbolic expressions in the corresponding cells of the
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matrix. I like to call the resulting dictionary theta. Then, one can easily evaluate any
any expression in the σij as a function of θ, the vector of model parameters.

# Make dictionary theta

theta = SigmaOfTheta(Sigma)

evaluate

Now evaluate the two denominators at the model parameters.

denom1 = denominator(sol[beta1]); show(denom1)

denom2 = denominator(sol[beta2]); show(denom2)

evaluate

σ12σ14 − σ11σ24

σ13σ22 − σ12σ23

# First denominator as a function of the parameters

show(factor(denom1(theta)))

evaluate

−(φ212−φ11φ22)γ2
β1β2−1

Well, well. The denominator (of this denominator) is guaranteed to be non-zero, so that’s
no problem. φ2

12 − φ11φ22 is minus the determinant of Φ = cov(xi), which is non-zero
everywhere in the parameter space because Φ is positive definite. The only points at
which identifiability of β1 (and γ1 and ψ11 and ψ12) fails are the ones with γ2 = 0. By
symmetry, one would expect something similar for the second denominator.

# Second denominator as a function of the parameters

show(factor(denom2(theta)))

evaluate

(φ212−φ11φ22)γ1
β1β2−1

As expected, the second denominator will be non-zero and identifiability will hold as
long as γ1 6= 0. This means the entire parameter vector is identifiable everywhere in the
parameter space, provided γ1 6= 0 and γ2 6= 0. Glancing back at Figure 4.3, this makes
perfect sense. Suppose that γ1 = γ2 = 0, so that the paths from x1 to y1 and x2 to y2 are
missing. This means the x and y variables are independent, forming separate systems.
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The sub-model based on y1 and y2 would have covariance structure equations with three
equations in five parameters, so that identifiability is ruled out by the parameter count
rule. Also consider the false solutions created by multiplying the original covariance
structure equations by powers of β1β2 − 1 in order to clear the denominators. All three
false solutions (families of false solutions) have γ1 = γ2 = 0. We definitely need both γj
parameters to be non-zero.

It’s clear that the dictionary produced by SigmaOfTheta is very useful. Another thing
it’s good for is checking solutions, something we really should do for completeness. The
process is to take a proposed solution for a parameter in terms of σij quantities, substitute
for the σij in terms of the computed values in Σ, and then simplifying to obtain the
parameter in question. For the ψij parameters, it’s just too tedious to do by hand. We
might as well put the whole thing in a loop. For each parameter, a tuple is produced. The
first item is the parameter being checked, and the second item is the result of substituting
for the σij quantities in the solution. If everything is okay, they should be equal.

# Check the solutions of the covariance structure equations.

for item in param:

solution = sol[item]

backsub = solution(theta) # Solution in terms of theta

show(item, factor(backsub))

evaluate

(φ11, φ11)

(φ12, φ12)

(φ22, φ22)

(γ1, γ1)

(γ2, γ2)

(β1, β1)

(β2, β2)

(ψ11, ψ11)

(ψ12, ψ12)

(ψ22, ψ22)

The solution is verified. As a final note, the sometimes onerous task of checking for false
solutions may also be done automatically in a loop. It’s necessary to have the solutions
in the form of dictionaries rather than lists.
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# Automate the check for false solutions

for j in range(len(solud)): # j = 0,1,2,3

detIminusBeta = (1-beta1*beta2)(solud[j])

detIminusBeta

evaluate

0

0

0

− (σ12σ13−σ11σ23)(σ14σ22−σ12σ24)
(σ12σ14−σ11σ24)(σ13σ22−σ12σ23)

+ 1

The last quantity is the current detIminusBeta. Just checking,

factor(detIminusBeta(theta))

evaluate

−β1β2 + 1

In this case, |I − β| is nice and small, but the strategy illustrated here also applies
to larger and more realistic models. If the model has a β 6= 0 (endogenous variables
influencing other endogenous variables), the existence of (I−β)−1 is guaranteed, but using
it in the computation of Σ will result in some variances and covariances being fractions.
Multiplying both sides of the equations involved by the denominators will result in a
system of polynomial equations, which are easier to solve. However, the multiplication by
denominators will usually induce false solutions, in which one or more denominators of
the original covariance structure equations are zero. You can locate these false solutions
easily by using Sage’s det function to compute the determinant of I−β, which may be a
messy expression, and then calculating it for each solution, as shown above. If it’s zero,
discard the solution.

4.3.2 The Triangle model

The parameters of cyclic models are not identifiable in general, and I do not know of
any identifiability rules. They need to be investigated on a case by case basis. As with
Duncan’s model, the expressions involved can be messy, and Sage (or any other computer
algebra system, really) is a useful tool.

Figure 4.4 shows the path diagram of a cyclic model with three endogenous variables
no exogenous variables. Causal influence just keeps going around and around forever.
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Figure 4.4: The Triangle Model
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In scalar form, the model equations are

y1 = β1y3 + ε1

y2 = β2y1 + ε2

y3 = β3y2 + ε3.

In matrix form, the equations are

yi = β yi + εi yi,1
yi,2
yi,3

 =

 0 0 β1

β2 0 0
0 β3 0

  yi,1
yi,2
yi,3

 +

 εi,1
εi,2
εi,3

 .

First we load the sem package and set up the model matrices.

# load sem package, set up Beta, Psi

sem = ’http://www.utstat.toronto.edu/~brunner/openSEM/sage/sem.sage’

load(sem)

BETA = ZeroMatrix(3,3)

BETA[0,2] = var(’beta1’); BETA[1,0] = var(’beta2’)

BETA[2,1] = var(’beta3’); show(BETA)

PSI = DiagonalMatrix(3,’psi’); show(PSI)

evaluate 0 0 β1

β2 0 0
0 β3 0

  ψ1 0 0
0 ψ2 0
0 0 ψ3


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The sem package has a special function to calculate the covariance matrix for models with
no exogenous variables.

Sigma = NoGammaCov(BETA,PSI)

show(Sigma)

evaluate
β2
1β

2
3ψ2+β2

1ψ3+ψ1

(β1β2β3−1)2
β2
1β2ψ3+β1β3ψ2+β2ψ1

(β1β2β3−1)2
β1β2

3ψ2+β2β3ψ1+β1ψ3

(β1β2β3−1)2

β2
1β2ψ3+β1β3ψ2+β2ψ1

(β1β2β3−1)2
β2
1β

2
2ψ3+β2

2ψ1+ψ2

(β1β2β3−1)2
β2
2β3ψ1+β1β2ψ3+β3ψ2

(β1β2β3−1)2

β1β2
3ψ2+β2β3ψ1+β1ψ3

(β1β2β3−1)2
β2
2β3ψ1+β1β2ψ3+β3ψ2

(β1β2β3−1)2
β2
2β

2
3ψ1+β2

3ψ2+ψ3

(β1β2β3−1)2


Ouch. Verify that the denominators cannot be zero (Theorem 1.1).

# Check the determinant of (I-beta)

det(IdentityMatrix(3)-BETA)

evaluate

−β1β2β3 + 1

The surface β1β2β3 = 1 defines a hole in the parameter space. Here are the covariance
structure equations.

# Covariance structure equations

eqns = SetupEqns(Sigma)

for item in eqns: show(item)

evaluate

β2
1β

2
3ψ2+β2

1ψ3+ψ1

(β1β2β3−1)2
= σ11

β2
1β2ψ3+β1β3ψ2+β2ψ1

(β1β2β3−1)2
= σ12

β1β2
3ψ2+β2β3ψ1+β1ψ3

(β1β2β3−1)2
= σ13

β2
1β

2
2ψ3+β2

2ψ1+ψ2

(β1β2β3−1)2
= σ22

β2
2β3ψ1+β1β2ψ3+β3ψ2

(β1β2β3−1)2
= σ23

β2
2β

2
3ψ1+β2

3ψ2+ψ3

(β1β2β3−1)2
= σ33

If you think those equations look hard to solve, you are right. Evn though it’s a system of
only six equations in six unknowns, solve can’t manage it, even when the equations are
converted to polynomials. The problem eventually yields to the Gröbner basis methods
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described in Chapter ??. The details will be deferred until then. For the present, it will
just be noted that the parameters are not identifiable. This is established below by a
numerical example of two distinct parameter vectors that yield the same Σ. See how
naturally one can treat a matrix as what it is: a function of the parameters.

# Two numerical parameter vectors produce the same Sigma.

show(Sigma(beta1=1,beta2=2,beta3=3,psi1=1,psi2=1,psi3=1))

show(Sigma(beta1=11/46, beta2=9/22, beta3=46/27, psi1=11/46, psi2=9/44, psi3=46/81))

evaluate 11
25

7
25

16
25

7
25

9
25

17
25

16
25

17
25

46
25


 11

25
7
25

16
25

7
25

9
25

17
25

16
25

17
25

46
25


Obviously, the second set of numerical values would be exceedingly difficult to guess.
It turns out that for every set of parameter values, there is exactly one other set that
produces the same Σ. This will be shown in Chapter 8.

4.3.3 Pinwheel Models

You may be familiar with pinwheels, or at least perhaps you used to be. It’s like a little
toy windmill on a stick. The child blows on the wheel (or runs), and the passage of air
turns the wheel. Figure 4.5 shows an example with three nodes10

I believe that Min Lim [43] was the first to investigate the identifiability of pinwheel
models, in her 2010 Ph.D. thesis. Like most cyclic models, the pinwheel models are not
particularly easy to deal with. For models with three or more blades, the Gröbner basis
methods of Chapter 8 are needed. As far as I know, Lim was also the first to apply
Gröbner basis technology to covariance structure equations. Others have followed and
gotten credit for it. Her work remains unpublished.

The two-node model of Figure 4.6 provides an example that does not require more
advanced methods. Surprisingly, the parameters are identifiable, a property that this
model shares with all the pinwheel models. Maybe y1 could be supply, y2 could be
demand, and x could be the cost of raw materials.

The model equations are

yi = β yi + Γ xi + εi(
yi,1
yi,2

)
=

(
0 β1

β2 0

) (
yi,1
yi,2

)
+

(
γ
0

)
(xi) +

(
εi,1
εi,2

)
.

10I was tempted to call them “blades,” like the blades on a propellor.
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Figure 4.5: Three-node Pinwheel Model
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The first part of the Sage work is routine, and will be presented without comment.

# Two-node pinwheel model

sem = ’http://www.utstat.toronto.edu/~brunner/openSEM/sage/sem.sage’

load(sem)

evaluate

PHI = ZeroMatrix(1,1); PHI[0,0] = var(’phi’); show(PHI)

GAMMA = ZeroMatrix(2,1)

GAMMA[0,0] = var(’gamma’); show(GAMMA)

BETA = ZeroMatrix(2,2)

BETA[0,1] = var(’beta1’); BETA[1,0] = var(’beta2’); show(BETA)

# The default symbol for DiagonalMatrix is psi

PSI = DiagonalMatrix(2); show(PSI)

evaluate(
φ
)(

γ
0

)
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Figure 4.6: Two-node Pinwheel Model

ε
2

y
2

y
1

y
2

x

γ

β
3

γ
2

β
1

β
1

φ
1,2

ψ
1,2

β
2

ε
1

y
1

γ
1

(
0 β1

β2 0

)
(
ψ1 0
0 ψ2

)

# Calculate the covariance matrix.

Sigma = PathCov(Phi=PHI,Beta=BETA,Gamma=GAMMA,Psi=PSI)

show(Sigma)

evaluate
φ − γφ

β1β2−1
− β2γφ
β1β2−1

− γφ
β1β2−1

γ2φ+β2
1ψ2+ψ1

(β1β2−1)2
β2γ2φ+β2ψ1+β1ψ2

(β1β2−1)2

− β2γφ
β1β2−1

β2γ2φ+β2ψ1+β1ψ2

(β1β2−1)2
β2
2γ

2φ+β2
2ψ1+ψ2

(β1β2−1)2



# Set up covariance structure equations.

param = [phi, beta1, beta2, gamma, psi1, psi2] # List of model parameters

eqns = SetupEqns(Sigma)

for item in eqns: show(item)
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evaluate

φ = σ11

− γφ
β1β2−1

= σ12

− β2γφ
β1β2−1

= σ13

γ2φ+β2
1ψ2+ψ1

(β1β2−1)2
= σ22

β2γ2φ+β2ψ1+β1ψ2

(β1β2−1)2
= σ23

β2
2γ

2φ+β2
2ψ1+ψ2

(β1β2−1)2
= σ33

# Try to solve the equations

solut = solve(eqns,param); len(solut)

evaluate

4

Naturally, I looked at the four solutions, but that will not be shown. It’s more efficient to
obtain the solutions as dictionaries, and check the product β1β2 for each one. If β1β2 = 1,
then |I − β| = 0. In this case, the solution is outside the parameter space and can be
discarded.

# Get solutions as dictionaries and check whether beta1*beta2=1

solud = solve(eqns,param,solution_dict=True); len(solud)

for item in solud: (beta1*beta2-1)(item)

evaluate

0

0

(σ13σ22−σ12σ23)σ13
(σ13σ23−σ12σ33)σ12

− 1

0

So it appears that only the third solution is in the parameter space and potentially valid.
In the numbering system that starts with zero, that’s solud[2]. I will be convenient to
work with a copy of it; the copy is called sol, for no particular reason.

# There appears to be just one solution. Take a look.

sol = solud[2]

for item in param: show(item == factor(sol[item]))
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evaluate

φ = σ11

β1 = σ13σ22−σ12σ23
σ13σ23−σ12σ33

β2 = σ13
σ12

γ = −σ2
13σ22−2σ12σ13σ23+σ2

12σ33
(σ13σ23−σ12σ33)σ11

ψ1 = −(σ2
13σ22−2σ12σ13σ23+σ11σ2

23+σ2
12σ33−σ11σ22σ33)(σ2

13σ22−2σ12σ13σ23+σ2
12σ33)

(σ13σ23−σ12σ33)2σ11

ψ2 =
σ2
13σ22−2σ12σ13σ23+σ2

12σ33
σ2
12

This looks good. Just to be sure, it’s helpful to substitute for the σij in terms of the
model parameters, and verify that each result equals the single parameter of interest.
On very rare occasions, solve gives results that don’t check out, and it’s quite easy to
check. In the dictionary theta, the keys are the σij, and the entries are the variances
and covariances written as a function of the model parameters.

# Check the solutions by evaluating them at the model parameters.

theta = SigmaOfTheta(Sigma)

for item in param: item == factor( sol[item](theta) )

evaluate

φ = φ

β1 = β1

β2 = β2

γ = γ

ψ1 = ψ1

ψ2 = ψ2

This is what success looks like. All the parameters are identified, except possibly on a set
of volume zero in the parameter space. In order to determine where the parameters might
not be identifiable, it’s necessary to evaluate the denominators in terms of the model
parameters, and also to check the numerators of the variance parameters ψ1 and ψ2. The
denominator of the solution for β1 also appears in the denominators of γ and ψ1.

# Check denominators

d1 = denominator(sol[beta1]); show(d1)

factor(d1(theta))

evaluate
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σ13σ23 − σ12σ33

− γφψ2

(β1β2−1)2

So all is well provided γ 6= 0. This is one of those “obvious” things that one appreciates
after the fact. Looking at the path diagram in Figure 4.6, it’s “obvious” that if the
arrow from x to y1 is eliminated, then y1, y2, ε1 and ε2 form a closed system with three
covariances and four unknown parameters. By the parameter count rule, identifiability is
ruled out almost everywhere11 in the parameter space.

The quantity σ12 appears in the denominators of β2 and ψ2. A glance at the covariance
matrix shows σ12 = − γφ

β1β2−1
, so it too will be non-zero provided γ 6= 0.

The last job is to check the numerators of ψ1 and ψ2; identifiability fails for any set of
parameter values where either of these variances is equal to zero.

# Numerator of psi1: Where is it non-zero?

a = factor(numerator(sol[psi1])); show(a)

b = factor(a(theta)); show(b)

evaluate

−(σ2
13σ22 − 2σ12σ13σ23 + σ11σ

2
23 + σ2

12σ33 − σ11σ22σ33)(σ2
13σ22 − 2σ12σ13σ23 + σ2

12σ33)

γ2φ3ψ1ψ2
2

(β1β2−1)4

Again, we are good provided γ 6= 0. The variance ψ2 is also okay, because its numerator is
the second factor in the numerator of psi1. The final conclusion is simple and clean. The
parameters of the 2-node pinwheel model are identifiable everywhere in the parameter
space except where γ = 0.

Identifiability of cyclic models The examples in this section tell the essential story.
The parameters of cyclic models might be identifiable, or they might not be. There are no
useful general rules, except for the parameter count rule, which applies to everything. Each
model needs to be investigated on a case-by-case basis. In general, the covariance structure
equations are hairy. A computer algebra system like Sage is practically a necessity.

One limiting feature of the examples in this section is that they all feature the same
number of covariance structure equations and unknown parameters. This is necessary for
Sage’s solve function to return the solutions we need. When there are more equations
than unknowns (the typical case in structural equation modeling), there are really three
ways to proceed. One way is to try to solve the equations by hand. Good luck with that,
and even if it is within your powers, its too much to expect of most users on a routine
basis. The second option is to set some of the covariance structure equations aside and give
solve the same number of equations as unknowns. Especially for cyclic models where the
expressions are messy, this can require an unreasonable amount of mathematical insight,

11This is measure theory talk. Here, it means except on a set of volume zero, which is almost everywhere
with respect to Lebesgue measure.
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or a lot of trial and error. The third alternative is to try the Gröbner basis methods of
Chapter 8. This has a lot of promise, though it does not always work. Examples will be
given in Chapter 8.

4.4 Direction of Causality

4.4.1 Deciding based on data

Almost always, the issue of whether a → b or b → a is a modeling decision. That is,
the person putting the model together writes it down or draws a picture, and that’s
it. Frequently, it’s not controversial, and nobody would argue. For example, a child’s
academic performance might be influenced by the parent’s income, but influence going
the other way is a lot more difficult to believe. In cases that are less clear, one can estimate
the model parameters based on a data set, and if the model fits, one can at least assert
that the data are consistent with a model in which, say, exercise tends to reduce arthritis
pain.

The question arises, though, is this the best we can do? Is it possible to determine
direction of causality empirically, through analysis of data? The answer is usually no, but
sometimes yes.

When the answer is no Consider a model that obeys the conditions of the acyclic
rule. In my experience, this includes most path models used in practice. Suppose further
that the model includes all permissible straight arrows and covariances between error
terms. Then as noted at the end of the proof of the acyclic rule, the parameters are
just identifiable everywhere in the parameter space. For a saturated model like this, the
parameters are one-to-one with the variances and covariances of the observable variables.
In a sample data set, the same connection holds for the parameter estimates and the
estimated variances and covariances, whether the estimation is method-of-moments or
maximum likelihood under a normal model. If the objective of modeling is to fit the
sample variances and covariances as well as possible12, this is the best one can do. The
fit is perfect.

Now observe that there are lots of different ways to group the variables and order
the groups, including models with the causality flowing in the opposite direction as any
model one might propose. All the models are saturated, and they all fit the data equally
well, which is as well as possible. No conceivable data set can cast light on which way the
arrows should go.

12In the normal case, the vector of sample variances and covariances is a jointly minimal sufficient
statistic for the model parameters, and so is any one-to-one transform of them. This means that con-
ditionally on the vector of MLEs, the distribution of the data is free of all model parameters. In other
words, there’s no more to learn. For non-normal models this might not be quite true, but one would have
to specify the non-normal distribution(s) to make any progress.
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When the answer is yes The conclusion above applies to unrestricted acyclic models.
With restrictions on the values of the model parameters (presumably well justified by
theory), it may be possible to decide on direction of causality based on a formal hypothesis
test. Just as a proof of concept, consider a minimal, artificial example. There are two
observable variables, x and y. Under model one,

y = x+ ε,

with V ar(ε) = ψ > 0, and ε independent of x. Under model two,

x = y + δ,

with V ar(δ) = ψ > 0, and δ independent of y.
So either x is influencing y, or y is influencing x. If model one holds, V ar(y) =

V ar(x) + ψ, so that V ar(y) > V ar(x). Under model two, the opposite conclusion holds.
So direction of influence can be decided by testing the difference between variances. This
works because the regression coefficient linking x and y is restricted to equal one for both
models. If the regression coefficients were allowed to be different and unrestricted, both
model would fit perfectly, and testing for direction of causality would be impossible.

For an example that is closer to being realistic, consider Duncan’s cyclic model, de-
scribed in Section 4.3.1 (see Figure 4.3 on page 381). This model is saturated, but it’s
not acyclic. The question of whether y1 influences y2, or the other way around (or both,
or neither) can be resolved by testing H0 : β1 = 0 and H0 : β2 = 0. The same strategy
would work for the pinwheel model of Figure 4.6.

4.4.2 One more acyclic example

Example 4.4.1 Direction of influence in an acyclic model

Consider the two models in Figure 4.7. These models differ only in the direction of
influence between y1 and y2. Upon reflection, deciding between these models based on data
would seem to be a real possibility. In Model Two, there is no one-way path connecting
x1 and y2, so the covariance between the two variables should be zero13. This does not
hold for Model One. There’s more to it than that, though. It’s time to get systematic.

Recall that when the parameters of a model are identifiable but the model is not
saturated, the model implies equality constraints on the variances and covariances, with
the number of equality constraints equal to the number of variances and covariances minus
the number of parameters. A good way to judge the fit of a model to a data set is to
assess how closely the sample variances and covariances obey these equality constraints —
that is, the constraints that must hold for the true variances and covariances if the model
is correct14. If two models imply different constraints, it is possible to decide whether
one fits significantly better. Now we will find the equality constraints implied by the two
models of Figure 4.7.

13This intuition will be formaized in Wright’s multiplication theorem. See Section ??
14See Chapter 1, Section 170. Chapter 7 treats the testing of model fit in further detail.
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Figure 4.7: Two possible directions of influence
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For both models, the parameter vector is θ = (φ1, φ2, γ1, γ2, γ3, β, ψ1, ψ2). That’s eight
parameters. The parameters are identifiable in both models by the acyclic rule, and there
are (4 + 1)4/2 = 10 variances and covariances. This means that for both models, there
are two equality constraints.

It’s quite easy to do most of the calculations by hand for these simple models, but
Sage will come in handy later in the process. So, we’ll use Sage for the whole thing as
much as possible. After the usual basic setup, the first job is to calculate both covariance
matrices. Only the β matrix is different for the two models.

# Direction of causality in an acyclic model

sem = ’http://www.utstat.toronto.edu/~brunner/openSEM/sage/sem.sage’

load(sem)

evaluate

PHI = DiagonalMatrix(2,’phi’); show(PHI)

GAMMA = ZeroMatrix(2,2)

GAMMA[0,0] = var(’gamma1’); GAMMA[0,1] = var(’gamma2’)

GAMMA[1,1] = var(’gamma3’); show(GAMMA)

BETA1 = ZeroMatrix(2,2) # y1 -> y2

BETA1[1,0] = var(’beta’); show(BETA1)

BETA2 = ZeroMatrix(2,2) # y2 -> y1

BETA2[0,1] = var(’beta’); show(BETA2)

# The default symbol for DiagonalMatrix is psi

PSI = DiagonalMatrix(2); show(PSI)

evaluate
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(
φ1 0
0 φ2

)
(
γ1 γ2

0 γ3

)
(

0 0
β 0

)
(

0 β
0 0

)
(
ψ1 0
0 ψ2

)
Calculating the two covariance matrices for comparison,

# Calculate Sigma1, with y1 -> y2

Sigma1 = PathCov(Phi=PHI,Beta=BETA1,Gamma=GAMMA,Psi=PSI)

show(Sigma1)

evaluate
φ1 0 γ1φ1 βγ1φ1

0 φ2 γ2φ2 (βγ2 + γ3)φ2

γ1φ1 γ2φ2 γ2
1φ1 + γ2

2φ2 + ψ1 βγ2
1φ1 + βγ2

2φ2 + γ2γ3φ2 + βψ1

βγ1φ1 (βγ2 + γ3)φ2 βγ2
1φ1 + βγ2

2φ2 + γ2γ3φ2 + βψ1 β2γ2
1φ1 + β2γ2

2φ2 + 2βγ2γ3φ2 + γ2
3φ2 + β2ψ1 + ψ2



# Calculate Sigma2, with y2 -> y1

Sigma2 = PathCov(Phi=PHI,Beta=BETA2,Gamma=GAMMA,Psi=PSI)

show(Sigma2)

evaluate
φ1 0 γ1φ1 0
0 φ2 (βγ3 + γ2)φ2 γ3φ2

γ1φ1 (βγ3 + γ2)φ2 β2γ2
3φ2 + 2 βγ2γ3φ2 + γ2

1φ1 + γ2
2φ2 + β2ψ2 + ψ1 βγ2

3φ2 + γ2γ3φ2 + βψ2

0 γ3φ2 βγ2
3φ2 + γ2γ3φ2 + βψ2 γ2

3φ2 + ψ2


For Model Two, as expected, σ14 = Cov(x1, y2) = 0, a constraint that does not hold for
Model One as long as β 6= 0 and γ1 6= 0. That’s one constraint on the covariance matrix
for Model Two. The other one is that σ12 = Cov(x1, x2) = 0. This is shared by both
models, because there is no curved, double-headed arrow joining x1 and x2. Thus, the
two constraints on Σ2 are accounted for.
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The remaining constraint To obtain the remaining constraint for Model One, we will
first solve the covariance structure equations for the parameters. One of the equations will
not be needed. Substituting the solutions back into that equation will yield the constraint.

The first few covariance structure equations for Model One can be solved by eye and
brain (not even by hand). Inspecting the matrix Sigma1 above, we obtain φ1 = σ11 and
γ1 = σ13/σ11. But then, when we attempt to get β, we notice that β = σ14/σ13 only works
if γ1 6= 0.

If γ1 = 0, what happens should perhaps have been obvious from the beginning15.
Take another look at Figure 4.7. If the arrow from x1 to y1 is missing from both path
diagrams, then the variables x2, y1 and y2 form isolated sub-models. In both cases, the
parameters are identifiable by the acyclic rule. Furthermore, they are just identifiable.
Their parameters are one-to-one with the sub-matrix of variances and covariances. They
impose no further constraints on the covariance matrix, and it’s impossible to distinguish
between them. The conclusion is that the direction of influence between y1 and y2 cannot
be determined if γ1 = 0.

If you look back at the computed covariance matrices, you will see that for both
models, σ13 = 0 if and only if γ1 = 0. With a real data set, you could start by testing
H0 : σ13 = 0, thus testing the null hypothesis γ1 = 0 without making a commitment to
either model. If you did not reject that null hypothesis, it would be best to give up on
an empirically based decision between y1 → y2 and y2 → y1. If you did reject the null
hypothesis, it would be reasonable to proceed. This is progress.

It’s not really necessary, but Sage makes it easy to look at the covariance matrices
when γ1 = 0. This is a nice way to consider special cases.

# How do the covariance matrices look with gamma1=0?

show( Sigma1(gamma1=0) )

show( Sigma2(gamma1=0) )

evaluate
φ1 0 0 0
0 φ2 γ2φ2 (βγ2 + γ3)φ2

0 γ2φ2 γ2
2φ2 + ψ1 βγ2

2φ2 + γ2γ3φ2 + βψ1

0 (βγ2 + γ3)φ2 βγ2
2φ2 + γ2γ3φ2 + βψ1 β2γ2

2φ2 + 2 βγ2γ3φ2 + γ2
3φ2 + β2ψ1 + ψ2




φ1 0 0 0
0 φ2 (βγ3 + γ2)φ2 γ3φ2

0 (βγ3 + γ2)φ2 β2γ2
3φ2 + 2 βγ2γ3φ2 + γ2

2φ2 + β2ψ2 + ψ1 βγ2
3φ2 + γ2γ3φ2 + βψ2

0 γ3φ2 βγ2
3φ2 + γ2γ3φ2 + βψ2 γ2

3φ2 + ψ2


15You can always pretend it was obvious. This is a great way to impress your friends. But are those

people really your friends? Maybe you should re-think your agreement to help them cheat on the final
exam.
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If you examine the covariance matrices carefully, you will see that even when σ14 = 0,
there is another way to get at β. This had to be the case, since the parameters of both
models are identifiable everywhere in the parameter space. For both models, when γ1 = 0,
the solution for β emerges as part of the solution of two linear equations in two unknowns.
Given the way that the acyclic rule was proved, the equations had to be linear.

Let us continue, assuming γ1 6= 0. The next step is to solve eight covariance structure
equations in eight unknowns. The solve function wants the same number of equations
as unknowns and there are nine equations, but the equations are simple enough so that
it will be clear which one should be set aside.

# Set up covariance structure equations for the first model

param = [phi1, phi2,gamma1,gamma2,gamma3,beta,psi1,psi2]

eqns = SetupEqns(Sigma1)

for item in eqns: show(item)

evaluate

φ1 = σ11

0 = σ12

γ1φ1 = σ13

βγ1φ1 = σ14

φ2 = σ22

γ2φ2 = σ23

(βγ2 + γ3)φ2 = σ24

γ2
1φ1 + γ2

2φ2 + ψ1 = σ33

βγ2
1φ1 + βγ2

2φ2 + γ2γ3φ2 + βψ1 = σ34

β2γ2
1φ1 + β2γ2

2φ2 + 2 βγ2γ3φ2 + γ2
3φ2 + β2ψ1 + ψ2 = σ44

Item 1 (starting from zero) should be deleted because it’s useless, and item 8 is a good
choice to set aside because it’s messy and not needed to solve. Once solutions have
been obtained, the plan is to substitute them back into the unused equation, yielding the
model-induced constraint on the σij.

# Delete items 1 (starting from zero) and 8. Work with a

# copy of the list of equations. Trying Python syntax,

eq = list(eqns) # Without list, eq is just another name for eqns

del eq[8]; del eq[1]

for item in eq: show(item)

evaluate
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φ1 = σ11

γ1φ1 = σ13

βγ1φ1 = σ14

φ2 = σ22

γ2φ2 = σ23

(βγ2 + γ3)φ2 = σ24

γ2
1φ1 + γ2

2φ2 + ψ1 = σ33

β2γ2
1φ1 + β2γ2

2φ2 + 2 βγ2γ3φ2 + γ2
3φ2 + β2ψ1 + ψ2 = σ44

# Solve equations, obtaining the solution as a dictionary

solud = solve(eq,param,solution_dict=True); len(solud)

evaluate

1

There is one solution. Put it in an object named sol, which is a more convenient name
than solud[0]. Keep in mind that sol is a dictionary.

# Take a look

sol = solud[0]

for item in param: show(item == sol[item])

evaluate

φ1 = σ11

φ2 = σ22

γ1 = σ13
σ11

γ2 = σ23
σ22

γ3 = −σ14σ23−σ13σ24
σ13σ22

β = σ14
σ13

ψ1 = −σ2
13σ22+(σ2

23−σ22σ33)σ11
σ11σ22

ψ2 = −(σ2
24−σ22σ44)σ2

13−(σ2
23−σ22σ33)σ2

14

σ2
13σ22

The only covariance that appears in any denominator is σ13, which is strictly positive
provided γ1 6= 0. This solution is good.

Now we can obtain the remaining constraint on the σij values. The process is to take
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the unused covariance structure equation

βγ2
1φ1 + βγ2

2φ2 + γ2γ3φ2 + βψ1 = σ34

and for each model parameter, substitute the solution in sol. Then simplify. The result
will be a relation among the σij that has to hold if the model is correct. By hand, this
would not be a pleasant task, but Sage makes it easy. Incidentally, this is why the original
complete set of covariance structure equations was preserved in eqns — so we could use
the deleted equation 8.

# Obtain the constraint

constraint = factor( eqns[8](sol) )

show(constraint)

evaluate

−σ14σ2
23−σ13σ23σ24−σ14σ22σ33

σ13σ22
= σ34

A lot of simplification was achieved by factor. Because of σ13 in the denominator, the
equality above applies only provided γ1 6= 0. A bit more generality can be obtained by
multiplying both sides by the denominator. It also looks nicer without all the minus signs.

# Clear denominator, simplify

constraint = constraint*(sigma13*sigma22) + sigma14*sigma23^2; constraint

evaluate

σ13σ23σ24 + σ14σ22σ33 = σ14σ
2
23 + σ13σ22σ34

The first observation is that this constraint is a real bear. To me, it’s remarkable that
for two models that seem so similar, one of them imposes only the simplest type of
constraint (something equals zero), while the other imposes one zero, and one constraint
that is exceedingly complicated. The constraint shown above involves seven variances and
covariances, if I have not mis-counted.

Here’s another, more general point. In cases like this, where a constraint involves a
fraction that only makes sense when the denominator is non-zero, formally multiplying
both sides of the equation by the denominator usually (always?) yields an equality that
is true for all parameter values. Let’s see if it works here.

To check, it helps to move everything to one side, yielding a polynomial in the σij that
is equal to zero. A bit strangely (to me), this can be accomplished in Sage by factoring an
equality like constraint. Nothing is successfully factored in this case, but it does get rid
of the equals sign. The result will be called constraintp, the constraint in polynomial
form.

# Obtain the constraint as a polynomial = to zero

constraintp = factor(constraint); constraintp
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evaluate

−σ14σ
2
23 + σ13σ23σ24 + σ14σ22σ33 − σ13σ22σ34

If you recall, the SigmaOfTheta function in the sem package produces a dictionary that
can be used to evaluate a function of the σij values in terms of the model parameters.

# Check: Is the constraint always true for Model One?

theta1 = SigmaOfTheta(Sigma1)

constraintp(theta1)

evaluate

−βγ1γ
2
2φ1φ

2
2+(βγ2 + γ3)γ1γ2φ1φ

2
2+
(
γ2

1φ1 + γ2
2φ2 + ψ1

)
βγ1φ1φ2−

(
βγ2

1φ1 + βγ2
2φ2 + γ2γ3φ2 + βψ1

)
γ1φ1φ2

Well, that’s a mess. Multiply it out and hope for cancellation.

expand( constraintp(theta1) )

evaluate

0

That is satisfying. The constraint is true of Model One everywhere in the parameter
space, not just where γ1 6= 0.

The constraint holds for Model One. It should not hold in general of Model Two, but
is it true under some circumstances — that is, does the constraint hold anywhere in the
parameter space under Model Two? It is gratifyingly easy to get the answer.

# Evaluate the constraint (in polynomial form) under Model Two.

theta2 = SigmaOfTheta(Sigma2)

factor( constraintp(theta2) )

evaluate

−βγ1φ1φ2ψ2

This is excellent. The constraint only holds under Model Two if γ1 = 0 or β = 0 (or both).
It has already been established that determining direction of influence is impossible when
γ1 = 0. If β = 0 the whole enterprise does not make sense, because in that case there is
no causal connection between y1 and y2, in either direction.

The conclusion is that for this model, it is possible to make an empirically based
decision on the direction of influence between y1 and y2, provided that γ1 6= 0 and β 6= 0.
This is because the two different directions of influence imply different constraints on the
covariance matrix of the observable variables. To summarize,
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• Both models imply σ12 = 0.

• Model One (y1 → y2) implies σ13σ23σ24 +σ14σ22σ33−σ14σ
2
23−σ13σ22σ34 = 0. Model

Two does not, provided γ1 6= 0 and β 6= 0.

• Model Two (y2 → y1) implies σ14 = 0. Model One does not, provided γ1 6= 0 and
β 6= 0.

Data analysis strategy To me, the following procedure makes sense.

1. First, test H0 : σ12 = 0. It’s easy to do, and if the null hypothesis is rejected, both
models are thrown into question.

2. Next, test H0 : σ12 = 0, true if and only if γ1 = 0, for both models. If the null
hypothesis is rejected, proceed.

3. Testing H0 : β = 0 is tricky without actually fitting a structural equation model.
Leave it for later.

4. Test H0 : σ14 = 0. If it is rejected, Model Two is thrown into question, and Model
One is supported.

5. Test H0 : σ13σ23σ24 + σ14σ22σ33 − σ14σ
2
23 − σ13σ22σ34 = 0. If it is rejected, Model

One is thrown into question, and Model Two is supported.

6. Hope that the results of the last two tests support the same conclusion.

It’s probably not so obvious how to test big messy hypotheses like the one in point 5.
Mostly for that reason, an example with simulated data will be given, and the whole
strategy will be illustrated using lavaan. After that, I will present another approach that
involves comparing fit statistics for the two models.

4.4.3 The acyclic example with simulated data

Using R, a data set will be simulated from Model One, in which y1 → y2. To make it a bit
more interesting, the data will be non-normal. The true values of γ1 and β are nonzero,
which is crucial to being able to distinguish between Models One and Two.

> # Simulate and analyze data from WhichWay Model One (y1 -> y2)

> rm(list=ls()); options(scipen=999)

> # install.packages("lavaan", dependencies = TRUE) # Only need to do this once

> library(lavaan)

This is lavaan 0.6-7

lavaan is BETA software! Please report any bugs.

>

> # Simulate data. Make it skewed.

> n = 150
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> theta=2 # Mean of exponential x1 and x2. Variance is theta^2 = phi1=phi2

> gamma1 = 1; gamma2 = 0.75; gamma3 = 0.5; beta = 0.75

> psi1 = 50; psi2 = 100

> set.seed(9999)

>

> x1 = theta*rexp(n); x2 = theta*rexp(n)

> epsilon1 = sqrt(psi1)*rexp(n) # E(epsilon1) = sqrt(psi1), Var(epsilon1) = psi1

> epsilon2 = sqrt(psi2)*rexp(n) # E(epsilon2) = sqrt(psi2), Var(epsilon2) = psi2

> # Expected values of epsilons are not zero, so equations do have intercepts.

> y1 = gamma1*x1 + gamma2*x2 + epsilon1

> y2 = gamma3*x2 + beta*y1 + epsilon2

> datta = cbind(x1,x2,y1,y2)

> cor(datta)

x1 x2 y1 y2

x1 1.00000000 -0.02037168 0.3246913 0.2537685

x2 -0.02037168 1.00000000 0.2283975 0.2739164

y1 0.32469126 0.22839750 1.0000000 0.6301020

y2 0.25376855 0.27391641 0.6301020 1.0000000

The correlations are modest, and typical of what is obtained in most social science re-
search. I played around with the parameter values to achieve this goal.

As Figure 4.8 shows, the data are definitely not normal. Here is the code that produced
the graphics. It can be convenient to write pdf files directly when you are doing a batch
of them. For each one, it’s necessary to open the file, issue the R command producing
the plot, and then close the “device.”

> # Writes graphics files to the working directory. There are also

> # png() and jpeg() functions.

> pdf(file = ’histx1.pdf’); hist(x1, breaks = ’fd’); dev.off()

> pdf(file = ’histx2.pdf’); hist(x2, breaks = ’fd’); dev.off()

> pdf(file = ’histy1.pdf’); hist(y1, breaks = ’fd’); dev.off()

> pdf(file = ’histy2.pdf’); hist(y2, breaks = ’fd’); dev.off()

It’s time for lavaan. In lavaan, it is perfectly possible to specify a model with just variances
and covariances, and no model equations. The MLEs are just the usual sample variances
and covariances, with n in the denominator rather than n − 1. For each parameter (a
variance or covariance), the output of summary automatically includes z-tests for the null
hypothesis that the parameter equals zero. For covariances this makes sense, and it’s
something we particularly want for σ12, σ13 and σ14. The complicated polynomial that
equals zero under Model Two can be specified with the := notation. The following Sage
code saves typing in the polynomial. I just copy-pasted the Sage output. It never hurts
to have the same parameter names in Sage and lavaan.
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Figure 4.8: Histograms of the simulated data
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# Handy for pasting into lavaan

print(constraintp)

evaluate

-sigma14*sigma232̂ + sigma13*sigma23*sigma24 + sigma14*sigma22*sigma33 -

sigma13*sigma22*sigma34

Now the lavaan session continues.

> # Model sigmod has just variances and covariances

> sigmod = ’x1~~sigma11*x1; x1~~sigma12*x2; x1~~sigma13*y1; x1~~sigma14*y2

+ x2~~sigma22*x2; x2~~sigma23*y1; x2~~sigma24*y2

+ y1~~sigma33*y1; y1~~sigma34*y2
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+ y2~~sigma44*y2

+ # The constraint implied by Model Two. This polynomial should = 0

+ con := sigma13*sigma23*sigma24 + sigma14*sigma22*sigma33 -

+ sigma14*sigma23^2 - sigma13*sigma22*sigma34

+ ’ # End of model string

> sigfit1 = lavaan(sigmod,datta); summary(sigfit1)

lavaan 0.6-7 ended normally after 74 iterations

Estimator ML

Optimization method NLMINB

Number of free parameters 10

Number of observations 150

Model Test User Model:

Test statistic 0.000

Degrees of freedom 0

Parameter Estimates:

Standard errors Standard

Information Expected

Information saturated (h1) model Structured

Covariances:

Estimate Std.Err z-value P(>|z|)

x1 ~~

x2 (sg12) -0.089 0.358 -0.249 0.803

y1 (sg13) 5.089 1.346 3.782 0.000

y2 (sg14) 5.863 1.946 3.013 0.003

x2 ~~

y1 (sg23) 3.980 1.459 2.727 0.006

y2 (sg24) 7.036 2.175 3.236 0.001

y1 ~~

y2 (sg34) 57.865 8.863 6.529 0.000

Variances:

Estimate Std.Err z-value P(>|z|)

x1 (sg11) 3.943 0.455 8.660 0.000

x2 (sg22) 4.874 0.563 8.660 0.000

y1 (sg33) 62.296 7.193 8.660 0.000

y2 (sg44) 135.380 15.632 8.660 0.000

Defined Parameters:

Estimate Std.Err z-value P(>|z|)
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con 394.688 404.124 0.977 0.329

Going through the output from top to bottom, first notice that the test statistic for model
fit equals zero, as it must. Then, the test of H0 : σ12 = 0 is comfortably non-significant.
This is good, since Cov(x1, x2) = 0 under both models.

Recalling that σ13 = γφ1 under both models, and that γ1 6= 0 is required for the
two models to imply different covariance matrices, the z statistic of 3.782 (p ≈ 0) for
H0 : σ13 = 0 is good news.

Model Two implies σ14 = 0, while under Model One this covariance is not zero provided
that γ1 6= 0 and β 6= 0. The test of σ14 (z = 3.013, p = 0.003) comfortably supports
Model One by the conventional α = 0.05 standard.

Model One implies that the polynomial σ14σ
2
23 − σ13σ23σ24 − σ14σ22σ33 + σ13σ22σ34

equals zero, while under Model Two it is zero only if γ1 = 0 or β = 0. The test (based on
the multivariate delta method – see Appendix A, page 564) yields z = 0.977, p = 0.329,
which does not indicate a true value different from zero. This also supports Model One.

If you look at the output carefully, you will notice something odd about the z-tests
for the hypothesis that the variances are zero. It’s a null hypothesis that’s absurd in this
case and so it doesn’t really matter, but still it seems fishy that the test statistics are all
identical (z = 8.66). The reason is that for a normal random variable, the asymptotic
variance of the sample variance is 2σ4/n. This makes the standard error equal to σ̂2

√
2/n.

Dividing the parameter estimate by its standard error to test the null hypothesis of zero
yields

z =
σ̂2

σ̂2
√

2/n
=

√
n

2
.

So, the test statistic depends only upon the sample size. In the present example, n = 150,
so z =

√
75 = 8.660254, matching the lavaan output.

Bootstrapped standard errors Re-focusing on direction of causality, the conclusion
would appear to be pretty clear. Model One (y1 → y2) is more consistent with the data
than Model Two. Since these are simulated data and we knew all along that Model One
was correct, it’s basically a success. On the other hand, if these were real data and we
didn’t know the truth, there could be room for a bit of a bit of discomfort. All the tests are
based on the assumption that the data come from multivariate normal distribution. While
it’s common and widely accepted to use normal theory even when a normal assumption
is obviously wrong (for example, in linear regression), the objection is still legitimate.

The lavaan software has an option to produce standard errors using a bootstrap. For
a model with only variances and covariances, this produces results that do not depend on
the distribution of the sample data. Here’s how it works.

The se=’bootstrap’ option on the lavaan function causes the software to create
bootstrap data sets by repeatedly sampling n rows of the data matrix with replacement.
For each bootstrap data set, it estimates the parameters by maximum likelihood, and
saves the numbers. The result is a sort of data file, with one column for each parameter
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and one row for each bootstrap data set. The sample variance-covariance matrix from
this data file (which is what you get from vcov, by the way) is a very good estimate of the
asymptotic covariance matrix of the parameter estimates, regardless of the distribution
of the sample data. The square roots of the diagonal elements of the matrix are the
bootstrap standard errors of the parameter estimates. As in the fully parametric case,
tests and confidence intervals are based on an approximate normal distribution for the
parameter estimates.

It’s important to distinguish between normality of the data and asymptotic normality
of the parameter estimates. While it’s true that the estimated variances and covariances
for a lavaan model like sigmod are obtained by numerical maximum likelihood under a
multivariate normal assumption, it also happens that in this case, the MLEs can be derived
analytically rather than numerically – and the resulting parameter estimates are just the
usual sample variances and covariances. By Theorem A.1 in Appendix A, the asymptotic
distribution of sample variances and covariances is multivariate normal, assuming only
that the data come from a joint distribution with finite fourth moments. So we are on
really solid ground.

The following takes a minute or so. A little delay is understandable, since a numerical
search is being carried out a thousand times. Setting the seed of the random number
generator will produce exactly the same numbers every time, if that’s important.

> # Standard errors by bootstrap

> sigfit2 = lavaan(sigmod,datta, se=’bootstrap’); summary(sigfit2)

lavaan 0.6-7 ended normally after 74 iterations

Estimator ML

Optimization method NLMINB

Number of free parameters 10

Number of observations 150

Model Test User Model:

Test statistic 0.000

Degrees of freedom 0

Parameter Estimates:

Standard errors Bootstrap

Number of requested bootstrap draws 1000

Number of successful bootstrap draws 1000

Covariances:

Estimate Std.Err z-value P(>|z|)

x1 ~~

x2 (sg12) -0.089 0.307 -0.291 0.771

y1 (sg13) 5.089 1.393 3.653 0.000
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y2 (sg14) 5.863 2.699 2.173 0.030

x2 ~~

y1 (sg23) 3.980 1.449 2.747 0.006

y2 (sg24) 7.036 2.091 3.364 0.001

y1 ~~

y2 (sg34) 57.865 9.044 6.398 0.000

Variances:

Estimate Std.Err z-value P(>|z|)

x1 (sg11) 3.943 0.728 5.415 0.000

x2 (sg22) 4.874 1.147 4.251 0.000

y1 (sg33) 62.296 8.115 7.677 0.000

y2 (sg44) 135.380 17.987 7.527 0.000

Defined Parameters:

Estimate Std.Err z-value P(>|z|)

con 394.688 511.400 0.772 0.440

The standard errors are sometimes smaller than the ones based on a normal model, and
sometimes larger. It’s all in the same ballpark, though, and none of the conclusions
change. Model One is supported over Model Two.

An easier way Our concluions from the foregoing analysis were based on on a fairly
deep understanding of the two candidate models, acquired by carrying out a series of
calculations with Sage. It’s nice to have an example like this, because it shows how
two models differing only in direction of causality can have different implications for
the covariance matrix – and those different implications open the door to an empirical
decision about which way causality should be flowing in a path diagram. However, it was
not particularly easy. For more realistic models with dozens of variables and possibly
more than two competing models to consider, a job like this could be so demanding that
people just wouldn’t do it.

So why try to understand anything? If there are two plausible models with causality
flowing in different directions, why not just estimate the parameters of both models and
see which one fits the data better? This is actually not as dumb as it sounds. Recall from
Chapter 1 (starting on page ??) that the standard test of model fit is actually testing
a collection of equality constraints that the model imposes on the covariance matrix.
Suppose that two models imply the same constraints, like the models in Example 4.4.1
with γ1 = 0. Then the chi-squared fit statistics will be identical, signalling that there
is no chance of deciding between the models based on data. On the other hand, if the
chi-squared fit statistics are not the same, then the models have different implications for
the covariance matrix (at least at their respective MLEs16). Why not just give it a go?

> # Fit both models, compare LR tests.

16One thing that Example 4.4.1 tells us is that two models can imply the same covariance matrix in
one region of the parameter space, but different covariance matrices in another region.
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> model1 = ’

+ # Model Equations

+ y1 ~ gamma1*x1 + gamma2*x2

+ y2 ~ gamma3*x2 + beta*y1

+ # Variances

+ x1~~phi1*x1

+ x2~~phi2*x2

+ y1~~psi1*y1 # Var(epsilon1) = psi1

+ y2~~psi2*y2 # Var(epsilon2) = psi2

+ ’

> fit1 = lavaan(model1,data=datta); summary(fit1)

lavaan 0.6-7 ended normally after 30 iterations

Estimator ML

Optimization method NLMINB

Number of free parameters 8

Number of observations 150

Model Test User Model:

Test statistic 1.185

Degrees of freedom 2

P-value (Chi-square) 0.553

Parameter Estimates:

Standard errors Standard

Information Expected

Information saturated (h1) model Structured

Regressions:

Estimate Std.Err z-value P(>|z|)

y1 ~

x1 (gmm1) 1.310 0.297 4.405 0.000

x2 (gmm2) 0.841 0.267 3.143 0.002

y2 ~

x2 (gmm3) 0.723 0.339 2.135 0.033

y1 (beta) 0.883 0.095 9.334 0.000

Variances:

Estimate Std.Err z-value P(>|z|)

x1 (phi1) 3.943 0.455 8.660 0.000

x2 (phi2) 4.874 0.563 8.660 0.000

.y1 (psi1) 52.287 6.038 8.660 0.000

.y2 (psi2) 79.216 9.147 8.660 0.000
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The chi-squared test of fit has two degrees of freedom, one for each constraint. The
null hypothesis is not rejected (G2 = 1.185, p = 0.553),indicating that the model fits
acceptably. The z-tests for both γ1 and β are comfortably significant. Model One is
supported.

> model2 = ’

+ # Model Equations

+ y1 ~ gamma1*x1 + gamma2*x2 + beta*y2

+ y2 ~ gamma3*x2

+ # Variances

+ x1~~phi1*x1

+ x2~~phi2*x2

+ y1~~psi1*y1

+ y2~~psi2*y2

+ ’

> fit2 = lavaan(model2,data=datta); summary(fit2)

lavaan 0.6-7 ended normally after 26 iterations

Estimator ML

Optimization method NLMINB

Number of free parameters 8

Number of observations 150

Model Test User Model:

Test statistic 11.392

Degrees of freedom 2

P-value (Chi-square) 0.003

Parameter Estimates:

Standard errors Standard

Information Expected

Information saturated (h1) model Structured

Regressions:

Estimate Std.Err z-value P(>|z|)

y1 ~

x1 (gmm1) 0.730 0.245 2.983 0.003

x2 (gmm2) 0.279 0.229 1.221 0.222

y2 (beta) 0.381 0.043 8.782 0.000

y2 ~

x2 (gmm3) 1.444 0.414 3.488 0.000

Variances:

Estimate Std.Err z-value P(>|z|)
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x1 (phi1) 3.943 0.455 8.660 0.000

x2 (phi2) 4.874 0.563 8.660 0.000

.y1 (psi1) 35.406 4.088 8.660 0.000

.y2 (psi2) 125.222 14.459 8.660 0.000

This time, the test for model (lack of) fit does reject the null hypothesis, with G2 = 11.392,
df = 2 and p = 0.003. By the usual α = 0.05 significance level, this indicates an
inadequate model fit. Tests for γ1 and β are significant again, so it’s a clear-cut case.
Model One is supported over Model Two.

It’s true that some detail was lost. You can tell from the degrees of freedom that each
model imposes two constraints on the covariance, and they can’t be the same because the
fit statistics are different. What you can’t tell (unless you think about it a bit) is that
one of the constraints is the same for both models, and it is supported, while the other
degree of freedom is occupied by two different constraints, and the one implied by MOdel
One is supported, while the one implied by Model Two is not. Still, it’s not so bad, and
not really different from what happens when people explore different models until they
find one that fits.

Can’t we do better? Nevertheless, there is a problem with the testing strategy used
here. Imagine a situation in which the test for one model was barely non-significant, so
technically that model fits, while the test for the other model was barely significant, so
technically that model does not fit. Maybe the fit is actually pretty similar for the two
models. What we want is a single test for whether one model fits better than the other
one. An analogous problem comes up in experimental design. Suppose a training program
significantly improves job satisfaction for women, but the test for men is not significant?
That’s not good enough. You need to test for the interaction of program and gender.

A very natural way to compare the fit of two models is to look at the difference between
the two fit statistics. It’s a likelihood ratio test, and easy to carry out with the anova

function.

> # Try likelihood ratio test

> anova(fit1,fit2)

Chi-Squared Difference Test

Df AIC BIC Chisq Chisq diff Df diff Pr(>Chisq)

fit1 2 3411.5 3435.6 1.185

fit2 2 3421.7 3445.8 11.392 10.207 0

Warning message:

In lavTestLRT(object = new("lavaan", version = "0.6.7", call = lavaan(model = model1, :

lavaan WARNING: some models have the same degrees of freedom

The test statistic is “correct” in that it is the difference between the two chi-squared
fit statistics, but we are warned that the degrees of freedom equal zero, the difference
between degrees of freedom for the two models. This would appear to be a dead end. It’s
not a dead end, but it is a moderately long story. Read on.
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4.4.4 Testing difference between non-nested models

In the usual large-sample likelihood ratio chi-squared test due to Wilks [70], the model
under the null hypothesis is a special case of the unrestricted or “full” model. For exam-
ple, some of the parameters might be zero under H0, or a collection of linear combinations
of the parameters might be equal to specified constants. It’s common to call such models
“nested.” When models are nested, under general conditions the large-sample distribu-
tion of the G2 likelihood ratio statistic (twice the difference between log likelihoods; see
expression A.38) in Appendix A) is chi-squared, with degrees of freedom equal to the
number of equalities specified by the null hypothesis.

If two models differ only in the direction of causality, they are not nested. While the
mainstream classical theory does not apply, there is an attractive technology for testing
the difference between non-nested models. The story begins with an idea by Cox17 [18]
about the large-sample distribution of the likelihood ratio. Then in 1982, White [69] gave
some techical conditions under which Cox’s test was valid. Staying largely within White’s
framework, an influential paper by Quang Vuong [65] provided a more comprehensive
treatment of testing non-nested hypotheses. The account here mostly follows Vuong.
There is also a 2015 paper by Merkle, You and Preacher [45] that applies Vuong’s work
specifically to structural equation models. Merkle et al. provide the R package nonnest2

for computing the procedures, which is very welcome.

Framework There are two competing models that seek to explain a random sample
of observable data vectors d1, . . . ,dn. For our purposes, there is no harm in assuming
the data vectors are real and of length k. Because it’s a random sample, they are iden-
tically distributed. Each model implies a common probability distribution for the data
vectors. Denote these distributions by their cumulative distribution functions, F (d;θ)
and G(d;γ). The probability distribution F has parameter vector θ ∈ Θ and density or
probability mass function f(d;θ). The probability distribution G has parameter vector
γ ∈ Γ and density or probability mass function g(d;γ).

The two competing models may be nested, non-nested or overlapping. Different ver-
sions of the theory will apply in these three cases.

• Nested: The meaning of G nested within F is that for every γ ∈ Γ, there is a θ ∈ Θ
with G(d;γ) = F (d;θ) for every d ∈ Rk. This corresponds to the usual meaning
of nested, while allowing for it to be not obvious that G is just a restricted version
of F .

• Non-nested: For every θ ∈ Θ and every γ ∈ Γ, there is at least one d ∈ Rk with
G(d;γ) 6= F (d;θ). That is, the two probability distributions never coincide exactly.

• Overlapping: There is at least one pair (γ1,θ1) with G(d;γ1) = F (d;θ1) for every
d ∈ Rk, and at least one pair (γ2,θ2) with G(d;γ2) 6= F (d;θ2) for some d ∈ Rk.
That is, the two models may or may not imply different distributions.

17That’s Sir David Roxbee Cox (1924-2022), who is also responsible for the Cox proportional hazards
model in survival analysis, among other good things.
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Our goal is to be able to test for difference between structural equation models that have
the same variables, but with straight arrows running in different directions in part or
all of the two models. In Example 4.4.1 (Figure 4.7), the two models imply the same
probability distribution if γ1 = 0 or β = 0, and otherwise they imply different probability
distributions. So, this is an overlapping overlapping case. In fact, two models that
differ only in direction of causation will always be overlapping. They can’t be nested, and
trivially, if all the arrows that go in different directions for the two models have coefficients
of zero (like β0 in Example 4.4.1), then the two models imply the same probability
distribution. This means they can’t be fully non-nested. The only remaining possibility
is that they are overlapping. Our interest is in comparing overlapping models, but we will
stay general until we are forced to specialize.

Null hypothesis In a refreshing departure from most statistical theory, neither of the
two competing models is assumed to be correct. Let the true distribution of the observable
data be denoted by H(d). This distribution is unknown, and completely unlimited except
for the existence of a density or probability mass function h(d). The true distribution
can be either discrete or continuous18, and you don’t have to specify which.

Undeniably, the better model is the one whose implied probability distribution is closer
to the truth. Difference between two distributions is measured by the Kullback-Leibler di-
vergence, also called the Kullback-Leibler information criterion. The divergence between
H(·) and F (·;θ) for a particular θ is defined as the expected value of the log of a ratio of
densities, where the expected value is taken with respect to the true distribution. Assum-
ing for notational convenience that the true distribution is continuous, the divergence is
defined as

E

(
log

h(d)

f(d;θ)

)
=

∫
· · ·
∫

log

(
h(d)

f(d;θ)

)
h(d) dd. (4.9)

The Kullback-Leibler divergence is a kind of squared distance, but it’s not a metric because
it does not obey the triangle inequality [40].

The value of θ that minimizes (4.9), thus getting the distribution F as close to the
truth as possible, is denoted θ∗, and is called the “pseudo-true value” of θ. Since

E

(
log

h(d)

f(d;θ∗)

)
= E (log h(d))− E (log f(d;θ∗)) ≥ 0

(trust me on the inequality, or consult [40]), it follows that the larger E (log f(d;θ∗)) is,
the “better” the model is. The null hypothesis is that our two competing models are
equally good (or “equivalent”) in this sense. In symbols, the null hypothesis is

H0 : E (log f(d;θ∗)) = E (log g(d;γ∗)) . (4.10)

A big theorem It is astonishing and beautiful that even when the true distribution
of the data is not in the family of distributions defined by F , the maximum likelihood

18Or it can be something else, like a mixed discrete-continuous distribution. Quite a few technical
details are being suppressed here because this is an undergraduate text.
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estimate of θ assuming F still converges almost surely to something, and the target is θ∗.
That is, the MLE is consistent for the pseudo-true value of θ. In symbols, θ̂n

as→ θ∗.
White [68] proves this result (it’s his Theorem 2.2), and Vuong cites White. Huber [32]

proved it fifteen years earlier (it’s his Theorem 1) under conditions that were much less
restrictive and more believable than White’s. Throughout his excellent and justifiably
influential paper, Vuong basically makes all the same assumptions that White did. At
the end of the whole story, we will return to the technical conditions under which all this
stuff is proved.

The log likelihood ratio To test the hull hypothesis (4.10), it makes sense to look
at the estimated difference between E (log f(d;θ∗)) and E (log g(d;γ∗)). These expected
values can be estimated. Note that for i = 1, . . . , n, the log f(di;θ∗) are independent
random variables. Then the law of large numbers says that their sample mean converges
to their expected value. That is, 1

n

∑n
i=1 log f(di;θ∗)

as→ E (log f(d;θ∗)). The pseudo-true
parameter vectors are of course unknown, so replace them with consistent estimators, the
MLEs. Then difference between the two estimated expected values is

1

n

n∑
i=1

log f(di; θ̂n)− 1

n

n∑
i=1

log g(di; γ̂n)

=
1

n

n∑
i=1

(
log f(di; θ̂n)− log g(di; γ̂n)

)
=

1

n

n∑
i=1

log

(
f(di; θ̂n)

g(di; γ̂n)

)

=
1

n
log

n∏
i=1

f(di; θ̂n)

g(di; γ̂n)

=
1

n
log

∏n
i=1 f(di; θ̂n)∏n
i=1 g(di; γ̂n)

, (4.11)

which is 1
n

times the log of the likelihood ratio. Following Vuong’s [65] notation, the log

likelihood ratio will be denoted by LRn(θ̂n, γ̂n), as follows:

LRn(θ̂n, γ̂n) =
n∑
i=1

log

(
f(di; θ̂n)

g(di; γ̂n)

)

Recalling that the usual large-sample likelihood ratio test statistic is twice a log likelihood
ratio, (4.11) certainly points to LRn(θ̂n, γ̂n) as a tool for testing difference between the two

models. The question is, what’s the distribution of LRn(θ̂n, γ̂n) under the null hypothesis?

Cox [18] suggested that based on asymptotic normality of θ̂n and γ̂n, the log likelihood
ratio has a limiting normal distribution, and he proposed a z-test. However, Vuong [65]
showed that this conclusion depends on the two competing models implying different
probability distributions at the pseudo-true values θ∗ and γ∗.
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There are two cases. In Case One, the two distributions are the same at their respective
pseudo-true values. That is, G(d;γ∗) = F (d;θ∗) for every d ∈ Rk. This implies that the
densities g(d;γ∗) = f(d;θ∗), except possibly on a set of probability zero in Rk. In this

case, Vuong shows that the sequence of random variables 2LRn(θ̂n, γ̂n) (the usual test
statistic, if the larger quantity is in the numerator) converges to a target that is a weighted
sum of chi-squares, with elaborate formulas for the weights and degrees of freedom.

In our setting (overlapping models), Case One will always be a possibility, because
θ∗ and γ∗ are unknown. If Case One holds, then the two models imply probability
distributions for the observable data that become identical when they get as close as
possible to the true distribution. In this case, there is really no point in trying to test for
difference in fit. The limiting distribution of 2LRn(θ̂n, γ̂n) is of little practical use, but
we are very interested in detecting whether Case One holds. If we can rule it out with a
significance test, then we can and should proceed to Case Two.

In Case Two, g(d;γ∗) and f(d;θ∗) are not equal, and testing for a difference in model
fit makes sense. As given by Vuong’s [65] Theorem 3.3, if the null hypothesis (4.10) is
true and the two models imply distributions that are equally close to the truth in the
limit without actually being identical, then

√
nLRn(θ̂n, γ̂n)

d→ x ∼ N(0, ω2
∗), (4.12)

where

ω2
∗ = V ar

(
log

f(d;θ∗)

g(d;γ∗)

)
,

and the variance is computed under the true distribution of the observable data.
Now if f(d;θ∗) = g(d;γ∗), ω

2
∗ = V ar(0) = 0, and (4.12) does not make sense. If

the densities are not equal at the pseudo-true parameter values, then ω2
∗ > 0 and (4.12)

holds. To obtain a useable test statistic, we need a consistent estimator of the variance
ω2
∗. It’s very natural. Note that for i = 1, . . . , n, the log f(di;θ∗)

g(di;γ∗)
are independent and

identically distributed random variables, with their distribution determined by H, the
true distribution of the observable data, whatever that might be.
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4.4.5 The moral of the story

The moral of this story is that in general, direction of causality cannot be determined
empirically from a fitted structural equation model. For an unrestricted acyclic model,
it’s always impossible. For some cyclic models and some restricted acyclic models, it may
be possible.

4.5 A Big Theorem

4.5.1 The Multiplication Theorem

4.5.2 Direct and Indirect Effects

4.6 The Exercise and Arthritis Pain Example



Chapter 5

Robustness

The word robust means strong and healthy. Something robust is not easy to break. A
statistical method is said to be robust to some assumed condition if that condition does
not really matter, and the method performs acceptably without it. Robustness usually
emerges for large samples. In structural equation modelling, the usual tests and confidence
intervals are based on an assumed multivariate normality of the observable data. This
chapter is concerned with robustness with respect to the normality assumption. The
approach is to use normal theory methods when they are robust, and modify them as
necessary when they are not. The chapter begins with a summary of findings and a set
of recommendations for what to do with data. After that, the reader is invited to join a
voyage of discovery, and see where the knowledge came from1.

5.1 Summary and Recommendations

Even when the data are not normally distributed, maximum likelihood based on multivari-
ate normality yields estimates that are consistent and asymptotically normal. However,
the normal theory standard errors of the estimates can under-estimate the true standard
deviations of the sampling distributions of the model parameters. When this happens
it’s a problem, because the standard errors determine the width of confidence intervals,
and are the denominators of z-tests for the parameters. When a standard error is too
small, the confidence interval will be too narrow, implying more certainty about the true
value of the parameter than the data warrant. A standard error that is too small will also
inflate the z statistic, and lead to rejection of the null hypothesis too often when the null
hypothesis is true.

Standard errors are not always too small. For parameters that appear on the straight
arrows in path diagrams, standard errors are robust, and normal theory results can be
trusted for non-normal data. Also, there are strong indications that the standard errors
for covariance parameters (which would appear on curved, double-headed arrows) are also

1My mother said to never end a sentence with a preposition. Her warm and cheerful ghost stands at
my shoulder now, reminding me. I do not always listen to what she says. Sometimes, a preposition is a
good thing to end a sentence with.

425
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robust when the true covariance is zero — under the special condition that the random
variables involved are truly independent, and not just uncorrelated.

For model parameters that are variances, and for covariance parameters when the true
value is not zero, lack of robustness is most evident when the non-normal distributions
involved have heavy tails (high kurtosis). For this situation, robust estimates of the
asymptotic covariance matrix (which include robust standard errors) are available. When
normal theory method fail, robust methods do better for the same sample size, but may
require a considerably larger sample size to achieve performance that is actually good.

5.2 Robustness

Again, a statistical method is said to be robust with respect to some feature of the
model if the method works acceptably even when the condition does not hold. The
most familiar example of robustness might be the tests and confidence intervals based
on the t distribution. Suppose you have a simple random sample from a univariate
normal distribution. After a fair amount of work that depends critically on properties of
the normal distribution (for example, the independence of the sample mean and sample
variance), one arrives at the statistic

t =
x̄n − µ
sn/
√
n
∼ t(n− 1),

where x̄n is the sample mean and sn is the sample standard deviation with n − 1 in the
denominator. On the other hand, suppose you are unwilling to assume that the data are
normally distributed. Instead, you assume only random sampling from a distribution with
finite variance. Then using the Central Limit Theorem along with a Slutsky theorem for
convergence in distribution2, one arrives at

zn =
x̄n − µ
sn/
√
n

d→ z ∼ N(0, 1).

The formulas for t and zn are identical, although their derivations are very different.
Combining this with the well-known fact that the t distribution approaches a standard
normal as the degrees of freedom tend to infinity, the conclusion is that for large samples,
the assumed normal distribution basically does not matter. It’s fine to go ahead and use
t-tests and t confidence intervals, even for binary data. This is a pure success story. If
the data really happen to be normal, then using the t distribution is optimal in all sorts
of theoretically satisfying ways. If the data are not normal and the sample size is large,
then everything’s okay anyway.

Multivariate normality In every structural equation modeling software I have seen
(including lavaan), the default method of parameter estimation is maximum likelihood.

2See item 6c in Section A.5.3 of Appendix A, or just take it on faith that it’s okay to substitute sn
for σ in the Central Limit Theorem if n is large.
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That’s maximum likelihood based on multivariate normality. With this option, all the
usual tests and confidence intervals come from classical large-sample likelihood theory,
and depend on the assumption that the observable data come from a multivariate normal
distribution.

Well, what if the data are not multivariate normal? The very clear case of categorical
data is treated in Chapter 9. Otherwise, when the data are quantitative, common practice
is to ignore the issue, and to just go ahead and use likelihood-based methods. The
assumption (usually unspoken) is that they are robust enough so the results will not be
misleading. Now it’s time to take a closer look, and if necessary make some adjustments.

Robust alternatives Some methods are designed from the outset to be distribution-
free. The best known are variations on weighted least squares. Instead of minimizing the
minus log likelihood or something equivalent over θ ∈ Θ, one minimizes

F (θ) = (σ̂n − σ(θ))>W−1(σ̂n − σ(θ)), (5.1)

where σ̂n = vech(Σ̂n) and σ(θ) = vech(Σ(θ)). The matrix W contains weights. With
W = I, minimizing F (θ) reflects the very natural idea of minimizing the sum of squared
differences between (a) the unique sample variances and covariances, and (b) the corre-
sponding population variances and covariances, written as a function of the model pa-
rameters. The problem is that this would give equal weight to all the variances and
covariances. Better would be to weight them inversely according to their variances, so
that the sample moments with the lowest variance count most. But the sample moments
have covariances, too. Browne’s [13] Asymptotically Distribution Free (ADF) estimation
method makes W the estimated covariance matrix of σ̂n

3.

It all works out great in theory as n → ∞, but a huge sample size may be required
for the method to work properly. Finney and DiStefano [26] describe simulation studies
in which sample sizes as large as n = 5, 000 were required for acceptable results. The
ADF estimation method is implemented in most structural equation modlling software
including lavaan, but in practice almost nobody uses it.

Another possibility is to estimate the model parameters directly by method of mo-
ments. Identifiability means that θ = g(Σ), for some function g(·) that is usually contin-

uous. Letting θ̂ = g(Σ̂) yields an estimator that is consistent by the law of large numbers
and continuous mapping, and asymptotically normal by Theorem A.1 and the multivariate
delta method. The method of moments estimator (52) for double measurement regression
with latent variables is an example. The main problem with this as a general approach
is that it requires explicit solutions for the covariance structure equations. While (52)
is a nice general expression that does not casually throw away any information in the
sample covariance matrix, it’s specific to the double measurement regression model. For
other models, explicit solutions to the covariance structure equations are frequently not

3The quantity being estimated is 1
nL, for the matrix L of Theorem A.1 in Appendix A. Estimation of

L is by method of moments.
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available, even when their existence can be established4. Another very practical issue is
that even when the data are non-normal, maximum likelihood based on a normal assump-
tion produces estimates that are just as accurate or more accurate than distribution-free
methods. For example, a 1990 paper by Satorra and Bentler [54] describes Monte Carlo
work suggesting that normal-theory methods generally perform better than Browne’s [13]
asymptotically distribution-free method.

In my judgement, methods designed from the outset to be distribution free are just
not very promising for structural equation models. Therefore, the rest of this chapter
will focus on likelihood-based methods, clarifying the ways in which they are robust with
respect to the assumption of multivariate normality, and seeking modifications only when
necessary. Throughout, it will be taken for granted that the model equations accurately
represent the way in which the data are generated. That is, the robustness to be treated
here is robustness with respect to the assumption of a normal distribution, period.

5.3 Estimation

Let us distinguish between the distributional part of a structural equation model, and
the structural part. The distributional part of the model (partly) specifies probability
distributions for the random variables involved. The structural part is basically everything
else. It consists principally of the model equations, but also includes properties like certain
random variables having zero covariance with one another, or certain parameters being
equal to one another or equal to zero. The structural part of the model is what leads to
Σ = Σ(θ).

In general, when a statistical model is correct, maximum likelihood estimates are
well known to be consistent [67]. Our Theorem 5.1 says that if the structural part of a
structural equation model is correct, the normal theory MLE is consistent, even when the
true distribution of the data is not multivariate normal. Consistency (See Section A.5.2
in Appendix A) amounts to large-sample accuracy. It’s not the only thing we need, but
it certainly helps.

Suppose that a statistical model is incorrectly specified. In our world, this could mean
that the structural part is wrong, the distributional part is wrong, or both. It turns
out that under general conditions given in a 1967 paper by Peter Huber [32], the MLE
converges to a definite target. This target has been called the “pseudo-true” parameter
value by Vuong [65]; also see the closely related treatment by White [68].5 The proof
of Theorem 5.1 works by showing that the pseudo-true value and the true parameter
value must be the same. Convergence of the MLE to the pseudo-true parameter value is
established by Huber’s (1967) Theorem 2, whose mild requirements6 are satisfied provided

4Chapters 3 and 4 develop a set of sufficient conditions for the existence of a unique solution of the
covariance structure equations. They make identifiability easy to verify in many cases, but they do not
produce explicit solutions.

5White uses the terms quasi-likelihood and quasi-maximum likelihood, but never refers to the target as
quasi-true, at least in his 1982 paper. Pseudo-true parameter values are discussed further in Section 4.4.4
of Chapter 4.

6The conditions may be mild, but the proof is very demanding. This is a price one often pays for
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that the true distribution(s) of the structural equation model (whatever they are) have
finite variance.

The proof of Theorem 5.1 may give the wrong impression, because this is not an
epsilon-delta book. In fact, it would have been possible to just cite Browne’s (1984)
Proposition One, which says almost the same thing. However, Browne assumes that the
parameter space is closed and bounded, something that is not even true of the univariate
normal distribution. When there is an alternative, it’s more satisfying to avoid such
unrealistic assumptions7.

Conditions for Theorem 5.1 Assume that the centered structural equation model (1.5)
holds, with the distributions of the observed random variables unspecified except that their
covariance matrix exists. Denote a general parameter vector by θ ∈ Θ, an open subset8

of Rt. The true parameter vector is θ0 ∈ Θ.
The common covariance matrix of the n independent data vectors is the k×k positive

definite matrix Σ0. This is the true covariance matrix. The model equations correctly
imply that Σ0 = Σ(θ0). The model parameters are identifiable from the covariance matrix
at the true parameter vector. Specifically, letting σ0 = vech(Σ0), there is a function g(·)
with θ0 = g(σ0). Assume that g(σ) is continuous at σ = σ0

9.

Theorem 5.1 Under the stated conditions, the maximum likelihood estimator θ̂n con-
verges almost surely to the true parameter vector θ0.

Proof For the centered model under consideration, maximizing the multivariate normal
likelihood (A.20) is equivalent to minimizing q(Σ, Σ̂n) = tr(Σ̂nΣ

−1) − log |Σ| over all
symmetric and positive definite matrices Σ. By Theorem A.2 in Appendix A, a unique
minimum occurs at Σ = Σ̂n. This holds regardless of what Σ̂n happens to be, as long as
it is positive definite. Replacing Σ̂n with a general symmetric and positive definite matrix
S, the conclusion is that for fixed S and any symmetric, positive definite Σ,

q(Σ,S) ≥ q(S,S), (5.2)

generality. Starting with Huber’s theorem is roughly like launching your airplane from the top of a
mountain.

7Browne does offer an alternative, a set of technical conditions that would need to be checked separately
for each model. In practice, people are just not going to do it. Browne is not alone in assuming that the
parameter space is closed and bounded [65, 68]. It’s technically easier to work in a closed and bounded
space, because then uniform convergence is easier to establish, and this in turn can be used to justify
exchange of limiting operations. The resulting conclusions may well be true in a more general setting;
Theorem 5.1 is an example.

8The parameter space is open provided the model variance-covariance matrices are positive definite.
9Continuity is very natural. There are k(+1)/2 covariance structure equations in t < k(+1)/2 unknown

parameters. Suppose that it is possible to solve for the parameters using only t of the equations; this
assumption is used to justify the degrees of freedom of the chi-squared test for model fit in Section 1.5.3.
Then the solutions are at worst ratios of polynomials (algebraic expressions) in the σij . Furthermore,
identifiability guarantees that the denominators are non-zero at θ = θ0, yielding continuity. I suppose
that a solution requiring more equations than parameters might involve some strange, non-continuous
function, but I have never seen an example.
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with equality if and only if Σ = S.

For the structural equation model given in the Conditions, let θ̂n denote the maximum
likelihood estimator of θ0, based on an assumed multivariate normal distribution for the
observed data. θ̂n is obtained by minimizing q(Σ(θ), Σ̂n) over θ ∈ Θ. The conditions of

Huber’s [32] Theorem 2 are satisfied, implying θ̂n
a.s.→ θ∗ ∈ Θ.

To produce a contradiction, suppose that θ∗ 6= θ0. Eventually, we will see this means
that for large enough n, the likelihood function is greater at a certain method of mo-
ments estimate than it is at the maximum likelihood estimate. This is impossible, by the
definition of an MLE.

The true covariance matrix is Σ0 = Σ(θ0). Therefore, (5.2) implies that q (Σ(θ∗),Σ0) ≥
q (Σ(θ0),Σ0), with equality if and only if Σ(θ∗) = Σ(θ0)10. But Σ(θ∗) = Σ(θ0) is impos-
sible, because identifiability means that two distinct parameter vectors cannot produce the
same covariance matrix. It follows that q (Σ(θ∗),Σ0) is strictly greater than q (Σ(θ0),Σ0).

It may help to re-express the loss function q(·, ·) in terms of real vectors. This will
make it clear that the rest of the proof consists of statements about certain points in an
ordinary Euclidean space, specifically an open subset of Rt+k(k+1)/2, where t is the number
of model parameters and k is the number of observable variables.

Let t be a general point in the parameter space Θ ⊂ Rt, and let s = vech(S), where S
is a k × k symmetric and positive definite matrix. This means that s ∈ Rk(k+1)/2. Define

r(t, s) = q (Σ(t),S) = tr(SΣ(t)−1)− log |S|. (5.3)

Using this notation and letting σ0 = vech(Σ0), we have established above that r(θ∗,σ0) >

r(θ0,σ0). Also, letting σ̂n denote vech(Σ̂n), the MLE θ̂n is obtained by minimizing
r(θ, σ̂n) over θ ∈ Θ.

Let S = {s ∈ Rk(k+1)/2 : s = vech(S), where S is a k × k positive definite matrix}.
Because each S is positive definite, S is an open set11. Therefore the set Θ × S is open
too.

Since the true covariance matrix Σ0 is positive definite, σ0 ∈ S. Therefore the com-
bined vector (θ0,σ0) is an interior point of Θ × S. This makes it possible to establish
an open neighbourhood of (θ0,σ0), consisting of points corresponding to valid parameter
vectors and valid covariance matrices. The same applies to the point (θ∗,σ0).

The function r(t, s) in 5.3 describes a collection of additions, multiplications and
division by non-zero constants, combined with the natural log, which is a continuous
function. Therefore, r(·, ·) is continuous at any combined vector (t, s) ∈ Θ× S.

Recalling that r(θ∗,σ0) > r(θ0,σ0), let ε = ( r(θ∗,σ0)− r(θ0,σ0) ) /3. Continuity
of the function r(·, ·) at (θ0,σ0) means there exists δ1 > 0 such that if the point (t, s)
belongs to a spherical neighbourhood with radius δ1, centered at (θ0,σ0), then |r(θ0,σ0)−
r(t, s)| < ε. Similarly, there is a spherical neighbourhood with radius δ2, centered at
(θ∗,σ0), such that |r(θ∗,σ0)− r(t, s)| < ε for all (t, s) in this second neighbourhood.

10In other words, for a “sample” covariance matrix equal to the truth, the minus log likelihood is
minimized at the true parameter value. It will be seen that identifiability makes the minimum unique.

11I found a nice clean proof of this in the answer to a question on Stack Exchange.

https://math.stackexchange.com/q/4347233
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Let δ = min(δ1, δ2). Further shrink δ so that (1) the spherical neighbourhood with
radius δ centered at (θ0,σ0) is entirely within Θ × S, (2) the spherical neighbourhood
with radius δ centered at (θ∗,σ0) is entirely within Θ×S, and (3) the two neighbourhoods
do not overlap.

Sample variances and covariances converge almost surely to the corresponding true
variances and covariances. This yields the vector convergence σ̂n

a.s→ σ0. We will need
this to hold at the same time as θ̂n

a.s.→ θ∗. Recall that the random vectors here are vectors
of scalar random variables, and those scalar random variables are functions from some
underlying sample space Ω into the real numbers. The convergence of σ̂n to σ and θ̂n
to θ∗ might hold on two different subsets of Ω, each of probability one. However, the
intersection of these two sets is also a set of probability one. Denoting the intersection by
A, we have both limn→∞ σ̂n(ω) = σ and limn→∞ θ̂n(ω) = θ∗ for each ω ∈ A ⊆ Ω, with
P (A) = 1.

Identifiability means that θ0 = g(σ0). Let θ̃n = g(σ̂n), yielding a method of moments

estimator for θ0. By assumption, g(·) is continuous at σ0, so that θ̃n
a.s→ θ0. That is, the

method of moments estimator θ̃n is strongly consistent.

The combined vector (θ̃n, σ̂n)
a.s→ (θ0,σ0), meaning that there exists an integer N1

such that for all n > N1, the vector of estimates (θ̃n, σ̂n) stays within the neighbourhood

surrounding (θ0,σ0). Consequently, |r(θ̃n, σ̂n)−r(θ0,σ0)| < ε. Also, (θ̂n, σ̂n)
a.s→ (θ∗,σ0)

implies the existence of an integer N2 such that for all n > N2, (θ̂n, σ̂n) stays within the

neighbourhood surrounding (θ∗,σ0), so that |r(θ̂n, σ̂n)− r(θ∗,σ0)| < ε.12

Figure 5.1 shows a picture. It’s to scale, with r(θ∗,σ0) − r(θ0,σ0) = 3 ε. Let N =

Figure 5.1: Non-overlapping intervals

( ) ( )
r(θ0,σ0) r(θ∗,σ0)

max(N1, N2). For all n > N , r(θ̃n, σ̂n) is in the left-hand (lower) interval, and r(θ̂n, σ̂n)

is in the right-hand (higher) interval — with probability one. So r(θ̃n, σ̂n) < r(θ̂n, σ̂n).

That’s impossible, because θ̂n is obtained by minimizing r(θ, σ̂n) over θ ∈ Θ, and θ̃n ∈ Θ.

This contradiction shows that the assumption θ∗ 6= θ0 must be wrong. Therefore,
θ∗ = θ0, yielding θ̂n

a.s.→ θ0, the true parameter vector. �
The practical conclusion is that in terms of parameter estimation, it’s acceptable to

use normal maximum likelihood regardless of the true distribution of the data. If the
normal assumption is correct or approximately so, then the estimates will share some of
the optimal properties of maximum likelihood. Otherwise, it’s still okay provided that
the sample size is large.

12In general, N1 and N2 will both depend on ω ∈ Ω. This is no problem. Randomly choose an ω from
Ω. With probability one, ω ∈ A, and the whole argument applies for every element of the set A.



432 CHAPTER 5. ROBUSTNESS

5.4 Asymptotic Normality

For as long as possible, we will continue to rely on the deep theory in Huber’s 1967
paper [32]. Recall that his topic is the large-sample behaviour of maximum likelihood
estimates when the statistical model is possibly incorrect, and we are applying his results
to the normal-theory MLE for structural equation models, assuming the distributions
might not be normal, but the rest of the model is correct.

Having proved that a class of estimators including the MLE converges to a definite
target, Huber goes on to show in his Theorem Three and its corollary that under conditions
that are slightly less general but still not very restrictive, the large-sample distribution of
the estimator around the target is approximately multivariate normal.

Theorem 5.1 of this textbook establishes that in our setting, Huber’s large-sample
target is identical to the true parameter vector. If we assume that the true probability
distributions of our observed variables have finite fourth moments and choose the function
u(·, ·) as described below, then we also have asymptotic normality.

Huber expresses his results using certain Greek letters that mean something entirely
different in structural equation modelling. To minimize confusion, some of his notation
has been modified13 in the following.

Corollary to Huber’s corollary Assume the conditions of Theorem 5.1, and also that
the true joint distribution of the observed variables possess finite fourth moments. Then

tn =
√
n(θ̂n − θ0)

d→ t ∼ Nr(0,V), (5.4)

where r is the number of unknown model parameters. The matrix V is calculated as
follows.

1. In the multivariate normal density (A.19), center the observed data by lettting
d = x− µ. The result is

f(d; Σ) =
1

|Σ| 12 (2π)
k
2

exp

{
−1

2
d>Σ−1d

}
.

2. Writing the covariance matrix as a function of the model parameters and letting
f = f (d; Σ(θ)), calculate the r × 1 gradient

u(d,θ) =


∂ log f
∂θ1
...

∂ log f
∂θr

 .

13Huber denotes a general parameter vector by θ, while we use θ; that’s fine. His large-sample target
(the “pseudo-true” parameter vector) is θ0. We use θ0 for the vector of true parameter values, and θ∗
for the pseudo-true parameter value. By Theorem 5.1, θ∗ = θ0, so our purposes, Huber’s θ0 is our θ0.
However, Huber’s ψ(x, θ) is our u(d,θ), his λ(θ) is our h(θ), and his matrix Λ is our A. We are not using
the letter C for anything in particular, so we stay with his notation there. Our C is the same as Huber’s
C.
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3. Calculate the r×1 vector of functions h(θ) = E (u(d,θ)) = [hj], where the expected
value is taken with respect to the unknown true distribution of d. Not knowing the
true distribution presents no difficulties. Just use expected value signs14.

4. Calculate the r × r matrix of partial derivatives

A =

[
∂hi
∂θj

]
=


∂h1
∂θ1

∂h1
∂θ2

· · · ∂h1
∂θr

∂h2
∂θ1

∂h2
∂θ2

· · · ∂h2
∂θr

...
...

...
∂hr
∂θ1

∂hr
∂θ2

· · · ∂hr
∂θr


5. Recognizing that u(d,θ) is an r× 1 random vector, calculate its covariance matrix:

C = cov (u(d,θ)). The covariance operation is carried out with respect to the
unknown true distribution15.

6. Finally, letting A0 denote the matrix A evaluated at θ = θ0 and letting C0 denote
C evaluated at θ = θ0, calculate

V = A−1
0 C0

(
A>0
)−1

. (5.5)

This is the V in tn =
√
n(θ̂n−θ0)

d→ t ∼ Nr(0,V). It’s the asymptotic covariance matrix

of tn, not θ̂n. The asymptotic covariance matrix of θ̂n is 1
n
V.

Example 5.4.1 A simple random sample

Let x1. . . . , xn be independent and identically distributed random variables from a distri-
bution with expected value µ and variance σ2, not necessarily normal. There are r = 2
parameters. The pair of true parameter values (µ, σ2) is a point in the parameter space
Θ = {(θ1, θ2) : −∞ < θ1 < ∞, θ2 > 0}. Using normal maximum likelihood even though
the data may not be normal, we obtain

µ̂ = xn, and σ̂2
n =

1

n

n∑
i=1

(xi − xn)2.

It is clear that so far, pretending that the data are normally distributed has done no
harm. In addition to being MLEs, µ̂ and σ̂2 are natural method of moments estimators,
and consistency follows from the law of large numbers (and continuous mapping, in the
case of the variance) without any fancy machinery.

The objective will be to calculate a robust asymptotic covariance matrix for (µ̂, σ̂2),
following the 6-step recipe outlined for structural equation models. It will be necessary to

14Actually, all the resulting expressions are in terms of variances and covariances of the observed data.
You can read these directly from Σ(θ), since that part of the model is correct.

15Again, just use expected value signs. This is the source of the higher order (up to fourth order)
central and product moments in the final answer.
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make minor adjustments for the fact that this is not a centered structural equation model,
but still it’s a good example. Numbering of the steps corresponds to the numbering in
the recipe. The main difference in notation is that the data vector d is replaced by the
scalar random variable x.

1. Because the mean is one of the parameters here, it will not be hidden by centering.
Write the normal density as

f = f(x; θ1, θ2) =
1

θ
1/2
2

√
2π

exp−1

2
(x− θ1)2 θ−1

2 .

2. Now calculate the gradient

u(x,θ) =

 ∂ log f
∂θ1

∂ log f
∂θ2

 =

 (x− θ1)θ−1
2

1
2
(x− θ1)2θ−2

2 − 1
2
θ−1

2

 .

3. Take the expected value, yielding h(θ) = E (u(x,θ))

h(θ) = E (u(d,θ)) =

 (E(x)− θ1) θ−1
2

1
2
E(x− θ1)2 θ−2

2 − 1
2
θ−1

2


The expected values are taken with respect to the true distribution, whatever it is.
So the expected value of x is µ, not θ1. Similarly, E(x− θ1)2 6= σ2. The symbols θ1

and θ2 are variables, with respect to which we will presently differentiate. Another
calculation step yields

h(θ) =

 (µ− θ1) θ−1
2

1
2
σ2θ−2

2 + 1
2
(µ− θ1)2θ−2

2 − 1
2
θ−1

2

 =

 h1

h2

 .

4. Now partially differentiate, yielding the Jacobian

A =

(
∂h1
∂θ1

∂h1
∂θ2

∂h2
∂θ1

∂h2
∂θ2

)
=

(
−θ−1

2 (θ1 − µ) θ−2
2

(θ1 − µ) θ−2
2 −σ2θ−3

2 − (θ1 − µ)2θ−3
2 + 1

2
θ−2

2

)

5. Recognizing that the quantity u(x,θ) from step 2 is a random vector, we need to
calculate C = cov(u(x,θ)). In Step 6, this matrix is going to be evaluated at θ = θ0.
It’s a little more convenient to evaluate at the true parameter values first, obtaining

C0 = cov (u(d,θ0)) = cov

(
d−µ
σ2

(d−µ)2

2σ4 − 1
2σ2

)
=

(
1
σ2

E(d−µ)3

2σ6

E(d−µ)3

2σ6

E(d−µ)4−σ4

4σ8

)
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6. The last step is to calculate the matrix V = A−1
0 C0

(
A>0
)−1

. Evaluating the matrix
A at θ = θ0, we get

A0 =

(
− 1
σ2 0

0 − 1
2σ4

)
And finally,

V = A−1
0 C0 A−1

0 =

(
σ2 E(x− µ)3

E(x− µ)3 E(x− µ)4 − σ4

)

This is the matrix V that appears in
√
n(θ̂n − θ0)

d→ t ∼ N2(0,V).

It is instructive to compare compare V with its normal theory counterpart, the inverse of
the Fisher information in one observation. In Table 5.1, the expressions are divided by n,
yielding asymptotic covariance matrices for the sample mean and the sample variance.

Table 5.1: Two asymptotic covariance matrices for (xn, σ̂
2
n)

Inverse of Fisher Information Robust Huber

(
σ2

n
0

0 2σ4

n

)  σ2

n
E(x−µ)3

n

E(x−µ)3

n
E(x−µ)4−σ4

n



For the normal distribution, E(x − µ)3 = 0 and E(x − µ)4 = 3σ4, so when the distribu-
tion really is normal, the robust asymptotic covariance matrix corresponds to the usual

answer. Note that the skewness of a distribution is defined as E(x−µ)3

σ3 , and the kurtosis16

is defined as E(x−µ)4

σ4 . Thus, the robust asymptotic covariance matrix depends on the true
distribution only through its skewness and kurtosis.

Computing it The recipe for V is reasonably easy to follow for a univariate random
sample. However, even for a small structural equation model, the expressions get quite
messy if you follow the directions in a straightforward way using only standard multivari-
able calculus. This is even true with Sage, because while Sage can easily calculate partial
derivatives and perform matrix operations, it currently is not very good at expected val-
ues and covariances. Fortunately, with some thought it’s possible to get expressions that

16Kurtosis is a way of expressing how heavy-tailed the distribution is. A heavy-tailed distribution
has relatively large probability out on the tails, and will frequently generate extreme observations that
seem like outliers. The kurtosis of the normal distribution is 3, and excess kurtosis is defined as kurtosis
minus 3, to facilitate comparison with the normal.
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are general and fairly compact — for example using Jacobi’s formula for the derivative of
a determinant.

The matrix V is the true asymptotic covariance matrix of tn. It’s a function of the
true parameters, and also of various central moments and product moments of the true
distribution. What’s needed for practical purposes is a consistent estimate of V. That’s
not a problem if you have a formula for V. Just estimate the model parameters with the
MLEs, and use method of moments to estimate the expected values. You never even need
to guess at the true distribution of the observable variables. All you need is estimates of
some of the higher moments.

The Satorra-Bentler Estimator Huber’s distribution-free asymptotic covariance ma-
trix for the vector of MLEs is not the only available choice. In a 2022 paper, Savalei and
Rosseel [56] lay out a dizzying array of alternatives, many designed for use with data sets
with missing data, where the missing data are assumed to arise by certain mechanisms.
Here, the problem of missing data will be set aside17, and we will focus on a classical
solution due to Satorra and Bentler [54]. Their estimate seems to have first appeared in
an earlier paper by Bentler and Dykstra [6], using a different notation. In the following,
their notation is largely replaced with the notation of this text18.

Assume a structural model leading to Σ = Σ(θ). The true parameter vector is θ0, and

its normal theory MLE is θ̂n. The sample covariance matrix (with n in the denominator)

is denoted by Σ̂n. Also, let σ̂n = vech(Σ̂n), σ = σ(θ) = vech(Σ(θ)) and σ0 = σ(θ0). In
an expression based on Equation 1.19 on page 171, let

b(σ) = tr(Σ̂Σ−1)− k − log |Σ̂Σ−1|.

The number of moments (unique variances and covariances) is m = k(k + 1)/2. Define
the m by m Hessian matrix H as

H =

[
∂2b

∂σi∂σj

]
(σ̂,σ)=(σ0,σ0)

.

After differentiation, H is a matrix of expressions in the σj and σ̂j. The notation says to
then evaluate the result at σj = σj(θ0) and σ̂j = σj(θ0) for j = 1, . . . ,m. Note that since
σ0 = σ(θ0), the final H is a function of the true parameter vector θ0.

17In lavaan and most other software I have seen, the default way of treating missing data is listwise
deletion, in which an entire case (respondent, subject) is omitted if any data are missing. That’s okay
if there are just a few cases with missing data. For more extensive missing data, one can calculate
the sample covariance matrix with pairwise deletion. In pairwise deletion, each individual variance or
covariance is calculated using all available data. In R, the var function’s use=’pairwise.complete.obs’
option will do the trick. The resulting covariance matrix is then used as input to the software. With
pairwise deletion and a large volume of missing data, you might start to wonder that n should be. If you
find yourself wondering, the situation is serious enough to consider the alternatives outlined by Savalei
and Rosseel [56]. They are all easy to compute, since Rosseel is the author of lavaan

18Their FML(θ) is replaced by our b(θ). Their S is our Σ̂. Their V is replaced by H, because it’s a
Hessian, and because we are using V for something else. Their Γ is our L
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Then, let

∆ =

[
∂σi(θ)

∂θj

]
θ=θ0

and J = ∆>H∆.

The “bread” in the Sattora-Bentler sandwich estimator is assembled from the matrices
J, H and ∆, in a way that will be seen. The “meat” is a critical matrix that Satorra and
Bentler denote by Γ. In this book, we are using Γ for a matrix of regression coefficients
in the latent variable model. Satorra and Bentler’s Γ is the same as the matrix L that
appears in our Theorem A.1, in Appendix A. There, we have (repeating from page 564)

√
n
(
vech(Σ̂−Σ)

)
d→ t ∼ N(0,L).

In Theorem A.1, the data d1, . . . ,dn have common expected value µ = E(d1) and covari-
ance matrix Σ = cov(d1). Letting w = vech{(d1 − µ)(d1 − µ)>}, the matrix L is given

by L = cov(w). So L is not quite the asymptotic covariance matrix of σ̂ = vech(Σ̂). The
asymptotic covariance matrix of σ̂ is 1

n
L.

With this background, Satorra and Bentler’s [54] expression (2.11) on p. 239 says

√
n
(
θ̂n − θ0

)
d→ t ∼ N(0,J−1∆>HLH∆J−1).

Thus, using the notation acov for the asymptotic covariance matrix,

acov(θ̂n) =
1

n
J−1∆>HLH∆J−1. (5.6)

Here is a rough justification of the Satorra-Bentler estimator. Denote the r×r asymptotic
covariance matrix of θ̂n by 1

n
V. The model says that σ = σ(θ). If the model is correct,

this implies σ̂ = σ(θ̂n), approximately for large n. In the notation of the multivariate

delta method, the function σ(θ) is g, and
.
σ is

.
g. Then

acov(σ̂) =
.
σ acov(θ̂n)

.
σ
>

= ∆
1

n
L∆>.

Consequently,

1

n
L = ∆

1

n
V∆> =⇒ L = ∆V∆>

=⇒ J−1∆>HLH ∆J−1 = J−1∆>H∆V∆>H ∆J−1

=⇒ J−1∆>HLH ∆J−1 = (∆>H∆)−1∆>H∆︸ ︷︷ ︸
I

V ∆>H ∆(∆>H∆)−1︸ ︷︷ ︸
I

=⇒ 1

n
V = acov(θ̂n) =

1

n
J−1∆>HLH ∆J−1,

which is Satorra and Bentler’s formula.
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Huber and Satorra-Bentler agree On the surface, we have two sandwich-type formu-
las for the asymptotic covariance matrix of θ̂n. From Expression 5.5, the Huber version

is 1
n
A−1

0 C0

(
A>0
)−1

, while as given above, Satorra and Bentler’s double decker sand-

wich formula is 1
n
J−1∆>HLH ∆J−1. In Huber’s very general theory, not all the partial

derivaties in Satorra and Bentler’s sandwich estimator need to exist, but for a linear
structural equation model with a multivariate normal likelihood, they do. As a result,
the Huber and Satorra-Bentler asymptotic covariance matrices are equal when evaluated
at the true parameter values [56]. When they are evaluated at the MLEs (the lavaan de-

fault) they produce equal estimates of acov(θ̂n). In R’s lavaan package, they are available
through the se = ’robust.huber.white’ or se = ’robust.sem’ option in the lavaan

function. The standard errors are square roots of the diagonal elements of 1
n
V̂, and the

vcov function returns the entire matrix.
One should not expect particularly good performance for small sample sizes, quite

apart from the fact that all the theory is asymptotic. As the number of observed variables
increases, the number of relevant moments and product moments (likeE {(xj − µj)(xk − µk)3}
which would be estimated by 1

n

∑n
i=1(xij − xj)(xik − xk)3) increases very fast. While the

storage and processing requirements are no longer much of an issue with modern com-
puters, the sample size required for all those estimates to be accurate at the same time
could be substantial. Also, estimating something like the fourth moment of a heavy-tailed
distribution will naturally require a large sample. At least a few extreme observations are
guaranteed, and they are going to have a noticeable effect on the MLEs. A large amount
of data may be required to get a reading on the shape of the distribution out on the tails.
All this has no impact on the theory, because the theory is all about what happens as
n→∞. For applications to real data, it can matter.

Bootstrap The bootstrap provides another way to estimate 1
n
V, one that avoids all the

partial derivatives and expected values. As described in Appendix A19, the idea behind
the bootstrap is that if the sample size is large enough, the sample closely resembles
the population from which it is selected. In that case, sampling from the sample with
replacement (re-sampling) is a lot like sampling from the original population.

The se=’bootstrap’ option of the lavaan function causes the software to create
bootstrap data sets by repeatedly sampling n rows of the data matrix with replacement.
For each bootstrap data set, it estimates the parameters by maximum likelihood, and
saves the numbers. The result is a sort of data file, with one column for each parameter
and one row for each bootstrap data set. The sample variance-covariance matrix from
this data file (which is what you get from vcov, by the way) is a very good estimate of the
asymptotic covariance matrix of the parameter estimates, regardless of the distribution
of the sample data. The square roots of the diagonal elements of the matrix are the
bootstrap standard errors of the parameter estimates. The tests and confidence intervals
are based on an approximate normal distribution for the parameter estimates, a property
that the corollary to Huber’s corollary guarantees under very general conditions.

The bootstrap is a beautiful tool; it’s flexible, intuitive and easy to code. The main

19Or anyway, it will be described once I put a little bootstrap section in there.
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downside is that it takes a while to run. By default, lavaan will draw 1,000 bootstrap
samples, and that involves estimating the parameters by numerical maximum likelihood
1,000 times. You might have to wait a minute or two. Also, because it’s based on random
number generation, the numerical answers will vary slightly if you re-run the analysis. To
get exactly the same numbers each time, use set.seed() before fitting the model. Give
the set.seed() function a large integer argument.

5.5 Does it make a difference?

This is a serious question. Do robust standard errors actually improve the quality of infer-
ence when the data are not normal? Or, given the consistency and asymptotic normality
of maximum likelihood estimators for non-normal data, are the classical normal-theory
methods good enough? Does it matter?

There are different answers to this question, and I will spoil the surprise by telling
you my answer. Sometimes it matters, and sometimes it does not. Table 5.1 tells a small
version of the story. Look at the upper left entries of the two asymptotic covariance
matrices. In both cases, it’s σ2

n
. Everybody knows that the variance of xn is σ2

n
, and the

central limit theorem tells us that the distribution of xn approximately normal for large
samples, regardless of the distribution of the data20. The lower right entries, representing
the variance of σ̂2

n, are a different matter. What happens here will depend on the true
distribution of the data. If the value of E(x−µ)4− σ4 is greater for the true distribution
than for the normal, then the normal theory standard error of σ̂2

n will under-estimate the
true value. The result will be 95% confidence limits that are too narrow, and capture the
true parameter value less than 95% of the time. Similarly, z-tests will have a denominator
that is too small. As a result, tests will reject a true null hypothesis with probability
higher than the supposed Type I error rate. Tests and confidence intervals involving both
parameters at once will be affected by any skewness captured in the off-diagonal element
of the matrix.

So even in the same model, normal theory inference could be okay for some parameters,
and badly flawed for others. This is perfectly clear for the simple random sample of
Example 5.4.1. The principle also holds for structural equation models, but the details
are a bit more involved.

20Okay, the distribution must have a finite variance or the CLT does not apply. For example, the sample
mean of a standard Cauchy is also standard Cauchy, and definitely not normal. However, distributions
like this are basically mathematical curiosities. All actual measurements are bounded. This means that
in the real world, expected values of all orders exist, period.
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5.5.1 Theoretical answers

Anderson and Amemiya In a 1988 article in the Annals of Statistics21, Anderson and
Amemiya [4] address a factor analysis model in which the observable variables are not
normally distributed. This is only the measurement sub-model of our general structural
equation model (1.1) on page 137, but it still covers a lot of territory. For example,
regression with latent explanatory variables and observable response variables can be
expressed as a factor analysis model. See Chapter 3.

Anderson and Amemiya’s main message is on page 759: “. . . the asymptotic standard
errors of the factor loading estimators computed by standard computer packages are valid
for virtually any type of nonnormal factor analysis.” Factor loadings are the coefficients
linking the observed variables to the latent variables. To be honest, I cannot see how
their argument does not apply to all the parameters in the model, but I may be missing
something.

Satorra and Bentler The previously cited 1990 paper by Satorra and Bentler [54] offers
a more nuanced picture, providing specific conditions under which robustness should hold.
Consider their expression for the asymptotic covariance matrix of θ̂n, given in (5.6) on
page 437.

acov(θ̂n) =
1

n
J−1∆>HLH∆J−1.

The key is the “meat” of the sandwich, the matrix L = n · acov(vech(Σ̂)). For readers
who are interested in the primary sources, Satorra and Bentler denote the matrix L by
Γ, a symbol that is used by most other articles in the research literature.

The asymptotic covariance matrix will be estimated using the sandwich formula above,
but how should the component matrices be estimated? The matrices H, ∆ and J are
all functions of θ, so they are estimated by evaluating them at the normal theory MLE
θ̂n, which by Theorem 5.1 is consistent regardless of the distribution. Only the matrix
L depends on the third and fourth-order moments of the data. If the data are normal,
those higher moments are a function of Σ, but if they are non-normal, this will not be
the case in general. So for a nice robust estimator, one uses a straightforward method of
moments estimate of L.

But does it matter? Satorra and Bentler approach this question in a very straight-
forward way. They say okay, what if we used the “wrong” estimate of L? In particular,
what if we were to estimate L using a function of Σ̂n, one that converges to a version
of L with third and fourth-order moments that are correct for the multivariate normal
distribution? Denote this normal-theory target by L

∗
. If the limiting results for a test

or estimator are the same when L
∗

is substituted for L, Satorra and Bentler say that it’s
asymptotically robust with respect to normality.

21The Annals of Statistics is undisputedly the top journal in the field. Suppose that the God of the
Hebrew and Christian Old Testament thought of ten more commandments. He would try to publish
them in the Annals. Give how influential His work has been up till now, there is a reasonable chance He
would be successful, if the reviewers did not detect any technical errors.
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It should be clear that when one compares the two matrices

J(θ)−1∆(θ)>H(θ) L H(θ)∆(θ)J(θ)−1 and J(θ)−1∆(θ)>H(θ) L
∗
H(θ)∆(θ)J(θ)−1,

for a particular model, some of the corresponding elements might be the same, while
others might be different. That is, normal theory standard errors might be robust for
some parameters, but not others.

Satorra and Bentler’s Corollary 3.1 Their main result is Corollary 3.1 (p. 242)
in [54]. There is a substantial payoff to giving the details. I will mostly use Satorra
and Bentler’s notation, but the corollary is stated here for the special case of maximum
likelihood, and some of the conclusions in the original corollary are omitted.

Let the vector of observable variables have finite fourth moments, with z = Aξ,
cov(z) = Σ(θ), and cov(ξ) = Φ. Let A be partitioned as A = (A1| , . . . , |AL), and di-
vide ξ into sub-vectors ξ1, . . . , ξL in such a way that the products Ajξj can be formed.
Suppose that the ξj are independent (not just uncorrelated), and that each ξj is either
multivariate normal, or has covariance matrix Φjj that is unrestricted, and not function-
ally related to either A or to Φ`` for ` 6= j. Then except for dependence on Φ, the
(multivariate normal) asymptotic distribution of the MLE of the matrix A is free of the
distribution of ξ.

Now, if ξ is multivariate normal, then the distribution of θ̂ depends only on A and Φ,
and not on any higher moments of ξ. Corollary 3.1 says that under the stated conditions,
this is also true of the MLE of A, regardless of the distribution of ξ. In that case, normal
theory tests and confidence intervals for elements of A will be valid for large samples.
As Satorra and Bentler [54] observe,“. . . when the corollary applies, to perform statistical
inference, we can simply use the normal theory estimate of Γ, G∗, instead of G.” p. 242.
Again, their Γ is our L.

At first glance, it may not be so obvious how to fit our general model into the Satorra-
Bentler framework. For convenient reference, here are the equations of our centred sur-
rogate model (1.5).

y = βy + Γx + ε

F =

(
x
y

)
d = ΛF + e

Satorra and Bentler’s vector ξ is latent, and z = Aξ looks like the measurement (factor
analysis) component of our model, except there is no error term. Actually there is,
because ξ includes error terms as well as latent exogenous variables. Write z = d and

ξ =

(
F
e

)
. Then using the fact that partitioned matrices obey the usual rules of matrix

multiplication,

z = Aξ = (Λ|Ik)
(

F
e

)
= ΛF + e. (5.7)
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The latent variable part of the model is trickier, because z = Aξ appears to make no
provision for latent variables affecting other latent variables. However, ξ is composed
only of latent exogenous variables and error terms. Solving y = βy + Γx + ε for y yields
y = (Iq − β)−1Γx + (Iq − β)−1ε. Sub-divide the factor loadings in Λ into the ones that
link d to x, and the ones that link d to y. The result is

ΛF = (Λ1|Λ2)

(
x
y

)
= Λ1x + Λ2y.

Then,

d = ΛF + e

= Λ1x + Λ2y + e

= Λ1x + Λ2

(
(Iq − β)−1Γx + (Iq − β)−1ε

)
+ e

= Λ1x + Λ2(Iq − β)−1Γx + Λ2(Iq − β)−1ε+ e

=
(
Λ1 + Λ2(Iq − β)−1Γ

)
x + Λ2(Iq − β)−1ε+ e

=
(
Λ1 + Λ2(Iq − β)−1Γ |Λ2(Iq − β)−1ε | Ik

) x
ε
e

 . (5.8)

It’s a different ξ vector and A matrix than in (5.7), but it works. We have z = Aξ, with

A = (A1|A2|A3) =
(
Λ1 + Λ2(Iq − β)−1Γ |Λ2(Iq − β)−1ε | Ik

)
and

ξ =

 ξ1

ξ2

ξ3

 =

 x
ε
e

 .

A notable feature of (5.8) is that all the parameters in β, Γ and Λ belong to the matrix
A, and are covered by the robustness result of Corollary 3.1. These are exactly the
parameters that would appear on straight arrows in a path diagram. They will be called
straight arrow parameters in the following useful principle.

The Satorra-Bentler Principle Assume the centered structural equation model (1.5),
further restricted so that the parameters are identifiable at the true parameter values. Let
the exogenous vectors x, ε and e be independent, and let each of these vectors either (a)
be multivariate normal, or (b) have a covariance matrix that is unrestricted, functionally
unrelated to the covariance matrices of the other exogenous vectors, and functionally
unrelated to any of the straight arrow parameters. Then the normal theory estimated
asymptotic covariance matrices of the straight arrow parameters are robust with respect
to the assumption of multivariate normality.

Note that the Satorra-Bentler principle is carefully limited. It gives conditions for robust-
ness of the asymptotic covariance matrix of the estimated straight-arrow parameters —
that is, for the elements of β̂, Γ̂ and Λ̂. What happens with the standard errors of Φ̂, ε̂



5.5. DOES IT MAKE A DIFFERENCE? 443

and Ω̂ is unspecified. The expectation is that they will usually be too small. As we shall
see, this is often borne out in simulations. However, Satorra and Bentler do not prove
lack of robustness for variance and covariance parameters. It’s just that their proof of
robustness was successful with these parameters excluded.

According to the Satorra-Bentler principle, robustness does not always hold for straight-
arrow parameters. If x, ε and e are not multivariate normal, then their covariance ma-
trices must be unrestricted, and not functions of one another or of any straight arrow
parameters. It is okay for straight arrow parameters to be functions of one another.

Satorra and Bentler’s main message is very much like Anderson and Amemiya [4],
except for the exceptions just noted.

5.5.2 Simulations

Satorra and Bentler [54] illustrate their theory with a simulation in which, using the
default normal theory methods, the standard errors for factor loadings are okay, but
the standard errors for error variances are too large. This supports the Satorra-Bentler
principle. A fair number of other published (and unpublished) simulation studies have
examined the performance of normal theory inference for structural equation models when
the data are not normally distributed. The consensus view is expressed in a review by
Finney and DiStefano [26], who say “Whereas parameter estimates are unaffected by
non-normality, their associated significance tests are incorrect if ML estimation is applied
to non-normal data. Specifically, the ML-based standard errors underestimate the true
variation of the parameter estimates.” (p. 274). Their conclusion is the same for the chi-
squared test of model fit: “. . .χ2 is inflated under conditions of moderate non-normality
. . . ” (p. 273). This view is shared by Rosseel [48], the creator of lavaan, who writes (p. 27)

An alternative strategy is to use maximum likelihood (ML) for estimating
the model parameters, even if the data are known to be non-normal. In this
case, the parameter estimates are still consistent (if the model is identified and
correctly specified), but the standard errors tend to be too small (as much as
25-50%), meaning that we may reject the null hypothesis (that a parameter is
zero) too often. In addition, the model χ2 test statistic tends to be too large,
meaning that we may reject the model too often.

This blanket conclusion contradicts the theoretical work of both Anderson and Amemiya [4]
and the theoretical work of Satorra and Bentler [54] – as well as their simulation study,
which was admittedly small-scale. This level of disagreement is uncommon in the field of
statistics, and it needs to be resolved.

My own reading of the published simulation studies cited in Finney and DiStefano’s
article [26] is that in general, they illustrate poor performance for normal theory methods
at least part of the time, and better performance for some alternative. However, bad
performance of normal theory methods does not always hold, and the details are compli-
cated. Not only do the models, sample sizes and types of non-normality vary greatly, but
also the criteria for good or poor performance can be quite different from study to study.
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Rather than going into all these details, I will report some new simulation studies22. My
simulation studies are not quite comprehensive (for example, they do not include the same
range of sample sizes for all distributions and all models), but I believe they illustrate
what is going on. The discussion, accompanied by simulations, will be divided into three
sections: Standard Errors, Tests of fit, and Tests of general hypotheses.

5.6 Standard Errors

The battle lines are drawn. There are three credible and partly competing versions of
what should happen when the data are non-normal, and standard errors are produced
according to normal theory methods. As a reminder to students with other things on their
minds, standard errors are estimated standard deviations. They are the denominators of
z-tests for the parameters, and they determine the width of confidence intervals. Under-
estimating them will cause tests to reject a true null hypothesis too often, and lead to
confidence intervals that are too narrow, indicating more certainty than the data really
warrant. Accurate standard errors are very important.

The theoretical work of Anderson and Amemiya [4] says that the standard errors for
factor loadings should be okay, and does not make a clear prediction about the other pa-
rameters. With qualifications, Satorra and Bentler [54] agree with Anderson and Amemiya
about the factor loadings. The Satorra-Bentler principle further implies that standard er-
rors of the coefficients on the straight arrows in the latent variable model will be okay.
Their work leaves open the possibility that standard errors for the other parameters
(model variances and covariances) will not be okay. The consensus reading of a set of
empirical simulations studies [26] is that none of it is okay, and all the standard errors
will be inflated.

This section will describe a set of simulations (and a few calculations) designed to find
out who is right. The simulations will also assess the performance of robust standard
errors based on the sandwich estimators of Huber [32] (see Expression 5.5), Satorra and
Bentler [54] (Expression 5.6), and the bootstrap. As described earlier, with complete data

and the default lavaan settings, the Huber and Satorra-Bentler estimates of acov(θ̂n) are
equal. Therefore, though the simulations all use se = ’robust.huber.white’, the re-
sulting confidence intervals are also Sattora-Bentler, and identical to what is produced by
se = ’robust.sem’. They will be described as “Sandwich” confidence intervals. When
the normal theory standard errors are not robust, the sandwich and bootstrap standard
errors are the main alternatives, and it’s important to see how well they work. Maybe
one is consistently better than the other.

22It’s quite easy to do simulation studies with R and lavaan. In the bad old days, researchers were
writing their own Fortran code to calculate the MLEs and invert the Fisher information matrix. They
had the commercial software LISREL, but they couldn’t put it in a loop.
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5.6.1 Extra Response Variable Regression Model

The first simulation will be based on a centered version of Example 0.11.1 from Chapter 0.
The path diagram of Figure 17 is reproduced below for convenience.

X

W Y
1

Y
2

e ε
1

ε
2

β
1 β

2

The model equations are, independently for i = 1, . . . , n.

wi = xi + ei

yi,1 = β1xi + εi,1 (5.9)

yi,2 = β2xi + εi,2

where ei, εi,1 and εi,2 are all independent, V ar(xi) = φ, V ar(εi,1) = ψ1, V ar(εi,2) = ψ2,
V ar(ei) = ω, and all expected values are zero.

The regression parameters β1 and β2 are links between latent and observed variables,
so it is also correct to call them factor loadings. The theoretical work says their standard
errors should be okay, while a summary of the empirical work says their standard errors
should be too small. As for the other model parameters, φ, ψ1 and ψ2, the empirical
summary [26] says their standard errors should be too small. This is also possible accord-
ing to the theoretical work of Satorra and Bentler [54]. Specifically, the Satorra-Bentler
principle does not apply because these are not straight-arrow parameters.

Confidence intervals When is a standard error “too” small? A 95% confidence interval
is the parameter estimate plus or minus 1.96 times the standard error, so a standard error
that is too small will produce confidence intervals that are too narrow, and fail to include
the true parameter value too often. We’ll judge a standard error too small if its associated
95% confidence interval captures the true parameter value in significantly23 less than 95%

23In a simulation study, the true parameter values are known, because we just put them in the code.
Confidence intervals are based on randomly generated data, and whether one of them happens to incude
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percent of the simulated data sets. Confidence intervals and hypothesis tests are one
to one, so the conclusions will apply to z-tests as well. Note that the normal theory,
sandwich and bootstrap confidence intervals are centered on the same MLE, so if one
performs better in this way, it means that its standard error is better.

One simulated data set from Model 5.9 Here’s an R session, with a realistic sample
size of n = 200. The latent variable x and the error terms have exponential distributions,
which are right skewed (skewness=2, compared to zero for the normal) and heavy tailed
(excess kurtosis=6, compared to zero for the normal). We’ll say that the base distribution
for the simulation is exponential. The observable variables are linear combinations of
exponential random variables. Their distribution doesn’t have a good name, but it’s right
skewed and heavy tailed. First setting the true parameter values,

> rm(list=ls()); options(scipen=999)

> # Parameters: Make the 3 reliabilities equal.

> beta1 = 0.5; beta2 = 0.7; phi = 4; omega = 1; psi1 = 0.25; psi2 = 0.49

The parameter values are chosen so that the reliabilities of the three observed variables (as
measures of the latent variable x) are equal. Each reliability is the proportion of variance
in the observed variable that come from the latent variable. The reliability of w is φ

φ+ω
, the

reliability of y1 is
β2
1φ

β2
1φ+ψ1

, and the reliability of y2 is
β2
2φ

β2
2φ+ψ2

. What makes these quantities

intersting for our purposes is that the reliability of w is made up entirely of variances,
so the Satorra-Bentler principle does not predict robustness. However, the reliabilities of
y1 and y2 include factor loadings as well; what should happen to their standard errors is
unclear.

> # Calculate true reliabilities

> rel1 = phi/(phi+omega); rel2 = beta1^2*phi/(beta1^2*phi+psi1)

> rel3 = beta2^2*phi/(beta2^2*phi+psi2)

> namz = c("beta1", "beta2", "phi", "omega", "psi1", "psi2", "rel1", "rel2", "rel3")

> truth = c(beta1, beta2, phi, omega, psi1, psi2, rel1, rel2, rel3)

> names(truth)=namz; truth

beta1 beta2 phi omega psi1 psi2 rel1 rel2 rel3

0.50 0.70 4.00 1.00 0.25 0.49 0.80 0.80 0.80

Now generate the data, multiplying standard exponentials by constants to obtain expo-
nentials with the desired variance.

> n = 200; set.seed(9999)

> # Generate exogenous variables

> x = sqrt(phi)*rexp(n); e = sqrt(omega)*rexp(n)

> epsilon1 = sqrt(psi1)*rexp(n); epsilon2 = sqrt(psi2)*rexp(n)

> # Model equations

the true parameter is like a coin toss. Of course we can and should apply hypothesis testing to this. How
about a nice z-test? The “sample size” of the test is the number of simulations.
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> w = x + e

> y1 = beta1*x + epsilon1

> y2 = beta2*x + epsilon2

> # Put data in a data frame

> simdat = data.frame(w,y1,y2)

Next, define and fit the model. The default is maximum likelihood estimation with
classical normal theory standard errors.

> # install.packages("lavaan", dependencies = TRUE) # Only need to do this once

> library(lavaan)

This is lavaan 0.6-7

lavaan is BETA software! Please report any bugs.

> mod = ’y1 ~ beta1*x # Latent variable model

+ y2 ~ beta2*x

+ x =~ 1.0*w # Measurement model

+ # Variances (covariances would go here too)

+ x~~phi*x # Var(x) = phi

+ w ~~ omega*w # Var(e) = omega

+ y1 ~~ psi1*y1 # Var(epsilon1) = psi1

+ y2 ~~ psi2*y2 # Var(epsilon2) = psi2

+ # Reliabilities

+ reliab1 := phi/(phi+omega)

+ reliab2 := beta1^2*phi/(beta1^2*phi+psi1)

+ reliab3 := beta2^2*phi/(beta2^2*phi+psi2)

+ ’

> fit1 = lavaan(mod, data = simdat)

Instead of looking at summary, it will be more convenient to use the parameterEstimates
function.

> p1 = parameterEstimates(fit1); p1

lhs op rhs label est se z pvalue ci.lower ci.upper

1 y1 ~ x beta1 0.496 0.027 18.489 0 0.443 0.548

2 y2 ~ x beta2 0.660 0.037 17.986 0 0.588 0.732

3 x =~ w 1.000 0.000 NA NA 1.000 1.000

4 x ~~ x phi 4.115 0.528 7.801 0 3.081 5.149

5 w ~~ w omega 1.152 0.165 6.965 0 0.828 1.477

6 y1 ~~ y1 psi1 0.194 0.035 5.547 0 0.126 0.263

7 y2 ~~ y2 psi2 0.428 0.067 6.370 0 0.296 0.559

8 reliab1 := phi/(phi+omega) reliab1 0.781 0.035 22.044 0 0.712 0.851

9 reliab2 := beta1^2*phi/(beta1^2*phi+psi1) reliab2 0.839 0.032 26.231 0 0.776 0.901

10 reliab3 := beta2^2*phi/(beta2^2*phi+psi2) reliab3 0.807 0.034 23.900 0 0.741 0.874

> is.data.frame(p1)

[1] TRUE

As you can see, parameterEstimates produces a data frame. It has the estimates and
standard errors, but what we want are the lower and upper 95% confidence limits in the
last two columns – except for the limits in the third row. These correspond to the factor
loading of w, which was set to one. It’s easy to extract the numbers of interest.
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> ci1 = p1[-3,9:10] # Upper and lower confidence limits

> cbind(namz,ci1,truth)

namz ci.lower ci.upper truth

1 beta1 0.4429876 0.5480442 0.50

2 beta2 0.5883902 0.7323060 0.70

4 phi 3.0810623 5.1488579 4.00

5 omega 0.8280601 1.4766564 1.00

6 psi1 0.1257016 0.2630545 0.25

7 psi2 0.2961988 0.5594830 0.49

8 rel1 0.7117645 0.8506853 0.80

9 rel2 0.7759922 0.9013214 0.80

10 rel3 0.7412517 0.8736893 0.80

Displaying the confidence intervals alongside the true values, we carefully check and find
that every confidence interval contains the true value – this time. Automating the process,

> hit1 = as.numeric(ci1[,1] < truth & truth < ci1[,2]) # Binary for in ci

> hit1

[1] 1 1 1 1 1 1 1 1 1

Now you see how the simulation will work. Just put the simulation and model fitting in
a loop, and save hit1 every time. For comparison, do the same thing with sandwich and
bootstrap standard errors.

> fit2 = lavaan(mod, data = simdat, se=’robust.huber.white’)

> fit3 = lavaan(mod, data = simdat, se=’bootstrap’)

If you’re doing a simulation study of what happens when a model is mis-specified, it’s
always advisable to run a version in which all the assumptions are satisfied. In our case,
this just means replacing rexp with rnorm. The purpose is just to verify that the code is
correct and the sample size is large enough.

Normal base distribution

Table 5.2 shows the results for normal data. The top panel of the table shows empirical
coverage rates. These are proportions of the 1,000 simulated data sets for which the 95%
confidence interval contained the true parameter value. The bottom panel of the table
shows corresponding z-tests of the null hypothesis that the true coverage probability is
0.95. Denoting the empirical coverage rate by p̂ and the number of simulations (Monte
Carlo sample size) by m, the test statistic is

z =

√
m(p̂− 0.95)√

0.95(1− 0.95)
.

In the bottom panel of Table 5.2, twenty-seven tests are being conducted. If they were
independent (which they are not) and all the null hypotheses were true, the probability
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Table 5.2: Coverage of 95% confidence intervals for the extra response variable model (5.9),
n = 200, Normal base distribution, 1,000 simulated data sets

Reliability of

β1 β2 φ ω ψ1 ψ2 w y1 y2

Normal Theory 0.952 0.951 0.950 0.945 0.942 0.943 0.953 0.938 0.941

Sandwich 0.950 0.951 0.945 0.941 0.941 0.935 0.945 0.934 0.935

Bootstrap 0.951 0.953 0.948 0.939 0.936 0.936 0.950 0.939 0.945

z Statistics∗

Normal Theory 0.290 0.145 0.000 -0.725 -1.161 -1.016 0.435 -1.741 -1.306

Sandwich 0.000 0.145 -0.725 -1.306 -1.306 -2.176 -0.725 -2.322 -2.176

Bootstrap 0.145 0.435 -0.290 -1.596 -2.031 -2.031 0.000 -1.596 -0.725
∗ Bonferroni critical value for 27 two-sided z-tests of H0: Coverage = 0.95 is 3.11.

of rejecting at least one null hypothesis incorrectly would be 1− 0.9527 ≈ 0.75. To avoid
worry about little deviations from 0.95 that are really due to chance, we’ll use a Bonferroni
correction for the 27 tests. Instead of 1.96, the critical value will be 3.11. This will hold
the probability of at least one false conclusion to under 0.05.

Table 5.2 shows that when the normal assumption is correct, the normal theory stan-
dard errors yield confidence intervals with the correct coverage. This is no surprise. The
robust sandwich and bootstrap standard errors also perform well. The lowest empirical
coverage is 0.934 for the reliability of y1 with a robust standard error. The corresponding
z statistic of −2.322 does not exceed the Bonferroni critical value. Everything is fine.

Exponential base distribution

Table 5.3 shows that things are not so fine when the data are skewed and heavy tailed.
There is some good news, though. Scanning across the first row of numbers, observe that
the empirical coverage for the factor loadings β1 and β2 is very close to 0.95 for the normal
theory method. This is what the Satorra-Bentler principle predicts, and it is consistent
with Anderson and Amemiya [4]. In contrast, coverage of the variance parameters and
the reliabilities in the top row is substantially below 0.95, with corresponding z statistics
all in the double digits. The fact that the reliabilities of y1 and y2 involve factor loadings
as well as variances did not save them.

For all the parameters, coverage for the sandwich and bootstrap confidence intervals
was quite similar. While the the sandwich and bootstrap intervals performed well for the
factor loadings and did better than normal theory for the other parameters, coverage was
still significantly lower than 0.95 for the variance parameters and reliabilities — with the
possible exception of the bootstrap for the reliabilities of y1 and y2.

One possibility is that the sample size of n = 200 still isn’t big enough. Maybe a
larger sample size is needed for asymptotic normality, or maybe a larger sample size is
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Table 5.3: Coverage of 95% confidence intervals for the extra response variable model (5.9),
n = 200, Exponential base distribution, 1,000 simulated data sets

Reliability of

β1 β2 φ ω ψ1 ψ2 w y1 y2

Normal Theory 0.958 0.955 0.724 0.802 0.824 0.804 0.811 0.826 0.801

Sandwich 0.957 0.947 0.886 0.904 0.905 0.904 0.913 0.923 0.912

Bootstrap 0.948 0.947 0.891 0.906 0.902 0.909 0.927 0.940 0.937

z Statistics∗

Normal Theory 1.161 0.725 -32.792 -21.474 -18.282 -21.184 -20.168 -17.992 -21.619

Sandwich 1.016 -0.435 -9.286 -6.674 -6.529 -6.674 -5.369 -3.918 -5.514

Bootstrap -0.290 -0.435 -8.561 -6.384 -6.965 -5.949 -3.337 -1.451 -1.886
∗ Bonferroni critical value for 27 two-sided z-tests is 3.11.

needed for accurate estimation of the standard deviations of the sampling distributions.
Or maybe both. It was easy enough to explore this by running the simulation job 10,000
times (without bootstrapping!), generating 10,000 sets of parameter estimates. This gives
very accurate pictures of the sampling distributions. Also, the sample standard deviation
of 10,000 parameter estimates gives a very close approximation of the true standard
deviation of the sampling distribution.

The estimates and standard errors for V ar(x) = φ are a good example. The top left

section of Figure 5.2 shows a histogram of the 10,000 randomly generated φ̂ values. It
is clear that asymptotic normality has mostly kicked in, but it’s not quite there yet; the
distribution has a perceptible right skew and a few high outliers.

The sample standard deviation of the 10,000 simulated φ̂ values was 0.846. This is
guaranteed to be very close to the true standard deviation of the sampling distribution
of φ̂. A separate run generated 1,000 estimates of this quantity by three methods: normal
theory, sandwich and bootstrap. The top right and bottom sections of Figure 5.2 shows
histograms of the standard errors, with the true quantity being estimated shown in red.

The normal theory standard errors seem to be converging to a value that is smaller
than the truth. The distributions of the sandwich and bootstrap standard errors are more
or less centered on the truth, but they are dispersed. It seems reasonable that a larger
sample size would cause the sandwich and bootstrap standard errors to become more
concentrated around the correct value, improving the performance of the sandwich and
bootstrap confidence intervals.

The distributions of sandwich and bootstrap standard errors look very similar. In
fact, the individual numbers are similar, not just the distributions. Figure 5.3 shows a
scatterplot matrix of the normal theory, sandwich and bootstrap standard errors. In the
sandwich versus bootstrap plot, the points are tightly clustered around the line y = x,
with a correlation of 0.998.
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Figure 5.2: Sampling distribution and standard errors of φ̂ for extra response variable
model (5.9), exponential base distribution, n = 200. The true parameter value is φ = 4.
The true standard deviation of the MLE is marked in red.

Sampling Distribution of MLE

φ̂

D
en
si
ty

2 4 6 8

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

Normal Theory Standard Errors

Standard Error

D
en

si
ty

0.0 0.5 1.0 1.5 2.0 2.5 3.0

0
1

2
3

4
5

sd

Sandwich Standard Errors

Standard Error

D
en

si
ty

0.0 0.5 1.0 1.5 2.0 2.5 3.0

0
1

2
3

4
5

sd

Bootstrap Standard Errors

Standard Error

D
en

si
ty

0.0 0.5 1.0 1.5 2.0 2.5 3.0

0
1

2
3

4
5

sd

In general, sandwich and bootstrap standard errors tend to be similar for real as well
as simulated data sets. However, a small shift in the average standard error for one of
the methods can produce a meaningful difference in confidence interval coverage, while
maintaining a very high correlation and tight-looking scatterplot.

After playing around with different sample sizes, I found that n = 1, 000 was needed
for the sandwich and bootstrap confidence intervals to perform well for all the parameters
with the exponential base distribution. Table 5.4 shows the results.

Everything is clearly okay, except for the normal theory confidence intervals of variance
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Figure 5.3: Scatterplot of normal theory, sandwich and bootstrap standard errors for
extra response variable model (5.9), exponential base distribution, n = 200.
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parameters and reliabilities. The performance of the sandwich and bootstrap standard
errors is good news, but it still could be a cause for discomfort. While the theory we are
using applies as n → ∞ and n = 1, 000 is nowhere near infinity, still the implication is
that sometimes, robust methods such as sandwich and the bootstrap can require sample
sizes much larger than the ones that researchers typically employ.

A really small sample size In Figure 5.2, the normal theory standard errors are
inaccurate, but also more tightly clustered than the sandwich and bootstrap standard
errors. This suggests that when they are on target, they might converge to the right
answer faster. Table 5.5 shows what happens with the exponential base distribution for
n = 50, a sample size that would seem radically too small for large-sample multivariate
methods. The surprising feature of Table 5.5 is the good performance of the normal
theory confidence intervals for β1 and β2. They were better than the sandwich confidence
intervals. We need to keep an eye on this, and see if it happens for other models. Also,
the bootstrap appeared to out-perform the sandwich for β2 in this case. This might be a
random blip, though it was statistically significant.
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Table 5.4: Coverage of 95% confidence intervals for the extra response variable model (5.9),
n = 1, 000, Exponential base distribution, 1,000 simulated data sets

Reliability of

β1 β2 φ ω ψ1 ψ2 w y1 y2

Normal Theory 0.958 0.950 0.764 0.799 0.824 0.822 0.797 0.813 0.805

Sandwich 0.960 0.946 0.942 0.935 0.937 0.933 0.940 0.948 0.943

Bootstrap 0.954 0.943 0.941 0.932 0.942 0.932 0.940 0.947 0.953

z Statistics∗

Normal Theory 1.161 0.000 -26.988 -21.909 -18.282 -18.572 -22.200 -19.878 -21.039

Sandwich 1.451 -0.580 -1.161 -2.176 -1.886 -2.467 -1.451 -0.290 -1.016

Bootstrap 0.580 -1.016 -1.306 -2.612 -1.161 -2.612 -1.451 -0.435 0.435
∗ Bonferroni critical value for 27 two-sided z-tests of H0: Coverage = 0.95 is 3.11.

Scaled beta base distribution

It has been suggested that when normal theory structural equation methods fail with
non-normal data, the cause is primarily kurtosis (heavy tails) in the data. This idea goes
back at least to a 1984 paper by Browne [13], who cites earlier work. Accordingly, it’s
helpful to try the simulations with a base distribution that is distinctly non-normal, but
also lacks the heavy tails of the exponential distribution. We’ll use a beta distribution
with α = 3 and β = 1, so the density is f(x) = 3x2 for 0 < x < 1. This distribution is left
skewed and quite non-normal, with a skewness of -0.86, and an excess kurtosis of 0.095.
The kurtosis is quite similar to the normal. In the simulations, beta random variables are
generated with R’s rbeta function, and then multiplied by constants to yield exogenous
variables and error terms with the desired variances.

The observed variables are linear combinations of these scaled beta random variables.
Their distribution is nameless, but left skewed and light tailed. Figure 5.4 shows the
density of a representative, the sum of two scaled betas with unit variance. To me, this
looks like the smoothed version of a questionnaire or response scale with limited range,
where people tend to use the upper half of the scale. Student evaluations of university
classes are often like this.

Staying with the same extra variable model (5.9) for the simulations, Table 5.6 shows
the coverage of 95% confidence intervals for the moderately large sample size of n = 200.
Note that with this non-normal but light tailed distribution, the normal theory methods
performed very well, even for the variance parameters and reliabilities. This supports
the idea [13] that the problems exposed by the exponential base distribution come from
high kurtosis, and not departure from normality per se. We’ll seek more evidence for this
encouraging possibility.

Before exploring other models, we should look at what happens with the scaled beta
base distribution when the sample size is small. Table 5.7 shows the results for n = 50.
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Table 5.5: Coverage of 95% confidence intervals for the extra response variable model (5.9),
n = 50, Exponential base distribution, 1,000 simulated data sets

Reliability of

β1 β2 φ ω ψ1 ψ2 w y1 y2

Normal Theory 0.951 0.943 0.764 0.804 0.801 0.791 0.813 0.793 0.811

Sandwich 0.931 0.916 0.826 0.841 0.833 0.838 0.882 0.848 0.857

Bootstrap 0.940 0.937 0.831 0.831 0.826 0.831 0.944 0.919 0.927

z Statistics∗

Normal Theory 0.145 -1.016 -26.988 -21.184 -21.619 -23.070 -19.878 -22.780 -20.168

Sandwich -2.757 -4.933 -17.992 -15.815 -16.976 -16.251 -9.866 -14.800 -13.494

Bootstrap -1.451 -1.886 -17.266 -17.266 -17.992 -17.266 -0.871 -4.498 -3.337
∗ Bonferroni critical value for 27 two-sided z-tests of H0: Coverage = 0.95 is 3.11.

The main finding is that the robustness of the normal theory standard errors is evident for
the factor loadings β1 and β2, but mostly not for the variance parameters and reliabilities.
The bootstrap and sandwich standard errors have no particular advantage. In particular,
the apparent differences in coverage for β1 and β2 are not significantly different for the
three types of standard error.

5.6.2 Double Measurement Regression Model

The next set of simulations will be based on a simple double measurement model of the
kind described in Chapter 0, Section 0.10.3. Figure 5.5 is a scalar version of Figure 15 on
page 85, accompanied by the model equations.
For the simulations, the parameter values will be

β φ ψ ω11 ω22 ω33 ω44 ω13 ω24

1 4 1 2 2 2 2 1 0

Here is the code used to simulate a single data set. It was put in a loop to generate sets
of 1,000 results, as in the earlier simulations.

# Simulate one data set from the double measurement regression model

rm(list=ls())

# install.packages("lavaan", dependencies = TRUE) # Only need to do this once

library(lavaan)

# Set true parameter values

# Covariance between measurement errors will come from e = u + delta,

# with Var(u) = v and Var(delta)=omega_ij. So, for example.

# Var(e1) = Var(u1+delta1) = v1 + omega13, and
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Figure 5.4: Density of the sum of two independent scaled betas
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# Cov(e1,e3) = Cov(u1+delta1,u3+delta1) = Var(delta1) = omega13

beta = 1; phi = 4; psi = 1

# Choose var_j values to make the omega_jj equal

var1 = 1; var2 = 2; var3 = 1; var4 = 2; omega13 = 1; omega24 = 0

omega11 = var1+omega13; omega22 = var2+omega24

omega33 = var3+omega13; omega44 = var4+omega24

k = 1 # Scaling constant, to make the variance of the base distribution equal one

namz = c("beta", "phi", "psi", "omega11", "omega22", "omega33", "omega44",

"omega13", "omega24")

truth = c(beta, phi, psi, omega11, omega22, omega33, omega44, omega13, omega24)

names(truth)=namz; truth

# Generate a data set

n = 200; set.seed(9999)

x = sqrt(phi)*k*rnorm(n) # For a variance of phi
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Table 5.6: Coverage of 95% confidence intervals for the extra response variable model (5.9),
n = 200, Scaled beta base distribution, 1,000 simulated data sets

Reliability of

β1 β2 φ ω ψ1 ψ2 w y1 y2

Normal Theory 0.952 0.943 0.943 0.942 0.939 0.943 0.945 0.944 0.936

Sandwich 0.944 0.936 0.940 0.939 0.940 0.939 0.946 0.948 0.935

Bootstrap 0.954 0.940 0.944 0.935 0.938 0.938 0.946 0.952 0.936

z Statistics∗

Normal Theory 0.290 -1.016 -1.016 -1.161 -1.596 -1.016 -0.725 -0.871 -2.031

Sandwich -0.871 -2.031 -1.451 -1.596 -1.451 -1.596 -0.580 -0.290 -2.176

Bootstrap 0.580 -1.451 -0.871 -2.176 -1.741 -1.741 -0.580 0.290 -2.031
∗ Bonferroni critical value for 27 two-sided z-tests of H0: Coverage = 0.95 is 3.11.

u1 = sqrt(var1)*k*rnorm(n); u2 = sqrt(var2)*k*rnorm(n)

u3 = sqrt(var3)*k*rnorm(n); u4 = sqrt(var4)*k*rnorm(n)

delta1 = sqrt(omega13)*k*rnorm(n); delta2 = sqrt(omega24)*k*rnorm(n)

e1 = u1+delta1; e2 = u2+delta2; e3 = u3+delta1; e4 = u4+delta2

epsilon = sqrt(psi)*k*rnorm(n)

# Model equations

y = beta*x + epsilon

w1 = x+e1; w2 = x+e2; v1 = y+e3; v2 = y+e4

datta = data.frame(w1,w2,v1,v2)

mod = ’# Latent variable model

y ~ beta*x

# Measurement model

x =~ 1*w1 + 1*w2

y =~ 1*v1 + 1*v2

# Variances

x ~~ phi*x; y ~~ psi*y

w1 ~~ omega11*w1; w2 ~~ omega22*w2

v1 ~~ omega33*v1; v2 ~~ omega44*v2

# Covariances

w1 ~~ omega13*v1; w2 ~~ omega24*v2

’

fit1 = lavaan(mod,datta)

summary(fit1)

p1 = parameterEstimates(fit1)

ci1 = p1[c(1,6:13),9:10] # Upper and lower confidence limits

hit1 = as.numeric(ci1[,1] < truth & truth < ci1[,2]) # Binary for in ci

cbind(namz,ci1,truth,hit1)
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Table 5.7: Coverage of 95% confidence intervals for the extra response variable model (5.9),
n = 50, Scaled beta base distribution, 1,000 simulated data sets

Reliability of

β1 β2 φ ω ψ1 ψ2 w y1 y2

Normal Theory 0.946 0.956 0.921 0.930 0.924 0.917 0.931 0.913 0.923

Sandwich 0.936 0.933 0.905 0.919 0.910 0.900 0.916 0.896 0.914

Bootstrap 0.947 0.938 0.910 0.913 0.898 0.894 0.939 0.924 0.937

z Statistics∗

Normal Theory -0.580 0.871 -4.208 -2.902 -3.772 -4.788 -2.757 -5.369 -3.918

Sandwich -2.031 -2.467 -6.529 -4.498 -5.804 -7.255 -4.933 -7.835 -5.223

Bootstrap -0.435 -1.741 -5.804 -5.369 -7.545 -8.125 -1.596 -3.772 -1.886
∗ Bonferroni critical value for 27 two-sided z-tests of H0: Coverage = 0.95 is 3.11.

Normal base distribution

For n = 200 with the normal assumption satisfied, all the confidence intervals performed
well. The results will not be shown. In my opinion, n = 50 is far too small to expect
anything good to happen, but the results are given in Table 5.8 anyway. Even with

Table 5.8: Coverage of 95% confidence intervals for the double measurement regression
model (5.5), n = 50, Normal base distribution, 1,000 simulated data sets

β φ ψ ω11 ω22 ω33 ω44 ω13 ω24

Normal Theory 0.955 0.921 0.943 0.938 0.930 0.932 0.932 0.928 0.940

Sandwich 0.943 0.909 0.930 0.920 0.918 0.932 0.919 0.917 0.931

Bootstrap 0.941 0.909 0.923 0.927 0.920 0.934 0.920 0.918 0.939

z Statistics∗

Normal Theory 0.725 -4.208 -1.016 -1.741 -2.902 -2.612 -2.612 -3.192 -1.451

Sandwich -1.016 -5.949 -2.902 -4.353 -4.643 -2.612 -4.498 -4.788 -2.757

Bootstrap -1.306 -5.949 -3.918 -3.337 -4.353 -2.322 -4.353 -4.643 -1.596
∗ Bonferroni critical value for 27 two-sided z-tests of H0: Coverage = 0.95 is 3.11.

this small sample size, the results are good for β, the parameter of primary interest.
In fact, though there is a systematic tendency to under-coverage for the normal theory
confidence intervals, with the Bonferroni correction it only reaches statistical significance
for the parameters φ = V ar(x) and ω13 = Cov(e1, e3). There is clearly no advantage (and
some disadvantage) to using the sandwich or bootstrap methods when the data really are
normal. Overall, the normal theory confidence intervals do surprisingly well, considering
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Figure 5.5: The Scalar Double Measurement Model
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w1 = x+ e1

w2 = x+ e2

v1 = y + e3

v2 = y + e4,

y = βx+ ε,

where V ar(x) = φ, V ar(ε) = ψ, V ar(ej) = ωjj for j = 1, . . . , 4, Cov(e1, e3) = ω13 and
Cov(e2, e4) = ω24.

the small sample size.

Exponential base distribution

For the heavy-tailed exponential distribution, the Satorra-Bentler principle says that the
normal theory standard error for β̂ should be robust, while Anderson and Amemiya [4] do
not make a clear prediction, and the review of simulations by Finney and DiStefano [26]
says never to expect robustness. One expects the normal theory standard errors for the
other parameters to be too small, leading to under-coverage of the confidence intervals.
The sandwich and bootstrap confidence intervals should perform better for these param-
eters, but it remains to be seen what sample size is required. Table 5.9 shows results for
the moderately large sample size of n = 200.

The Satorra-Bentler principle is confirmed again. The normal theory confidence in-
terval did well for β, the only model parameter that is not a variance or covariance. The
performance of the normal theory intervals was spotty for the the other parameters, but
not really bad. Only for φ and ω13 was coverage significantly below 0.95 with the Bonfer-
roni correction. Generally, the normal theory method seemed to do better than sandwich
and the bootstrap most of the time, though I did not carry out formal tests for all the
differences in coverage.
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Table 5.9: Coverage of 95% confidence intervals for the double measurement regression
model (5.5), n = 200, Exponential base distribution, 1,000 simulated data sets

β φ ψ ω11 ω22 ω33 ω44 ω13 ω24

Normal Theory 0.958 0.774 0.900 0.901 0.840 0.890 0.851 0.909 0.953

Sandwich 0.950 0.906 0.931 0.935 0.921 0.922 0.921 0.940 0.949

Bootstrap 0.946 0.906 0.924 0.929 0.916 0.923 0.921 0.939 0.944

z Statistics∗

Normal Theory 1.161 -25.537 -7.255 -7.110 -15.960 -8.706 -14.364 -5.949 0.435

Sandwich 0.000 -6.384 -2.757 -2.176 -4.208 -4.063 -4.208 -1.451 -0.145

Bootstrap -0.580 -6.384 -3.772 -3.047 -4.933 -3.918 -4.208 -1.596 -0.871
∗ Bonferroni critical value for 27 two-sided z-tests of H0: Coverage = 0.95 is 3.11.

In the simulations using the extra response variable model (5.9), the sandwich and
bootstrap required a larger sample to perform adequately for variance and covariance pa-
rameters with the exponential base distribution, while the normal theory methods failed.
For the present model (double measurement regression), I explored different sample sizes,
excluding the bootstrap because it was too time consuming and pretty much guaranteed
to be similar to sandwich anyway. n = 500 was good enough for all but φ = V ar(x). With
n = 750, coverage for φ was 0.925, z = −3.627. These simulations were done with dif-
ferent seeds for the random number generator, providing a bit of replication. Replication
can be informative in simulation studies, just as in other forms of empirical research.

Coverage for the normal theory confidence intervals was consistently awful, except for
β (as Satorra and Bentler predict), and also except for ω24. This last parameter is special,
because the true value in the simulations happend to be zero. In contrast, ω13 is parallel
to ω24 in every way, except that I gave it a non-zero true value. So it’s a kind of controlled
experiment. The repeated finding of robustness for ω24 is encouraging, because it implies
accuracy when the natural null hypothses ω24 = 0 is true. It suggests that the Type I
error probability would be close to 0.05 for normal theory methods — for example, with a
z−test. It also teaches the somewhat uncomfortable lesson that robustness could depend
on the true parameter values. The full picture might be painted only by a very extensive
simulation study, or a more refined theory.

The exploratory simulations were intended to locate a sample size where the sandwich
and bootstrap confidence intervals would perform acceptably. With n = 1, 000 (the same
number required for the exponential distribution under the extra response variable model)
everything seemed okay, so I produced Table 5.10 — using a fresh seed for the random
number generation, of course. Now the coverage sandwich and bootstrap confidence
intervals is no longer significantly different from 0.95 with the Bonferroni correction,
though the numbers for φ are flirting with trouble. The normal theory confidence intervals
perform well only for β and ω24. So again, the robust methods require a large sample
size to work well with most variance and covariance parameters. And again, coverage for
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Table 5.10: Coverage of 95% confidence intervals for the double measurement regression
model (5.5), n = 1, 000, Exponential base distribution, 1,000 simulated data sets

β φ ψ ω11 ω22 ω33 ω44 ω13 ω24

Normal Theory 0.957 0.752 0.904 0.879 0.831 0.892 0.845 0.912 0.952

Sandwich 0.955 0.931 0.946 0.944 0.938 0.942 0.933 0.951 0.950

Bootstrap 0.947 0.930 0.943 0.942 0.938 0.946 0.933 0.953 0.942

z Statistics∗

Normal Theory 1.016 -28.729 -6.674 -10.302 -17.266 -8.416 -15.235 -5.514 0.290

Sandwich 0.725 -2.757 -0.580 -0.871 -1.741 -1.161 -2.467 0.145 0.000

Bootstrap -0.435 -2.902 -1.016 -1.161 -1.741 -0.580 -2.467 0.435 -1.161
∗ Bonferroni critical value for 27 two-sided z-tests of H0: Coverage = 0.95 is 3.11.

ω24 = 0 is good, while coverage for ω13 = 1 is not.
Table 5.11 goes down to the outrageously small sample size of n = 50. Performance

Table 5.11: Coverage of 95% confidence intervals for the double measurement regression
model (5.5), n = 50, Exponential base distribution, 1,000 simulated data sets

β φ ψ ω11 ω22 ω33 ω44 ω13 ω24

Normal Theory 0.933 0.734 0.895 0.885 0.829 0.881 0.843 0.895 0.942

Sandwich 0.902 0.817 0.910 0.889 0.862 0.890 0.883 0.903 0.940

Bootstrap 0.930 0.830 0.883 0.887 0.867 0.893 0.883 0.906 0.929

z Statistics∗

Normal Theory -2.467 -31.341 -7.980 -9.431 -17.557 -10.012 -15.525 -7.980 -1.161

Sandwich -6.965 -19.298 -5.804 -8.851 -12.768 -8.706 -9.721 -6.819 -1.451

Bootstrap -2.902 -17.411 -9.721 -9.141 -12.043 -8.270 -9.721 -6.384 -3.047
∗ Bonferroni critical value for 27 two-sided z-tests of H0: Coverage = 0.95 is 3.11.

of the normal theory intervals was not too bad for β or the special parameter ω24; the
sandwich and bootstrap intervals were also okay for ω24. Otherwise, substantial under-
coverage was the rule, as one would expect for this sample size.

Scaled beta base distribution

Table 5.12 shows coverage for the light-tailed scaled beta base distribution, with our
standard sample size of n = 200. Once again, with this distribution the normal theory
intervals show only mild and non-significant under-coverage, supporting the idea that
when the normal theory methods are not robust, the problem is with heavy tails rather
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Table 5.12: Coverage of 95% confidence intervals for the double measurement regression
model (5.5), n = 200, Scaled beta base distribution, 1,000 simulated data sets

β φ ψ ω11 ω22 ω33 ω44 ω13 ω24

Normal Theory 0.935 0.935 0.940 0.939 0.938 0.950 0.943 0.941 0.947

Sandwich 0.935 0.939 0.939 0.933 0.940 0.945 0.932 0.943 0.946

Bootstrap 0.935 0.938 0.934 0.936 0.942 0.948 0.934 0.946 0.943

z Statistics∗

Normal Theory -2.176 -2.176 -1.451 -1.596 -1.741 0.000 -1.016 -1.306 -0.435

Sandwich -2.176 -1.596 -1.596 -2.467 -1.451 -0.725 -2.612 -1.016 -0.580

Bootstrap -2.176 -1.741 -2.322 -2.031 -1.161 -0.290 -2.322 -0.580 -1.016
∗ Bonferroni critical value for 27 two-sided z-tests of H0: Coverage = 0.95 is 3.11.

than non-normality per se. The sandwich and bootstrap intervals confer no advantage at
this sample size. The numbers are not shown for n = 50, but in this case the coverage for
β and ω24 is acceptable for the normal theory intervals. For most of the other parameters,
the normal theory intervals showed a bit less under-coverage than sandwich and the
bootstrap, but their coverage was still significantly less than 0.95 in most cases.

5.6.3 The “Dip Down” Path Model

For want of a better term, I will call the model of Figure 5.6 the Dip Down Path Model.
The observable variables x1 and x2 dip down to influence the sub-surface latent variable

Figure 5.6: The Dip Down Path Model
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y1, which re-surfaces to influence the observable variable y2. The latent variable y1 is
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measured once, with error. The model equations are

y1 = γ1x1 + γ2x2 + ε1 (5.10)

y2 = βy1 + ε2

v = y1 + e,

where V ar(x1) = φ11, V ar(x2) = φ22, Cov(x1, x2) = φ12, V ar(ε1) = ψ1, V ar(ε2) = ψ2,
V ar(e) = ω, and the error terms are all independent of x1 and x2, and of one another.
The variables x1, x2, v and y2 are observable.

For the simulations, the parameter values will be

γ1 γ2 β φ11 φ22 ψ1 ψ2 ω φ12

0.5 0.5 0.5 2.0 2.0 1.0 2.0 3.0 1.0

Here is a simulation of just one data set from this model, with a very large sample size of
n = 200, 000 and the normal assumption satisfied. Estimates are very close to the truth,
as expected. The parameters γ1, γ2 and β were made equal, so a good null hypothesis
will be true when we consider hypothesis testing. What makes the null hypothesis good
is that all the coefficients involved are on straight arrows, so the Satorra-Bentler principle
implies robustness of the normal theory methods. We will get to that later.

> # Dip down model in which observable x1 and x2 affect latent y1 (measured once),

which in turn affects observable y2.

>

> rm(list=ls())

>

> # Set true parameter values

> # Covariance between x1 and x2 will come from x = u + delta,

> # with Var(u) = v and Var(delta)=phi12. So, for example.

> # Var(x1) = Var(u1+delta) = v + phi12

> # Cov(x1,x2) = Cov(u1+delta,u2+delta) = Var(delta) = phi12

> gamma1 = 0.5; gamma2 = 0.5; beta = 0.5 # H0: gamma1=gamma2=beta is true

> v1 = 1; v2 = 1; phi12 = 1

> psi1 = 1; psi2 = 2; omega = 3

> phi11 = v1 + phi12; phi22 = v2 + phi12 # Calculate phi11 and phi22

> k = 1 # Scaling constant, to make the variance of the base distribution equal one

>

> truth = c(gamma1, gamma2, beta, phi11, phi22, psi1, psi2, omega, phi12)

> namz = c(’gamma1’, ’gamma2’, ’beta’, ’phi11’, ’phi22’, ’psi1’, ’psi2’, ’omega’, ’phi12’)

> names(truth)=namz; truth

gamma1 gamma2 beta phi11 phi22 psi1 psi2 omega phi12

0.5 0.5 0.5 2.0 2.0 1.0 2.0 3.0 1.0

>

> n = 200000; set.seed(9999)

> delta = sqrt(phi12)*k*rnorm(n); u1 = sqrt(v1)*k*rnorm(n)

> u2 = sqrt(v2)*k*rnorm(n); x1 = u1+delta; x2 = u2+delta
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> e = sqrt(omega)*k*rnorm(n)

> epsilon1 = sqrt(psi1)*k*rnorm(n); epsilon2 = sqrt(psi2)*k*rnorm(n)

> # Model equations

> y1 = gamma1*x1 + gamma2*x2 + epsilon1

> y2 = beta*y1 + epsilon2

> v = y1 + e

> simdat = cbind(x1,x2,v,y2)

>

> # install.packages("lavaan", dependencies = TRUE) # Only need to do this once

> library(lavaan)

This is lavaan 0.6-7

lavaan is BETA software! Please report any bugs.

>

> mod = ’y1 ~ gamma1*x1 + gamma2*x2

+ y2 ~ beta*y1

+ y1 =~ 1.0*v # Measurement model

+ # Variances

+ x1 ~~ phi11*x1 # Var(x1) = phi11

+ x2 ~~ phi22*x2 # Var(x2) = phi22

+ y1 ~~ psi1*y1 # Var(epsilon1) = psi1

+ y2 ~~ psi2*y2 # Var(epsilon2) = psi2

+ v ~~ omega*v # Var(e) = omega

+ # Covariance

+ x1 ~~ phi12*x2 # Cov(x1,x2) = phi12

+ ’

> fit1 = lavaan(mod,simdat)

> p1 = parameterEstimates(fit1)

> ci1 = p1[-4,9:10] # Upper and lower confidence limits

> hit1 = as.numeric(ci1[,1] < truth & truth < ci1[,2]) # Binary for in ci

> rbind(truth, coef(fit1))

gamma1 gamma2 beta phi11 phi22 psi1 psi2 omega phi12

truth 0.5000000 0.5000000 0.5000000 2.000000 2.000000 1.0000000 2.000000 3.000000 1.0000000

0.5018487 0.5030646 0.5026666 1.987888 1.987486 0.9777155 1.991012 3.027083 0.9922169

As in the earlier simulations, this code was put in a loop for 1,000 simulations using
normal, exponential and scaled beta base distributions, with various sample sizes (all a
lot less than 200,000). We will watch particularly for the robustness of the confidence
intervals for γ1, γ2 and β, as predicted by the Satorra-Bentler principle.

Normal base distribution

Table 5.13 shows coverage for n = 200 when the assumption of a normal distribution is
satisfied. Technically, the normal theory intervals all perform acceptably in that none of
the z statistics exceeds the Bonferroni critical value. Still, the z value for normal theory is
uncomfortably close to significance for ψ2, and the sandwich and bootstrap under-coverage
is statistically significant. I ran the simulation again with a different random number seed
to see if it was a fluke, and there was still trouble for ψ2.
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Table 5.13: Coverage of 95% confidence intervals for the “dip down” model (5.10), n =
200, Normal base distribution, 1,000 simulated data sets

γ1 γ2 β φ11 φ22 ψ1 ψ2 ω φ12

Normal Theory 0.948 0.941 0.952 0.941 0.950 0.933 0.930 0.961 0.940

Sandwich 0.948 0.933 0.954 0.935 0.940 0.931 0.924 0.960 0.938

Bootstrap 0.956 0.946 0.954 0.935 0.945 0.942 0.917 0.947 0.936

z Statistics∗

Normal Theory -0.290 -1.306 0.290 -1.306 0.000 -2.467 -2.902 1.596 -1.451

Sandwich -0.290 -2.467 0.580 -2.176 -1.451 -2.757 -3.772 1.451 -1.741

Bootstrap 0.871 -0.580 0.580 -2.176 -0.725 -1.161 -4.788 -0.435 -2.031
∗ Bonferroni critical value for 27 two-sided z-tests of H0: Coverage = 0.95 is 3.11.

Table 5.14 shows results for n = 500. After all, even the normal theory methods
are asymptotic. Perhaps the sample size was not big enough for this model. Ah, that’s

Table 5.14: Coverage of 95% confidence intervals for the “dip down” model (5.10), n =
500, Normal base distribution, 1,000 simulated data sets

γ1 γ2 β φ11 φ22 ψ1 ψ2 ω φ12

Normal Theory 0.950 0.952 0.959 0.952 0.946 0.944 0.946 0.945 0.963

Sandwich 0.946 0.952 0.953 0.948 0.941 0.944 0.946 0.949 0.961

Bootstrap 0.954 0.953 0.950 0.951 0.944 0.939 0.942 0.948 0.958

z Statistics∗

Normal Theory 0.00 0.290 1.306 0.290 -0.580 -0.871 -0.580 -0.725 1.886

Sandwich -0.58 0.290 0.435 -0.290 -1.306 -0.871 -0.580 -0.145 1.596

Bootstrap 0.58 0.435 0.000 0.145 -0.871 -1.596 -1.161 -0.290 1.161
∗ Bonferroni critical value for 27 two-sided z-tests of H0: Coverage = 0.95 is 3.11.

better. Now everything is definitely okay. This is a reminder that robustness may depend
on details of the model, as well as on the true distribution and the sample size.

I tried n = 50 just for completeness, even though the results so far are not encouraging
about small sample sizes. Table 5.15 shows the results. It’s pretty bad. Performance is
all right for β, but that’s about it.

In summary, it looks like this model may require a somewhat larger sample size than the
others, even when the normal distribution assumption is satisfied.
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Table 5.15: Coverage of 95% confidence intervals for the “dip down” model (5.10), n = 50,
Normal base distribution, 1,000 simulated data sets

γ1 γ2 β φ11 φ22 ψ1 ψ2 ω φ12

Normal Theory 0.907 0.917 0.947 0.921 0.905 0.936 0.930 0.964 0.925

Sandwich 0.908 0.923 0.944 0.904 0.884 0.922 0.918 0.959 0.911

Bootstrap 0.938 0.941 0.953 0.901 0.881 0.941 0.909 0.930 0.910

z Statistics∗

Normal Theory -6.239 -4.788 -0.435 -4.208 -6.529 -2.031 -2.902 2.031 -3.627

Sandwich -6.094 -3.918 -0.871 -6.674 -9.576 -4.063 -4.643 1.306 -5.659

Bootstrap -1.741 -1.306 0.435 -7.110 -10.012 -1.306 -5.949 -2.902 -5.804
∗ Bonferroni critical value for 27 two-sided z-tests of H0: Coverage = 0.95 is 3.11.

Exponential base distribution

Table 5.16 shows confidence interval coverage for n = 200 and the heavy-tailed exponential
base distribution. This is pretty much what we have grown to expect. Normal theory

Table 5.16: Coverage of 95% confidence intervals for the “dip down” model (5.10), n =
200, Exponential base distribution, 1,000 simulated data sets

γ1 γ2 β φ11 φ22 ψ1 ψ2 ω φ12

Normal Theory 0.959 0.933 0.948 0.777 0.784 0.936 0.736 0.849 0.828

Sandwich 0.950 0.938 0.935 0.901 0.898 0.925 0.889 0.936 0.910

Bootstrap 0.959 0.946 0.940 0.898 0.904 0.939 0.895 0.922 0.906

z Statistics∗

Normal Theory 1.306 -2.467 -0.290 -25.101 -24.086 -2.031 -31.050 -14.655 -17.702

Sandwich 0.000 -1.741 -2.176 -7.110 -7.545 -3.627 -8.851 -2.031 -5.804

Bootstrap 1.306 -0.580 -1.451 -7.545 -6.674 -1.596 -7.980 -4.063 -6.384
∗ Bonferroni critical value for 27 two-sided z-tests of H0: Coverage = 0.95 is 3.11.

intervals are robust for γ1, γ2 and β, as the Satorra-Bentler principle stipulates. For the
other parameters (with the exception of ψ1, this time), normal theory methods are awful.
sandwich and bootstrap do better, but the sample size of n = 200 is likely not large
enough for really good performance.

Robustness for a zero covariance In Table 5.16, there is substantial under-coverage
for the non-zero covariance φ12 = cov(x1, x2); the coverage was 0.828, z = −17.702. Recall
that the double measurement regression model (5.5) included two covariances between
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error terms. In the simulations, I arbitrarily made one of these covariances (ω24) equal
to zero, and let the other (ω13) be non-zero. For the exponential base distribution, in
Tables 5.9, 5.10 and even the n = 50 Table 5.11, coverage for ω24 = 0 ranged from good
to acceptable. To see if something like this this might happen for the present model, I did
another run of the exponential with n = 200, this time letting the covariance parameter
φ12 = 0 instead of φ12 = 1. Table 5.17 shows the results. Empirical coverage of φ12 is

Table 5.17: Coverage of 95% confidence intervals for the “dip down” model (5.10) with
φ12 = 0, n = 200, Exponential base distribution, and 1,000 simulated data sets. Alert:
The true value of φ12 = 0.

γ1 γ2 β φ11 φ22 ψ1 ψ2 ω φ12

Normal Theory 0.951 0.929 0.935 0.661 0.675 0.930 0.743 0.906 0.951

Sandwich 0.950 0.940 0.929 0.885 0.890 0.928 0.889 0.959 0.936

Bootstrap 0.956 0.945 0.942 0.894 0.893 0.949 0.885 0.917 0.921

z Statistics∗

Normal Theory 0.145 -3.047 -2.176 -41.933 -39.901 -2.902 -30.035 -6.384 0.145

Sandwich 0.000 -1.451 -3.047 -9.431 -8.706 -3.192 -8.851 1.306 -2.031

Bootstrap 0.871 -0.725 -1.161 -8.125 -8.270 -0.145 -9.431 -4.788 -4.208
∗ Bonferroni critical value for 27 two-sided z-tests of H0: Coverage = 0.95 is 3.11.

0.951; one almost cannot do better.

This is interesting. It is tempting to think, like [26] and others, that if the standard
errors are too small, then tests will be too likely to reject H0 when H0 is true. That’s
reasonable, but if the standard errors depend on the value of the true parameter and are
okay when H0 is true, then the Type I error probability will not be adversely affected.
Moreover, when H0 is false, underestimating the standard deviation of the statistic is not
a bad thing, provided you are interested in testing rather than in confidence intervals. In
fact, a small standard error will lead to rejection of H0 at a higher rate — that is, it will
yield higher statistical power and more correct decisions. This is why we need to consider
Type I error probabilities as a separate issue from the standard errors. We’ll do so later,
in Section 5.8. In the meantime, we have the following.

Standard errors of covariance parameters are robust when the true value is
zero It’s only a conjecture at this point, but I suspect that in general, normal theory
standard errors of covariance parameters are asymptotically correct when the variables
involved are independent. For the current model, this is fairly easy to show, because
the variables involved (x1 and x2) are observable, and the MLE of φ12 = Cov(x1, x2) is
available in closed form.

Let the observable variables x1 and x2 have a joint distribution that is arbitrary
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except that the expected values exist up to fourth order. The variables are centered24,
so that E(x1) = E(x2) = 0. Adopt the notation V ar(x1) = σ11, V ar(x2) = σ22, and
Cov(x1, x2) = σ12.

The MLE of σ12 is σ̂12 = 1
n

∑n
i=1 xi,1xi,2, which is also the most natural method of

moments estimator. Its true variance is

V ar(σ̂12) = V ar

(
1

n

n∑
i=1

xi,1xi,2

)

=
1

n2

n∑
i=1

V ar(xi,1xi,2)

=
1

n2

n∑
i=1

(
E{(xi,1xi,2)2} − (E{xi,1xi,2})2)

=
1

n

(
E{x2

1x
2
2} − (E{x1x2})2)

=
1

n

(
E{x2

1x
2
2} − σ2

12

)
. (5.11)

To obtain the expression for V ar(σ̂12) that holds under (bivariate) normality, all we
need is E{x2

1x
2
2}. This can be obtained directly by integrating, but it’s easier to differen-

tiate the moment-generating function M(t) = e
1
2
t>Σt twice with respect to t1 and twice

with respect to t2, and then set t1 and t2 to zero. I did it with Sage. The first step is to
set up the matrices.

# E(x1^2 x2^2) for bivariate normal

sem = ’http://www.utstat.toronto.edu/~brunner/openSEM/sage/sem.sage’

load(sem)

Sigma = SymmetricMatrix(2,’sigma’); show(Sigma)

t = ZeroMatrix(2,1)

t[0,0] = var(’t1’); t[1,0] = var(’t2’); show(t)

evaluate(
σ11 σ12

σ12 σ22

)
(
t1
t2

)
Then, define the moment-generating function.

24In this theory, they are centered by subtracting off µ1 and µ2. In practice, they would be centered
by subtracting off the random variables x1 and x2. Asymptotically, there is no difference, and it makes
the calculations simpler to just let E(x1) = E(x2) = 0.
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mgf = exp( 1/2 * t.transpose() * Sigma * t) # It’s a 1x1 matrix

mgf = mgf[0,0]; mgf

evaluate

e(
1
2
σ11t21+σ12t1t2+ 1

2
σ22t22)

Finally, differentiate the moment-generating function and set t = 0.

d1 = derivative(mgf,t1,2); d1

d2 = derivative(d1,t2,2); d2

answ = d2(t1=0,t2=0); answ

evaluate

2σ2
12 + σ11σ22

That’s E(x2
1x

2
2) for the normal distribution. Using this result, the normal theory variance

of the sample covariance is

V ar(σ̂12) =
1

n

(
E{x2

1x
2
2} − σ2

12

)
=

1

n

(
σ11σ22 + 2σ2

12 − σ2
12

)
=

1

n

(
σ11σ22 + σ2

12

)
, (5.12)

compared to the general 1
n

(E{x2
1x

2
2} − σ2

12) from (5.11). Since normal theory standard
errors are often too small with non-normal data, it is natural to suspect that perhaps (5.12)
is always less than or equal to (5.11). However,

E{x2
1x

2
2} − σ2

12 −
(
σ11σ22 + σ2

12

)
= E{x2

1x
2
2} − E{x2

1}E{x2
2} − 2σ2

12

= Cov(x2
1, x

2
2)− 2Cov(x1, x2)2.

This quantity can be negative. Consider jointly distributed x1 and x2 with P (x1 = 1, x2 =
1) = P (x1 = −1, x2 = −1) = 1

2
. In this case, Cov(x2

1, x
2
2) = 0, and Cov(x1, x2) = 1.

However, observe what happens when x1 and x2 are independent. Expression (5.11)
is

1

n

(
E{x2

1x
2
2} − σ2

12

)
=

1

n

(
E{x2

1}E{x2
2} − 0

)
=

1

n
(σ11σ22) ,

while Expression (5.12) is

1

n

(
σ11σ22 + σ2

12

)
=

1

n
(σ11σ22) .
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That is, when the variables involved are independent, the variance of the sample covariance
assuming normality is correct for an arbitrary joint distribution. This makes the normal
theory standard error correct, even when the normal assumption is wrong.

That last statement conveys the right idea, but the word “correct” is ambiguous.
Here’s what I really mean. The robust standard error of σ̂12 is

SErobust =

√
1

n

(∑n
i=1 x

2
i,1x

2
i,2

n
− σ̂2

12

)
.

SErobust is “correct,” but not in the sense of ordinary consistency. It goes almost surely
to zero, and the quantity it is estimating,

SD(σ̂12) =

√
1

n
(E{x2

1x
2
2} − σ2

12),

is a moving target that also goes to zero. The fact that they both go to zero is not good
enough, because any random variable divided by zero goes to zero in probability. What
makes SErobust good is that it’s (almost surely) asymptotically equivalent to SD(σ̂12).
That is, the ratio

SErobust

SD(σ̂12)
=

√
1
n

(∑n
i=1 x

2
i,1x

2
i,2

n
− σ̂2

12

)
√

1
n

(E{x2
1x

2
2} − σ2

12)

=

√∑n
i=1 x

2
i,1x

2
i,2

n
− σ̂2

12√
E{x2

1x
2
2} − σ2

12

a.s→
√
E{x2

1x
2
2} − σ2

12√
E{x2

1x
2
2} − σ2

12

= 1.

Clearly, if x1 and x2 are independent, SEnormal =
√

1
n

(σ̂11σ̂22 + σ̂2
12) is equally good,

because in that case,

SEnormal

SD(σ̂12)
=

√
σ̂11σ̂22 + σ̂2

12√
E{x2

1x
2
2} − σ2

12

a.s→
√
σ11σ22 + σ2

12√
E{x2

1x
2
2} − σ2

12

ind.
=

√
σ11σ22 + 0√

E{x2
1}E{x2

2} − 0

=

√
σ11σ22√
σ11σ22

= 1.

This is the exact way in which SEnormal is robust when x1 and x2 are independent.
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Notice that it had to be assumed that x1 and x2 were independent, and not merely
uncorrelated25. The following example shows that this distinction is not just a computa-
tional convenience that allows one to write E{x2

1x
2
2} = E{x2

1}E{x2
2}. It can really make

a difference.

Example 5.6.1 Variables that have zero covariance but are not independent.

Let the random variable x1 have a density that is symmetric around zero, meaning that
its density f(x) = f(−x) for all real x. This makes E{x1} = 0, and it will be shown in
an exercise that E{x3

1} = 0 as well. Let x2 = β0 +x2
1 + ε, where ε has expected value zero

and is independent of x1. The intercept β0 = −V ar(x1), so that E{x2} = 0. Thus, x1

and x2 are both centered. We have

Cov(x1, x2) = E{x1x2} − E{x1}E{x2}
= E{x1 (β0 + x2

1 + ε)}
= β0E{x1}+ E{x3

1}+ E{x1}E{ε}
= 0. (5.13)

What makes this work the symmetric relationship between x1 and x2, as in footnote 25.
Though x1 and x2 have zero covariance, they are not independent. Intuitively, this

is because x2 depends on x1 in a systematic way (plus error). I deleted a formal proof,
because it was a distraction from the main message. That main message is conveyed
better by a specific example.

Let x1 and ε both have the double exponential (Laplace) density f(x) = 1
2
e−|x|, which

is symmetric around zero. The moments are given by

E(xk) =

{
0 for k odd
k! for k even.

Thus, V ar(x1) = V ar(ε) = 2. Let x2 = −2 + x2
1 + ε, so that V ar(x2) = 22, and

Cov(x1, x2) = 0 as in (5.13). Using (5.12), the normal theory variance of the sample
covariance is

V ar(σ̂12) =
1

n

(
σ11σ22 + σ2

12

)
=

1

n
(2 · 22 + 0) =

1

n
(44),

25 To review, independent random variables always have zero covariance, and if the variables are
multivariate normal, then zero covariance also implies independence. For other distributions, it’s not
true. For example, suppose the discrete random variables variables x and y have joint distribution

x = 1 x = 2 x = 3
y = 1 3/12 1/12 3/12
y = 2 1/12 3/12 1/12

It is easy to verify that Cov(x, y) = 0, but they are not independent because P (x = 1, y = 1) 6= P (x =
1)P (y = 1).
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while from (5.11), the true variance of the sample covariance is

V ar(σ̂12) =
1

n

(
E{x2

1x
2
2} − σ2

12

)
=

1

n

(
E{x2

1(−2 + x2
1 + ε)2} − 0

)
=

1

n

(
E{x2

1(x4
1 + 2 εx2

1 + ε2 − 4x2
1 − 4 ε+ 4)}

)
=

1

n

(
E{x6

1 + 2 εx4
1 + ε2x2

1 − 4x4
1 − 4 εx2

1 + 4x2
1}
)

=
1

n

(
E{x6

1}+ 2E{ε}E{x4
1}+ E{ε2}E{x2

1} − 4E{x4
1} − 4E{ε}E{x2

1}+ 4E{x2
1}
)

=
1

n

(
E{x6

1}+ E{ε2}E{x2
1} − 4E{x4

1}+ 4E{x2
1}
)

=
1

n
(6! + 2!2!− 4 · 4! + 4 · 2!)

=
1

n
(720 + 4− 96 + 8)

=
1

n
(636)

There are two things to notice here. First, since E{x2
1x

2
2} 6= E{x2

1}E{x2
2}, the variables

x1 and x2 cannot be independent. Second, 636 is a lot bigger than 44. This means that

the normal theory standard error
√

1
n

(σ̂11σ̂22 + σ̂2
12) will radically under-estimate the true

standard deviation of σ̂12. It is not robust, and the coverage of the confidence interval
will be very poor. This will now be verified with a quick simulation.

Simulation with variables uncorrelated but not independent As in the numerical
example just given, x1 and ε will have independent double exponential distributions, and
x2 = −2 + x2

1 + ε. Here’s the simulation of a single data set.
It is easy enough to gererate double exponential random deviates, but we’ll use the

rLaplace() function from the ExtDist package, which needs to be installed and loaded.
It has a BIC function that covers up the usual version, but that does not matter to us.

> rm(list=ls()); options(scipen=999)

> # install.packages(’ExtDist’) # Only need to do this once

> library(ExtDist)

Attaching package: ExtDist

The following object is masked from package:stats:

BIC

> # install.packages("lavaan", dependencies = TRUE) # Only need to do this once
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> library(lavaan)

This is lavaan 0.6-7

lavaan is BETA software! Please report any bugs.

R output in black by default

Now we enter the true parameter values σ11, σ12 and σ22 calculated earlier, and the lavaan
model string.

> sigma11 = 2; sigma12=0; sigma22 = 22

> truth = c(sigma11, sigma12, sigma22)

> names(truth) = c(’sigma11’, ’sigma12’, ’sigma22’)

> truth

sigma11 sigma12 sigma22

2 0 22

> # Model has variances and covariance only

> mod = ’x1 ~~ sigma11*x1; x1 ~~ sigma12*x2

+ x2 ~~ sigma22*x2’

Now simulate a data set and fit the model. In the simulation study, this will be inside a
loop.

> # Simulate one data set

> set.seed(9999); n = 200

> x1 = rLaplace(n); epsilon = rLaplace(n)

> x2 = x1^2 + epsilon - 2

> simdat = cbind(x1,x2)

>

> fit1 = lavaan(mod,simdat)

> p1 = parameterEstimates(fit1); p1

lhs op rhs label est se z pvalue ci.lower ci.upper

1 x1 ~~ x1 sigma11 2.429 0.243 10.000 0.000 1.953 2.905

2 x1 ~~ x2 sigma12 1.993 0.652 3.058 0.002 0.715 3.270

3 x2 ~~ x2 sigma22 33.337 3.334 10.000 0.000 26.803 39.871

> ci1 = p1[,9:10] # Upper and lower confidence limits

> hit1 = as.numeric(ci1[,1] < truth & truth < ci1[,2]) # Binary for in ci

> cbind(ci1,truth,hit1)

ci.lower ci.upper truth hit1

sigma11 1.9526673 2.904692 2 1

sigma12 0.7154044 3.269924 0 0

sigma22 26.8032346 39.871180 22 0

The parameter of interest is the covariance σ12. Notice that the standard error of σ̂12 is

0.652. Just to verify that this is indeed equal to
√

1
n

(σ̂11σ̂22 + σ̂2
12),
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> Sigmahat = var(simdat) * (n-1) / n; Sigmahat

x1 x2

x1 2.428680 1.992664

x2 1.992664 33.337207

> # Normal theory standard error of the sample covariance

> sqrt(1/n * (Sigmahat[1,1]*Sigmahat[2,2] + Sigmahat[1,2]^2))

[1] 0.6516752

> # Bingo.

This was put in a simulation loop with 1,000 iterations, along with the usual

> fit2 = lavaan(mod, data = simdat, se=’robust.huber.white’)

> fit3 = lavaan(mod, data = simdat, se=’bootstrap’)

Coverage of the normal theory confidence interval should be poor, and coverage of the
sandwich and bootstrap intervals should be better. The results are shown in Table 5.18.

Table 5.18: Coverage of 95% confidence intervals for the double exponential model of
Example 5.6.1 with x1 and x2 uncorrelated but not independent, n = 200, one thousand
simulated data sets.

σ11 σ12 σ22

Normal Theory 0.773 0.427 0.291

Sandwich 0.917 0.948 0.748

Bootstrap 0.919 0.911 0.772

z Statistics∗

Normal Theory -25.682 -75.885 -95.618

Sandwich -4.788 -0.290 -29.309

Bootstrap -4.498 -5.659 -25.827

∗ Bonferroni critical value for 9 two-sided z-tests of H0: Coverage = 0.95 is 2.77.

The main hypothesis is confirmed. Coverage of the normal theory confidence interval
for σ12 is terrible, while for the sandwich method it’s excellent. It’s a little odd that
coverage of the bootstrap interval, while far better than normal theory, is substandard.
I expected sandwich and the bootstrap to yield very similar results. To see if it was a
coincidence, I re-ran the code and got a coverage of 0.908, z = −6.094 for the bootstrap
confidence interval. Coverage was excellent again for the sandwich confidence interval,
and of course very bad for the normal theory interval. I then tried n = 1, 000. The result
for the bootstrap was better, with a coverage of 0.932 and a z statistic of −2.612. This is
technically okay because it does not quite exceed the Bonferroni critical value, but I tried
n = 2, 000 anyway. The bootstrap results were good this time, with coverage = 0.943 and
z = −1.016. So while the sandwich and the bootstrap often give nearly the same results,
it does not always happen. Here, the bootstrap appears to require a much bigger sample
size than the sandwich.
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The conjecture I feel that this has been a valuable digression26. Here’s the main
point. It has been shown that when two observable random variables are independent,
the normal theory standard error for their covariance is robust. I strongly suspect that
this is also true for latent variables, including error terms. I am not able to supply a
proof at this point, but we can and will check the hypothesis in further simulations.

It is important to clarify that the claim above does not contradict the Satorra-Bentler
principle. That principle says that normal theory standard errors for straight-arrow
parmeters are robust, not that the standard errors for parameters on curved, double-
headed arrows (that is, covariance parameters) are always non-robust.

Back to the Dip Down model with an exponential base distribution Let us
return to gathering evidence about robustness. Before I took us off on a side trip, we saw
in Table 5.16 that normal theory standard errors for the straight-arrow parameters γ1, γ2

and β were robust as expected. Performance of the other standard errors, including the
sandwich and bootstrap, were generally poor. Suspecting that n = 200 was too small, I
tried n = 1, 000. Table 5.19 shows the result. Note that we have returned to φ12 6= 0, so
for this parameter, we don’t expect robustness for the normal theory interval.

Table 5.19: Coverage of 95% confidence intervals for the “dip down” model (5.10), n =
1, 000, Exponential base distribution, 1,000 simulated data sets

γ1 γ2 β φ11 φ22 ψ1 ψ2 ω φ12

Normal Theory 0.955 0.962 0.963 0.756 0.798 0.933 0.732 0.834 0.789

Sandwich 0.958 0.960 0.959 0.934 0.942 0.947 0.934 0.947 0.931

Bootstrap 0.957 0.963 0.957 0.925 0.942 0.947 0.935 0.941 0.934

z Statistics∗

Normal Theory 0.725 1.741 1.886 -28.148 -22.054 -2.467 -31.631 -16.831 -23.360

Sandwich 1.161 1.451 1.306 -2.322 -1.161 -0.435 -2.322 -0.435 -2.757

Bootstrap 1.016 1.886 1.016 -3.627 -1.161 -0.435 -2.176 -1.306 -2.322
∗ Bonferroni critical value for 27 two-sided z-tests of H0: Coverage = 0.95 is 3.11.

With n = 1, 000, the sandwich and bootstrap intervals now perform well enough,
except for the the bootstrap interval for φ11. For completeness, I also tried n = 50.
Results are not shown. The conclusion is that if n = 200 is too small, one should not
expect good things to happen with n = 50.

26The online Merriam-Webster dictionary defines a digression as “the act or an instance of leaving the
main subject in an extended written or verbal expression of thought.” One of my colleagues was once
known to his students as the Doctor of Digression. Maybe my students say the same thing about me.
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Scaled beta base distribution, Dip down model

Recall that for the non-normal but light-tailed scaled beta base distribution, the normal
theory intervals performed well at n = 200 for the extra response variable regression
model (5.9) and the double measurement regression model (5.5). This applied to the vari-
ance and covariance parameters as well as the straight-arrow parameters whose robustness
is guaranteed by the Satorra-Bentler principle. As mentioned previously, this supports
the idea [13] that lack of robustness for normal theory methods comes specifically from
heavy tails than from just departure from normality.

In Table 5.20, we try the scaled beta distribution with the dip down model and n =
200. Coverage of the normal theory confidence intervals is good for the straight arrow
parameters γ1, γ2 and β, but not for φ11 = V ar(x1) or φ22 = V ar(x2). The sandwich and
the bootstrap also perform badly for φ11 and φ22.

Table 5.20: Coverage of 95% confidence intervals for the “dip down” model (5.10), n =
200, Scaled beta base distribution, 1,000 simulated data sets

γ1 γ2 β φ11 φ22 ψ1 ψ2 ω φ12

Normal Theory 0.942 0.956 0.947 0.923 0.925 0.946 0.931 0.955 0.944

Sandwich 0.941 0.958 0.941 0.910 0.921 0.938 0.936 0.951 0.936

Bootstrap 0.951 0.958 0.946 0.909 0.923 0.942 0.938 0.946 0.933

z Statistics∗

Normal Theory -1.161 0.871 -0.435 -3.918 -3.627 -0.580 -2.757 0.725 -0.871

Sandwich -1.306 1.161 -1.306 -5.804 -4.208 -1.741 -2.031 0.145 -2.031

Bootstrap 0.145 1.161 -0.580 -5.949 -3.918 -1.161 -1.741 -0.580 -2.467
∗ Bonferroni critical value for 27 two-sided z-tests of H0: Coverage = 0.95 is 3.11.

Before getting depressed about this, recall that for n = 200 and normal data (Ta-
ble 5.13), the normal theory intervals also did not perform very well for parameters other
than γ1, γ2 and β. It’s true that coverage did not quite reach a significant departure from
95%, but still it was bad enough for us to go to n = 500, where everything was fine.
Table 5.21 shows n = 500 for the scaled beta distribution.

Now the coverage of the normal theory confidence intervals never differs significantly
from 95%, and it’s actually good except for φ22. In a slightly shaky voice, we maintain
the conclusion that in the absence of outliers, normal theory standard errors are okay
for non-normal data, even for the variance and covariance parameters excluded from the
Satorra-Bentler principle.

5.6.4 The Standardized Two-factor Model

We have collected a heavy load of evidence already, but I decided to include one more
model. This one is a basic confirmatory factor analysis model (see Chapter 3) with two
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Table 5.21: Coverage of 95% confidence intervals for the “dip down” model (5.10), n =
500, Scaled beta base distribution, 1,000 simulated data sets

γ1 γ2 β φ11 φ22 ψ1 ψ2 ω φ12

Normal Theory 0.956 0.937 0.943 0.945 0.935 0.950 0.949 0.957 0.943

Sandwich 0.959 0.942 0.946 0.942 0.938 0.947 0.951 0.953 0.944

Bootstrap 0.961 0.943 0.944 0.940 0.941 0.949 0.953 0.957 0.947

z Statistics∗

Normal Theory 0.871 -1.886 -1.016 -0.725 -2.176 0.000 -0.145 1.016 -1.016

Sandwich 1.306 -1.161 -0.580 -1.161 -1.741 -0.435 0.145 0.435 -0.871

Bootstrap 1.596 -1.016 -0.871 -1.451 -1.306 -0.145 0.435 1.016 -0.435
∗ Bonferroni critical value for 27 two-sided z-tests of H0: Coverage = 0.95 is 3.11.

latent variables called factors, and three observable variables per factor. For identifiabil-
ity, the variances of the factors are set to one, so that the covariance between them is a
correlation. Three features make the model attractive enough to include in the simula-
tions. First, earlier results lead one to expect that the normal theory standard error of
the correlation will be robust when the factors are independent. Second, because corre-
lations between factors in this surrogate model equal the correlations between factors for
the original model (!), parameter estimation is of interest in its own right for a change.
In particular, the confidence interval for the correlation is something one would want to
know, and not just a convenient metric for judging whether the confidence interval is “too
small.” Third, the variances of the factors are constrained to equal one, and a careful
reading of the Satorra-Bentler principle tells us it does not apply in this case. There-
fore, normal theory standard erros for the factor loadings (the straight-arrow parameters)
might not be robust. It will be interesting to see.

Figure 5.7 is a reproduction of Figure 3.4 from Chapter 3. The model equations are

d1 = λ1F1 + e1 (5.14)

d2 = λ2F1 + e2

d3 = λ3F1 + e3

d4 = λ4F2 + e4

d5 = λ5F2 + e5

d6 = λ6F2 + e6,

with V ar(F1) = V ar(F2) = 1, Cov(F1, F2) = φ12 (a correlation), and V ar(ej) = ωj for
j = 1, . . . , 6. As indicated on the path diagram, the error terms e1, . . . , e6 are independent
of one another and of the factors. For the simulations, the parameter values will be

λ1 λ2 λ3 λ4 λ5 λ6 φ12 ω1 ω2 ω3 ω4 ω5 ω6

1.0 2.0 3.0 1.0 2.0 3.0 0.5 1.0 1.0 1.0 1.0 1.0 1.0
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Figure 5.7: Two Standardized Factors
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Normal base distribution

Here is an R session showing the simulation of a single data set. First comes the setup.

> rm(list=ls()); options(scipen=999)

> # install.packages("lavaan", dependencies = TRUE) # Only need to do this once

> library(lavaan)

This is lavaan 0.6-7

lavaan is BETA software! Please report any bugs.

> # Set true parameter values

> # Covariance between exogenous variables (factors) will come from adding delta

> # to both factors, with Var(delta) = phi12, x1 = t1 + delta and x2 = t2 + delta

> phi12 = 0.5 # phi11 = 1; phi22 = 1

> lambda1 = 1; lambda2 = 2; lambda3 = 3; lambda4 = 1; lambda5 = 2; lambda6 = 3

> omega1 = 1; omega2 = 1; omega3 = 1; omega4 = 1; omega5 = 1; omega6 = 1

> k = 1 # Scaling constant to make variance of base distribution = one

> # Calculate variances of t1 and t2

> v1 = 1-phi12; v2=1-phi12

> truth = c(lambda1,lambda2,lambda3,lambda4,lambda5,lambda6, phi12,

+ omega1,omega2,omega3,omega4,omega5,omega6)

> namz = c(’lambda1’,’lambda2’,’lambda3’,’lambda4’,’lambda5’,’lambda6’,

+ ’phi12’, ’omega1’,’omega2’,’omega3’,’omega4’,’omega5’,’omega6’)

> names(truth)=namz; truth

lambda1 lambda2 lambda3 lambda4 lambda5 lambda6 phi12 omega1 omega2 omega3 omega4 omega5

1.0 2.0 3.0 1.0 2.0 3.0 0.5 1.0 1.0 1.0 1.0 1.0

omega6

1.0

> # Here are 2 good true null hypotheses.
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> # H0: lambda1=lambda4, lambda2=lambda4, lambda3=lambda6 and

> # H0: omega1=omega2=omega3=omega4=omega5=omega6

Now we simulate one data set, define the lavaan model, fit it, and display the results.

> n = 200; set.seed(9999)

> delta = sqrt(phi12)*k*rnorm(n); t1 = sqrt(v1)*k*rnorm(n)

> t2 = sqrt(v2)*k*rnorm(n)

> F1 = t1 + delta; F2 = t2 + delta # Making Corr(F1,F2) = phi12

> e1 = sqrt(omega1)*k*rnorm(n); e2 = sqrt(omega2)*k*rnorm(n)

> e3 = sqrt(omega3)*k*rnorm(n); e4 = sqrt(omega4)*k*rnorm(n)

> e5 = sqrt(omega5)*k*rnorm(n); e6 = sqrt(omega6)*k*rnorm(n)

> d1 = lambda1*F1 + e1; d2 = lambda2*F1 + e2; d3 = lambda3*F1 + e3

> d4 = lambda4*F2 + e4; d5 = lambda5*F2 + e5; d6 = lambda6*F2 + e6

> simdat = cbind(d1,d2,d3,d4,d5,d6)

>

> mod = ’ # Measurement model

+ F1 =~ lambda1*d1 + lambda2*d2 + lambda3*d3

+ F2 =~ lambda4*d4 + lambda5*d5 + lambda6*d6

+ # Variances and covariances

+ F1 ~~ 1*F1; F1 ~~ phi12*F2; F2 ~~ 1*F2

+ d1 ~~ omega1*d1; d2 ~~ omega2*d2; d3 ~~ omega3*d3

+ d4 ~~ omega4*d4; d5 ~~ omega5*d5; d6 ~~ omega6*d6

+ # Constraints for identifiability

+ lambda1 > 0; lambda4 > 0

+ ’

> fit1 = lavaan(mod,data=simdat)

>

> p1 = parameterEstimates(fit1); p1

lhs op rhs label est se z pvalue ci.lower ci.upper

1 F1 =~ d1 lambda1 1.010 0.084 12.069 0.000 0.846 1.174

2 F1 =~ d2 lambda2 2.007 0.130 15.383 0.000 1.752 2.263

3 F1 =~ d3 lambda3 3.178 0.184 17.245 0.000 2.817 3.539

4 F2 =~ d4 lambda4 1.074 0.090 11.995 0.000 0.899 1.250

5 F2 =~ d5 lambda5 1.838 0.127 14.436 0.000 1.588 2.087

6 F2 =~ d6 lambda6 2.837 0.171 16.614 0.000 2.502 3.172

7 F1 ~~ F1 1.000 0.000 NA NA 1.000 1.000

8 F1 ~~ F2 phi12 0.612 0.051 12.095 0.000 0.513 0.711

9 F2 ~~ F2 1.000 0.000 NA NA 1.000 1.000

10 d1 ~~ d1 omega1 0.813 0.091 8.977 0.000 0.635 0.990

11 d2 ~~ d2 omega2 1.138 0.183 6.236 0.000 0.780 1.496

12 d3 ~~ d3 omega3 1.126 0.370 3.039 0.002 0.400 1.852

13 d4 ~~ d4 omega4 0.912 0.105 8.707 0.000 0.707 1.118

14 d5 ~~ d5 omega5 1.267 0.188 6.735 0.000 0.898 1.635

15 d6 ~~ d6 omega6 1.156 0.344 3.361 0.001 0.482 1.830
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> ci1 = p1[ -c(7,9), 9:10] # Upper and lower confidence limits

> hit1 = as.numeric(ci1[,1] < truth & truth < ci1[,2]) # Binary for in ci

> cbind(namz,ci1,truth,hit1)

namz ci.lower ci.upper truth hit1

1 lambda1 0.8460581 1.1741316 1.0 1

2 lambda2 1.7515160 2.2630119 2.0 1

3 lambda3 2.8170547 3.5394860 3.0 1

4 lambda4 0.8987614 1.2498563 1.0 1

5 lambda5 1.5883070 2.0873371 2.0 1

6 lambda6 2.5021979 3.1715405 3.0 1

8 phi12 0.5127342 0.7110450 0.5 0

10 omega1 0.6353314 0.9902481 1.0 0

11 omega2 0.7803893 1.4958409 1.0 1

12 omega3 0.3997169 1.8518908 1.0 1

13 omega4 0.7069451 1.1176770 1.0 1

14 omega5 0.8979403 1.6350932 1.0 1

15 omega6 0.4818202 1.8297737 1.0 1

Table 5.22 shows the results for 1,000 simulated data sets with a normal base distribution
and n = 200.

Table 5.22: Coverage of 95% confidence intervals for the two-factor model (5.14), n = 200,
Normal base distribution, 1,000 simulated data sets

λ1 λ2 λ3 λ4 λ5 λ6 φ12 ω1 ω2 ω3 ω4 ω5 ω6

Normal Theory 0.950 0.941 0.944 0.945 0.951 0.942 0.940 0.939 0.924 0.942 0.943 0.949 0.948

Sandwich 0.942 0.941 0.942 0.940 0.943 0.939 0.939 0.928 0.909 0.943 0.938 0.944 0.950

Bootstrap 0.949 0.934 0.942 0.943 0.940 0.940 0.946 0.932 0.905 0.937 0.932 0.942 0.944

z Statistics∗

Normal Theory 0.000 -1.306 -0.871 -0.725 0.145 -1.161 -1.451 -1.596 -3.772 -1.161 -1.016 -0.145 -0.290

Sandwich -1.161 -1.306 -1.161 -1.451 -1.016 -1.596 -1.596 -3.192 -5.949 -1.016 -1.741 -0.871 0.000

Bootstrap -0.145 -2.322 -1.161 -1.016 -1.451 -1.451 -0.580 -2.612 -6.529 -1.886 -2.612 -1.161 -0.871
∗ Bonferroni critical value for 39 two-sided z-tests of H0: Coverage = 0.95 is 3.22.

The normal theory coverage is fine except for ω2. There is nothing special to distinguish
ω2 from the other error variances, and they are all fine. I ran another simulation (omitting
the very time-consuming bootstrap), and this time ω2 was okay but ω4 was significantly
under-covered. I tried it again with n = 500 (no bootstrap), and everything was good.
It was probably just sample size. Accordingly, I ran a full simulation with n = 500. The
results are in Table 5.23.

All is well. The necessary sample size is a bit larger than one might expect for such a
simple model, but we live and learn.
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Table 5.23: Coverage of 95% confidence intervals for the two-factor model (5.14), n = 500,
Normal base distribution, 1,000 simulated data sets

λ1 λ2 λ3 λ4 λ5 λ6 φ12 ω1 ω2 ω3 ω4 ω5 ω6

Normal Theory 0.955 0.952 0.950 0.943 0.949 0.940 0.952 0.944 0.96 0.960 0.946 0.953 0.958

Sandwich 0.956 0.956 0.946 0.945 0.947 0.939 0.943 0.943 0.96 0.958 0.947 0.949 0.952

Bootstrap 0.955 0.956 0.944 0.942 0.948 0.943 0.950 0.939 0.96 0.959 0.944 0.948 0.954

z Statistics∗

Normal Theory 0.725 0.290 0.000 -1.016 -0.145 -1.451 0.290 -0.871 1.451 1.451 -0.580 0.435 1.161

Sandwich 0.871 0.871 -0.580 -0.725 -0.435 -1.596 -1.016 -1.016 1.451 1.161 -0.435 -0.145 0.290

Bootstrap 0.725 0.871 -0.871 -1.161 -0.290 -1.016 0.000 -1.596 1.451 1.306 -0.871 -0.290 0.580
∗ Bonferroni critical value for 39 two-sided z-tests of H0: Coverage = 0.95 is 3.22.

Exponential base distribution

Table 5.24 shows confidence interval coverage for n = 200 and the exponential base
distribution. Now we are seeing something different. For the first time, coverage for
the straight-line parameters (in this case, the factor loadings λ1, . . . , λ6) is really bad.
As mentioned earlier, this does not contradict the Satorra-Bentler principle, because
V ar(F1) = V ar(F2) = 1 represents a constraint on covariance matrix of the exoge-
nous variables. On the other hand, Table 5.24 does strongly contradict Anderson and
Amemiya’s 1988 paper [4], which claims robustness for the factor loadings in a general
factor analysis model.

Table 5.24: Coverage of 95% confidence intervals for the two-factor model (5.14), n = 200,
Exponential base distribution, 1,000 simulated data sets

λ1 λ2 λ3 λ4 λ5 λ6 φ12 ω1 ω2 ω3 ω4 ω5 ω6

Normal Theory 0.889 0.832 0.811 0.889 0.851 0.821 0.824 0.710 0.834 0.908 0.705 0.859 0.927

Sandwich 0.921 0.919 0.922 0.923 0.927 0.916 0.912 0.891 0.917 0.937 0.894 0.927 0.947

Bootstrap 0.923 0.915 0.916 0.921 0.918 0.915 0.928 0.893 0.923 0.931 0.898 0.929 0.943

z Statistics∗

Normal Theory -8.851 -17.121 -20.168 -8.851 -14.364 -18.717 -18.282 -34.823 -16.831 -6.094 -35.548 -13.204 -3.337

Sandwich -4.208 -4.498 -4.063 -3.918 -3.337 -4.933 -5.514 -8.561 -4.788 -1.886 -8.125 -3.337 -0.435

Bootstrap -3.918 -5.078 -4.933 -4.208 -4.643 -5.078 -3.192 -8.270 -3.918 -2.757 -7.545 -3.047 -1.016
∗ Bonferroni critical value for 39 two-sided z-tests of H0: Coverage = 0.95 is 3.22.

Returning to Table 5.24, the sandwich and bootstrap confidence intervals do a lot
better than normal theory, but they are still not acceptable. A larger sample size is
required. When the normal assumption was satisfied, this model required n = 500 for good
performance, so this is no surprise. I tried n = 500 for the exponential base distribution
(with no bootstrap), and the sandwich’s performance was still substandard, with several
z values in the −4 to −5 range. The sandwich looked okay in another trial run with
n = 1, 000 (normal theory was still a disaster) except for ω4, so I produced Table 5.25.

As you can see, now it’s okay except that the sandwich and bootstrap z values for ω1
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Table 5.25: Coverage of 95% confidence intervals for the two-factor model (5.14), n =
1, 000, Exponential base distribution, 1,000 simulated data sets

λ1 λ2 λ3 λ4 λ5 λ6 φ12 ω1 ω2 ω3 ω4 ω5 ω6

Normal Theory 0.899 0.850 0.812 0.896 0.858 0.856 0.842 0.698 0.840 0.925 0.706 0.837 0.925

Sandwich 0.946 0.944 0.940 0.944 0.946 0.953 0.940 0.922 0.940 0.951 0.935 0.937 0.956

Bootstrap 0.941 0.943 0.940 0.939 0.945 0.948 0.943 0.919 0.941 0.948 0.937 0.939 0.950

z Statistics∗

Normal Theory -7.400 -14.510 -20.023 -7.835 -13.349 -13.639 -15.670 -36.564 -15.960 -3.627 -35.403 -16.396 -3.627

Sandwich -0.580 -0.871 -1.451 -0.871 -0.580 0.435 -1.451 -4.063 -1.451 0.145 -2.176 -1.886 0.871

Bootstrap -1.306 -1.016 -1.451 -1.596 -0.725 -0.290 -1.016 -4.498 -1.306 -0.290 -1.886 -1.596 0.000
∗ Bonferroni critical value for 39 two-sided z-tests of H0: Coverage = 0.95 is 3.22.

are over the Bonferroni line. It’s like Whack-a-mole. Most likely an even larger sample
size is required before things truly settle down, but we will let it go now. Just note,
though, that it’s easy to increase the sample size in a simulation. In a real study, a few
hundred more subjects could easily cost another several hundred person hours to collect,
enter and clean the data — or more, if participants in the study are not just filling out
questionnaires.

It’s unfortunate that a factor analysis model with standardized factors seems to require
such a large sample size when the data are not normal. As mentioned earlier, for a
model with standardized factors, the covariances between factors under the surrogate
model are exactly the correlations between factors under the original model; se Chapter 3.
Correlations are very interpretable, and this is one of the few cases I know where confidence
intervals for the parameters of a surrogate model are of real interest. It seems that for such
confidence intervals to be meaningful for non-normal data, the sample necessary sample
size will be inconveniently large. For most data sets, checking normality is probably a
good idea.

Zero correlation between factors The model under consideration provides an op-
portunity to check the performance of the normal theory standard error when the factors
are independent. The reader may recall that we have a running hypothesis here. The
hypothesis is that when two exogenous variables (including error terms) are independent
and not merely uncorrelated, the normal theory standard error is a good estimate of the
true standard deviation of the covariance. We know this to be true when the variables in
question are observable, and from simulation results it seems to be true of at least some
error terms. Now we’ll check an example of latent exogenous variables that are not errors.

Table 5.26 shows simulation results for an exponential base distribution and n = 200
when the true value of φ12 = 0 because F1 and F2 are independent. All the other parameter
values are the same as in earlier simulations. The normal theory coverage of φ12 is
0.933, with z = −2.467. This is not significantly different from 0.95 with the Bonferroni
correction, but it’s not stellar either. I ran a replication with a different random number
seed and no bootstrap, and the empirical coverage was 0.942 (z = −1.161) for the normal
theory interval, and 0.928 (z = −3.192) for the sandwich. My conclusion is that the
normal theory standard error for φ12 is good, even at n = 200 and a heavy-tailed base
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Table 5.26: Coverage of 95% confidence intervals for the two-factor model (5.14) with
independent factors , n = 200, Exponential base distribution, 1,000 simulated data
sets

λ1 λ2 λ3 λ4 λ5 λ6 φ12 ω1 ω2 ω3 ω4 ω5 ω6

Normal Theory 0.843 0.780 0.722 0.832 0.757 0.747 0.933 0.712 0.867 0.941 0.706 0.862 0.927

Sandwich 0.922 0.914 0.903 0.921 0.918 0.907 0.917 0.881 0.937 0.939 0.867 0.926 0.948

Bootstrap 0.920 0.912 0.899 0.919 0.911 0.904 0.933 0.880 0.932 0.933 0.870 0.914 0.941

z Statistics∗

Normal Theory -15.525 -24.666 -33.082 -17.121 -28.003 -29.454 -2.467 -34.533 -12.043 -1.306 -35.403 -12.768 -3.337

Sandwich -4.063 -5.223 -6.819 -4.208 -4.643 -6.239 -4.788 -10.012 -1.886 -1.596 -12.043 -3.482 -0.290

Bootstrap -4.353 -5.514 -7.400 -4.498 -5.659 -6.674 -2.467 -10.157 -2.612 -2.467 -11.608 -5.223 -1.306
∗ Bonferroni critical value for 39 two-sided z-tests of H0: Coverage = 0.95 is 3.22.

distribution. I’m now convinced that the phenomenon is quite general. When exogenous
variables, including error terms, are independent, normal theory standard errors are good.

Scaled beta base distribution

Another running hypothesis is that normal theory standard errors work well with non-
normal data, provided the distribution is not heavy tailed; that is, there is minimal excess
kurtosis. Our example is a scaled version of the beta distribution with α = 3 and β = 1,
so that its density increases like y = x2.

Table 5.27 shows simulation results for n = 200. Coverage of the normal theory
intervals is within acceptable limits for all the parameters except ω1. Also, coverage
ω5 is a bit low, though not quite significantly different from 0.05 with the Bonferroni
correction. It is worth noting that in contrast to what happened with the exponential

Table 5.27: Coverage of 95% confidence intervals for the two-factor model (5.14), n = 200,
Scaled beta base distribution, 1,000 simulated data sets

λ1 λ2 λ3 λ4 λ5 λ6 φ12 ω1 ω2 ω3 ω4 ω5 ω6

Normal Theory 0.939 0.949 0.943 0.958 0.939 0.949 0.939 0.921 0.947 0.948 0.938 0.928 0.947

Sandwich 0.937 0.943 0.939 0.950 0.935 0.935 0.931 0.915 0.942 0.946 0.933 0.928 0.949

Bootstrap 0.931 0.940 0.940 0.952 0.936 0.940 0.939 0.918 0.947 0.944 0.933 0.927 0.951

z Statistics∗

Normal Theory -1.596 -0.145 -1.016 1.161 -1.596 -0.145 -1.596 -4.208 -0.435 -0.290 -1.741 -3.192 -0.435

Sandwich -1.886 -1.016 -1.596 0.000 -2.176 -2.176 -2.757 -5.078 -1.161 -0.580 -2.467 -3.192 -0.145

Bootstrap -2.757 -1.451 -1.451 0.290 -2.031 -1.451 -1.596 -4.643 -0.435 -0.871 -2.467 -3.337 0.145
∗ Bonferroni critical value for 39 two-sided z-tests of H0: Coverage = 0.95 is 3.22.

base distribution, coverage was respectable for the straight-arrow parameters λ1, . . . , λ6.
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In Table 5.28, the sample size is increased to n = 500.

Table 5.28: Coverage of 95% confidence intervals for the two-factor model (5.14), n = 500,
Scaled beta base distribution, 1,000 simulated data sets

λ1 λ2 λ3 λ4 λ5 λ6 φ12 ω1 ω2 ω3 ω4 ω5 ω6

Normal Theory 0.967 0.962 0.948 0.952 0.953 0.947 0.950 0.956 0.952 0.940 0.940 0.948 0.959

Sandwich 0.963 0.957 0.946 0.951 0.952 0.948 0.953 0.954 0.949 0.942 0.949 0.952 0.954

Bootstrap 0.965 0.955 0.943 0.949 0.946 0.947 0.956 0.955 0.952 0.941 0.947 0.952 0.952

z Statistics∗

Normal Theory 2.467 1.741 -0.290 0.290 0.435 -0.435 0.000 0.871 0.290 -1.451 -1.451 -0.29 1.306

Sandwich 1.886 1.016 -0.580 0.145 0.290 -0.290 0.435 0.580 -0.145 -1.161 -0.145 0.29 0.580

Bootstrap 2.176 0.725 -1.016 -0.145 -0.580 -0.435 0.871 0.725 0.290 -1.306 -0.435 0.29 0.290
∗ Bonferroni critical value for 39 two-sided z-tests of H0: Coverage = 0.95 is 3.22.

Ah, that is satisfying! Everything is okay. Note that it also took n = 500 with normal
data for the normal theory intervals to perform well. This is more evidence of robustness
for normal theory standard errors when the non-normal distribution is not excessively
heavy-tailed.

5.6.5 Big Data: One factor and 50 observed variables

So far, the simulations have been based on models with fairly small numbers of parameters
and observed variables. Such models are good for developing understanding and often
reveal the true nature of what is going on. It must be admitted, though, that structural
equation models for real research data sets are often much larger. It is legitimate to
wonder how well robustness extends to big models. Perhaps numerical problems emerge,
or the required sample size increases rapidly with the size of the problem. The following
is only one example, but the result are encouraging.

The “Big Data” simulations will be based on a confirmatory factor analysis model (see
Chapter 3) with a single factor27 and fifty observed variables. It also may be viewed as
an expanded version of the Extra Response Variable Regression model (5.9) used in our
first set of simulations — except that this one has 48 “extra” variables.

Independently for i = 1, . . . , n and j = 1, . . . , 50, let

di,j = λjFi + ei,j, (5.15)

where V ar(Fi) = φ, V ar(ei,j) = ωj, and all expected values equal zero. The parameter λ1

is fixed to the known value of one, for parameter identifiability. Figure 5.8 shows a path
diagram.

27Does this make it a toy model? Well, maybe, but if so it’s a toy that presents a choking hazard.
Also, the historical origin of factor analysis was Spearman’s (1904) treatise on the general intelligence
factor [60], and that single-factor model is not a toy.
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Figure 5.8: Path diagram of Big Data model (5.15)
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In the simulations, all the true parameter values were set to one. As you will see, this
makes it easy to write efficient code. First, I will show you an R trick. Suppose you have
an n× 1 vector a and a square matrix B. According to the rules of matrix algebra, you
can’t add these two quantities. However, R will give it a try. If you type a + B, then R
will start adding the elements of a to the elements of B, going down the columns of B.
If it runs out of a elements (or B elements), then it just starts over with another copy
of the smaller object. If it does not come out even in the end, R issues a warning. If it
does come out even, then R assumes that’s what you intended and is silent. Here is an
example.

> f = 1:10; eek = runif(50); dim(eek) = c(10,5)

> f+eek # This adds f to each column of eek.

[,1] [,2] [,3] [,4] [,5]

[1,] 1.690330 1.081871 1.747586 1.366547 1.690870

[2,] 2.750996 2.731330 2.496223 2.443276 2.967938

[3,] 3.886479 3.508633 3.769627 3.463070 3.069670

[4,] 4.062570 4.942303 4.666011 4.448823 4.694002

[5,] 5.595410 5.680228 5.648273 5.419548 5.458454

[6,] 6.422430 6.617219 6.634463 6.998574 6.485297

[7,] 7.202352 7.108045 7.723994 7.453080 7.655071

[8,] 8.574795 8.033842 8.053910 8.159130 8.966246

[9,] 9.683287 9.234638 9.301378 9.875964 9.416682

[10,] 10.198118 10.703119 10.135289 10.491988 10.915884
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Because the numbers in eek are between zero and one, you can see that the number one
has been added to all the numbers in the first row, the number two has been added to all
the numbers in the second row, and so on. This could be done with a loop, but it would
be a lot slower, which matters in simulations. It could also be accomplished with matrix
multiplication, but the matrices can become quite large.

Here’s the code for simulating one data set and fitting the model.

rm(list=ls()); options(scipen=999)

# install.packages("lavaan", dependencies = TRUE) # Only need to do this once

library(lavaan)

nvars = 50; n = 200

# All parameter values equal one.

truth = numeric(2*nvars)+1

k = 1 # Scaling constant to make variance of base distribution = one

# Labels for the columns of the data file

namz = character(nvars)

for(j in 1:nvars) namz[j] = paste("d",as.character(j),sep=’’)

# colnames(bigdata) = namz

# With the cfa function, only need to specify the measurement model

mod = ’F =~ 1.0*d1+d2+d3+d4+d5+d6+d7+d8+d9+d10+

d11+d12+d13+d14+d15+d16+d17+d18+d19+d20+

d21+d22+d23+d24+d25+d26+d27+d28+d29+d30+

d31+d32+d33+d34+d35+d36+d37+d38+d39+d40+

d41+d42+d43+d44+d45+d46+d47+d48+d49+d50’

# Simulate a data set

set.seed(9999)

F = k*rnorm(n); e = k*rnorm(n*nvars); dim(e) = c(n,nvars)

simdat = F + e; colnames(simdat) = namz

# Fit the model

fit1 = cfa(mod,data=simdat)

p1 = parameterEstimates(fit1); p1

ci1 = p1[2:(2*nvars+1), 8:9] # Upper and lower confidence limits

hit1 = as.numeric(ci1[,1] < truth & truth < ci1[,2]) # Binary for in ci

cbind(ci1,truth,hit1)

The cute part is simdat = F + e. The object F (the factor) is an n×1 random vector,
and e is an n × 50 matrix of independent error terms. Because all the factor loadings
equal one, row i in the data file is obtained by adding Fi to each element in row i of the
error matrix e. That’s what the statement does.

As in all the simulations, this code is put in a simulation loop, along with a few more
lines that generate sandwich and bootstrap confidence intervals. The first thing to note is
that while one might anticipate numerical problems for such a large model, it turned out
that there were almost none. Well, I did try n = 50 (half the number of parameters) and
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it crashed, while n = 100 frequently produced estimates that were outside the parameter
space. Starting with n = 200, everything was fine.

Normal base distribution

It is a bit challenging to look at the results of a simulation, because there are so many
parameters. In Table 5.35, n = 200 and the base distribution is normal. The column sig

contains an asterisk (∗) if any of the z statistics exceeds the Bonferroni critical value of
3.76 for 300 tests.

Table 5.29: Coverage of 95% confidence intervals for the “Big
Data” model (5.15), n = 200, Normal base distribution, 1,000
simulated data sets

Coverage Z-tests

Normal.Theory Sand. Bootstrap Normal.Theory Sand. Bootstrap Sig

lambda2 0.960 0.958 0.953 1.451 1.161 0.435

lambda3 0.954 0.953 0.955 0.580 0.435 0.725

lambda4 0.944 0.941 0.945 -0.871 -1.306 -0.725

lambda5 0.951 0.951 0.953 0.145 0.145 0.435

lambda6 0.955 0.949 0.944 0.725 -0.145 -0.871

lambda7 0.951 0.950 0.954 0.145 0.000 0.580

lambda8 0.955 0.951 0.953 0.725 0.145 0.435

lambda9 0.955 0.960 0.956 0.725 1.451 0.871

lambda10 0.947 0.943 0.948 -0.435 -1.016 -0.290

lambda11 0.949 0.948 0.944 -0.145 -0.290 -0.871

lambda12 0.955 0.951 0.951 0.725 0.145 0.145

lambda13 0.963 0.959 0.953 1.886 1.306 0.435

lambda14 0.947 0.944 0.950 -0.435 -0.871 0.000

lambda15 0.950 0.944 0.947 0.000 -0.871 -0.435

lambda16 0.941 0.934 0.937 -1.306 -2.322 -1.886

lambda17 0.955 0.954 0.952 0.725 0.580 0.290

lambda18 0.940 0.937 0.935 -1.451 -1.886 -2.176

lambda19 0.960 0.958 0.956 1.451 1.161 0.871

lambda20 0.950 0.950 0.950 0.000 0.000 0.000

lambda21 0.951 0.946 0.946 0.145 -0.580 -0.580

lambda22 0.960 0.948 0.950 1.451 -0.290 0.000

lambda23 0.941 0.939 0.936 -1.306 -1.596 -2.031

lambda24 0.938 0.936 0.946 -1.741 -2.031 -0.580

lambda25 0.959 0.956 0.950 1.306 0.871 0.000

lambda26 0.953 0.944 0.946 0.435 -0.871 -0.580

lambda27 0.953 0.955 0.953 0.435 0.725 0.435

lambda28 0.944 0.944 0.943 -0.871 -0.871 -1.016

lambda29 0.946 0.943 0.942 -0.580 -1.016 -1.161

lambda30 0.952 0.946 0.954 0.290 -0.580 0.580

lambda31 0.952 0.953 0.950 0.290 0.435 0.000

lambda32 0.953 0.948 0.951 0.435 -0.290 0.145
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Coverage Z-tests

Normal.Theory Sand. Bootstrap Normal.Theory Sand. Bootstrap Sig

lambda33 0.949 0.948 0.952 -0.145 -0.290 0.290

lambda34 0.961 0.956 0.951 1.596 0.871 0.145

lambda35 0.959 0.954 0.954 1.306 0.580 0.580

lambda36 0.950 0.949 0.954 0.000 -0.145 0.580

lambda37 0.951 0.950 0.947 0.145 0.000 -0.435

lambda38 0.953 0.954 0.945 0.435 0.580 -0.725

lambda39 0.950 0.946 0.952 0.000 -0.580 0.290

lambda40 0.962 0.953 0.960 1.741 0.435 1.451

lambda41 0.945 0.939 0.942 -0.725 -1.596 -1.161

lambda42 0.958 0.960 0.955 1.161 1.451 0.725

lambda43 0.960 0.957 0.955 1.451 1.016 0.725

lambda44 0.943 0.941 0.943 -1.016 -1.306 -1.016

lambda45 0.956 0.949 0.952 0.871 -0.145 0.290

lambda46 0.958 0.956 0.960 1.161 0.871 1.451

lambda47 0.946 0.942 0.951 -0.580 -1.161 0.145

lambda48 0.952 0.951 0.946 0.290 0.145 -0.580

lambda49 0.961 0.960 0.955 1.596 1.451 0.725

lambda50 0.946 0.950 0.947 -0.580 0.000 -0.435

omega1 0.936 0.928 0.924 -2.031 -3.192 -3.772 *

omega2 0.946 0.940 0.937 -0.580 -1.451 -1.886

omega3 0.933 0.930 0.928 -2.467 -2.902 -3.192

omega4 0.944 0.942 0.944 -0.871 -1.161 -0.871

omega5 0.935 0.929 0.928 -2.176 -3.047 -3.192

omega6 0.934 0.924 0.922 -2.322 -3.772 -4.063 *

omega7 0.941 0.934 0.931 -1.306 -2.322 -2.757

omega8 0.951 0.946 0.944 0.145 -0.580 -0.871

omega9 0.944 0.945 0.940 -0.871 -0.725 -1.451

omega10 0.924 0.918 0.913 -3.772 -4.643 -5.369 *

omega11 0.935 0.934 0.935 -2.176 -2.322 -2.176

omega12 0.954 0.947 0.948 0.580 -0.435 -0.290

omega13 0.939 0.929 0.930 -1.596 -3.047 -2.902

omega14 0.944 0.938 0.938 -0.871 -1.741 -1.741

omega15 0.939 0.934 0.938 -1.596 -2.322 -1.741

omega16 0.929 0.924 0.928 -3.047 -3.772 -3.192 *

omega17 0.932 0.930 0.923 -2.612 -2.902 -3.918 *

omega18 0.936 0.938 0.935 -2.031 -1.741 -2.176

omega19 0.936 0.928 0.931 -2.031 -3.192 -2.757

omega20 0.923 0.918 0.919 -3.918 -4.643 -4.498 *

omega21 0.944 0.936 0.937 -0.871 -2.031 -1.886

omega22 0.945 0.943 0.939 -0.725 -1.016 -1.596

omega23 0.937 0.934 0.933 -1.886 -2.322 -2.467

omega24 0.929 0.926 0.922 -3.047 -3.482 -4.063 *

omega25 0.956 0.947 0.943 0.871 -0.435 -1.016

omega26 0.937 0.928 0.930 -1.886 -3.192 -2.902

omega27 0.934 0.933 0.929 -2.322 -2.467 -3.047
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Coverage Z-tests

Normal.Theory Sand. Bootstrap Normal.Theory Sand. Bootstrap Sig

omega28 0.929 0.931 0.932 -3.047 -2.757 -2.612

omega29 0.940 0.934 0.934 -1.451 -2.322 -2.322

omega30 0.929 0.920 0.923 -3.047 -4.353 -3.918 *

omega31 0.943 0.943 0.941 -1.016 -1.016 -1.306

omega32 0.928 0.925 0.926 -3.192 -3.627 -3.482

omega33 0.942 0.938 0.935 -1.161 -1.741 -2.176

omega34 0.943 0.937 0.937 -1.016 -1.886 -1.886

omega35 0.935 0.927 0.929 -2.176 -3.337 -3.047

omega36 0.940 0.936 0.932 -1.451 -2.031 -2.612

omega37 0.926 0.914 0.917 -3.482 -5.223 -4.788 *

omega38 0.942 0.938 0.940 -1.161 -1.741 -1.451

omega39 0.935 0.931 0.931 -2.176 -2.757 -2.757

omega40 0.940 0.938 0.936 -1.451 -1.741 -2.031

omega41 0.934 0.929 0.928 -2.322 -3.047 -3.192

omega42 0.943 0.937 0.936 -1.016 -1.886 -2.031

omega43 0.947 0.938 0.935 -0.435 -1.741 -2.176

omega44 0.926 0.926 0.930 -3.482 -3.482 -2.902

omega45 0.937 0.935 0.934 -1.886 -2.176 -2.322

omega46 0.938 0.935 0.932 -1.741 -2.176 -2.612

omega47 0.944 0.940 0.933 -0.871 -1.451 -2.467

omega48 0.918 0.919 0.917 -4.643 -4.498 -4.788 *

omega49 0.949 0.941 0.940 -0.145 -1.306 -1.451

omega50 0.933 0.928 0.928 -2.467 -3.192 -3.192

phi 0.956 0.948 0.948 0.871 -0.290 -0.290

∗ At least one z statistic exceeds the Bonferroni critical value of 3.76 for 300 two-sided z-tests of
H0: Coverage = 0.95.

All the confidence intervals for the straight-arrow parameters λ2, . . . , λ50 have accept-
able coverage, while nine of the confidence intervals for the variance parameters fail the
test, with coverage that is significantly lower than 0.95. Table 5.30 shows the same ex-
periment for n = 500.

Table 5.30: Coverage of 95% confidence intervals for the “Big
Data” model (5.15), n = 500, Normal base distribution, 1,000
simulated data sets

Coverage Z-tests

Normal.Theory Sand. Bootstrap Normal.Theory Sand. Bootstrap Sig

lambda2 0.949 0.946 0.945 -0.145 -0.580 -0.725

lambda3 0.934 0.932 0.926 -2.322 -2.612 -3.482

lambda4 0.943 0.943 0.945 -1.016 -1.016 -0.725

lambda5 0.940 0.941 0.940 -1.451 -1.306 -1.451

lambda6 0.941 0.939 0.939 -1.306 -1.596 -1.596
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Coverage Z-tests

Normal.Theory Sand. Bootstrap Normal.Theory Sand. Bootstrap Sig

lambda7 0.946 0.944 0.944 -0.580 -0.871 -0.871

lambda8 0.949 0.943 0.942 -0.145 -1.016 -1.161

lambda9 0.939 0.939 0.938 -1.596 -1.596 -1.741

lambda10 0.945 0.947 0.947 -0.725 -0.435 -0.435

lambda11 0.934 0.933 0.933 -2.322 -2.467 -2.467

lambda12 0.947 0.950 0.939 -0.435 0.000 -1.596

lambda13 0.946 0.942 0.936 -0.580 -1.161 -2.031

lambda14 0.940 0.937 0.934 -1.451 -1.886 -2.322

lambda15 0.942 0.948 0.947 -1.161 -0.290 -0.435

lambda16 0.932 0.934 0.939 -2.612 -2.322 -1.596

lambda17 0.942 0.948 0.943 -1.161 -0.290 -1.016

lambda18 0.944 0.944 0.943 -0.871 -0.871 -1.016

lambda19 0.954 0.951 0.948 0.580 0.145 -0.290

lambda20 0.936 0.933 0.934 -2.031 -2.467 -2.322

lambda21 0.942 0.942 0.937 -1.161 -1.161 -1.886

lambda22 0.940 0.936 0.937 -1.451 -2.031 -1.886

lambda23 0.945 0.945 0.945 -0.725 -0.725 -0.725

lambda24 0.954 0.951 0.951 0.580 0.145 0.145

lambda25 0.948 0.946 0.950 -0.290 -0.580 0.000

lambda26 0.942 0.942 0.939 -1.161 -1.161 -1.596

lambda27 0.953 0.951 0.955 0.435 0.145 0.725

lambda28 0.956 0.956 0.954 0.871 0.871 0.580

lambda29 0.955 0.945 0.949 0.725 -0.725 -0.145

lambda30 0.948 0.947 0.950 -0.290 -0.435 0.000

lambda31 0.935 0.934 0.936 -2.176 -2.322 -2.031

lambda32 0.946 0.940 0.943 -0.580 -1.451 -1.016

lambda33 0.937 0.936 0.930 -1.886 -2.031 -2.902

lambda34 0.951 0.949 0.945 0.145 -0.145 -0.725

lambda35 0.943 0.942 0.944 -1.016 -1.161 -0.871

lambda36 0.941 0.938 0.941 -1.306 -1.741 -1.306

lambda37 0.955 0.954 0.955 0.725 0.580 0.725

lambda38 0.949 0.946 0.959 -0.145 -0.580 1.306

lambda39 0.953 0.953 0.954 0.435 0.435 0.580

lambda40 0.934 0.938 0.934 -2.322 -1.741 -2.322

lambda41 0.948 0.947 0.945 -0.290 -0.435 -0.725

lambda42 0.949 0.949 0.945 -0.145 -0.145 -0.725

lambda43 0.945 0.941 0.944 -0.725 -1.306 -0.871

lambda44 0.959 0.958 0.955 1.306 1.161 0.725

lambda45 0.946 0.941 0.947 -0.580 -1.306 -0.435

lambda46 0.956 0.949 0.954 0.871 -0.145 0.580

lambda47 0.947 0.942 0.942 -0.435 -1.161 -1.161

lambda48 0.939 0.939 0.936 -1.596 -1.596 -2.031

lambda49 0.944 0.940 0.936 -0.871 -1.451 -2.031

lambda50 0.950 0.946 0.961 0.000 -0.580 1.596

omega1 0.940 0.938 0.936 -1.451 -1.741 -2.031
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Coverage Z-tests

Normal.Theory Sand. Bootstrap Normal.Theory Sand. Bootstrap Sig

omega2 0.941 0.937 0.937 -1.306 -1.886 -1.886

omega3 0.937 0.939 0.937 -1.886 -1.596 -1.886

omega4 0.950 0.947 0.946 0.000 -0.435 -0.580

omega5 0.928 0.929 0.933 -3.192 -3.047 -2.467

omega6 0.946 0.942 0.941 -0.580 -1.161 -1.306

omega7 0.945 0.945 0.941 -0.725 -0.725 -1.306

omega8 0.939 0.936 0.940 -1.596 -2.031 -1.451

omega9 0.949 0.945 0.943 -0.145 -0.725 -1.016

omega10 0.955 0.948 0.951 0.725 -0.290 0.145

omega11 0.953 0.950 0.956 0.435 0.000 0.871

omega12 0.948 0.949 0.947 -0.290 -0.145 -0.435

omega13 0.940 0.934 0.935 -1.451 -2.322 -2.176

omega14 0.942 0.942 0.941 -1.161 -1.161 -1.306

omega15 0.942 0.938 0.933 -1.161 -1.741 -2.467

omega16 0.954 0.954 0.951 0.580 0.580 0.145

omega17 0.936 0.939 0.934 -2.031 -1.596 -2.322

omega18 0.941 0.939 0.944 -1.306 -1.596 -0.871

omega19 0.953 0.947 0.947 0.435 -0.435 -0.435

omega20 0.941 0.941 0.937 -1.306 -1.306 -1.886

omega21 0.940 0.940 0.937 -1.451 -1.451 -1.886

omega22 0.950 0.955 0.955 0.000 0.725 0.725

omega23 0.943 0.942 0.943 -1.016 -1.161 -1.016

omega24 0.946 0.944 0.947 -0.580 -0.871 -0.435

omega25 0.943 0.945 0.943 -1.016 -0.725 -1.016

omega26 0.945 0.944 0.941 -0.725 -0.871 -1.306

omega27 0.957 0.956 0.951 1.016 0.871 0.145

omega28 0.941 0.941 0.950 -1.306 -1.306 0.000

omega29 0.922 0.921 0.921 -4.063 -4.208 -4.208 *

omega30 0.949 0.944 0.940 -0.145 -0.871 -1.451

omega31 0.953 0.953 0.950 0.435 0.435 0.000

omega32 0.955 0.949 0.949 0.725 -0.145 -0.145

omega33 0.957 0.948 0.943 1.016 -0.290 -1.016

omega34 0.930 0.929 0.928 -2.902 -3.047 -3.192

omega35 0.946 0.945 0.944 -0.580 -0.725 -0.871

omega36 0.936 0.937 0.938 -2.031 -1.886 -1.741

omega37 0.940 0.937 0.937 -1.451 -1.886 -1.886

omega38 0.948 0.949 0.946 -0.290 -0.145 -0.580

omega39 0.952 0.949 0.948 0.290 -0.145 -0.290

omega40 0.940 0.938 0.939 -1.451 -1.741 -1.596

omega41 0.961 0.955 0.955 1.596 0.725 0.725

omega42 0.934 0.929 0.929 -2.322 -3.047 -3.047

omega43 0.948 0.943 0.943 -0.290 -1.016 -1.016

omega44 0.951 0.947 0.948 0.145 -0.435 -0.290

omega45 0.929 0.930 0.927 -3.047 -2.902 -3.337

omega46 0.938 0.934 0.937 -1.741 -2.322 -1.886
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Coverage Z-tests

Normal.Theory Sand. Bootstrap Normal.Theory Sand. Bootstrap Sig

omega47 0.938 0.936 0.936 -1.741 -2.031 -2.031

omega48 0.953 0.946 0.946 0.435 -0.580 -0.580

omega49 0.943 0.940 0.940 -1.016 -1.451 -1.451

omega50 0.924 0.923 0.923 -3.772 -3.918 -3.918 *

phi 0.950 0.949 0.953 0.000 -0.145 0.435

∗ At least one z statistic exceeds the Bonferroni critical value of 3.76 for 300 two-sided z-tests of
H0: Coverage = 0.95.

This time, coverage for the λj factor loadings is okay again, and only two of the variance
parameters suffer from significant under-coverage. It is quite clear that all methods are
working acceptably for normal data, with a sample size of n = 500 or perhaps a bit above
required for really excellent performance.

Exponential base distribution

Table 5.31 shows results for n = 200 with the heavy-tailed exponential distribution. Look-
ing at the last column (labelled Sig) observe the strong support for the Satorra-Bentler
principle. Problems are indicated for only two of the 48 straight-arrow factor loadings,
and in both cases, the culprit is under-coverage by the sandwich interval. The normal-
theory (and bootstrap) intervals are okay in every case. For the variance parameters,
all three methods fail in every case, but coverage of the normal theory intervals is much
worse.

Table 5.31: Coverage of 95% confidence intervals for the “Big
Data” model (5.15), n = 200, Exponential base distribution,
1,000 simulated data sets

Coverage Z-tests

Normal.Theory Sand. Bootstrap Normal.Theory Sand. Bootstrap Sig

lambda2 0.952 0.951 0.945 0.290 0.145 -0.725

lambda3 0.954 0.937 0.940 0.580 -1.886 -1.451

lambda4 0.947 0.936 0.942 -0.435 -2.031 -1.161

lambda5 0.952 0.946 0.947 0.290 -0.580 -0.435

lambda6 0.953 0.946 0.944 0.435 -0.580 -0.871

lambda7 0.945 0.931 0.940 -0.725 -2.757 -1.451

lambda8 0.947 0.937 0.933 -0.435 -1.886 -2.467

lambda9 0.947 0.938 0.941 -0.435 -1.741 -1.306

lambda10 0.945 0.930 0.934 -0.725 -2.902 -2.322

lambda11 0.961 0.944 0.944 1.596 -0.871 -0.871

lambda12 0.945 0.933 0.937 -0.725 -2.467 -1.886

lambda13 0.952 0.940 0.945 0.290 -1.451 -0.725

lambda14 0.951 0.933 0.945 0.145 -2.467 -0.725
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Coverage Z-tests

Normal.Theory Sand. Bootstrap Normal.Theory Sand. Bootstrap Sig

lambda15 0.944 0.934 0.936 -0.871 -2.322 -2.031

lambda16 0.947 0.935 0.937 -0.435 -2.176 -1.886

lambda17 0.946 0.938 0.945 -0.580 -1.741 -0.725

lambda18 0.947 0.942 0.937 -0.435 -1.161 -1.886

lambda19 0.949 0.934 0.935 -0.145 -2.322 -2.176

lambda20 0.947 0.933 0.945 -0.435 -2.467 -0.725

lambda21 0.955 0.939 0.941 0.725 -1.596 -1.306

lambda22 0.942 0.930 0.939 -1.161 -2.902 -1.596

lambda23 0.946 0.932 0.942 -0.580 -2.612 -1.161

lambda24 0.943 0.928 0.939 -1.016 -3.192 -1.596

lambda25 0.946 0.936 0.946 -0.580 -2.031 -0.580

lambda26 0.946 0.927 0.933 -0.580 -3.337 -2.467

lambda27 0.955 0.943 0.942 0.725 -1.016 -1.161

lambda28 0.945 0.927 0.933 -0.725 -3.337 -2.467

lambda29 0.946 0.939 0.943 -0.580 -1.596 -1.016

lambda30 0.943 0.918 0.930 -1.016 -4.643 -2.902 *

lambda31 0.943 0.931 0.934 -1.016 -2.757 -2.322

lambda32 0.950 0.941 0.934 0.000 -1.306 -2.322

lambda33 0.946 0.927 0.932 -0.580 -3.337 -2.612

lambda34 0.937 0.930 0.935 -1.886 -2.902 -2.176

lambda35 0.948 0.929 0.927 -0.290 -3.047 -3.337

lambda36 0.950 0.935 0.946 0.000 -2.176 -0.580

lambda37 0.945 0.935 0.945 -0.725 -2.176 -0.725

lambda38 0.948 0.944 0.947 -0.290 -0.871 -0.435

lambda39 0.946 0.936 0.944 -0.580 -2.031 -0.871

lambda40 0.948 0.931 0.942 -0.290 -2.757 -1.161

lambda41 0.942 0.931 0.940 -1.161 -2.757 -1.451

lambda42 0.941 0.924 0.932 -1.306 -3.772 -2.612 *

lambda43 0.955 0.939 0.945 0.725 -1.596 -0.725

lambda44 0.944 0.942 0.948 -0.871 -1.161 -0.290

lambda45 0.939 0.925 0.932 -1.596 -3.627 -2.612

lambda46 0.958 0.946 0.951 1.161 -0.580 0.145

lambda47 0.949 0.931 0.936 -0.145 -2.757 -2.031

lambda48 0.956 0.943 0.942 0.871 -1.016 -1.161

lambda49 0.952 0.939 0.940 0.290 -1.596 -1.451

lambda50 0.954 0.937 0.942 0.580 -1.886 -1.161

omega1 0.664 0.887 0.886 -41.497 -9.141 -9.286 *

omega2 0.679 0.889 0.892 -39.321 -8.851 -8.416 *

omega3 0.691 0.907 0.908 -37.580 -6.239 -6.094 *

omega4 0.685 0.887 0.891 -38.450 -9.141 -8.561 *

omega5 0.693 0.881 0.883 -37.289 -10.012 -9.721 *

omega6 0.645 0.869 0.872 -44.254 -11.753 -11.317 *

omega7 0.657 0.862 0.868 -42.513 -12.768 -11.898 *

omega8 0.676 0.884 0.880 -39.756 -9.576 -10.157 *

omega9 0.678 0.894 0.898 -39.466 -8.125 -7.545 *
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Coverage Z-tests

Normal.Theory Sand. Bootstrap Normal.Theory Sand. Bootstrap Sig

omega10 0.657 0.878 0.879 -42.513 -10.447 -10.302 *

omega11 0.712 0.907 0.906 -34.533 -6.239 -6.384 *

omega12 0.684 0.882 0.887 -38.595 -9.866 -9.141 *

omega13 0.684 0.886 0.886 -38.595 -9.286 -9.286 *

omega14 0.681 0.880 0.886 -39.031 -10.157 -9.286 *

omega15 0.685 0.884 0.885 -38.450 -9.576 -9.431 *

omega16 0.714 0.875 0.881 -34.242 -10.882 -10.012 *

omega17 0.645 0.874 0.875 -44.254 -11.027 -10.882 *

omega18 0.672 0.873 0.875 -40.336 -11.172 -10.882 *

omega19 0.668 0.865 0.874 -40.917 -12.333 -11.027 *

omega20 0.701 0.890 0.894 -36.129 -8.706 -8.125 *

omega21 0.671 0.893 0.898 -40.482 -8.270 -7.545 *

omega22 0.664 0.870 0.873 -41.497 -11.608 -11.172 *

omega23 0.679 0.879 0.882 -39.321 -10.302 -9.866 *

omega24 0.669 0.881 0.882 -40.772 -10.012 -9.866 *

omega25 0.660 0.885 0.885 -42.078 -9.431 -9.431 *

omega26 0.694 0.892 0.900 -37.144 -8.416 -7.255 *

omega27 0.677 0.874 0.883 -39.611 -11.027 -9.721 *

omega28 0.663 0.864 0.872 -41.642 -12.478 -11.317 *

omega29 0.666 0.869 0.871 -41.207 -11.753 -11.463 *

omega30 0.695 0.887 0.893 -36.999 -9.141 -8.270 *

omega31 0.683 0.868 0.872 -38.740 -11.898 -11.317 *

omega32 0.671 0.864 0.867 -40.482 -12.478 -12.043 *

omega33 0.683 0.894 0.896 -38.740 -8.125 -7.835 *

omega34 0.669 0.885 0.888 -40.772 -9.431 -8.996 *

omega35 0.665 0.891 0.893 -41.352 -8.561 -8.270 *

omega36 0.670 0.879 0.882 -40.627 -10.302 -9.866 *

omega37 0.647 0.880 0.881 -43.964 -10.157 -10.012 *

omega38 0.694 0.895 0.894 -37.144 -7.980 -8.125 *

omega39 0.677 0.885 0.892 -39.611 -9.431 -8.416 *

omega40 0.690 0.875 0.880 -37.725 -10.882 -10.157 *

omega41 0.681 0.888 0.892 -39.031 -8.996 -8.416 *

omega42 0.703 0.875 0.880 -35.839 -10.882 -10.157 *

omega43 0.691 0.878 0.883 -37.580 -10.447 -9.721 *

omega44 0.666 0.882 0.887 -41.207 -9.866 -9.141 *

omega45 0.676 0.898 0.902 -39.756 -7.545 -6.965 *

omega46 0.672 0.872 0.878 -40.336 -11.317 -10.447 *

omega47 0.649 0.881 0.883 -43.674 -10.012 -9.721 *

omega48 0.691 0.894 0.892 -37.580 -8.125 -8.416 *

omega49 0.702 0.884 0.886 -35.984 -9.576 -9.286 *

omega50 0.679 0.885 0.887 -39.321 -9.431 -9.141 *

phi 0.842 0.909 0.912 -15.670 -5.949 -5.514 *

∗ At least one z statistic exceeds the Bonferroni critical value of 3.76 for 300 two-sided z-tests of
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Coverage Z-tests

Normal.Theory Sand. Bootstrap Normal.Theory Sand. Bootstrap Sig

H0: Coverage = 0.95.

The normal theory confidence intervals for the variance parameters are doomed, but
we anticipate that a larger sample size will help for the sandwich and Bootstrap intervals.
The numbers in Table 5.31 are comparable to those in Table 5.3 for the “Extra response
variables” model, which is really just a smaller version of this one. It took n = 1, 000 to
achieve good performance for the little extra variables model. For the Big Data model, I
tried n = 500 with no bootstrap, and the sandwich was better but still inadequate. With
n = 1, 000, twelve of the sandwich z statistics exceeded the Bonferroni critical value.
That’s still too many. In an experiment with n = 1, 500, only two of the sandwich z
statistics were greater than the Bonferroni critical value. Encouraged, I tried the complete
job (including bootstrap) for n = 1, 500. The results are shown in Table 5.32.

Table 5.32: Coverage of 95% confidence intervals for the “Big
Data” model (5.15), n = 1, 500, Exponential base distribu-
tion, 1,000 simulated data sets

Coverage Z-tests

Normal.Theory Sand. Bootstrap Normal.Theory Sand. Bootstrap Sig

lambda2 0.948 0.949 0.948 -0.290 -0.145 -0.290

lambda3 0.950 0.948 0.949 0.000 -0.290 -0.145

lambda4 0.955 0.951 0.951 0.725 0.145 0.145

lambda5 0.939 0.939 0.939 -1.596 -1.596 -1.596

lambda6 0.946 0.946 0.946 -0.580 -0.580 -0.580

lambda7 0.955 0.952 0.956 0.725 0.290 0.871

lambda8 0.943 0.944 0.944 -1.016 -0.871 -0.871

lambda9 0.960 0.955 0.958 1.451 0.725 1.161

lambda10 0.947 0.944 0.944 -0.435 -0.871 -0.871

lambda11 0.934 0.931 0.939 -2.322 -2.757 -1.596

lambda12 0.945 0.945 0.939 -0.725 -0.725 -1.596

lambda13 0.946 0.945 0.947 -0.580 -0.725 -0.435

lambda14 0.950 0.944 0.950 0.000 -0.871 0.000

lambda15 0.954 0.951 0.951 0.580 0.145 0.145

lambda16 0.954 0.952 0.954 0.580 0.290 0.580

lambda17 0.941 0.937 0.937 -1.306 -1.886 -1.886

lambda18 0.943 0.937 0.941 -1.016 -1.886 -1.306

lambda19 0.955 0.949 0.946 0.725 -0.145 -0.580

lambda20 0.950 0.950 0.958 0.000 0.000 1.161

lambda21 0.948 0.951 0.949 -0.290 0.145 -0.145

lambda22 0.968 0.968 0.961 2.612 2.612 1.596

lambda23 0.944 0.951 0.943 -0.871 0.145 -1.016

lambda24 0.933 0.933 0.933 -2.467 -2.467 -2.467

lambda25 0.950 0.956 0.954 0.000 0.871 0.580

lambda26 0.936 0.935 0.940 -2.031 -2.176 -1.451
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Coverage Z-tests

Normal.Theory Sand. Bootstrap Normal.Theory Sand. Bootstrap Sig

lambda27 0.954 0.954 0.957 0.580 0.580 1.016

lambda28 0.946 0.948 0.947 -0.580 -0.290 -0.435

lambda29 0.948 0.945 0.944 -0.290 -0.725 -0.871

lambda30 0.946 0.940 0.943 -0.580 -1.451 -1.016

lambda31 0.953 0.953 0.951 0.435 0.435 0.145

lambda32 0.944 0.946 0.942 -0.871 -0.580 -1.161

lambda33 0.946 0.948 0.950 -0.580 -0.290 0.000

lambda34 0.945 0.952 0.948 -0.725 0.290 -0.290

lambda35 0.945 0.940 0.942 -0.725 -1.451 -1.161

lambda36 0.947 0.940 0.940 -0.435 -1.451 -1.451

lambda37 0.946 0.936 0.936 -0.580 -2.031 -2.031

lambda38 0.940 0.938 0.934 -1.451 -1.741 -2.322

lambda39 0.941 0.935 0.938 -1.306 -2.176 -1.741

lambda40 0.934 0.934 0.934 -2.322 -2.322 -2.322

lambda41 0.949 0.945 0.950 -0.145 -0.725 0.000

lambda42 0.944 0.941 0.943 -0.871 -1.306 -1.016

lambda43 0.949 0.949 0.950 -0.145 -0.145 0.000

lambda44 0.954 0.949 0.946 0.580 -0.145 -0.580

lambda45 0.956 0.949 0.951 0.871 -0.145 0.145

lambda46 0.950 0.952 0.948 0.000 0.290 -0.290

lambda47 0.951 0.946 0.948 0.145 -0.580 -0.290

lambda48 0.934 0.931 0.934 -2.322 -2.757 -2.322

lambda49 0.943 0.944 0.944 -1.016 -0.871 -0.871

lambda50 0.956 0.954 0.956 0.871 0.580 0.871

omega1 0.687 0.934 0.938 -38.160 -2.322 -1.741 *

omega2 0.668 0.939 0.938 -40.917 -1.596 -1.741 *

omega3 0.684 0.937 0.938 -38.595 -1.886 -1.741 *

omega4 0.697 0.931 0.928 -36.709 -2.757 -3.192 *

omega5 0.696 0.945 0.946 -36.854 -0.725 -0.580 *

omega6 0.683 0.943 0.942 -38.740 -1.016 -1.161 *

omega7 0.691 0.940 0.941 -37.580 -1.451 -1.306 *

omega8 0.655 0.933 0.942 -42.803 -2.467 -1.161 *

omega9 0.659 0.921 0.921 -42.223 -4.208 -4.208 *

omega10 0.683 0.942 0.937 -38.740 -1.161 -1.886 *

omega11 0.709 0.949 0.948 -34.968 -0.145 -0.290 *

omega12 0.689 0.928 0.929 -37.870 -3.192 -3.047 *

omega13 0.663 0.924 0.928 -41.642 -3.772 -3.192 *

omega14 0.695 0.943 0.942 -36.999 -1.016 -1.161 *

omega15 0.686 0.931 0.934 -38.305 -2.757 -2.322 *

omega16 0.671 0.939 0.946 -40.482 -1.596 -0.580 *

omega17 0.667 0.925 0.927 -41.062 -3.627 -3.337 *

omega18 0.701 0.940 0.943 -36.129 -1.451 -1.016 *

omega19 0.661 0.935 0.934 -41.933 -2.176 -2.322 *

omega20 0.681 0.928 0.925 -39.031 -3.192 -3.627 *

omega21 0.686 0.951 0.952 -38.305 0.145 0.290 *
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Coverage Z-tests

Normal.Theory Sand. Bootstrap Normal.Theory Sand. Bootstrap Sig

omega22 0.682 0.947 0.949 -38.886 -0.435 -0.145 *

omega23 0.691 0.946 0.943 -37.580 -0.580 -1.016 *

omega24 0.683 0.947 0.946 -38.740 -0.435 -0.580 *

omega25 0.666 0.932 0.932 -41.207 -2.612 -2.612 *

omega26 0.659 0.921 0.920 -42.223 -4.208 -4.353 *

omega27 0.671 0.929 0.929 -40.482 -3.047 -3.047 *

omega28 0.704 0.959 0.957 -35.693 1.306 1.016 *

omega29 0.688 0.939 0.937 -38.015 -1.596 -1.886 *

omega30 0.694 0.942 0.942 -37.144 -1.161 -1.161 *

omega31 0.682 0.938 0.938 -38.886 -1.741 -1.741 *

omega32 0.698 0.945 0.946 -36.564 -0.725 -0.580 *

omega33 0.688 0.940 0.947 -38.015 -1.451 -0.435 *

omega34 0.687 0.932 0.933 -38.160 -2.612 -2.467 *

omega35 0.682 0.932 0.934 -38.886 -2.612 -2.322 *

omega36 0.679 0.941 0.943 -39.321 -1.306 -1.016 *

omega37 0.687 0.923 0.925 -38.160 -3.918 -3.627 *

omega38 0.689 0.937 0.940 -37.870 -1.886 -1.451 *

omega39 0.702 0.936 0.935 -35.984 -2.031 -2.176 *

omega40 0.695 0.941 0.944 -36.999 -1.306 -0.871 *

omega41 0.684 0.937 0.935 -38.595 -1.886 -2.176 *

omega42 0.689 0.945 0.943 -37.870 -0.725 -1.016 *

omega43 0.680 0.931 0.935 -39.176 -2.757 -2.176 *

omega44 0.662 0.933 0.933 -41.787 -2.467 -2.467 *

omega45 0.663 0.938 0.938 -41.642 -1.741 -1.741 *

omega46 0.669 0.923 0.928 -40.772 -3.918 -3.192 *

omega47 0.688 0.928 0.929 -38.015 -3.192 -3.047 *

omega48 0.689 0.939 0.935 -37.870 -1.596 -2.176 *

omega49 0.670 0.941 0.941 -40.627 -1.306 -1.306 *

omega50 0.704 0.943 0.945 -35.693 -1.016 -0.725 *

phi 0.822 0.934 0.933 -18.572 -2.322 -2.467 *

∗ At least one z statistic exceeds the Bonferroni critical value of 3.76 for 300 two-sided z-tests of
H0: Coverage = 0.95.

In Table 5.32, all of the variance parameters are flagged with an ∗, because of the huge
z values for the normal theory intervals. This obscures the fact that we are not there yet.
The sample size is still not big enough. I tried n = 3, 000 with no bootstrap. The sandwich
had good coverage for all parameters, so presumably n = 3, 000 was too much. In a trial
no-bootstrap run with n = 2, 000, all the sandwich intervals had adequate coverage. So,
I ran the full job including the bootstrap. The results are shown in Table 5.33.
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Table 5.33: Coverage of 95% confidence intervals for the “Big
Data” model (5.15), n = 2, 000, Exponential base distribu-
tion, 1,000 simulated data sets

Coverage Z-tests

Normal.Theory Sand. Bootstrap Normal.Theory Sand. Bootstrap Sig

lambda2 0.942 0.940 0.935 -1.161 -1.451 -2.176

lambda3 0.937 0.934 0.938 -1.886 -2.322 -1.741

lambda4 0.960 0.962 0.961 1.451 1.741 1.596

lambda5 0.951 0.946 0.946 0.145 -0.580 -0.580

lambda6 0.944 0.943 0.940 -0.871 -1.016 -1.451

lambda7 0.950 0.950 0.947 0.000 0.000 -0.435

lambda8 0.958 0.950 0.948 1.161 0.000 -0.290

lambda9 0.959 0.960 0.964 1.306 1.451 2.031

lambda10 0.954 0.947 0.948 0.580 -0.435 -0.290

lambda11 0.950 0.947 0.946 0.000 -0.435 -0.580

lambda12 0.946 0.943 0.947 -0.580 -1.016 -0.435

lambda13 0.941 0.936 0.934 -1.306 -2.031 -2.322

lambda14 0.958 0.951 0.960 1.161 0.145 1.451

lambda15 0.942 0.943 0.939 -1.161 -1.016 -1.596

lambda16 0.950 0.949 0.949 0.000 -0.145 -0.145

lambda17 0.944 0.943 0.941 -0.871 -1.016 -1.306

lambda18 0.949 0.950 0.951 -0.145 0.000 0.145

lambda19 0.947 0.946 0.948 -0.435 -0.580 -0.290

lambda20 0.963 0.957 0.962 1.886 1.016 1.741

lambda21 0.955 0.950 0.951 0.725 0.000 0.145

lambda22 0.954 0.951 0.950 0.580 0.145 0.000

lambda23 0.945 0.940 0.944 -0.725 -1.451 -0.871

lambda24 0.946 0.946 0.944 -0.580 -0.580 -0.871

lambda25 0.948 0.940 0.937 -0.290 -1.451 -1.886

lambda26 0.951 0.954 0.953 0.145 0.580 0.435

lambda27 0.947 0.945 0.946 -0.435 -0.725 -0.580

lambda28 0.947 0.946 0.942 -0.435 -0.580 -1.161

lambda29 0.957 0.953 0.952 1.016 0.435 0.290

lambda30 0.948 0.947 0.944 -0.290 -0.435 -0.871

lambda31 0.953 0.948 0.951 0.435 -0.290 0.145

lambda32 0.944 0.941 0.946 -0.871 -1.306 -0.580

lambda33 0.958 0.954 0.955 1.161 0.580 0.725

lambda34 0.947 0.948 0.945 -0.435 -0.290 -0.725

lambda35 0.959 0.954 0.956 1.306 0.580 0.871

lambda36 0.953 0.953 0.951 0.435 0.435 0.145

lambda37 0.942 0.943 0.942 -1.161 -1.016 -1.161

lambda38 0.951 0.949 0.946 0.145 -0.145 -0.580

lambda39 0.963 0.959 0.958 1.886 1.306 1.161

lambda40 0.958 0.954 0.954 1.161 0.580 0.580

lambda41 0.956 0.950 0.949 0.871 0.000 -0.145

lambda42 0.954 0.951 0.952 0.580 0.145 0.290
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Coverage Z-tests

Normal.Theory Sand. Bootstrap Normal.Theory Sand. Bootstrap Sig

lambda43 0.948 0.948 0.945 -0.290 -0.290 -0.725

lambda44 0.957 0.953 0.952 1.016 0.435 0.290

lambda45 0.951 0.948 0.947 0.145 -0.290 -0.435

lambda46 0.951 0.948 0.947 0.145 -0.290 -0.435

lambda47 0.948 0.943 0.945 -0.290 -1.016 -0.725

lambda48 0.949 0.940 0.948 -0.145 -1.451 -0.290

lambda49 0.946 0.945 0.946 -0.580 -0.725 -0.580

lambda50 0.956 0.957 0.957 0.871 1.016 1.016

omega1 0.673 0.932 0.935 -40.191 -2.612 -2.176 *

omega2 0.673 0.945 0.945 -40.191 -0.725 -0.725 *

omega3 0.718 0.941 0.942 -33.662 -1.306 -1.161 *

omega4 0.663 0.925 0.929 -41.642 -3.627 -3.047 *

omega5 0.670 0.946 0.943 -40.627 -0.580 -1.016 *

omega6 0.684 0.948 0.952 -38.595 -0.290 0.290 *

omega7 0.685 0.944 0.943 -38.450 -0.871 -1.016 *

omega8 0.685 0.941 0.939 -38.450 -1.306 -1.596 *

omega9 0.701 0.953 0.949 -36.129 0.435 -0.145 *

omega10 0.690 0.947 0.943 -37.725 -0.435 -1.016 *

omega11 0.670 0.939 0.938 -40.627 -1.596 -1.741 *

omega12 0.686 0.935 0.941 -38.305 -2.176 -1.306 *

omega13 0.697 0.940 0.938 -36.709 -1.451 -1.741 *

omega14 0.674 0.937 0.938 -40.046 -1.886 -1.741 *

omega15 0.697 0.928 0.928 -36.709 -3.192 -3.192 *

omega16 0.658 0.928 0.928 -42.368 -3.192 -3.192 *

omega17 0.691 0.937 0.936 -37.580 -1.886 -2.031 *

omega18 0.680 0.944 0.943 -39.176 -0.871 -1.016 *

omega19 0.674 0.937 0.939 -40.046 -1.886 -1.596 *

omega20 0.690 0.931 0.935 -37.725 -2.757 -2.176 *

omega21 0.699 0.939 0.939 -36.419 -1.596 -1.596 *

omega22 0.680 0.938 0.943 -39.176 -1.741 -1.016 *

omega23 0.655 0.929 0.933 -42.803 -3.047 -2.467 *

omega24 0.687 0.939 0.941 -38.160 -1.596 -1.306 *

omega25 0.664 0.944 0.942 -41.497 -0.871 -1.161 *

omega26 0.652 0.935 0.933 -43.238 -2.176 -2.467 *

omega27 0.678 0.926 0.930 -39.466 -3.482 -2.902 *

omega28 0.665 0.935 0.934 -41.352 -2.176 -2.322 *

omega29 0.676 0.927 0.924 -39.756 -3.337 -3.772 *

omega30 0.672 0.943 0.940 -40.336 -1.016 -1.451 *

omega31 0.673 0.941 0.941 -40.191 -1.306 -1.306 *

omega32 0.695 0.951 0.947 -36.999 0.145 -0.435 *

omega33 0.641 0.926 0.928 -44.834 -3.482 -3.192 *

omega34 0.693 0.948 0.941 -37.289 -0.290 -1.306 *

omega35 0.678 0.945 0.945 -39.466 -0.725 -0.725 *

omega36 0.683 0.947 0.942 -38.740 -0.435 -1.161 *

omega37 0.701 0.944 0.942 -36.129 -0.871 -1.161 *
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Coverage Z-tests

Normal.Theory Sand. Bootstrap Normal.Theory Sand. Bootstrap Sig

omega38 0.673 0.935 0.939 -40.191 -2.176 -1.596 *

omega39 0.680 0.941 0.939 -39.176 -1.306 -1.596 *

omega40 0.673 0.945 0.943 -40.191 -0.725 -1.016 *

omega41 0.689 0.941 0.938 -37.870 -1.306 -1.741 *

omega42 0.695 0.938 0.936 -36.999 -1.741 -2.031 *

omega43 0.641 0.943 0.942 -44.834 -1.016 -1.161 *

omega44 0.661 0.931 0.932 -41.933 -2.757 -2.612 *

omega45 0.695 0.952 0.953 -36.999 0.290 0.435 *

omega46 0.691 0.947 0.950 -37.580 -0.435 0.000 *

omega47 0.678 0.944 0.943 -39.466 -0.871 -1.016 *

omega48 0.690 0.940 0.940 -37.725 -1.451 -1.451 *

omega49 0.685 0.950 0.951 -38.450 0.000 0.145 *

omega50 0.687 0.940 0.941 -38.160 -1.451 -1.306 *

phi 0.832 0.941 0.941 -17.121 -1.306 -1.306 *

∗ At least one z statistic exceeds the Bonferroni critical value of 3.76 for 300 two-sided z-tests of
H0: Coverage = 0.95.

This a success; all the sandwich and bootstrap intervals had acceptable coverage, and
the sample size of 2, 000 is only 500 more than was needed for the comparable but much
smaller Extra Response Variables model (5.9).

Scaled beta base distribution

At this point, we have stopped worrying that the large number of variables in this exam-
ple is going to present special problems. For the non-normal but light-tailed beta base
distribution, we expect normal theory intervals to perform fairly well. When the data
were actually normal, we had good results for the straight-arrow parameters (the factor
loadings) with n = 200, but an n of at least 500 was required for all the variance parame-
ters to have acceptable coverage. Table 5.34 shows results for the scaled beta distribution
with n = 200.

Table 5.34: Coverage of 95% confidence intervals for the “Big
Data” model (5.15), n = 200, Scaled beta base distribution,
1,000 simulated data sets

Coverage Z-tests

Normal.Theory Sand. Bootstrap Normal.Theory Sand. Bootstrap Sig

lambda2 0.956 0.951 0.950 0.871 0.145 0.000

lambda3 0.967 0.952 0.957 2.467 0.290 1.016

lambda4 0.957 0.953 0.959 1.016 0.435 1.306

lambda5 0.953 0.950 0.951 0.435 0.000 0.145

lambda6 0.947 0.944 0.941 -0.435 -0.871 -1.306
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Coverage Z-tests

Normal.Theory Sand. Bootstrap Normal.Theory Sand. Bootstrap Sig

lambda7 0.940 0.935 0.935 -1.451 -2.176 -2.176

lambda8 0.943 0.934 0.940 -1.016 -2.322 -1.451

lambda9 0.959 0.951 0.944 1.306 0.145 -0.871

lambda10 0.956 0.953 0.952 0.871 0.435 0.290

lambda11 0.955 0.950 0.945 0.725 0.000 -0.725

lambda12 0.956 0.950 0.949 0.871 0.000 -0.145

lambda13 0.954 0.949 0.943 0.580 -0.145 -1.016

lambda14 0.951 0.949 0.956 0.145 -0.145 0.871

lambda15 0.941 0.941 0.944 -1.306 -1.306 -0.871

lambda16 0.955 0.947 0.954 0.725 -0.435 0.580

lambda17 0.958 0.952 0.953 1.161 0.290 0.435

lambda18 0.951 0.945 0.949 0.145 -0.725 -0.145

lambda19 0.948 0.948 0.947 -0.290 -0.290 -0.435

lambda20 0.945 0.946 0.944 -0.725 -0.580 -0.871

lambda21 0.947 0.942 0.946 -0.435 -1.161 -0.580

lambda22 0.946 0.952 0.952 -0.580 0.290 0.290

lambda23 0.967 0.955 0.953 2.467 0.725 0.435

lambda24 0.955 0.947 0.945 0.725 -0.435 -0.725

lambda25 0.947 0.943 0.944 -0.435 -1.016 -0.871

lambda26 0.947 0.939 0.943 -0.435 -1.596 -1.016

lambda27 0.956 0.953 0.952 0.871 0.435 0.290

lambda28 0.954 0.946 0.952 0.580 -0.580 0.290

lambda29 0.951 0.945 0.951 0.145 -0.725 0.145

lambda30 0.950 0.942 0.940 0.000 -1.161 -1.451

lambda31 0.953 0.946 0.949 0.435 -0.580 -0.145

lambda32 0.943 0.940 0.950 -1.016 -1.451 0.000

lambda33 0.943 0.936 0.940 -1.016 -2.031 -1.451

lambda34 0.954 0.950 0.953 0.580 0.000 0.435

lambda35 0.944 0.944 0.944 -0.871 -0.871 -0.871

lambda36 0.953 0.951 0.955 0.435 0.145 0.725

lambda37 0.952 0.945 0.949 0.290 -0.725 -0.145

lambda38 0.948 0.943 0.941 -0.290 -1.016 -1.306

lambda39 0.955 0.952 0.952 0.725 0.290 0.290

lambda40 0.965 0.963 0.960 2.176 1.886 1.451

lambda41 0.946 0.942 0.945 -0.580 -1.161 -0.725

lambda42 0.949 0.942 0.951 -0.145 -1.161 0.145

lambda43 0.966 0.962 0.965 2.322 1.741 2.176

lambda44 0.959 0.950 0.958 1.306 0.000 1.161

lambda45 0.938 0.929 0.943 -1.741 -3.047 -1.016

lambda46 0.952 0.949 0.946 0.290 -0.145 -0.580

lambda47 0.951 0.942 0.947 0.145 -1.161 -0.435

lambda48 0.960 0.950 0.956 1.451 0.000 0.871

lambda49 0.964 0.959 0.957 2.031 1.306 1.016

lambda50 0.948 0.946 0.944 -0.290 -0.580 -0.871

omega1 0.930 0.927 0.928 -2.902 -3.337 -3.192
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Coverage Z-tests

Normal.Theory Sand. Bootstrap Normal.Theory Sand. Bootstrap Sig

omega2 0.919 0.921 0.916 -4.498 -4.208 -4.933 *

omega3 0.917 0.920 0.911 -4.788 -4.353 -5.659 *

omega4 0.930 0.932 0.932 -2.902 -2.612 -2.612

omega5 0.921 0.923 0.921 -4.208 -3.918 -4.208 *

omega6 0.928 0.932 0.934 -3.192 -2.612 -2.322

omega7 0.935 0.928 0.927 -2.176 -3.192 -3.337

omega8 0.925 0.924 0.926 -3.627 -3.772 -3.482 *

omega9 0.928 0.926 0.926 -3.192 -3.482 -3.482

omega10 0.926 0.933 0.928 -3.482 -2.467 -3.192

omega11 0.937 0.939 0.937 -1.886 -1.596 -1.886

omega12 0.941 0.942 0.941 -1.306 -1.161 -1.306

omega13 0.933 0.923 0.922 -2.467 -3.918 -4.063 *

omega14 0.930 0.931 0.926 -2.902 -2.757 -3.482

omega15 0.931 0.931 0.934 -2.757 -2.757 -2.322

omega16 0.938 0.936 0.936 -1.741 -2.031 -2.031

omega17 0.929 0.935 0.931 -3.047 -2.176 -2.757

omega18 0.944 0.944 0.938 -0.871 -0.871 -1.741

omega19 0.934 0.942 0.939 -2.322 -1.161 -1.596

omega20 0.946 0.940 0.938 -0.580 -1.451 -1.741

omega21 0.932 0.924 0.928 -2.612 -3.772 -3.192 *

omega22 0.913 0.914 0.911 -5.369 -5.223 -5.659 *

omega23 0.930 0.932 0.934 -2.902 -2.612 -2.322

omega24 0.937 0.940 0.935 -1.886 -1.451 -2.176

omega25 0.941 0.939 0.934 -1.306 -1.596 -2.322

omega26 0.927 0.923 0.913 -3.337 -3.918 -5.369 *

omega27 0.940 0.932 0.933 -1.451 -2.612 -2.467

omega28 0.934 0.935 0.931 -2.322 -2.176 -2.757

omega29 0.938 0.947 0.946 -1.741 -0.435 -0.580

omega30 0.941 0.945 0.944 -1.306 -0.725 -0.871

omega31 0.951 0.952 0.954 0.145 0.290 0.580

omega32 0.926 0.928 0.926 -3.482 -3.192 -3.482

omega33 0.936 0.931 0.927 -2.031 -2.757 -3.337

omega34 0.941 0.939 0.938 -1.306 -1.596 -1.741

omega35 0.926 0.932 0.936 -3.482 -2.612 -2.031

omega36 0.920 0.927 0.926 -4.353 -3.337 -3.482 *

omega37 0.928 0.935 0.935 -3.192 -2.176 -2.176

omega38 0.929 0.923 0.920 -3.047 -3.918 -4.353 *

omega39 0.919 0.927 0.928 -4.498 -3.337 -3.192 *

omega40 0.932 0.930 0.925 -2.612 -2.902 -3.627

omega41 0.941 0.939 0.941 -1.306 -1.596 -1.306

omega42 0.924 0.920 0.918 -3.772 -4.353 -4.643 *

omega43 0.939 0.937 0.938 -1.596 -1.886 -1.741

omega44 0.935 0.933 0.931 -2.176 -2.467 -2.757

omega45 0.916 0.918 0.914 -4.933 -4.643 -5.223 *

omega46 0.922 0.924 0.918 -4.063 -3.772 -4.643 *
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Coverage Z-tests

Normal.Theory Sand. Bootstrap Normal.Theory Sand. Bootstrap Sig

omega47 0.932 0.930 0.926 -2.612 -2.902 -3.482

omega48 0.915 0.920 0.915 -5.078 -4.353 -5.078 *

omega49 0.936 0.933 0.932 -2.031 -2.467 -2.612

omega50 0.937 0.931 0.928 -1.886 -2.757 -3.192

phi 0.956 0.947 0.949 0.871 -0.435 -0.145

∗ At least one z statistic exceeds the Bonferroni critical value of 3.76 for 300 two-sided z-tests of
H0: Coverage = 0.95.

Coverage is okay for all the straight-arrow factor loadings, while the z statistics for fifteen
variance parameters are over the Bonferroni limit. This is similar to what happened with
the normal base distribution; in that case, n = 500 was adequate to take care of the
problem. Table 5.35 contains results for n = 500 with the scaled beta base distribution.

Table 5.35: Coverage of 95% confidence intervals for the “Big
Data” model (5.15), n = 500, Scaled beta base distribution,
1,000 simulated data sets

Coverage Z-tests

Normal.Theory Sand. Bootstrap Normal.Theory Sand. Bootstrap Sig

lambda2 0.952 0.949 0.952 0.290 -0.145 0.290

lambda3 0.948 0.948 0.949 -0.290 -0.290 -0.145

lambda4 0.942 0.942 0.953 -1.161 -1.161 0.435

lambda5 0.945 0.945 0.944 -0.725 -0.725 -0.871

lambda6 0.949 0.945 0.944 -0.145 -0.725 -0.871

lambda7 0.951 0.950 0.950 0.145 0.000 0.000

lambda8 0.955 0.951 0.946 0.725 0.145 -0.580

lambda9 0.934 0.937 0.935 -2.322 -1.886 -2.176

lambda10 0.942 0.944 0.942 -1.161 -0.871 -1.161

lambda11 0.935 0.933 0.939 -2.176 -2.467 -1.596

lambda12 0.955 0.955 0.945 0.725 0.725 -0.725

lambda13 0.958 0.958 0.954 1.161 1.161 0.580

lambda14 0.960 0.958 0.957 1.451 1.161 1.016

lambda15 0.942 0.941 0.937 -1.161 -1.306 -1.886

lambda16 0.947 0.948 0.947 -0.435 -0.290 -0.435

lambda17 0.947 0.941 0.940 -0.435 -1.306 -1.451

lambda18 0.957 0.952 0.950 1.016 0.290 0.000

lambda19 0.950 0.949 0.951 0.000 -0.145 0.145

lambda20 0.948 0.946 0.945 -0.290 -0.580 -0.725

lambda21 0.948 0.944 0.945 -0.290 -0.871 -0.725

lambda22 0.952 0.952 0.951 0.290 0.290 0.145

lambda23 0.947 0.948 0.937 -0.435 -0.290 -1.886

lambda24 0.952 0.956 0.953 0.290 0.871 0.435
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Coverage Z-tests

Normal.Theory Sand. Bootstrap Normal.Theory Sand. Bootstrap Sig

lambda25 0.944 0.945 0.942 -0.871 -0.725 -1.161

lambda26 0.944 0.942 0.941 -0.871 -1.161 -1.306

lambda27 0.956 0.957 0.955 0.871 1.016 0.725

lambda28 0.958 0.952 0.953 1.161 0.290 0.435

lambda29 0.952 0.952 0.946 0.290 0.290 -0.580

lambda30 0.957 0.954 0.958 1.016 0.580 1.161

lambda31 0.952 0.948 0.955 0.290 -0.290 0.725

lambda32 0.945 0.945 0.937 -0.725 -0.725 -1.886

lambda33 0.960 0.958 0.951 1.451 1.161 0.145

lambda34 0.958 0.956 0.955 1.161 0.871 0.725

lambda35 0.965 0.963 0.967 2.176 1.886 2.467

lambda36 0.958 0.951 0.951 1.161 0.145 0.145

lambda37 0.950 0.941 0.941 0.000 -1.306 -1.306

lambda38 0.966 0.958 0.959 2.322 1.161 1.306

lambda39 0.950 0.947 0.950 0.000 -0.435 0.000

lambda40 0.958 0.953 0.957 1.161 0.435 1.016

lambda41 0.953 0.947 0.945 0.435 -0.435 -0.725

lambda42 0.945 0.942 0.946 -0.725 -1.161 -0.580

lambda43 0.946 0.944 0.944 -0.580 -0.871 -0.871

lambda44 0.961 0.958 0.959 1.596 1.161 1.306

lambda45 0.949 0.944 0.944 -0.145 -0.871 -0.871

lambda46 0.963 0.956 0.957 1.886 0.871 1.016

lambda47 0.936 0.938 0.936 -2.031 -1.741 -2.031

lambda48 0.953 0.949 0.948 0.435 -0.145 -0.290

lambda49 0.955 0.951 0.948 0.725 0.145 -0.290

lambda50 0.950 0.943 0.950 0.000 -1.016 0.000

omega1 0.950 0.953 0.950 0.000 0.435 0.000

omega2 0.941 0.942 0.939 -1.306 -1.161 -1.596

omega3 0.937 0.944 0.941 -1.886 -0.871 -1.306

omega4 0.948 0.951 0.952 -0.290 0.145 0.290

omega5 0.936 0.941 0.937 -2.031 -1.306 -1.886

omega6 0.938 0.939 0.938 -1.741 -1.596 -1.741

omega7 0.937 0.936 0.934 -1.886 -2.031 -2.322

omega8 0.937 0.943 0.941 -1.886 -1.016 -1.306

omega9 0.945 0.947 0.952 -0.725 -0.435 0.290

omega10 0.940 0.946 0.947 -1.451 -0.580 -0.435

omega11 0.943 0.947 0.946 -1.016 -0.435 -0.580

omega12 0.933 0.936 0.932 -2.467 -2.031 -2.612

omega13 0.945 0.948 0.951 -0.725 -0.290 0.145

omega14 0.933 0.936 0.940 -2.467 -2.031 -1.451

omega15 0.931 0.937 0.937 -2.757 -1.886 -1.886

omega16 0.935 0.937 0.933 -2.176 -1.886 -2.467

omega17 0.942 0.940 0.938 -1.161 -1.451 -1.741

omega18 0.944 0.950 0.949 -0.871 0.000 -0.145

omega19 0.941 0.947 0.945 -1.306 -0.435 -0.725
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Coverage Z-tests

Normal.Theory Sand. Bootstrap Normal.Theory Sand. Bootstrap Sig

omega20 0.939 0.945 0.945 -1.596 -0.725 -0.725

omega21 0.948 0.955 0.955 -0.290 0.725 0.725

omega22 0.936 0.942 0.943 -2.031 -1.161 -1.016

omega23 0.939 0.947 0.947 -1.596 -0.435 -0.435

omega24 0.931 0.940 0.942 -2.757 -1.451 -1.161

omega25 0.944 0.945 0.949 -0.871 -0.725 -0.145

omega26 0.947 0.951 0.947 -0.435 0.145 -0.435

omega27 0.936 0.946 0.943 -2.031 -0.580 -1.016

omega28 0.928 0.932 0.932 -3.192 -2.612 -2.612

omega29 0.937 0.945 0.947 -1.886 -0.725 -0.435

omega30 0.937 0.938 0.937 -1.886 -1.741 -1.886

omega31 0.936 0.938 0.940 -2.031 -1.741 -1.451

omega32 0.943 0.942 0.940 -1.016 -1.161 -1.451

omega33 0.924 0.930 0.927 -3.772 -2.902 -3.337 *

omega34 0.935 0.946 0.943 -2.176 -0.580 -1.016

omega35 0.925 0.933 0.934 -3.627 -2.467 -2.322

omega36 0.941 0.941 0.946 -1.306 -1.306 -0.580

omega37 0.944 0.945 0.945 -0.871 -0.725 -0.725

omega38 0.938 0.943 0.940 -1.741 -1.016 -1.451

omega39 0.945 0.944 0.941 -0.725 -0.871 -1.306

omega40 0.934 0.940 0.944 -2.322 -1.451 -0.871

omega41 0.940 0.937 0.936 -1.451 -1.886 -2.031

omega42 0.929 0.934 0.934 -3.047 -2.322 -2.322

omega43 0.941 0.948 0.946 -1.306 -0.290 -0.580

omega44 0.940 0.943 0.939 -1.451 -1.016 -1.596

omega45 0.931 0.936 0.929 -2.757 -2.031 -3.047

omega46 0.951 0.950 0.950 0.145 0.000 0.000

omega47 0.937 0.941 0.937 -1.886 -1.306 -1.886

omega48 0.935 0.943 0.940 -2.176 -1.016 -1.451

omega49 0.933 0.939 0.938 -2.467 -1.596 -1.741

omega50 0.931 0.928 0.928 -2.757 -3.192 -3.192

phi 0.942 0.939 0.935 -1.161 -1.596 -2.176

∗ At least one z statistic exceeds the Bonferroni critical value of 3.76 for 300 two-sided z-tests of
H0: Coverage = 0.95.

Again, the coverage for all the factor loadings is fine. Only a single interval for a variance
parameter (normal theory) fails the Bonferroni test. This counts as a success. Robustness
holds for the normal theory standard errors, even for non-normal data and even for vari-
ance parameters, provided the non-normal data do not have much excess kurtosis. The
large number of observed variables has little effect on this finding.
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5.6.6 Secondary analyses and conclusions

We have some conclusions that hold across a good variety of models. Contrary to blanket
claims on both sides [4, 26, 48], normal theory standard errors are sometimes robust,
but not always. When robustness fails, it is for distributions with excess kurtosis —
that is, with heavy tails. In this case, the sandwich and bootstrap standard errors are
robust, but unexpectedly large sample sizes may be needed for the robustness to fully
kick in. Some models require larger sample sizes than others, and it’s hard to predict
when this will happen by just looking at the path diagram. In the simulations of this
chapter, normal theory standard errors performed well for non-normal data, provided the
non-normal distribution was not heavy-tailed.

The Satorra-Bentler principle was consistently supported. Even with heavy-tailed
data, normal theory intervals are robust for straight-arrow parameters as long as the
variance parameters are unrestricted by the model (see the Satorra-Bentler principle for
exact details). A notable example of variance parameters that are restricted by the model
is in a factor analysis model where identifiability is purchased by standardizing the factors.
In this important case, the normal theory standard errors for the factor loadings are not
robust.

The Satorra-Bentler principle does not say anything about robustness for variance and
covariance parameters. Generally, when the distributions are heavy-tailed, normal theory
standard errors are not robust for the variance and covariance parameters. An exception
is for covariances of exogenous variables (including error terms), when the variables in
question are independent, and not just uncorrelated. In this case, the normal theory
standard error is correct regardless of the distribution of the data.

Choosing between robust methods If more than one method is known to be robust
in a particular setting, which one should you use? It is definitely tempting to note
that while normal theory standard errors are robust for some parameters under some
circumstances, the sandwich and bootstrap standard errors are always robust (given the
existence of fourth moments). Is it a good idea to “play it safe,” and just use a method
that’s guaranteed to be robust? Do we ever need the normal theory standard errors?

Since robustness is an n → ∞ property, it is clear that for a given finite sample
size, one robust method could easily perform better than another one. Fortunately, the
simulation studies were designed so that it’s easy to go back and test whether apparent
differences in performance are statistically significant. The code for a simulation produces
a large data file, with one line for each simulation. On each line, there is a zero or a one for
each parameter and each standard error, with one indicating that the confidence interval
covered the true parameter value. The tables of results shown in this chapter are generated
by processing these data files.

The expected values of the zero-one indicators are exactly the coverage probabilities.
Suppose Ii,1 and Ii,2 are indicators for coverage of two competing intervals for simulation i,
with respective true coverage probabilities θ1 and θ2. The difference between the indicators
is a strange discrete random variable taking values −1, 0, 1, but

E (Ii,1 − Ii,2) = E (Ii,1)− E (Ii,2) = θ1 − θ2.
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The Central Limit Theorem assures us that the sample mean of these differences has a
distribution that’s asymptotically normal28, with expected value θ1 − θ2, and a variance
that can easily be estimated from the data without bothering to work out exactly what
it is. The easiest way to proceed is to use R’s t.test function, relying on the robustness
of the one-sample t-test described at the beginning of this chapter. That is, one carries
out elementary matched t-tests on binary data, confidently describing the result as a z
statistic.

The “Big Data” data The testing strategy just described will be the workhorse of
this section, but it would be tedious to apply to the so-called Big Data model, because
there are so many parameters. Fortunately, the lazy choice of a single true value of the
factor loadings and a single true value of the error variances means that there is only one
true coverage probability for the factor loadings λj, and one true coverage probability for
the error variances ωj. Thus, we can take sample means of indicators for the coverage of
all the factor loadings in a given simulation for a given method, and use that number in
a matched t-test.

To show how the analysis goes, consider the data used to generate Table 5.31. That’s
the Big Data model, exponential base distribution and n = 200. Surprisingly to me, all 49
factor loadings have acceptable coverage using normal theory and bootstrap, while the
sandwich missed on only 2/49. It is surprising because the number of parameters is so
large relative to the sample size. The factor loadings are the straight-arrow parameters of
the Satorra-Bentler principle, which is being confirmed here in a big way. However, is it
needed? Are the normal theory intervals significantly better? Note that in the code that
follows, the sandwich estimators are called “Huber.” This is the way I did it initially, and
I did not go back and fix the vocabulary in my code.

First, we read the data.

> rm(list=ls())

> results = read.table("BigDataExpo200-output.txt")

> dim(results)

[1] 1000 300

That’s right. There were one thousand simulated data sets, with one hundred unknown
parameters. For each data set, three confidence intervals were calculated for each param-
eter: normal theory, sandwich and bootstrap. A one was recorded if the interval covered
the parameter, and a zero otherwise. The columns of the results data frame correspond
to 49 λj factor loadings, followed by 50 ωj error variances, and then a single column for
φ = V ar(F ). This is repeated three times, one for normal theory, one for Huber (the
sandwich estimator), and one for the bootstrap.

For each method, we extract the results for the factor loadings, obtaining three 1000×
49 data frames. The apply function is used to calculate the sample mean for each row.

28The “sample size” here is the number of simulations, and it’s guaranteed to be large enough for the
Central Limit Theorem to apply.
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> N = results[,1:49]; H = results[,101:149]; B = results[,201:249]

> Normal = apply(N,1,FUN=mean); Huber = apply(H,1,FUN=mean)

> Boot = apply(B,1,FUN=mean)

Calculating the sample means (of means) yields estimated coverages for the three methods.

> round(apply(cbind(Normal,Huber,Boot),2,FUN=mean),4)

Normal Huber Boot

0.9479 0.9354 0.9399

Coverage of the normal theory intervals looks clearly better. Now carry out three pairwise
tests. First comes normal versus sandwich, and then the other two comparisons.

> options(scipen=999) # To suppress scientific notation for the p-values

> t.test(Normal, Huber , paired=TRUE)

Paired t-test

data: Normal and Huber

t = 9.1919, df = 999, p-value < 0.00000000000000022

alternative hypothesis: true mean difference is not equal to 0

95 percent confidence interval:

0.009887619 0.015255238

sample estimates:

mean difference

0.01257143

> t.test(Normal, Boot , paired=TRUE)

Paired t-test

data: Normal and Boot

t = 3.9275, df = 999, p-value = 0.00009174

alternative hypothesis: true mean difference is not equal to 0

95 percent confidence interval:

0.004033466 0.012088983

sample estimates:

mean difference

0.008061224

> t.test(Huber, Boot , paired=TRUE)

Paired t-test

data: Huber and Boot

t = -3.1902, df = 999, p-value = 0.001466

alternative hypothesis: true mean difference is not equal to 0

95 percent confidence interval:
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-0.007284495 -0.001735913

sample estimates:

mean difference

-0.004510204

This is clear evidence in favour of the normal theory standard errors, at least for this
model, an exponential base distribution and n = 200. Also, the bootstrap does signif-
icantly better than the sandwich. That is, the difference in performance is statistically
significant. The actual difference in empirical coverage, 0.9399 versus 0.9354, is tiny.

There are four more relevant tables for this comparison: Exponential base distribution
with n = 1, 500 (Table 5.32), exponential base distribution with n = 2, 000 (Table 5.33),
Scaled beta with n = 200 (Table 5.34), and scaled beta with n = 500 (Table 5.34). There
is no point in checking simulations where the base distribution really is normal, because
in that case the normal theory methods are guaranteed to be unbeatable.

One might anticipate that at least for the exponential base distribution, the advantage
of the normal theory standard errors would disappear or diminish with larger sample sizes.
Results are summarized in Table 5.36.

Table 5.36: Testing differences in coverage for λj parameters in the “Big Data”
model (5.15)

Base Estimated Coverage Normal vs. Normal vs. Sandwich vs.
Table Distribution n Normal Sandwich Bootstrap Sandwich Bootstrap Bootstrap
5.31 Exponential 200 0.9479 0.9354 0.9399 z = 9.19∗ z = 3.93∗ z = −3.19∗

5.32 Exponential 1500 0.9472 0.9456 0.9460 z = 2.06 z = 1.18 z = −0.66
5.33 Exponential 2000 0.9508 0.9481 0.9481 z = 3.87∗ z = 2.89 z = −0.14
5.34 Beta 200 0.9521 0.9470 0.9489 z = 8.26∗ z = 2.37 z = −1.49
5.35 Beta 500 0.9510 0.9487 0.9482 z = 4.49 z = 2.69 z = 0.57

∗ Greater than Bonferroni critical value of 2.93, correcting for 15 tests.

In Table 5.36, the normal confidence interval has slightly greater coverage than the
sandwich for exponential with n = 2, 000, beta with n = 200 and beta with n = 500. The
differences are statistically significant, but very small, with the estimated normal coverage
slightly above 0.95, whicle the estimated coverage of the sandwich interval is slightly below
0.95. The largest difference is 0.952 for the normal compared to 0.947 for the sandwich.
Furthermore, none of the estimated coverages involved is significantly different from 0.95,
so my conclusion is that for the straight arrow (factor loading) parameters in the Big Data
model, with n = 200 and an exponential base distribution, the normal theory standard
errors performed better than the sandwich and somewhat better than the bootstrap. For
the beta base distribution and larger sample sizes, the three methods performed about
equally well.

Based on just these analyses, it appears that we might want to rely on the normal
theory standard errors for straight-arrow parameters, especially for small to moderate
sample sizes. However, the simulations contain a lot more information on this issue, and
we need to check it before drawing firm conclusions.
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Straight arrow parameters for the other models Our interest here is in whether
the normal theory confidence intervals for parameters covered by the Satorra-Bentler
principle might perform better than the sandwich and bootstrap alternatives. For this
reason, we temporarily set aside the standardized 2-factor model (5.14), where the Satorra-
Bentler principle does not apply because of restrictions on the variances of the factors.
We are left with the following, which is still plenty.

• Extra response variable Model 5.9, parameters β1 and β2

– Exponential base distribution, n = 200 (Table 5.3)

– Exponential base distribution, n = 1, 000 (Table 5.4)

– Exponential base distribution, n = 50 (Table 5.5)

– Beta base distribution, n = 200 (Table 5.6)

– Beta base distribution, n = 50 (Table 5.7)

• Double measurement regression Model 5.5, parameter β

– Exponential base distribution, n = 200 (Table 5.9)

– Exponential base distribution, n = 1, 000 (Table 5.10)

– Exponential base distribution, n = 50 (Table 5.11)

– Beta base distribution, n = 200 (Table 5.12)

• Dip Down path Model 5.10, parameters γ1, γ2 and β

– Exponential base distribution, n = 200 (Table 5.16)

– Exponential base distribution with φ12 = 0, n = 200 (Table 5.17)

– Exponential base distribution, n = 1, 000 (Table 5.19)

– Beta base distribution, n = 200 (Table 5.20)

– Beta base distribution, n = 500 (Table 5.21)

Just counting which empirical coverage comes closest to 0.95 and disregarding ties,
normal theory won 13, the sandwich won 5 and the bootstrap won 9. Be reminded that
in all these comparisons, the data were not normally distributed.

In terms of formal testing, there are 29 target parameters, and three pairwise com-
parisons of methods for each one. That’s a total of 87 non-independent tests. With a
Bonferroni correction, only four comparisons are statistically significant.

• Extra response variable Model 5.9, parameter β2, Exponential base distribution,
and n = 50: Normal was more accurate than Sandwich.
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• Extra response variable Model 5.9, parameter β2, Beta base distribution, and n = 50:
Normal coverage was greater than Sandwich, but there is some ambiguity. The
normal empirical coverage was 0.956, while coverage of the sandwich interval was
0.933. So while the normal coverage is closer to 0.95 than the sandwich coverage and
they are different, the test is not saying that normal is more accurate. Also, none
of the three empirical coverages differed significantly from 0.95 with the Bonferroni
correction for tests on this table.

• Double measurement regression Model 5.5, parameter β, Exponential base distribu-
tion, and n = 50.

– Normal was more accurate than sandwich.

– Bootstrap was more accurate than sandwich.

There is not a lot of evidence for difference in coverage. Where there is evidence, it favours
the normal theory standard errors over the sandwich, for small sample sizes.

It is also instructive to look at the tests that were significant without a Bonferroni
correction, corresponding to z values greater than 1.96 in absolute value. This allows
the examination of trends, without necessarily taking the individual tests too seriously.
Here’s the outcome. Note that all the results are for n ≤ 200.

• Normal beat sandwich four times with n = 50 and three times with n = 200.
Sandwich never beat normal.

• Normal beat bootstrap once with n = 50. Bootstrap beat normal twice with n =
200.

• Sandwich beat bootstrap once with n = 200. Bootstrap beat the sandwich twice
with n = 50 and three times with n = 200.

The conclusion does not change. When the Satorra-Bentler principle applies, normal
theory standard errors are somewhat preferred over the sandwich for smaller sample sizes.
Bootstrap may have a slight edge over the sandwich for small sample sizes, and there is no
convincing evidence of a difference between normal and bootstrap. There is no support
for using classical robust standard errors by default. The use of normal theory standard
errors for regression with measurement error (Chapter 0 is fully justified, since the Satorra-
Bentler principle applies and the tests of interest are all about the regression coefficients,
which are straight-arrow parameters.

Factor loadings in the Standardized Two-factor Model 5.14 This is a special
case, because the factor loadings are straight-arrow parameters, but the Satorra-Bentler
principle does not apply because the variances of the factors are restricted (to equal one).
There are siz x relevant parameters, λ1, . . . , λ6, assessed in five tables where the bases
distribution was not normal. Within each table, I’ll conduct 6×3 = 18 pairwise tests and
apply a Bonferroni correction. Here are the results.
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• Table 5.24 is for an exponential base distribution with n = 200. There is significant
under-coverage for all six factor loadings with all three methods. For each parameter,
coverage of the sandwich and bootstrap intervals was significantly better (less bad)
than coverage of the normal theory interval.

• Table 5.26 is another table for the exponential base distribution with n = 200. In
this run, the two factors were independent. This did not affect the results. Again, all
the methods suffered from significant under-coverage; the sandwich and bootstrap
intervals were more accurate than normal theory for all the factor loadings, and not
significantly different from each other.

• Table 5.25 is for an exponential base distribution with n = 1, 000. With this sample
size, only the normal theory intervals had significant under-coverage. The sand-
wich and bootstrap intervals were more accurate than normal theory for all factor
loadings, and not significantly different from each other.

• Table 5.27 is for a scaled beta base distribution with n = 200. For this distribution,
coverage was acceptable for all the factor loadings, for all three confidence intervals.
With the Bonferroni correction for 18 tests, the normal theory interval had better
coverage than the sandwich interval for one of the (indistinguishable) parameters:
λ6.

• Table 5.28 is for a scaled beta base distribution with n = 500. Coverage for all the
factor loadings was acceptable, and there were no significant differences in coverage
between methods.

The conclusion is that for a heavy-tailed distribution when the the Satorra-Bentler prin-
ciple does not apply, normal theory standard errors are clearly too small. The sandwich
and bootstrap standard errors are definitely better, and neither of them is better than the
other. For a light-tailed non-normal distribution, all three methods are okay and there is
no clear evidence of any difference in quality.

Another special case: Independent exogenous variables When exogenous vari-
ables are independent, it appears that normal theory standard errors perform well regard-
less of the distribution of the data. Is it actually better to use the normal theory standard
errors in this case, or would the robust and bootstrap standard errors work just as well?
The simulations include several examples where significance tests should be informative.

• For the double measurement regression model (5.5), there is a covariance of ω13

between the measurement errors e1 and e3, and a covariance of ω24 between the
measurement errors e2 and e4. In the simulations, ω13 = 1, while ω24 was set to
zero for no particular reason — and the zero covariance was implemented the easy
way, by making e2 and e4 independent. The surprisingly good performance of the
normal theory intervals for ω24 compared to their dismal failure for ω13 is what led
me to the general principle.
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Anyway, there are four tables with non-normal data where coverage of the three
intervals for ω24 can be compared: Table 5.9 (exponential base distribution, n =
200), Table 5.10 (exponential, n = 1, 000), Table 5.11 (exponential, n = 50), and
Table 5.12 (scaled beta distribution, n = 200).

• For the Dip Down Path model (5.10), there is one variation (Table 5.17, exponential
with n = 200), in which the two observable exogenous variables are independent,
and we can assess coverage of the parameter φ12 = 0.

• In the Standardized two-factor model (5.14), there is a variation (Table 5.26, ex-
ponential with n = 200) where the factors are independent, and coverage of the
correlation between factors φ12 = 0 can be compared.

With a Bonferroni correction for the 6×3 = 18 pairwise comparisons, the only significant
differences were

• For the Dip Down Path model with Cov(x1, x2) = φ12 = 0 because x1 and x2 were
independent, the normal theory interval (coverage = 0.951) and sandwich interval
(coverage = 0.938) both did significantly better than the bootstrap (coverage =
0.922).

• For the standardized Two-Factor model with Corr(F1, F2) = φ12 = 0 because F1

and F2 were independent, the bootstrap coverage of 0.933 was significantly better
than the sandwich’s 0.917.

In short, the performance of the normal theory standard errors was quite good when the
variables involved were independent, but not significantly better than the other methods.

Yet another special case: Reliabilities For the Extra Response Variable Regression
model (5.9), the tables (5.2 through 5.7) include empirical coverage for three reliabilities,
which are functions of the other parameters. The reliability of w is φ

φ+ω
, the reliability of

y1 is
β2
1φ

β2
1φ+ψ1

, and the reliability of y2 is
β2
2φ

β2
2φ+ψ2

. These quantities depend on straight-arrow

parameters as well as variance parameters, so they are a sort of hybrid.
For the exponential base distribution (tables 5.3, 5.4 and 5.5), the normal theory

standard errors are clearly not robust, and we only want to know whether the sandwich
or bootstrap intervals have better coverage. That’s nine tests, one for each reliability in
each table. For the beta base distribution (tables 5.6 and 5.7), the normal theory standard
errors enjoy some robustness, and all three pairwise comparisons are of interest. That’s
three pairwise comparisons for three reliabilities in two tables — a total of 18 more tests.
In all, there are 27 tests, to which a Bonferroni correction will be applied. For a joint
significance level of 0.05, the Bonferroni critical value of z is 3.11 rather than 1.96.

With the Bonferroni correction, the significant comparisons were

• Exponential base distribution, n = 200: Reliability of y2. Bootstrap better than
Sandwich (z = −4.143)
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• Exponential base distribution, n = 50: Reliability of w. Bootstrap better than
Sandwich (z = −7.619)

• Exponential base distribution, n = 50: Reliability of y1. Bootstrap better than
Sandwich (z = −7.839)

• Exponential base distribution, n = 50: Reliability of y2. Bootstrap better than
Sandwich (z = −8.183)

• Beta base distribution, n = 50: Reliability of w. Bootstrap better than Sandwich
(z = −4.468)

• Beta base distribution, n = 50: Reliability of y1. Bootstrap better than Sandwich
(z = −4.359)

• Beta base distribution, n = 50: Reliability of y2. Bootstrap better than Sandwich
(z = −4.308)

The conclusion is that for these reliabilities, problems with the normal theory standard
errors are limited to heavy-tailed distribution, and that the bootstrap has a clear ad-
vantage over the sandwich for smaller samples, even when the non-normal data are not
heavy-tailed.

Variance and covariance parameters

We will start with the Big Data model (5.15). The error variance parameters ωj are all
equal to one another (the true value is one). We will adopt the same analysis strategy
leading to Table 5.36, except that since the normal theory standard errors are clearly not
robust for the heavy-tailed exponential base distribution (see Tables 5.31 through 5.33),
they are excluded from Table 5.37. For a heavy-tailed distribution the contest is between
the sandwich and the bootstrap.

Table 5.37: Testing differences in coverage for ωj parameters in the “Big Data”
model (5.15)

Base Estimated Coverage Normal vs. Normal vs. Sandwich vs.
Table Distribution n Normal Sandwich Bootstrap Sandwich Bootstrap Bootstrap
5.31 Exponential 200 0.6774 0.8820 0.8852 z = −6.37∗

5.32 Exponential 1500 0.6827 0.9369 0.9376 z = −1.69
5.33 Exponential 2000 0.6798 0.9396 0.9395 z = 0.26
5.34 Beta 200 0.9312 0.9314 0.9295 z = −0.28 z = 2.57 z = 4.21∗

5.35 Beta 500 0.9382 0.9421 0.9413 z = −7.97∗ z = −5.69∗ z = 1.83

∗ Greater than Bonferroni critical value of 2.77, correcting for 9 tests.

For the exponential with n = 200 in Table 5.37, coverage is very poor for both the
sandwich and the bootstrap, but it’s a trifle (and significantly) better for the bootstrap.
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With adequate sample size, there is no difference, though of course both the bootstrap
and sandwich beat the normal theory method. With n = 200 and the beta distribution,
the sandwich beats the bootstrap by a bit, though neither one is awful, and normal theory
is okay for this base distribution. With a larger sample size, the performance of both the
sandwich and bootstrap improves, while normal theory does not improve and is beaten
by both the sandwich and bootstrap.

The conclusion is that in this setting, the sandwich and the bootstrap both show an
advantage over normal theory even for a light-tailed distribution, and there are not any
real grounds for choosing between the sandwich and the bootstrap.

The rest of the variance and covariance parameters The last job in this section is
to consider variance and covariance parameters for the other models, excluding covariances
that equal zero because the exogenous variables involved are independent. There are a
lot of these parameters, because they appear in multiple tables. Here’s the strategy. One
model will be treated at a time, Bonferroni-correcting all the comparisons (from multiple
tables) for a given model. It’s clear from results already reported that normal theory
standard errors for variance (and most covariance) parameters are not robust for the
exponential base distribution, so in these cases we’ll just compare the classical robust
methods to the bootstrap. Because this is a study of robustness, no comparisons will be
carried out for normal data.

Extra Response Variable Regression model (5.9) The variance parameters are φ, ω, ψ1

and ψ2. The source tables are Table 5.3 (exponential base distribution, n = 200), Table 5.4
(exponential base distribution, n = 1, 000), Table 5.5 (exponential base distribution,
n = 50), Table 5.6 (beta base distribution, n = 200) and Table 5.7 (beta base distribution,
n = 50). Twelve tests (just the sandwich versus bootstrap) were carried out for the
exponential data, and twenty-four pairwise comparisons for the data based on a scaled
beta distribution.

Bonferroni-correcting for 36 tests, the only significant comparisons were for the beta
distribution with n = 50, where coverage of the normal theory interval was better than
the bootstrap for ω (z = 3.288), ψ1 (z = 3.860) and ψ2 (z = 4.034).

Double Measurement Regression model (5.5) The parameter ω24 = Cov(e2, e4) was
covered earlier as a special case; its value was zero because e2 and e4 were independent.
The parameters used in this analysis are the variances φ, ψ, ω11, ω22, ω33, ω44 and the
non-zero covariance ω13. The source tables are Table 5.9 (exponential base distribution,
n = 200), Table 5.10 (exponential base distribution, n = 1, 000), Table 5.11 (exponential
base distribution, n = 50) and Table 5.12 (beta base distribution, n = 200). Twenty-one
tests (sandwich versus bootstrap, seven parameters in three tables) were carried out for
the exponential data, and twenty-one pairwise comparisons in the single table for the
beta.

Bonferroni-correcting for 42 tests, only one null hypothesis was rejected. For the
exponential base distribution with n = 50 coverage of ψ was better for the sandwich than
for the bootstrap (z = 4.48).
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Dip Down Path model (5.10) The variance parameters are φ11, φ22, ψ1, ψ2 and
V ar(e) = ω. The covariance parameter φ12 = Cov(x1, x2) is also included, except for the
data of Table 5.17, where x1 and x2 are independent. The source tables are Table 5.16 (ex-
ponential base distribution, n = 200), Table 5.17 (exponential base distribution, n = 200
with φ12 = 0), Table 5.19 (exponential base distribution, n = 1, 000), Table 5.20 (beta
base distribution, n = 200) and Table 5.21 (beta base distribution, n = 500).

The covariance parameter φ12 = Cov(x1, x2) = 0 is excluded for the data of Table 5.17.
Thus, when the base distribution is exponential there are six parameters for two tables
and five parameters for one table. Comparing just the sandwich and bootstrap coverage
for these parameters gives 12+5=17 tests. For each of the two tables with a beta base
distribution, there are three pairwise comparisons of methods for six parameters. That’s
another 36 tests.

With a Bonferroni correction for the 53 tests, three comparisons were significant. For
the exponential base distribution with n = 200 coverage of ω was better for the sandwich
than for the bootstrap (z = 3.52). For the exponential base distribution with n = 200
with phi12 = 0, the bootstrap did better than the sandwich for ψ1 (z = −4.80), and worse
for ω (z = 7.597).

Standardized Two-factor model (5.14) The variance parameters are ω1 through ω6, and
there is also a covariance parameter φ12 = Cov(F1, F2), which is included except when the
factors are independent. The source tables are Table 5.24 (exponential base distribution,
n = 200), Table 5.25 (exponential base distribution, n = 1, 000), Table 5.26 (exponential
base distribution, n = 200 with φ12 = 0), Table 5.27 (beta base distribution, n = 200)
and Table 5.28 (beta base distribution, n = 500).

The covariance parameter φ12 = 0 = Cov(F1, F2) is excluded for the data of Table 5.26.
This means that when the base distribution is exponential and the normal theory standard
error is definitely not robust (except for φ12) when the factors are independent), there
are seven parameters for two tables and six parameters for one table, for a total of 20
comparisons. For the beta base distribution, there are two tables with seven parameters,
and three pairwise comparisons for each parameter. That’s an additional 42 comparisons.

With a Bonferroni correction for the 62 tests, there were only two significant compar-
isons. With the exponential base distribution and n = 200 (Table!5.24), coverage of φ12

was better for the bootstrap than for the sandwich. In the other exponential table with
n = 200, this time with independent factors (Table 5.26), the sandwich did better than
the bootstrap for ω5.

Big Data model (5.15) Just for φ = V ar(F ), there are three comparisons of the
sandwich to the bootstrap in Tables 5.31, 5.32 and 5.33, and six pairwise comparisons
in Tables 5.34 and 5.35. With a Bonferroni correction for the 9 tests, there were no
significant differences.
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5.7 Tests of Fit

Normal theory likelihood ratio test The covariance matrix of the observable vari-
ables as a function of the model parameters is written Σ = Σ(θ). The default test of fit for
a structural equation model is the likelihood ratio test statistic comparing the likelihood
at Σ = Σ(θ̂) to the likelihood at the unrestricted estimate Σ̂. Repeating Expression 1.18
from page 171, the test statistic is

G2 = −2 log
L
(
Σ(θ̂)

)
L(Σ̂)

= n
(
tr(Σ̂Σ(θ̂)−1)− log |Σ̂Σ(θ̂)−1| − k

)
.

With r parameters and k observed variables, there are m = k(k + 1)/2 unique variances
and covariances. If the model is correct, the parameters are identifiable, m > r and
the data are multivariate normal, G2 has a limiting chi-squared distribution with m − r
degrees of freedom.

Satorra and Bentler’s mean-corrected statistic Suppose that the data are not
multivariate normal, but the model is correct and the parmeters identifiable with m > r.
In this case, asymptotic distribution of the G2 statistic is not necessarily chi-squared.
Instead, it’s a weighted sum of independent chi-squares:

G2 ≈
m−r∑
j=1

ajtj,

where the weights a1, . . . , am−r are constants, and t1, . . . , tm−r are independent chi-squared
random variables with one degree of freedom. Naturally, if all the weights equal one or
converge to one, then asymptotically, G2 ∼ χ2(m− r) as in the normal case. Otherwise,
the large-sample distribution of G2 is something nameless that is not chi-squared.

Recall that the expected value of a chi-squared random variable equals its degrees of
freedom, so that if the data are normal, E(G2) ≈ m− r. If the data are not normal,

E(G2) =
m−r∑
j=1

ajE(tj) =
m−r∑
j=1

aj.

Especially if the aj constants trend to be bigger than one, the expected value of G2 would
be too large, and one would expect the null hypothesis of model correctness to be rejected
too often. In any case, the chi-squared approximation to G2 should be better if at least
it had the right expected value.

In a different paper from the one on robust standard errors [54], Satorra and Bentler [55]
observe that the constants a1, . . . , am−r are the non-zero eigenvalues of the matrix U0L,
where
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• The matrix L (Satorra and Bentler call it Γ) is the asymptotic covariance matrix of√
n(σ̂n − σ) — see Theorem A.1. Recall that σ = vech(Σ) and σ̂n = vech(Σ̂n).

• U0 = W −∆
(
∆>W∆

)−1
∆>W.

• ∆ =
[
∂σi(θ)
∂θj

]
θ=θ0

, where θ0 is the vector of true parameter values.

The matrix W is a very special weight matrix, as in the weighted least squares estima-
tor (5.1). There is a complicated formula for W that will not be given here; see [55]
and other sources including a 1974 paper by Browne [12]. This particular weight matrix
yields a least-squares estimate that is asymptotically equivalent to the MLE. It has the
remarkable property that as n → ∞, the probability that the associated least-squares
estimator is equal to the MLE goes to one.

Let c = tr(U0L)
m−r . Because the trace is the sum of eigenvalues, E(G2/c) = m − r,

the correct expected value if G2 has a chi-squared distribution. Because U0 and L are
functions of the unknown parameter vector θ0, Satorra and Bentler propose using ĉ =
tr(Û0L̂)
m−r , where the estimation is mostly accomplished by evaluating U0 and L (which are

functions of the true parameter θ0) at the MLE, θ̂n. The crucial matrix L also contains
some third and fourth-order moments, which can be consistently estimated by the method
of moments. The result is the mean-corrected fit statistic

G2
m =

G2

ĉ
. (5.16)

In lavaan, this is produced by test = "satorra.bentler"

The mean and variance-corrected fit statistic The variance of a chi-squared ran-
dom variable equals twice the degrees of freedom, and it is possible to correct G2 ≈∑m−r

j=1 ajtj so that the expected value goes to m − r and at the same time, the vari-
ance goes to 2(m − r). Satorra and Bentler [55] took a stab at it and came up with
a statistic having fractional degrees of freedom (essentially a Satterthwaite correction).
Rosseel [56] (the creator of lavaan) endorses a later, more refined version in a 2010 paper
by Asparouhov and Muthén [1]. They propose a mean and variance-corrected statistic

G2
mv =

1

â
G2 + b̂, (5.17)

where a =
√
tr ((U0L)2) /(m− r) and b = (m − r)

(
1− c

a

)
. The G2

mv statistic has an
expected value of approximately m − r, and a variance of approximately 2(m − r). In
lavaan, G2

mv is produced by test = "scaled.shifted".

Bootstrap uh

5.8 Tests of general hypotheses



Chapter 6

Parameter Identifiability: The
Algebra of the Knowable

When
, and is called an over-identifying restriction. Such constraints arise whenever there

are more identifying equations than unknowns. Even non-identified models may imply
constraints — testable constraints — on the covariance matrix. This is an interesting
side-issue we shall not pursue here. At any rate, an identifiable parameter in a model
with more moment structure equations than unknowns is called over-identifiable or over-
identified.

When there is more than one way to do it as in this example, the parameter is called
over-identifiable. If there were the same number of equations and unknown parameters
(with a unique solution), the parameter vector would be called just identifiable. When
the parameter vector is just identifiable, the model is called saturated.
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Chapter 7

Assessing Model Correctness

The LR test for goodness of fit is valid when the parameters are identifiable; here’s why. If
there are more covariance structure equations than model parameters, the model imposes
a set of non-linear equality constraints on the elements of Sigma, functions of Sigma that
are zero if the model is true. The LR test for goodness of fit is testing the null hypothesis
that these constraints hold. But Wilks’ (1938?) proof of the large-sample distribution
of the test statistic applies to linear null hypotheses. Is there a problem? No. Since
we have identifiability, the model parameters together with the functions form a 1-1 re-
parameterization of the elements of Sigma. By the invariance principle, the test of the
non-linear null hypothesis in the original moment space is the same as the test of a linear
null hypothesis in the in the new space.
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Chapter 8

Gröbner Basis

Most proofs of identifiability for structural equation models consist of solving systems of
covariance structure equations, or somehow showing that a unique solution exists. These
equations take the form of polynomials set to zero, or at worst ratios of polynomials set
to zero. So, it makes sense to take a look at the mathematical state of the art for solving
systems of polynomial equations. That state of the art is represented by the theory and
technology of Gröbner Basis.

I am fairly sure that Min Lim [43] was the first to apply Gröbner basis technology
to covariance structure equations, in her 2010 Ph.D. thesis at the University of Toronto.
Others have followed and gotten credit for it. Her work remains unpublished.

The story begins with what I still call Christine’s Theorem1. I had the privilege to
be Min’s thesis supervisor, and after a series of conversations, I did the traditional thing,
and said “Here, go prove this.” Here’s what I asked her to show.

Theorem 8.1 (Christine’s Theorem) A system of covariance structure equations has
either finitely many real solutions, or uncountably many.

That is, if there are infinitely many solutions, they are uncountable. A countable infinity
is ruled out. To me, this seems “obvious,” though I don’t know how to prove it2. Christine
never proved it either, but she went away and came back with Gröbner Basis.

1At the time, Min called herself Christine. As a brilliant undergraduate, she was Min Lim. As a
graduate student, she was Christine. When she finished her thesis, she became Min again.

2The intuition is this. Geometrically, the polynomials involved are curvy surfaces in Rt+1, where t is
the number of parameters. Their intersection is another curvy surface. The set of parameter values for
which all the polynomials equal zero is the intersection of the curvy intersection surface with the plane
θ1, . . . , θt, 0. To have a countable infinity of solutions, the intersection surface would need to be tangent
to that plane at countably many points. But these are polynomials, and they only have finitely many
bends. It’s impossible: QED. Well, I’m sort of convinced, but it’s not a proof. Maybe this is well known
in some circles, or just a homework problem. Unfortunately, I don’t move in those circles.
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Categorical data
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Appendix A

Review and Background Material

A.1 Expected Value, Variance and Covariance (Re-

view)

Expected Value Let X be a random variable. If X is continuous, the expected value
is defined as

E(X) =

∫ ∞
−∞

x f
X

(x) dx.

If X is discrete, the formula is

E(X) =
∑
x

x p
X

(x).

Conditional expectation uses these same formulas, only with conditional densities or prob-
ability mass functions.

Let Y = g(X). The change of variables formula (a very big Theorem1) tells us

E(Y ) =

∫ ∞
−∞

y f
Y

(y) dy =

∫ ∞
−∞

g(x) f
X

(x) dx (A.1)

or, for discrete random variables

E(Y ) =
∑
y

y p
Y

(y) =
∑
x

g(x) p
X

(x).

One useful function g(x) is the indicator function for a set A. IA(x) = 1 if x ∈ A,
and IA(x) = 0 if x /∈ A. The expected value of an indicator function is just a probability

1The change of variables formula holds under very general circumstances; see for example Theorem
16.12 in Billingsley’s Probability and measure [8]. It is extremely convenient and easy to apply, because
there is no need to derive the probability distribution of Y . So for example the sets of values where
fX(x) 6= 0 and fY (y) 6= 0 (and therefore the regions over which you are integrating in expression (A.1))
may be different and you don’t have to think about it. Furthermore, the function g(x) is almost arbitrary.
In particular, it need not be differentiable, a condition you would need if you tried to prove anything for
the continuous case with ordinary calculus.
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because, for discrete random variables,

E(IA(X)) =
∑
x

IA(x) p
X

(x) =
∑
x∈A

p
X

(x) = P (X ∈ A).

For continuous random variables, something similar happens; multiplication by IA(x)
erases the density for x /∈ A, and integration of the product from zero to infinity is just
integration over the set A, yielding P (X ∈ A).

Another useful function is a conditional expectation. If we write the conditional den-
sity

f
Y |X (y|X) =

f
X,Y

(X, y)

f
X

(X)

with the capital letter X, we really mean it. X is a random variable, not a constant, and
for any fixed y, the conditional density is a random variable. The conditional expected
value is another random variable g(x):

E(Y |X) =

∫ ∞
−∞

y f
Y |X (y|X) dy.

This may be a strange-looking function, but still it is a function, and one can take its
expected value using the change of variables formula A.1.

E(E(Y |X)) =

∫ ∞
−∞

g(x) f
X

(x) dx =

∫ ∞
−∞

E(Y |x) f
X

(x) dx.

Provided |E(Y )| < ∞, order of integration or summation may be exchanged2, and we
have the double expectation formula:

E(Y ) = E(E(Y |X)).

You will prove a slightly more general and useful version as an exercise.
The change of variables formula (A.1) still holds if x is a vector, or even if both x

and y are vectors, and integration or summation is replaced by multiple integration or
summation. So, for example if x = (X1, X2)> has joint density fx(x) = f

X1,X2
(x1, x2) and

g(x1, x2) = a1x1 + a2x2,

E(a1X1 + a2X2) =

∫ ∞
−∞

∫ ∞
−∞

(a1x1 + a2x2)f
X1,X2

(x1, x2) dx1dx2

= a1

∫ ∞
−∞

∫ ∞
−∞

x1fX1,X2
(x1, x2) dx1dx2 + a2

∫ ∞
−∞

∫ ∞
−∞

x2fX1,X2
(x1, x2) dx1dx2

= a1E(X1) + a2E(X2).

Using this approach, it is easy to establish the linearity of expected value

E

(
m∑
j=1

ajXj

)
=

m∑
j=1

ajE(Xj) (A.2)

2By Fubini’s Theorem. Again, Billingsley’s Probability and measure [8] is a good source.
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and other familiar properties.
The change of variables formula holds if the function of the random vector is just one

of the variables. So, for example, since g(x1, x2, . . . xp) = x3 is one possible function of
x1, x2, . . . xp, ∫

· · ·
∫
x3 f(x) dx =

∫
· · ·
∫
x3 f(x1, . . . xp) dx1 · · · dxp

= E(X3).

Variance and Covariance Denote E(X) by µ
X

. The variance of X is defined as

V ar(X) = E[(X − µ
X

)2],

and the covariance of X and Y is defined as

Cov(X, Y ) = E[(X − µ
X

)(Y − µ
Y

)].

It is sometimes useful to say that V ar(X) = Cov(X,X).
The correlation between X and Y is

Corr(X, Y ) =
Cov(X, Y )√
V ar(X)V ar(Y )

. (A.3)

Linear combinations Let X1, . . . , Xn1 and Y1, . . . , Yn2 be random variables, and define
the linear combinations L1 and L2 by

L1 = a1X1 + · · ·+ an1Xn1 =

n1∑
i=1

aiXi, and

L2 = b1Y1 + · · ·+ bn2Yn2 =

n2∑
i=1

biYi,

where the aj and bj are constants. Then

cov(L1, L2) =

n1∑
i=1

n2∑
j=1

aibjCov(Xi, Yj). (A.4)

The proof of this useful result is left as an exercise. It says, for example, that

Cov(X1, β1X1 + β2X2 + ε) = β1Cov(X1, X1) + β2Cov(X1, X2) + Cov(X1, ε)

= β1V ar(X1) + β2Cov(X1, X2) + 0,

assuming explanatory variables to be uncorrelated with error terms.
As the example suggests, usually the linear combinations are regression equations or

regression-like equations. In words, (A.4) says that you just calculate the covariance of
each term in L1 with each term in L2, and add. If the random variables are multiplied
by coefficients, multiply each covariance by a product of coefficients.
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Exercises A.1

A.1.1) Let P{X = x} = x
10

for x = 1, 2, 3, 4.

(a) Find E(X). Show your work. My answer is 3.

(b) Find E(X2). Show your work. My answer is 10.

(c) Find V ar(X). Show your work. My answer is 1.

2. The random variable x is uniformly distributed on the integers {−3,−2,−1, 0, 1, 2, 3},
meaning P (x = −1) = P (x = −2) = · · · = P (x = 3) = 1

7
. Let y = x2.

(a) What is E(x)? The answer is a number. Show your work.

(b) Calculate the variance of x. The answer is a number. Show your work.

(c) What is P (y = −1)?

(d) What is P (y = 9)?

(e) What is the probability distribution of y? Give the y values with their proba-
bilities.

(f) What is E(y)? The answer is a number. Did you already do this question?

3. The discrete random variables x and y have joint distribution

x = 1 x = 2 x = 3
y = 1 2/12 3/12 1/12
y = 2 2/12 1/12 3/12

(a) What is the marginal distribution of x? List the values with their probabilities.

(b) What is the marginal distribution of y? List the values with their probabilities.

(c) Are x and y independent? Answer Yes or No and show some work.

(d) Calculate E(x). Show your work.

(e) Denote a “centered” version of x by xc = x− E(x) = x− µx .
i. What is the probability distribution of xc? Give the values with their

probabilities.

ii. What is E(xc)? Show your work.

iii. What is the probability distribution of x2
c? Give the values with their

probabilities.

iv. What is E(x2
c)? Show your work.

(f) What is V ar(x)? If you have been paying attention, you don’t have to show
any work.

(g) Calculate E(y). Show your work.

(h) Calculate V ar(y). Show your work. You may use Question ?? if you wish.
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(i) Calculate Cov(x, y). Show your work. You may use Question ?? if you wish.

(j) Let Z1 = g1(x, y) = x + y. What is the probability distribution of Z1? Show
some work.

(k) Calculate E(Z1). Show your work.

(l) Do we have E(x+ y) = E(x) +E(y)? Answer yes or No. Note that the answer
does not require independence.

(m) Let Z2 = g2(x, y) = xy. What is the probability distribution of Z2? List the
values with their probabilities. Show some work.

(n) Calculate E(Z2). Show your work.

(o) Do we have E(xy) = E(x)E(y)? Answer yes or No. The connection to inde-
pendence is established in Question ??.

4. Here is another joint distribution. The point of this question is that you can have
zero covariance without independence.

x = 1 x = 2 x = 3
y = 1 3/12 1/12 3/12
y = 2 1/12 3/12 1/12

(a) Calculate Cov(x, y). Show your work. You may use Question ?? if you wish.

(b) Are x and y independent? Answer Yes or No and show some work.

A.1.5) Let X ∼ U(0, θ), meaning for f(x) = 1
θ

for 0 < x < θ, and zero otherwise.

(a) Find E(X). Show your work. My answer is θ
2
.

(b) Find E(X2). Show your work. My answer is θ2

3
.

(c) Find V ar(X). Show your work. My answer is θ2

12
.

A.1.6) Let a be a constant and let X be a random variable, either continuous or discrete
(you choose). Use the change of variables formula (A.1) to show that E(a) = a.

A.1.7) Use the change of variables formula to prove the linear property given in expres-
sion (A.2). If you assume independence, you get a zero.

A.1.8) Let X and Y be discrete random variables, with E(|h(X)|) < ∞. Use the change
of variables formula to prove E(h(X)) = E[E(h(X)|Y )]. Because E(|h(X)|) < ∞,
Fubini’s Theorem says that you are free to exchange order of summation. Is the
result of this problem also true for continuous random variables? Why or why not?

A.1.9) Let X and Y be continuous random variables. Prove

P (X ∈ A) =

∫ ∞
−∞

P (X ∈ A|Y = y) f
Y

(y) dy.

This is sometimes called the Law of Total Probability. Is it also true for discrete
random variables? Why or why not? Hint: use indicator functions.
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A.1.10) Let X and Y be continuous random variables. Prove that if X and Y are indepen-
dent, E(XY ) = E(X)E(Y ). Draw an arrow to the place in your answer where you
use independence, and write “This is where I use independence.”

A.1.11) Let X and Y be discrete random variables. Prove that if X and Y are independent,
E(XY ) = E(X)E(Y ). Draw an arrow to the place in your answer where you use
independence, and write “This is where I use independence.”

A.1.12) Let P (X = 0) = 1
2

and P (X = −1) = P (X = 1) = 1
2
, and let Y = X2.

(a) Find Cov(X, Y ).

(b) Are X and Y independent? Answer Yes or No and prove your answer.

(c) Does zero covariance necessarily imply independence? Answer Yes or No.

Below the line, please use only expected value signs, not integrals or summation.

A.1.13) Show that Cov[X, Y ] = E[XY ]− µ
X
µ
Y

.

A.1.14) Show that if the random variables X and Y are independent, Cov(X, Y ) = 0.

A.1.15) Show that V ar(X) = E[X2]− µ2
X

.

A.1.16) In the following, X and Y are random variables, while a and b are fixed constants.
For each pair of statements below, one is true and one is false (that is, not true
in general). State which one is true, and prove it. Zero marks if you prove both
statements are true, even if one of the proofs is correct.

(a) V ar(aX) = aV ar(X), or V ar(aX) = a2V ar(X).

(b) V ar(aX + b) = a2V ar(X) + b2, or V ar(aX + b) = a2V ar(X).

(c) V ar(a) = 0, or V ar(a) = a2.

(d) Cov(aX, bY ) = abCov(X, Y ), or Cov(aX, bY ) = a2V ar(X) + b2V ar(Y ) +
2abCov(X, Y ).

(e) Cov(X + a, Y + b) = Cov(X, Y ) + ab, or Cov(X + a, Y + b) = Cov(X, Y ).

(f) V ar(aX + bY ) = a2V ar(X) + b2V ar(Y ), or V ar(aX + bY ) = a2V ar(X) +
b2V ar(Y ) + 2abCov(X, Y ).

A.1.17) Let X and Y be random variables with Cov(X, Y ) = σxy, while a and b are fixed
constants.

(a) Find Cov(X + a, Y + b)

(b) Find Cov(aX, bY ).

A.1.18) Let Y1, . . . , Yn be numbers, and Y = 1
n

∑n
i=1 Yi. Show
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(a)
∑n

i=1(Yi − Y ) = 0

(b)
∑n

i=1(Yi − Y )2 =
∑n

i=1 Y
2
i − nY

2

(c) The sum of squares Qm =
∑n

i=1(Yi −m)2 is minimized when m = Y .

A.1.19) Let X1, . . . , Xn be random variables, let a1, . . . , an be constants, and let Y =∑n
i=1 aiXi. Derive a general formula for V ar(Y ). Show your work. Now give

the useful special case that applies when X1, . . . , Xn are independent.

A.1.20) Let X1, . . . , Xn be independent and identically distributed random variables (the
standard model of a random sample with replacement). Denoting E(Xi) by µ and
V ar(Xi) by σ2,

(a) Show E(X) = µ; that is, the sample mean is unbiased for µ.

(b) Find V ar(X).

(c) Letting S2 = 1
n−1

∑n
i=1(Xi − X)2 = σ2, show that E(S2) = σ2. That is, the

sample variance is an unbiased estimator of the population variance. Consider
adding and subtracting µ.

A.1.21) Let Y1, . . . , Yn be independent random variables with E(Yi) = µ and V ar(Yi) = σ2

for i = 1, . . . , n. For this question, please use definitions and familiar properties of
expected value, not integrals.

(a) Find E(
∑n

i=1 Yi).

(b) Find V ar (
∑n

i=1 Yi). Show your work. Draw an arrow to the place in your
answer where you use independence, and write “This is where I use indepen-
dence.”

(c) Using your answer to the last question, find V ar(Y ).

(d) A statistic T is an unbiased estimator of a parameter θ if E(T ) = θ. Show that
Y is an unbiased estimator of µ. This is very quick.

(e) Let a1, . . . , an be constants and define the linear combination L by L =
∑n

i=1 aiYi.
What condition on the ai values makes L an unbiased estimator of µ?

(f) Is Y a special case of L? If so, what are the ai values?

(g) What is V ar(L)?

22. In this regression model, the explanatory variables are random. Independently for
i = 1, . . . , n, let Yi = β0 + β1Xi,1 + β2Xi,2 + εi, where E(Xi,1) = µ1, E(Xi,2) = µ2,
E(εi) = 0, V ar(εi) = σ2, εi is independent of both Xi,1 and Xi,2, and

cov

(
Xi,1

Xi,2

)
=

(
φ11 φ12

φ12 φ22

)
(a) What is V ar(Yi)? You may be able to just write down the answer.
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(b) What is Cov(Xi,1, Yi)? Show your work.

(c) What is Cov(Xi,2, Yi)?

23. Prove Equation A.4.

A.2 Matrix Calculations

Basic definitions

A matrix is a rectangular array of numbers. They are usually denoted by boldface letters
like A, while scalars (1×1 matrices) are lower case in italics, like a, b, c. Matrices are also
written by giving their (i, j) element in brackets, like A = [ai,j].

Let A = [ai,j] and B = [bi,j] be n × p matrices of constants, C = [ci,j] be p × q, and
let u and v be scalars (1×1 matrices). Define

Matrix addition: A + B = [ai,j + bi,j]. The matrices must have the same number of
rows and the same number of columns for addition (or subtraction) to be defined.

Matrix multiplication: AC = [
∑p

k=1 ai,kck,j]. Each element of AC is the inner
product of a row of A and a column of C. Thus, the number of columns in A must
equal the number of rows in C. Even if q = n so that multiplication in both orders
is well defined, in general AC 6= CA.

Scalar multiplication: uA = [u · ai,j]

Transposition: A> = [aj,i]

Symmetric matrix : A square matrix D is said to be symmetric if D = D>.

Identity matrix : I is a square matrix with ones on the main diagonal and zeros
elsewhere. IC = C and AI = A.

Diagonal matrix : A square matrix D = [di,j] is said to be diagonal if di,j = 0 for
i 6= j.

Triangular matrix : A square matrix D = [di,j] is said to be triangular if di,j = 0 for
i < j or i > j (or both, in which case it is also diagonal).

Distributive laws for matrix and scalar multiplication are easy to establish and are left as
exercises.

Transpose of a product

The transpose of a product is the product of transposes, in the reverse order: (AC)> =
C>A>.
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Linear independence

The idea behind linear independence of a collection of vectors (say, the columns of a
matrix) is that none of them can be written as a linear combination of the others. Formally,
let X be an n×p matrix of constants. The columns of X are said to be linearly dependent
if there exists a p× 1 matrix v 6= 0 with Xv = 0. We will say that the columns of X are
linearly independent if Xv = 0 implies v = 0.

Row and column rank

The row rank of a matrix is the number of linearly independent rows. The column rank is
the number of linearly independent columns. The rank of a matrix is the minimum of the
row rank and the column rank. Thus, the rank of a matrix cannot exceed the minimum
of the number of rows and the number of columns.

Matrix Inverse

Let A and B be square matrices of the same size. B is said to be the inverse of A and
may be written B = A−1. The definition is AB = BA = I. Thus, there are always two
equalities to establish when you are showing that one matrix is the inverse of another.
Matrix inverses have the following properties, which may be proved as exercises.

• If a matrix inverse exists, it is unique.

• A−1> = A>−1

• If the scalar u 6= 0, (uA)−1 = 1
u
A−1.

• Suppose that the square matrices A and B both have inverses. Then (AB)−1 =
B−1A−1.

• If A is a p× p matrix, A−1 exists if and only if the rank of A equals p.

Sometimes the following formula for the inverse of a 2× 2 matrix is useful:(
a b
c d

)−1

=
1

ad− bc

(
d −b
−c a

)
(A.5)

In some cases the inverse of the matrix is its transpose. When A> = A−1, the matrix
A is said to be orthogonal, because the column (row) vectors are all at right angles (zero
inner product). In addition, they all have length one, because the inner product of each
column (row) with itself equals one.
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Positive definite matrices

The n× n matrix A is said to be positive definite if

v>Av > 0 (A.6)

for all n× 1 vectors v 6= 0. It is called non-negative definite (or sometimes positive semi-
definite) if v>Av ≥ 0. Positive definiteness is a critical property of variance-covariance
matrices, because it says that the variance of any linear combination is greater than zero.
See (A.15) on page 549.

Determinants

Let A = [ai,j] be an n× n matrix, so that the following applies to square matrices. The
determinant of A, denoted |A|, is defined as a sum of signed elementary products. An
elementary product is a product of elements of A such that there is exactly one element
from every row and every column. The “signed” part is determined as follows.

Let Sn denote the set of all permutations of the set {1, . . . , n}, and denote such a
permutation by σ = (σ1, . . . , σn). Each permutation may be obtained from (1, . . . , n) by
a finite number of switches of numbers. If the number of switches required is even (this
includes zero), let sgn(σ) = +1; if it is odd, let sgn(σ) = −1. Then,

|A| =
∑
σ∈Sn

sgn(σ)
n∏
i=1

ai,σi . (A.7)

Some properties of determinants are:

• |AB| = |A| |B|

• |A>| = |A|

• |A−1| = 1/|A|, and if |A| = 0, A−1 does not exist.

• If A = [ai,j] is triangular, |A| =
∏n

i=1 ai,i. That is, for triangular (including diago-
nal) matrices, the determinant is the product of the elements on the main diagonal.

• Adding a multiple of one row to another row of a matrix, or adding a multiple of a
column to another column leaves the determinant unchanged.

• Exchanging any two rows or any two columns of a matrix multiplies the determinant
by −1.

• Multiplying a single row or column by a constant multiplies the determinant by that
constant, so that |vA| = vn|A|
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Eigenvalues and eigenvectors

Let A = [ai,j] be an n× n matrix, so that the following applies to square matrices. A is
said to have an eigenvalue λ and (non-zero) eigenvector x corresponding to λ if

Ax = λx. (A.8)

Note that λ is a scalar and x 6= 0 is an n×1 matrix, typically chosen so that it has length
one. It is also possible and desirable to choose the eigenvectors so they are mutually
perpendicular (the inner product of any two equals zero).

To solve the eigenvalue equation, write

Ax = λx⇒ Ax− λx = Ax− λIx = (A− λI)x = 0.

If (A − λI)−1 existed, it would be possible to solve for x by multiplying both sides on
the left by (A− λI)−1, yielding x = 0. But the definition specifies x 6= 0, so the inverse
cannot exist for the definition of an eigenvalue to be satisfied. Since (A − λI)−1 fails to
exist precisely when the determinant |A− λI| = 0, the eigenvalues are the λ values that
solve the determinantal equation

|A− λI| = 0.

The left-hand side is a polynomial in λ, called the characteristic polynomial. If the matrix
A is real-valued and also symmetric, then all its eigenvalues are guaranteed to be real-
valued — a handy characteristic not generally true of solutions to polynomial equations.
The eigenvectors can also be chosen to be real, and for our purposes they always will be.

One of the many useful properties of eigenvalues is that the determinant is the
product of the eigenvalues:

|A| =
n∏
i=1

λi

Spectral decomposition of symmetric matrices

The Spectral decomposition theorem3 says that every square and symmetric matrix A =
[ai,j] may be written

A = CDC>, (A.9)

where the columns of C (which may also be denoted x1, . . . ,x1) are the eigenvectors of A,
and the diagonal matrix D contains the corresponding eigenvalues, which are guaranteed
to be real numbers, sorted from largest to smallest.

D =


λ1 0 · · · 0
0 λ2 · · · 0
...

...
. . .

...
0 0 · · · λn


3The version we will use is the original, due to the Baron Augustin-Louis Cauchy (1789-1857). This

is the guy after whom the Cauchy distribution is named. He is also responsible for the rigorous use of
epsilons and deltas in calculus, and for lots of other good things.
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Because the eigenvectors are orthonormal, C is an orthogonal matrix; that is, CC> =
C>C = I.

The following shows how to get a spectral decomposition from R.

> help(eigen)

> A = rbind(c(-10,2),

+ c(2,5)) # Symmetric

> eigenA = eigen(A); eigenA

$values

[1] 5.262087 -10.262087

$vectors

[,1] [,2]

[1,] 0.1299328 0.9915228

[2,] 0.9915228 -0.1299328

> det(A)

[1] -54

> prod(eigenA$values)

[1] -54

> Lambda = diag(eigenA$values); Lambda

[,1] [,2]

[1,] 5.262087 0.00000

[2,] 0.000000 -10.26209

> P = eigenA$vectors; P

[,1] [,2]

[1,] 0.1299328 0.9915228

[2,] 0.9915228 -0.1299328

> P %*% Lambda %*% t(P) # Matrix multiplication

[,1] [,2]

[1,] -10 2

[2,] 2 5

Another way to express the spectral decomposition is

A =
n∑
i=1

λixix
>
i , (A.10)

where again, x1, . . . ,xn are the eigenvectors of A, and λ1, . . . , λn are the corresponding
eigenvalues. It’s a weighted sum of outer (not inner) products of the eigenvectors; the
weights are the eigenvalues.

Continuing the R example, here is x1x
>
1 . Notice how the diagonal elements add to

one, as they must.
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> eigenA$vectors[,1] %*% t(eigenA$vectors[,1])

[,1] [,2]

[1,] 0.01688253 0.1288313

[2,] 0.12883133 0.9831175

Reproducing (A.10) for completeness,

> prod1 = eigenA$vectors[,1] %*% t(eigenA$vectors[,1])

> prod2 = eigenA$vectors[,2] %*% t(eigenA$vectors[,2])

> eigenA$values[1]

[1] 5.262087

> eigenA$values[1]*prod1 + eigenA$values[2]*prod2

[,1] [,2]

[1,] -10 2

[2,] 2 5

> A

[,1] [,2]

[1,] -10 2

[2,] 2 5

Real symmetric matrices

For a symmetric n×n matrix A, the eigenvalues are all real numbers, and the eigenvectors
can be chosen to be real, perpendicular (inner product zero), and of length one. If a real
symmetric matrix is also non-negative definite, as a variance-covariance matrix must be,
the following conditions are equivalent:

• Rows linearly independent

• Columns linearly independent

• Rank = n

• Positive definite

• Non-singular (A−1 exists)

• Determinant is non-zero

• All eigenvalues are strictly positive

Most of the equivalence is shown using the spectral decomposition theorem.
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Trace of a square matrix

The trace of a square matrix A = [ai,j] is the sum of its diagonal elements. Write

tr(A) =
n∑
i=1

ai,i.

Properties like tr(A+B) = tr(A)+tr(B) follow immediately from the definition. Perhaps
less obvious is the following. Let A be an r×p matrix and B be a p×r matrix, so that the
product matrices AB and BA are both defined. These two matrices are not necessarily
equal; in fact, they need not even be the same size. But still,

tr(AB) = tr(BA). (A.11)

To see this, write

tr(AB) = tr

((
p∑

k=1

ai,kbk,j

))

=
r∑
i=1

p∑
k=1

ai,kbk,i

=

p∑
k=1

r∑
i=1

bk,iai,k

=

p∑
i=1

r∑
k=1

bi,kak,i (Switching i and k)

= tr

((
r∑

k=1

bi,kak,j

))
= tr(BA)

Notice how the indices of summation i and k have been changed. This is legitimate,
because for example

∑r
i=1 ci and

∑r
k=1 ck both mean c1 + · · ·+ cr.

Also, from the spectral decomposition (A.10), the trace is the sum of the eigenvalues:

tr(A) =
n∑
i=1

λi.

This follows easily using (A.11), but actually it applies to any square matrix; the matrix
need not be symmetric.

Similar matrices

The square matrix B is said to be similar to A if there is an invertible matrix P with
B = P−1AP. If B is similar to A, then of course A is similar to B. By the spectral
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decomposition theorem, any square symmetric matrix is similar to a diagonal matrix. In
other words, it is “diagonalizable.”

Similar matrices share important characteristics. If two matrices are similar,

• They have the same eigenvalues.

• Their eigenvectors are in general not the same.

• They have the same determinant.

• One matrix has an inverse if and only if the other one does.

• They have the same rank.

• They have the same trace.

• They have the same number of linearly independent eigenvectors associated with
each distinct eigenvalue.

• They have the same characteristic polynomial.

The vech notation

Sometimes, it is helpful to represent the non-redundant elements of a symmetric matrix
in the form of a column vector. Let A = [ai,j] be an n×n symmetric matrix. A has n(n+1)

2

non-redundant elements: say the main diagonal plus the upper triangular half. Then

vech(A) =



a1,1
...
a1,n

a2,2
...
a2,n

...
an,n


.

The vech operation is distributive: vech(A+B) = vech(A) + vech(B).

Exercises A.2

A.2.1) Which statement is true?

(a) A(B + C) = AB + AC

(b) A(B + C) = BA + CA

(c) Both a and b
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(d) Neither a nor b

A.2.2) Which statement is true?

(a) a(B + C) = aB + aC

(b) a(B + C) = Ba+ Ca

(c) Both a and b

(d) Neither a nor b

A.2.3) Which statement is true?

(a) (B + C)A = AB + AC

(b) (B + C)A = BA + CA

(c) Both a and b

(d) Neither a nor b

A.2.4) Which statement is true?

(a) (AB)> = A>B>

(b) (AB)> = B>A>

(c) Both a and b

(d) Neither a nor b

A.2.5) Which statement is true?

(a) A>> = A

(b) A>>> = A>

(c) Both a and b

(d) Neither a nor b

A.2.6) Suppose that the square matrices A and B both have inverses. Which statement is
true?

(a) (AB)−1 = A−1B−1

(b) (AB)−1 = B−1A−1

(c) Both a and b

(d) Neither a nor b

A.2.7) Which statement is true?

(a) (A + B)> = A> + B>

(b) (A + B)> = B> + A>
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(c) (A + B)> = (B + A)>

(d) All of the above

(e) None of the above

A.2.8) Which statement is true?

(a) tr(A + B) = tr(A) + tr(B)

(b) tr(A + B) = tr(B) + tr(A)

(c) Both a and b

(d) Neither a nor b

A.2.9) Which statement is true?

(a) a tr(B) = tr(aB).

(b) tr(B)a = tr(aB)

(c) Both a and b

(d) Neither a nor b

A.2.10) Which statement is true?

(a) (a+ b)C = aC + bC

(b) (a+ b)C = Ca+ Cb

(c) (a+ b)C = C(a+ b)

(d) All of the above

(e) None of the above

A.2.11) Let A and B be 2× 2 matrices. Either

• Prove AB = BA, or

• Give a numerical example in which AB 6= BA

A.2.12) In the following, A and B are n×p matrices of constants, C is p× q, D is p×n and
a, b, c are scalars. For each statement below, either prove it is true, or prove that it is
not true in general by giving a counter-example. Small numerical counter-examples
are best. To give an idea of the kind of proof required for most of these, denote
element (i, j) of matrix A by [ai,j].

(a) A + B = B + A

(b) a(B + C) = aB + aC

(c) AC = CA

(d) (A + B)> = A> + B>
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(e) (AC)> = C>A>

(f) (A + B)C = AC + BC

(g) (AD)−1 = A−1D−1

A.2.13) Recall that A symmetric means A = A>. Let X be an n by p matrix. Prove that
X>X is symmetric.

A.2.14) The formal definition of a matrix inverse is that an inverse of the matrix A (denoted
A−1) is defined by two properties: A−1A = I and AA−1 = I. If you want to prove
that one matrix is the inverse of another using the definition, you’d have two things
to show. This homework problem establishes that you only need to do it in one
direction.

Let A and B be square matrices with AB = I. Show that A = B−1 and A = B−1.
To make it easy, use well-known properties of determinants.

A.2.15) Prove that inverses are unique, as follows. Let B and C both be inverses of A.
Show that B = C.

A.2.16) Let X be an n by p matrix with n 6= p. Why is it incorrect to say that (X>X)−1 =
X−1X>−1?

A.2.17) Suppose that the matrices A and B both have inverses. Prove that (AB)−1 =
B−1A−1.

A.2.18) Let A be a non-singular matrix. Prove (A−1)> = (A>)−1.

A.2.19) Using (A−1)> = (A>)−1, prove that the inverse of a symmetric matrix is also
symmetric.

A.2.20) Let A be a square matrix with the determinant of A (denoted |A|) equal to zero.
What does this tell you about A−1? No proof is necessary here.

A.2.21) Let a be an n× 1 matrix of real constants. How do you know a>a ≥ 0?

A.2.22) Let A be an n × p matrix of real constants. Is it true that A>A ≥ 0? Briefly
explain.

A.2.23) Let X be an n×p matrix of constants. Recall the definition of linear independence.
The columns of X are said to be linearly dependent if there exists v 6= 0 with
Xv = 0. We will say that the columns of X are linearly independent if Xv = 0
implies v = 0.

(a) Show that if the columns of X are linearly dependent, then the columns of
X>X are also linearly dependent.

(b) Show that if the columns of X are linearly dependent, then the rows of X>X
are linearly dependent.
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(c) Show that if the columns of X are linearly independent, then the columns of
X>X are also linearly independent. Use a>a ≥ 0 and the definition of linear
independence.

(d) Show that if (X>X)−1 exists, then the columns of X are linearly independent.

(e) Show that if the columns of X are linearly independent, then X>X is positive
definite. Does this imply the existence of (X>X)−1? Locate the rule in the
text, and answer Yes or No.

A.2.24) Let A be a square matrix. Show that

(a) If A−1 exists, the columns of A are linearly independent.

(b) If the columns of A are linearly dependent, A−1 cannot exist.

A.2.25) Let A be a symmetric matrix, and A−1 exists. Show that A−1 is also symmetric.

A.2.26) The trace of a square matrix is the sum of its diagonal elements; we write tr(A).
Let A be r × c and B be c× r. Show tr(AB) = tr(BA).

A.2.27) Recall that the square matrix A is said to have an eigenvalue λ and corresponding
eigenvector x 6= 0 if Ax = λx.

(a) Suppose that an eigenvalue of A equals zero. Show that the columns of A are
linearly dependent.

(b) Suppose that the columns of A are linearly dependent. Show that A−1 does
not exist.

(c) Suppose that the columns of A are linearly independent. Show that the eigen-
values of A are all non-zero.

(d) Suppose A−1 exists. Show that the eigenvalues of A−1 are the reciprocals of
the eigenvalues of A. What about the eigenvectors?

A.2.28) The (square) matrix Σ is said to be positive definite if a>Σa > 0 for all vectors
a 6= 0. Show that the diagonal elements of a positive definite matrix are positive
numbers. Hint: Choose the right vector a.

A.2.29) Show that the eigenvalues of a positive definite matrix are strictly positive.

A.2.30) Recall the spectral decomposition of a real symmetric matrix (For example, a variance-
covariance matrix). Any such matrix Σ can be written as Σ = CDC>, where C is
a matrix whose columns are the (orthonormal) eigenvectors of Σ, D is a diagonal
matrix of the corresponding (non-negative) eigenvalues, and C>C = CC> = I.

(a) Let Σ be a real symmetric matrix with eigenvalues that are all strictly positive.

i. What is D−1?

ii. Show Σ−1 = CD−1C>. So, the inverse exists.
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(b) Let the eigenvalues of Σ be non-negative.

i. What do you think D1/2 might be?

ii. Define Σ1/2 as CD1/2C>. Show Σ1/2 is symmetric.

iii. Show Σ1/2Σ1/2 = Σ.

iv. Show that if the columns of Σ are linearly independent, then the columns
of Σ1/2 are also linearly independent.

(c) Now return to the situation where the eigenvalues of the square symmetric
matrix Σ are all strictly positive. Define Σ−1/2 as CD−1/2C>, where the
elements of the diagonal matrix D−1/2 are the reciprocals of the corresponding
elements of D1/2.

i. Show that the inverse of Σ1/2 is Σ−1/2, justifying the notation.

ii. Show Σ−1/2Σ−1/2 = Σ−1.

A.2.31) In the following, let Σ be a real symmetric matrix, so that its eigenvalues are all
real.

(a) Suppose thatΣ has an inverse. Using the definition of linear independence,
show that the columns of Σ are linearly independent.

(b) Let the columns of Σ be linearly independent, and also let Σ be at least non-
negative definite (as, for example, a variance-covariance matrix must be). Show
that Σ is strictly positive definite.

A.2.32) Show that if the real symmetric matrix Σ is positive definite, then Σ−1 is also
positive definite.

A.2.33) Using the spectral decomposition (A.10) and tr(AB) = tr(BA), show that the trace
of a square symmetric matrix is the sum of its eigenvalues.

A.2.34) Recall that the square matrix B is said to be similar to A if there is an invertible
matrix P with B = P−1AP. Useing this definition, prove the following.

(a) Any square symmetric matrix is similar to a diagonal matrix.

(b) Similar matrices have the same eigenvalues, but their eigenvectors are not the
same in greneral.

(c) Similar matrices have the same determinant.

(d) If two matrices are similar, one has an inverse if and only if the other one does.

(e) Similar matrices have the same rank.

(f) Similar matrices have the same trace.
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A.3 Random Vectors and Matrices

A random matrix is just a matrix of random variables. Their joint probability distribution
is the distribution of the random matrix. Random matrices with just one column (say, p)
may be called random vectors.

Expected Value and Variance-Covariance

Expected Value

The expected value of a matrix is defined as the matrix of expected values. Denoting the
p× c random matrix X by [Xi,j],

E(X) = [E(Xi,j)].

Immediately we have natural properties like

E(X + Y) = E([Xi,j + Yi,j])

= [E(Xi,j + Yi,j)]

= [E(Xi,j) + E(Yi,j)]

= [E(Xi,j)] + [E(Yi,j)]

= E(X) + E(Y).

Let A = [ai,j] be an r × p matrix of constants, while X is still a p × c random matrix.
Then

E(AX) = E

((
p∑

k=1

ai,kXk,j

))

=

(
E

(
p∑

k=1

ai,kXk,j

))

=

(
p∑

k=1

ai,kE(Xk,j)

)
= AE(X).

Similar calculations yield E(XB) = E(X)B, where B is a matrix of constants. This
yields the useful formula

E(AXB) = AE(X)B. (A.12)

Variance-Covariance Matrices

Let X be a p × 1 random vector with E(X) = µ. The variance-covariance matrix of X
(sometimes just called the covariance matrix ), denoted by cov(X), is defined as

cov(X) = E
{

(X− µ)(X− µ)>
}
. (A.13)
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The covariance matrix cov(X) is a p × p matrix of constants. To see exactly what it is,
suppose p = 3. Then

cov(X) = E


 X1 − µ1

X2 − µ2

X3 − µ3

( X1 − µ1 X2 − µ2 X3 − µ3

)
= E


 (X1 − µ1)2 (X1 − µ1)(X2 − µ2) (X1 − µ1)(X3 − µ3)

(X2 − µ2)(X1 − µ1) (X2 − µ2)2 (X2 − µ2)(X3 − µ3)
(X3 − µ3)(X1 − µ1) (X3 − µ3)(X2 − µ2) (X3 − µ3)2


=

 E{(X1 − µ1)2} E{(X1 − µ1)(X2 − µ2)} E{(X1 − µ1)(X3 − µ3)}
E{(X2 − µ2)(X1 − µ1)} E{(X2 − µ2)2} E{(X2 − µ2)(X3 − µ3)}
E{(X3 − µ3)(X1 − µ1)} E{(X3 − µ3)(X2 − µ2)} E{(X3 − µ3)2}


=

 cov(X1) Cov(X1, X2) Cov(X1, X3)
Cov(X1, X2) cov(X2) Cov(X2, X3)
Cov(X1, X3) Cov(X2, X3) cov(X3)

 .

So, the covariance matrix cov(X) is a p× p symmetric matrix with variances on the main
diagonal and covariances on the off-diagonals.

The matrix of covariances between two random vectors may also be written in a
convenient way. Let X be a p × 1 random vector with E(X) = µx and let Y be a q × 1
random vector with E(Y) = µy. The p × q matrix of covariances between the elements
of X and the elements of Y is

cov(X,Y) = E
{

(X− µx)(Y − µy)>
}
. (A.14)

The following rule is analogous to V ar(aX) = a2 V ar(X) for scalars. Let X be a p × 1
random vector with E(X) = µ and cov(X) = Σ, while A = [ai,j] is an r × p matrix of
constants. Then

cov(AX) = E
{

(AX−Aµ)(AX−Aµ)>
}

= E
{

A(X− µ) (A(X− µ))>
}

= E
{
A(X− µ)(X− µ)>A>

}
= AE{(X− µ)(X− µ)>}A>

= Acov(X)A>

= AΣA> (A.15)
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Similarly,

cov(AX,BY) = E
{

(AX−Aµx)(BY −Bµy)
>}

= E
{

A(X− µ)
(
B(Y − µy)

)>}
= E

{
A(X− µ)(Y − µy)>B>

}
= AE{(X− µ)(Y − µy)>}B>

= Acov(X,Y)B>

= AΣxyB
> (A.16)

For scalars, V ar(X+ b) = V ar(X), and the same applies to vectors. Covariances are also
unaffected by adding a constant; this amounts to shifting the whole joint distribution by
a fixed amount, which has no effect on relationships among variables. So, the following
rule is “obvious.” Let X be a p × 1 random vector with E(X) = µ and let b be a p × 1
vector of constants. Then cov(X + b) = cov(X). To see this, note E(X + b) = µ+ b and
write

cov(X + b) = E
{

(X + b− (µ+ b))(X + b− (µ+ b))>
}

= E
{

(X− µ)(X− µ)>
}

= cov(X) (A.17)

A similar rule apples to cov(X + b,Y + c). A direct calculation is not even necessary,
though it is a valuable exercise. Think of stacking X and Y one on top of another, to
form a bigger random vector. Then,

cov

(
X
Y

)
=

(
cov(X) cov(X,Y)

cov(X,Y)> cov(Y)

)
.

This is an example of a partitioned matrix – a matrix of matrices. At any rate, it is
clear from (A.17) that adding a stack of constant vectors to the stack of random vectors
has no effect upon the (partitioned) covariance matrix, and in particular no effect upon
cov(X,Y).

Linear combinations In a direct analogy to (A.4) on page 530, let X1, . . . ,Xn1 and
Y1, . . . ,Yn2 be random vectors, and define the linear combinations L1 and L2 by

L1 = A1X1 + · · ·+ An1Xn1 =

n1∑
i=1

AiXi, and

L2 = B1Y1 + · · ·+ Bn2Yn2 =

n2∑
i=1

BiYi,

where the Aj and Bj are matrices of constants. It is assumed that the dimensions of
the matrices allow the operations to be carried out. For example, the Aj all must have
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the same number of rows, and the Bj must have the same number of rows. The result
analogous to (A.4) is

cov(L1,L2) =

n1∑
i=1

n2∑
j=1

Aicov(Xi,Yj)B
>
j . (A.18)

In words, (A.18) says that you just calculate the covariance matrix of each term in L1

with each term in L2 and add, treating the constant matrices as in (A.16).
To prove (A.18),

cov(L1,L2) = E{(L1 − E(L1)) (L2 − E(L2))>}

= E


(

n1∑
i=1

AiXi −
n1∑
i=1

AiE(Xi)

)(
n2∑
i=1

BiYi −
n2∑
i=1

BiE(Yi)

)>
= E


(

n1∑
i=1

Ai (Xi − E(Xi))

)(
n2∑
i=1

Bi (Yi − E(Yi))

)>
= E

{(
n1∑
i=1

Ai (Xi − E(Xi))

)(
n2∑
i=1

(Yi − E(Yi))
>B>i

)}

= E

{
n1∑
i=1

n2∑
i=1

Ai (Xi − E(Xi)) (Yi − E(Yi))
>B>i

}

=

n1∑
i=1

n2∑
i=1

AiE
{

(Xi − E(Xi)) (Yi − E(Yi))
>
}

B>i

=

n1∑
i=1

n2∑
j=1

Aicov(Xi,Yj)B
>
j �

Exercises A.3 This exercise set has an unusual feature. Some of the questions ask you
to prove things that are false. That is, they are not true in general. In such cases, just
write “The statement is false,” and give a brief explanation to make it clear that you are
not just guessing. The explanation is essential for full marks. A small counter-example is
always good enough.

A.3.1) Let X = [Xj] be a random matrix. Show E(X>) = E(X)>.

A.3.2) Let X and Y be random matrices of the same dimensions. Show E(X + Y) =
E(X) + E(Y). Recall the definition E(Z) = [E(Zi,j)].

A.3.3) Let X be a random matrix, and B be a matrix of constants. Show E(XB) = E(X)B.
Recall the definition AB = [

∑
k ai,kbk,j].

A.3.4) Let X be a p×1 random vector. Starting with Definition (A.13) on page 548, prove
cov(X) = 0..



552 APPENDIX A. REVIEW AND BACKGROUND MATERIAL

A.3.5) Let the p×1 random vector X have expected value µ and variance-covariance matrix
Σ, and let A be an m× p matrix of constants. Prove that the variance-covariance
matrix of AX is either

• AΣA>, or

• A2Σ.

Pick one and prove it. Start with the definition of a variance-covariance ma-
trix (A.13) on page 548.

A.3.6) If the p× 1 random vector X has mean µ and variance-covariance matrix Σ, show
Σ = E(XX>)− µµ>.

A.3.7) Starting with Definition (A.14) on page 549, show cov(X,Y) = cov(Y,X)..

A.3.8) Starting with Definition (A.14) on page 549, show cov(X,Y) = E(XY>)− µxµ>y .

A.3.9) Starting with Definition (A.14) on page 549, show cov(X,Y) = 0..

A.3.10) Let X be a p × 1 random vector with expected value µ and variance-covariance
matrix Σ, and let v be a p× 1 vector of constants.

(a) Let the scalar random variable Y = v>X. What is V ar(Y )? Use this to prove
tell you that any variance-covariance matrix must be positive semi-definite.
(See the definition on Page 537.)

(b) Using the definition of an eigenvalue (A.8) on Page 538, show that eigenvalues
of a variance-covariance matrix cannot be negative4.

(c) How do you know that the determinant of a variance-covariance matrix must
be greater than or equal to zero? The answer is one short sentence.

(d) Let X and Y be scalar random variables. Using what you have shown about the
determinant, show −1 ≤ Corr(X, Y ) ≤ 1. See the definition of a correlation
on Page 530 if necessary. You have just proved the Cauchy-Schwarz inequality
using probability tools.

A.3.11) Let the p×1 random vector X have mean µ and variance-covariance matrix Σ, and
let c be a p × 1 vector of constants. Find cov(X + c). Show your work, starting
with the definition (A.13). Don’t use the centering rule yet.

A.3.12) Let X be a p× 1 random vector with mean µx and variance-covariance matrix Σx,
and let Y be a q × 1 random vector with mean µy and variance-covariance matrix

Σy. Recall that cov(X,Y) is the p×q matrix cov(X,Y) = E
(
(X− µx)(Y − µy)>

)
.

Don’t use the centering rule yet.

(a) What is the (i, j) element of cov(X,Y)?

4This property of covariance matrices can sometimes be used to detect problems with the numerical
estimation of structural equation models.
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(b) Find an expression for cov(X + Y) in terms of Σx, Σy and cov(X,Y). Show
your work.

(c) Simplify further for the special case where Cov(Xi, Yj) = 0 for all i and j.

(d) Let c be a p× 1 vector of constants and d be a q× 1 vector of constants. Find
cov(X + c,Y + d). Show your work.

A.3.13) Prove (??). This is the basis of the centering rule, so you are not allowed to use the
centering rule.

A.3.14) Use the centering rule to show cov(AX + BY) = Acov(X)A> + Bcov(Y)B>..

A.3.15) Use the centering rule to find cov(AX + BY + c). What do you need to specify
about the dimensions of the matrices for this to be true?

A.3.16) Write down cov(AX + BY) for the case where X and Y are independent. There is
no need to show any work.

A.3.17) Use the centering rule to find cov(AX + c,BX + d). Must A and B have the same
number of rows?

A.3.18) Let X1, . . . , Xn be scalar random variables. Use the centering rule to show

V ar

(
n∑
i=1

Xi

)
=

n∑
i=1

V ar(Xi) +
∑
i 6=j

Cov(Xi, Xj).

A.4 The Multivariate Normal Distribution

The p × 1 random vector X is said to have a multivariate normal distribution, and we
write X ∼ Np(µ,Σ), if X has (joint) density

f(x) =
1

|Σ| 12 (2π)
p
2

exp

(
−1

2
(x− µ)>Σ−1(x− µ)

)
, (A.19)

where µ is p× 1 and Σ is p× p symmetric and positive definite. Positive definite means
that for any non-zero p× 1 vector a, we have a>Σa > 0.

• Since the one-dimensional random variable Y =
∑p

i=1 aiXi may be written as Y =
a>X and V ar(Y ) = cov(a>X) = a>Σa, it is natural to require that Σ be positive
definite. All it means is that every non-zero linear combination of X values has a
positive variance.

• Σ positive definite is equivalent to Σ−1 positive definite.

The multivariate normal reduces to the univariate normal when p = 1. Other properties
of the multivariate normal include the following.
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1. E(X) = µ

2. cov(X) = Σ

3. If c is a vector of constants, X + c ∼ Np(c + µ,Σ)

4. If A is a q × p matrix of constants, AX ∼ Nq(Aµ,AΣA>).

5. Linear combinations of multivariate normals are multivariate normal.

6. All the marginals (dimension less than p) of X are (multivariate) normal, but it is
possible in theory to have a collection of univariate normals whose joint distribution
is not multivariate normal.

7. For the multivariate normal, zero covariance implies independence. The multivariate
normal is the only continuous distribution with this property.

8. The random variable (X − µ)>Σ−1(X − µ) has a chi-squared distribution with p
degrees of freedom.

9. After a bit of work, the multivariate normal likelihood may be written as

L(µ,Σ) = |Σ|−n/2(2π)−np/2 exp−n
2

{
tr(Σ̂Σ

−1
) + (x− µ)>Σ−1(x− µ)

}
, (A.20)

where Σ̂ = 1
n

∑n
i=1(xi − x)(xi − x)> is the sample variance-covariance matrix (it

would be unbiased if divided by n− 1).

Here’s how Expression (A.20) above for L(µ,Σ) is obtained.

L(µ,Σ) =
n∏
i=1

1

|Σ| 12 (2π)
p
2

exp

{
−1

2
(xi − µ)>Σ−1(xi − µ)

}

= |Σ|−n/2(2π)−np/2 exp

{
−1

2

n∑
i=1

(xi − µ)>Σ−1(xi − µ)

}
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Adding and subtracting x in
∑n

i=1(xi − µ)>Σ−1(xi − µ), we get
n∑
i=1

(xi − µ)>Σ−1(xi − µ) =
n∑
i=1

(xi − x + x− µ)>Σ−1(xi − x + x− µ)

=
n∑
i=1

(ai + b)>Σ−1(ai + b)

=
n∑
i=1

(
a>i Σ−1ai + a>i Σ−1b + b>Σ−1ai + b>Σ−1b

)
=

(
n∑
i=1

a>i Σ−1ai

)
+ 0 + 0 + nb>Σ−1b

=
n∑
i=1

(xi − x)>Σ−1(xi − x) + n (x− µ)>Σ−1(x− µ)

Now, because
∑n

i=1(xi−x)>Σ−1(xi−x) is a 1× 1 matrix, it equals its own trace and we
can use tr(AB) = tr(BA).

n∑
i=1

(xi − x)>Σ−1(xi − x) = tr

{
n∑
i=1

(xi − x)>Σ−1(xi − x)

}

=
n∑
i=1

tr
{

(xi − x)>Σ−1(xi − x)
}

=
n∑
i=1

tr
{
Σ−1(xi − x)(xi − x)>

}
= tr

{
n∑
i=1

Σ−1(xi − x)(xi − x)>

}

= tr

{
Σ−1

n∑
i=1

(xi − x)(xi − x)>

}

= n tr

{
Σ−1 1

n

n∑
i=1

(xi − x)(xi − x)>

}
= n tr

(
Σ−1Σ̂

)
,

where Σ̂ = 1
n

∑n
i=1(xi−x)(xi−x)> is the sample variance-covariance matrix. Substituting

for
∑n

i=1(xi − µ)>Σ−1(xi − µ),

L(µ,Σ) = |Σ|−n/2(2π)−np/2 exp

{
−1

2

n∑
i=1

(xi − µ)>Σ−1(xi − µ)

}

= |Σ|−n/2(2π)−np/2 exp−n
2

{
tr(Σ̂Σ

−1
) + (x− µ)>Σ−1(x− µ)

}
.
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Notice how the multivariate normal likelihood depends on the sample data only through
the sufficient statistic (X, Σ̂).

Exercises A.4

A.4.1) Let X1 be Normal(µ1, σ
2
1), and X2 be Normal(µ2, σ

2
2), independent of X1. What is

the joint distribution of Y1 = X1 +X2 and Y2 = X1 −X2? What is required for Y1

and Y2 to be independent?

A.4.2) Let X = (X1, X2, X3)> be multivariate normal with

µ =

 1
0
6

 and Σ =

 1 0 0
0 2 0
0 0 1

 .

Let Y1 = X1 +X2 and Y2 = X2 +X3. Find the joint distribution of Y1 and Y2.

A.4.3) Let X1 be Normal(µ1, σ
2
1), and X2 be Normal(µ2, σ

2
2), independent of X1. What is

the joint distribution of Y1 = X1 +X2 and Y2 = X1 −X2? What is required for Y1

and Y2 to be independent? Hint: Use matrices.

A.4.4) Let Y = Xβ + ε, where X is an n×p matrix of known constants, β is a p×1 vector
of unknown constants, and ε is multivariate normal with mean zero and covariance
matrix σ2In, where σ2 > 0 is a constant. In the following, it may be helpful to recall
that (A−1)> = (A>)−1.

(a) What is the distribution of Y?

(b) The maximum likelihood estimate (MLE) of β is β̂ = (X>X)−1X>Y. What
is the distribution of β̂? Show the calculations.

(c) Let Ŷ = Xβ̂. What is the distribution of Ŷ? Show the calculations.

(d) Let the vector of residuals e = (Y − Ŷ). What is the distribution of e? Show
the calculations. Simplify both the expected value (which is zero) and the
covariance matrix.

A.4.5) Show that if X ∼ N(µ,Σ), Y = (X−µ)>Σ−1(X−µ) has a chi-square distribution
with p degrees of freedom.

A.4.6) Write down a scalar version of formula (A.20) for the multivariate normal likelihood,
showing that you understand the notation. Then derive your formula from the
univariate normal likelihood.

A.4.7) Prove the formula (A.20) for the multivariate normal likelihood. Show all the cal-
culations.

A.4.8) Prove that for any positive definite Σ, the likelihood (A.20) is maximized when
x = µ. How do you know this maximum must be unique? Cite the necessary
matrix facts from Section A.2 of this Appendix.
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A.5 A Bit of Large Sample Theory

For this part, it helps to start by going down to the basement and taking a look at the
foundations of the building. There is an underlying sample space Ω, consisting of sample
points ω ∈ Ω5. The specific nature of a point ω in applications depends on what is being
observed. For example, if we were observing whether a single individual is male or female,
Ω might be {F,M}. If we selected a pair of individuals and observed their genders in
order, Ω might be {(F, F ), (F,M), (M,F ), (M,M)}. If we selected n individuals and just
counted the number of females, Ω might be {0, . . . , n}. For limits problems, the points in
Ω are infinite sequences.

Let A be a class of subsets of Ω (that is, a set of events), and let P be a probability
function that assigns numbers between zero and one inclusive to the elements of A. A
random variable X = X(ω) is a function that maps Ω into some other space, typically
R or Rk. Think of taking a measurement: if Ω is a set of students, X(ω) might be the
cumulative grade point average of student ω.

Suppose the random variable X maps Ω into the set of real numbers R. Then X
induces a probability measure on a class6 B of subsets of R, by means of

Pr{X ∈ B} = P({ω ∈ Ω : X(ω) ∈ B})

for B ∈ B.
Suppose we have a sample of data X1(ω), . . . , Xn(ω), and we calculate a function of

the sample data T = T (X1, . . . , Xn). For example T could be a statistic like the sample
mean X. It is helpful to write T = Tn(ω), to indicate that T is a random variable (a
function from Ω into R) that depend upon the sample size n.

Frequently it is useful to let n→∞, because when the sequence T1, T2, . . . converges,
it is an indication of what happens when the sample is large enough. But this is not just a
sequence of numbers; it is a sequence of functions. Several different types of convergence
are meaningful.

A.5.1 Modes of Convergence

Throughout, let T1, T2, . . . be a sequence of random variables, and let T be another random
variable. It is quite possible and often useful for T = T (ω) to be a constant — that
is, a constant function of ω. In that case T is a “degenerate” random variable, with
P{T = c} = 1 for some constant c.

Almost Sure Convergence

We say that Tn converges almost surely to T , and write Tn
a.s.→ if

P{ω : lim
n→∞

Tn(ω) = T (ω)} = 1.

5Throughout most of this book, Ω is a covariance matrix. The symbol will briefly have its usual
meaning here, just for the discussion of almost sure convergence

6I’m thinking of the Borel σ-algebra, but there is no need to go that far.
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That is, except possibly for ω ∈ A with P(A) = 0, Tn(ω) converges to the random variable
T (ω) like an ordinary limit, and all the usual rules apply — for example, the limit of a
continuous function is the continuous function of the limit, L’Hôpital’s rule and so on.
Almost sure convergence is also called convergence with probability one, or sometimes
strong convergence.

Almost sure convergence may be the most technically “advanced” mode of conver-
gence, but it is also perhaps the easiest to work with, because you treat the sequence
T1, T2, . . . like numbers, find the limit, and then mention that the result applies “except
possibly on a set of probability zero.”

The main entry point to establishing almost sure convergence is the Strong Law of
Large Numbers, which involves almost sure convergence to a constant. Let X1, . . . Xn be
independent and identically distributed random variables with expected value µ. Denote
the sample mean as usual by Xn = 1

n

∑n
i=1Xi. The Strong Law of Large Numbers (SLLN)

says
Xn

a.s.→ µ. (A.21)

The only condition required for this to hold is the existence of the expected value.
Let X1, . . . Xn be independent and identically distributed random variables; let X be

a general random variable from this same distribution, and Y = g(X). The change of
variables formula (A.1) can be combined with the Strong Law of Large Numbers to write

1

n

n∑
i=1

g(Xi) =
1

n

n∑
i=1

Yi
a.s.→ E(Y ) = E(g(X)). (A.22)

This means that sample moments converge almost surely to population moments:

1

n

n∑
i=1

Xk
i
a.s.→ E(Xk)

It even yields rules like
1

n

n∑
i=1

U2
i ViW

3
i
a.s.→ E(U2VW 3).

Convergence in Probability

We say that Tn converges in probability to T , and write Tn
P→ T if for all ε > 0,

lim
n→∞

P{|Tn − T | < ε} = 1.

Convergence in probability is implied by almost sure convergence, so corresponding to the
Strong Law of Large Numbers is the Weak Law of Large Numbers (WLLN). Let X1, . . . Xn

be independent and identically distributed random variables with expected value µ. Then
the sample mean converges in probability to µ:

Xn
P→ µ. (A.23)
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A change of variables rule like expression (A.22) holds, and sample moments converge
in probability to population moments. These rules follow from the corresponding facts
about almost sure convergence.

Another way of establishing convergence in probability to a constant without using
the definition is the Variance Rule. Let θ be a constant. Then if limn→∞E(Tn) = θ and

limn→∞ V ar(Tn) = 0, it follows that Tn
P→ θ. But convergence in probability does not

imply the conditions of the Variance Rule.

Convergence in Distribution

Denote the cumulative distribution functions of T1, T2, . . . by F1(t), F2(t), . . . respectively,
and denote the cumulative distribution function of T by F (t). We say that Tn converges

in distribution to T , and write Tn
d→ T if for every point t at which F is continuous,

lim
n→∞

Fn(t) = F (t).

The main entry point to convergence in distribution is the Central Limit Theorem.
Let X1, . . . Xn be independent and identically distributed random variables with mean µ
and variance σ2. Then

Zn =

√
n(Xn − µ)

σ

d→ Z ∼ N(0, 1).

In applications, the sample standard deviation may be substituted for σ, and the result
still holds.

A useful tool is provided by the univariate delta method7. Let
√
n(Xn − θ)

d→ X, and
let g(x) be a function with g′(θ) 6= 0 and g′′(x) continuous at x = θ. Then

√
n(g(Xn)− g(θ))

d→ g′(θ)X.

In particular,
√
n(g(Xn)− g(µ))

d→ Y ∼ N(0, g′(µ)2σ2).

Connections among the Modes of Convergence

• Tn
a.s.→ T ⇒ Tn

P→ T ⇒ Tn
d→ T .

• If a is a constant, Tn
d→ a⇒ Tn

P→ a.

Sometimes we say the distribution of the sample mean is approximately normal, or asymp-
totically normal. This is justified by the Central Limit Theorem, but it does not mean
that Xn converges in distribution to a normal random variable. The Law of Large Num-
bers says that Xn converges almost surely (and in probability) to a constant, µ. This

7The delta method is named after the way it is proved; it uses Taylor’s theorem, and the “delta” part
is connected to the definition of a derivative. We will just use it.
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means Xn converges to µ in distribution as well. So why would we say that for large n,
the sample mean is approximately N(µ, σ

2

n
)?

What we have is Zn =
√
n(Xn−µ)

σ

d→ Z ∼ N(0, 1). So,

Pr{Xn ≤ x} = Pr

{√
n(Xn − µ)

σ
≤
√
n(x− µ)

σ

}
= Pr

{
Zn ≤

√
n(x− µ)

σ

}
≈ Φ

(√
n(x− µ)

σ

)
,

where Φ(·) is the cumulative distribution function of a standard normal.
Now suppose that Y is exactly N(µ, σ

2

n
). Then,

Pr{Y ≤ x} = Pr

{√
n(Y − µ)

σ
≤
√
n(x− µ)

σ

}
= Pr

{
Z ≤

√
n(x− µ)

σ

}
= Φ

(√
n(x− µ)

σ

)
.

So we see that the Central Limit Theorem tells us to calculate probabilities for Xn just
as we would if Xn had a distribution that was exactly normal with expected value µ and
variance σ2

n
. This the justification for saying that the sample mean is “asymptotically

normal,” and writing Xn
·∼ N(µ, σ

2

n
). Here are three additional remarks.

• Quantities like 1
n

∑n
i=1 X

2
i and 1

n

∑n
i=1XiYi and so on are asymptotically normal

too, because they are just sample means.

• The delta method says that smooth functions of the sample mean are asymptotically
normal.

• All this generalizes nicely to the multivariate case.

A.5.2 Consistency

For this application, T1, T2, . . . are not just random variables: They are statistics8 that

estimate some parameter θ. The statistic Tn is said to be consistent for θ if Tn
P→ θ for

all θ ∈ Θ.
Let us take a closer look at this important concept. Using the definition of convergence

in probability, saying that Tn is consistent for θ means that for any tiny positive constant
ε, no matter how tiny,

lim
n→∞

P{|Tn − θ| < ε} = 1.

So, take an arbitrarily small interval around the true parameter value. For any given
sample size n, a certain amount of the probability distribution of Tn falls between θ − ε

8A statistic is a function of the sample data that does not depend functionally upon any unknown
parameter. That is, symbol for the parameter does not appear in the formula for the statistic.
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and θ+ ε. Consistency means that in the limit, all the probability falls in this interval, no
matter how small the interval is. Basically, consistency is saying that for a large enough
sample size, the statistic (estimator) will probably be close to parameter it is estimating
— regardless of how strict your definitions of “probably” and “close” might be.

Even better than ordinary consistency is strong consistency, which means Tn
a.s.→ θ.

Instead of saying Tn will probably be close to θ, strong consistency says that for a large
enough sample size, the probability that it will be close equals one. Because almost
sure convergence implies convergence in probability, strong consistency implies ordinary
consistency.

One last remark is that while consistency is an important property in an estimator, in
a way it is the least we should expect. Consistency means that with an infinite amount
of data, we would know the truth. If this is not the case, something is seriously wrong9.

Exercises A.5.2

A.5.1) Let X1, . . . , Xn be a random sample from a continuous distribution with density

f(x; θ) =
1

θ1/2
√

2π
e−

x2

2θ ,

where the parameter θ > 0. Propose a reasonable estimator for the parameter θ,
and use the Law of Large Numbers to show that your estimator is consistent.

A.5.2) Let X1, . . . , Xn be a random sample from a Binomial distribution with parameters
3 and θ. That is,

P (Xi = xi) =

(
3

xi

)
θxi(1− θ)3−xi ,

for xi = 0, 1, 2, 3. Find a reasonable estimator of θ, and prove that it is strongly
consistent. Where you get your estimator does not really matter, but please state
how you thought of it.

A.5.3) Let X1, . . . , Xn be a random sample from a continuous distribution with density

f(x; τ) =
τ 1/2

√
2π

e−
τx2

2 ,

where the parameter τ > 0. Let

τ̂ =
n∑n

i=1 X
2
i

.

Is τ̂ consistent for τ? Answer Yes or No and prove your answer. Hint: You can
just write down E(X2) by inspection. This is a very familiar distribution; have
confidence!

9In structural equation models, a parameter that is not identifiable cannot be estimated consistently.
This is why model identification is such an important topic.



562 APPENDIX A. REVIEW AND BACKGROUND MATERIAL

A.5.4) Independently for i = 1, . . . , n, let

Yi = βXi + εi,

where E(Xi) = E(εi) = 0, V ar(Xi) = σ2
x, V ar(εi) = σ2

ε , and εi is independent of
Xi. Let

β̂ =

∑n
i=1 XiYi∑n
i=1 X

2
i

.

Is β̂ consistent for β? Answer Yes or No and prove your answer.

A.5.5) Another Method of Moments estimator for Problem A.5.2 is β̂2 = Y n
Xn

.

(a) Show that β̂2
p→ β in most of the parameter space.

(b) However, consistency means that the estimator converges to the parameter in

probability everywhere in the parameter space. Where does β̂2 fail, and why?

A.5.6) LetX1, . . . , Xn be a random sample from a Gamma distribution with α = β = θ > 0.
That is, the density is

f(x; θ) =
1

θθΓ(θ)
e−x/θxθ−1,

for x > 0. Let θ̂ = Xn. Is θ̂ consistent for θ? Answer Yes or No and prove your
answer.

A.5.7) Let X1, . . . , Xn be a random sample from a distribution with expected value µ and
variance σ2

x. Independently of X1, . . . , Xn, let Y1, . . . , Yn be a random sample from
a distribution with the same expected value µ and variance σ2

y. Let Let Tn =

αXn + (1 − α)Y n, where 0 ≤ α ≤ 1. Is Tn always a consistent estimator of µ?
Answer Yes or No and show your work.

A.5.8) Let X1, . . . , Xn be a random sample from a distribution with mean µ. Show that
Tn = 1

n+400

∑n
i=1Xi is consistent for µ.

A.5.9) Let X1, . . . , Xn be a random sample from a distribution with mean µ and variance

σ2. Prove that the sample variance S2 =
∑n
i=1(Xi−X)2

n−1
is consistent for σ2.

A.5.10) Let (X1, Y1), . . . , (Xn, Yn) be a random sample from a bivariate distribution with
E(Xi) = µx, E(Yi) = µy, V ar(Xi) = σ2

x, V ar(Yi) = σ2
y, and Cov(Xi, Yi) = σxy.

Show that the sample covariance Sxy =
∑n
i=1(Xi−X)(Yi−Y )

n−1
is a consistent estimator of

σxy.

A.5.11) Let X1, . . . , Xn be a random sample from a Poisson distribution with parameter λ.
You know that E(Xi) = V ar(Xi) = λ; there is no need to prove it.

From the Strong Law of Large Numbers, it follows immediately that Xn is strongly
consistent for λ. Let

λ̂ =

∑n
i=1(Xi −Xn)2

n− 4
.
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Is λ̂ also consistent for λ? Answer Yes or No and prove your answer.

A.5.3 Convergence of random vectors

Almost all applied problems are multi-parameter, and that certainly applies to the ones
in this book. Parameter estimates are usually random vectors. It is very convenient
that in terms of convergence, the multivariate case is very similar to the univariate case
just discussed. The is based on material in Thomas Ferguson’s beautiful little book A
course in large sample theory, which is highly recommended. All quantities in boldface
are vectors in Rm unless otherwise indicated.

1. Definitions

? Tn
a.s.→ T means P{ω : limn→∞Tn(ω) = T(ω)} = 1.

? Tn
P→ T means ∀ε > 0, limn→∞ P{||Tn −T|| < ε} = 1.

? Tn
d→ T means for every continuity point t of FT, limn→∞ FTn(t) = FT(t).

2. Tn
a.s.→ T⇒ Tn

P→ T⇒ Tn
d→ T.

3. If a is a vector of constants, Tn
d→ a⇒ Tn

P→ a.

4. Strong Law of Large Numbers: Let X1, . . .Xn be independent and identically dis-
tributed random vectors with finite first moment, and let X be a general random
vector from the same distribution. Then Xn

a.s.→ E(X).

5. Central Limit Theorem: Let X1, . . . ,Xn be i.i.d. random vectors with expected
value vector µ and covariance matrix Σ. Then

√
n(Xn−µ) converges in distribution

to a multivariate normal with mean 0 and covariance matrix Σ.

6. Slutsky Theorems for Convergence in Distribution:

(a) If Tn ∈ Rm, Tn
d→ T and if f : Rm → Rq (where q ≤ m) is continuous except

possibly on a set C with P (T ∈ C) = 0, then f(Tn)
d→ f(T).

(b) If Tn
d→ T and (Tn −Yn)

P→ 0, then Yn
d→ T.

(c) If Tn ∈ Rd, Yn ∈ Rk, Tn
d→ T and Yn

P→ c, then(
Tn

Yn

)
d→
(

T
c

)
7. Slutsky Theorems for Convergence in Probability:

(a) If Tn ∈ Rm, Tn
P→ T and if f : Rm → Rq (where q ≤ m) is continuous except

possibly on a set C with P (T ∈ C) = 0, then f(Tn)
P→ f(T).
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(b) If Tn
P→ T and (Tn −Yn)

P→ 0, then Yn
P→ T.

(c) If Tn ∈ Rd, Yn ∈ Rk, Tn
P→ T and Yn

P→ Y, then

(
Tn

Yn

)
P→
(

T
Y

)

8. Delta Method (Theorem of Cramér, Ferguson p. 45): Let g : Rd → Rk be such that

the elements of ġ(x) =
[
∂gi
∂xj

]
k×d

are continuous in a neighborhood of θ ∈ Rd. If Tn

is a sequence of d-dimensional random vectors such that
√
n(Tn − θ)

d→ T, then
√
n(g(Tn) − g(θ))

d→ ġ(θ)T. In particular, if
√
n(Tn − θ)

d→ T ∼ N(0,Σ), then
√
n(g(Tn)− g(θ))

d→ Y ∼ N(0, ġ(θ)Σġ(θ)>).

In the multivariate delta method, the matrix ġ(θ) is the Jacobian of the transformation
g. The idea is that smooth functions of asymptotically normal random variables are also
asymptotically normal.

Asymptotic normality of variances and covariances

The following theorem says that even for non-normal data, the unique elements of the
sample variance-covariance matrix have a joint distribution that is approximately multi-
variate normal for large samples. The means are the corresponding elements of the true
variance-covariance matrix, and the asymptotic variance-covariance matrix (of the vari-
ances and covariances) is L/n, where L is given below. The proof is a good workout in
the Slutsky lemmas.

Theorem A.1 Let d1, . . . ,dn be a random sample from a k-dimensional distribution with
expected value µ, covariance matrix Σ, and finite fourth moments. Define w = vech{(d1−
µ)(d1 − µ)>} and let L = cov(w). Then

√
n
(
vech(Σ̂−Σ)

)
d→ t ∼ N(0,L).
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Proof

Σ̂ =
1

n

n∑
i=1

(di − dn)(di − dn)>

=
1

n

n∑
i=1

(di − µ+ µ− dn)(di − µ+ µ− dn)>

=
1

n

n∑
i=1

(di − µ)(di − µ)>

+
1

n

n∑
i=1

(di − µ)(µ− dn)> +
1

n

n∑
i=1

(µ− dn)(di − µ)>

+ (µ− dn)(µ− dn)>

=
1

n

n∑
i=1

(di − µ)(di − µ)>

+ (dn − µ)(µ− dn)> + (µ− dn)(dn − µ)> + (dn − µ)(dn − µ)>

=
1

n

n∑
i=1

(di − µ)(di − µ)> − (dn − µ)(dn − µ)>.

So,

√
n(Σ̂−Σ) =

√
n

(
1

n

n∑
i=1

(di − µ)(di − µ)>

)
−
√
n(dn − µ)(dn − µ)>.

The second term goes to zero in probability, because the Central Limit Theorem (item 5

in the list of large-sample results) says that
√
n(µ− dn)

d→ Y ∼ N(0,Σ), while the Law

of Large Numbers (item 4) tells us dn − µ
P→ 0. Then Slutsky Lemma 6c implies √n(µ− dn)

dn − µ

 d→

 Y

0

 ,

and Slutsky Lemma 6a (continuous mapping) establishes
√
n(dn−µ)(dn−µ)>

d→ Y0> =

0⇒
√
n(dn − µ)(dn − µ)>

P→ 0.

Therefore by Slutsky Lemma 6b,
√
n(Σ̂−Σ) and

√
n(
∼
Σ −Σ) converge in distribution

to the same random matrix, where
∼
Σ= 1

n

∑n
i=1(di − µ)(di − µ)>. Now vech

(∼
Σ
)

is just

the mean of n independent and identically distributed random vectors, each with mean
vech (Σ) and covariance matrix L as given by the theorem. The Central Limit Theorem

then implies
√
n
(
vech(

∼
Σ −Σ)

)
d→ T ∼ N(0,L), and the conclusion follows. �

Using the delta method instead The multivariate delta method (item 8 in the list of
large-sample results) can also be used to establish Theorem A.1. The details are a useful
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illustration of how to apply the delta method. The calculations will be carried out for a
2× 2 covariance matrix, and the extension to larger problems will be clear.

Independently for i = 1, . . . , n, let

di =

(
xi
yi

)
with E(di) =

(
µx
µy

)
and cov(di) = Σ =

(
σ2
x σxy

σxy σ2
y

)
.

The sample variance of x (with n in the denominator, which is more convenient for
asymptotics) is

σ̂2
x = 1

n

∑n
i=1(xi − x̄n)2 = 1

n

∑n
i=1 x

2
i − x̄2

n,

and the sample covariance of x and y is

σ̂xy = 1
n

∑n
i=1(xi − x̄n)(yi − ȳn) = 1

n

∑n
i=1 xiyi − x̄nȳn.

It’s clear that the sample variances and covariances are functions of a collection of sample
means. The sample means can be assembled into a vector

Tn =



x̄n

1
n

∑n
i=1 x

2
i

ȳn

1
n

∑n
i=1 y

2
i

1
n

∑n
i=1 xiyi


.

To apply the multivariate central limit theorem we need the vectors that are being aver-
aged in order to get Tn. That’s easy:

Ti =


xi
x2
i

yi
y2
i

xiyi

 , with E(Ti) = µ =


E(x)
E(x2)
E(y)
E(y2)
E(xy)

 =


µx

σ2
x + µ2

x

µy
σ2
y + µ2

y

σxy + µxµy

 .

Denoting cov(Ti) by W, the central limit theorem (item 5 in the list of large-sample

results) yields
√
n(Xn − µ)

d→ T ∼ N(0,W).

Using the notation

t =


t1
t2
t3
t4
t5

 , let g(t) =

 g1(t)
g2(t)
g3(t)

 =

 t2 − t21
t5 − t1t3
t4 − t23

 .
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This yields

g(Tn) =

 σ̂2
x

σ̂xy
σ̂2
y

 and g(µ) =

 σ2
x

σxy
σ2
y

 .

In other words, g(Tn) = vech(Σ̂n) and g(µ) = vech(Σ). By the delta method,

√
n
(
g(Tn)− g(µ)

) d→ T ∼ N
(
0, ġ(µ)Wġ(µ)>

)
That is, vech(Σ̂n) is asymptotically multivariate normal, with asymptotic mean vech(Σ),
and asymptotic covariance matrix 1

n
ġ(µ)Wġ(µ)>. It is worth the effort to calculate the

asymptotic covariance matrix for this two-variable case.
Using elementary formulas for variance and covariance together with a slightly ex-

tended version of the change of variables formula (A.1), the matrix W = cov(Ti) may be
written (in upper triangular form and without parentheses on the expected values to fit
more material on the page) as

W = cov


xi
x2i
yi
y2i
xiyi

 =


Ex2 − (Ex)2 Ex3 − ExEx2 Exy − ExEy Exy2 − ExEy2 Ex2y − ExExy

Ex4 − (Ex2)2 Ex2y − Ex2Ey Ex2y2 − Ex2Ey2 Ex3y − Ex2Exy
Ey2 − (Ey)2 Ey3 − EyEy2 Exy2 − EyExy

Ey4 − (Ey2)2 Exy3 − Ey2Exy
Ex2y2 − (Exy)2


Recall that

g(t) =

 g1(t)
g2(t)
g3(t)

 =

 t2 − t21
t5 − t1t3
t4 − t23

 .

The Jacobian evaluated at a general point t is [∂gi
∂tj

]. In this case,

ġ(t) =


∂g1
∂t1

∂g1
∂t2

∂g1
∂t3

∂g1
∂t4

∂g1
∂t5

∂g2
∂t1

∂g2
∂t2

∂g2
∂t3

∂g2
∂t4

∂g2
∂t5

∂g3
∂t1

∂g3
∂t2

∂g3
∂t3

∂g3
∂t4

∂g3
∂t5


=

 −2t1 1 0 0 0
−t3 0 −t1 0 1
0 0 −2t3 0 0

 .

The asymptotic covariance matrix of vech(Σ̂n) is 1
n
ġ(µ)Wġ(µ)>. Carrying out the matrix

multiplication and substituting10,

10This is a substantial clerical task, with many opportunities for error. I used a combination of Sage
(see Appendix B) and manual editing.
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cov

 σ̂2
x

σ̂xy
σ̂2
y

 .
=

1

n



3µ4
x + 6µ2

xσ
2
x − σ4

x

− 4E(x3)µx + E(x4)

3µ3
xµy + 3µxµyσ

2
x + 3µ2

xσxy
− σ2

xσxy − 3E(x2y)µx −E(x3)µy
+ E(x3y)

3µ2
xµ

2
y+µ2

yσ
2
x+µ2

xσ
2
y−σ2

xσ
2
y+

4µxµyσxy − 2E(xy2)µx
− 2E(x2y)µy + E(x2y2)

3µ2
xµ

2
y + µ2

yσ
2
x + µ2

xσ
2
y +

4µxµyσxy − 2E(xy2)µx −
2E(x2y)µy−σ2

xy+E(x2y2)

3µxµ
3
y + 3µxµyσ

2
y + 3µ2

yσxy −
σxyσ

2
y −E(y3)µx − 3E(xy2)µy +

E(xy3)

3µ4
y+6µ2

yσ
2
y−σ4

y−4E(y3)µy+
E(y4)


.

(A.24)

The extension to larger numbers of variables is clear, though the details are unavoidably
messy. The advantage of the delta method over the proof of Theorem A.1 is that you
can see where it’s going in advance. As soon as the sample variance and covariance are
written as a function of sample means, consistency is guaranteed by the law of large
numbers and continuous mapping, and asymptotic normality is guaranteed by the delta
method. This applies regardless of how many variables there are. The actual calculation
of ġ(µ)Wġ(µ)> is necessary only if you need the formulas for another purpose.

A.6 Estimation and inference

A.6.1 Statistical Models

A statistical model is a set of assertions that partly specify the probability distribution
of the observable data. The specification may be direct or indirect. As an example
of direct specification, let X1, . . . , Xn be a random sample from a normal distribution
with expected value µ and variance σ2. As an example of indirect specification, let
Yi = β0 + β1xi1 + · · ·+ βkxik + εi for i = 1, . . . , n, where

β0, . . . , βk are unknown constants. xij are known constants.
ε1, . . . , εn are independent N(0, σ2) random variables.
σ2 is an unknown constant.

Statistical models leave something unknown. Otherwise, they are probability models.
The unknown part of the model for the data is called the parameter. Usually, parameters
are numbers or vectors of numbers – unknown constants. They are usually denoted by θ
or θ or other Greek letters.

The parameter space is the set of values that can be taken on by the parameter, and
will be denoted by Θ, with θ ∈ Θ. For the normal random sample example, the parameter
space is Θ = {(µ, σ2) : −∞ < µ < ∞, σ2 > 0}. For the regression example given above,
Θ = {(β0, . . . , βk, σ

2) : −∞ < βj <∞, σ2 > 0}.
Parameters need not be numbers. For example, let X1, . . . , Xn be a random sample

from a continuous distribution with unknown distribution function F (x). The param-
eter is the unknown distribution function F (x), and the parameter space is a space of
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distribution functions. We may be interested only in a function of the parameter, like

µ =

∫ ∞
−∞

xf(x) dx

The rest of F (x) is just a nuisance parameter.
We will use the following framework for parameter estimation and statistical infer-

ence. The data are D1, . . . , Dn (the letter D stands for data). The distribution of these
independent and identically distributed random variables depends on the parameter θ,
which is an element of the parameter space Θ. That is,

D1, . . . , Dn
i.i.d.∼ Pθ, θ ∈ Θ.

Both the data values and the parameter may be vectors, even though they are not written
in boldface.

To give one more example, the data vector could be D = X1, . . .Xn, a vector of
independent multivariate normals of dimension p. The parameter space is {θ = (µ,Σ) :
µ ∈ Rp, and Σ is a p× p symmetric positive definite matrix. Pθ is the joint distribution
function of X1, . . .Xn, with joint density

f(x1, . . .xn) =
n∏
i=1

f(xi;µ,Σ),

where f(xi;µ,Σ) is the multivariate normal density (A.19) on page 553.
For the model D ∼ Pθ, θ ∈ Θ, we don’t know θ. We never know θ. All we can do is

guess. We will estimate θ (or a function of θ) based on the observable data. Let T denote

an estimator of θ (or a function of θ): T = T (D) For example, if D = X1, . . . , Xn
i.i.d∼

N(µ, σ2), the usual estimator is T = (X,S2). For an ordinary fixed-x multiple regression

model, T = (β̂,MSE). In these and in all other cases, T is a statistic, a random variable
or vector that can be computed from the data without knowing the values of any unknown
parameters.

How do we get a recipe for T? Guess? It’s good to be systematic. Lots of methods
are available. We will consider two: Method of moments and Maximum Likelihood.

A.6.2 Method of Moments Estimation

The following is based on a random sample like (X1, Y1), . . . , (Xn, Yn). Moments are
quantities like E{Xi}, E{X2

i }, E{XiYi}, E{WiX
2
i Y

3
i }, and so on. Central moments are

moments of centered random variables, such as

E{(Xi − µx)2}

E{(Xi − µx)(Yi − µy)}

E{(Xi − µx)2(Yi − µy)3(Zi − µz)2}
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These are all population moments. Sample moments are analogous to population mo-
ments, and are natural estimators.

Population moment Sample moment

E{Xi} 1
n

∑n
i=1Xi

E{X2
i } 1

n

∑n
i=1X

2
i

E{XiYi} 1
n

∑n
i=1XiYi

E{(Xi − µx)2} 1
n

∑n
i=1(Xi −Xn)2

E{(Xi − µx)(Yi − µy)} 1
n

∑n
i=1(Xi −Xn)(Yi − Y n)

E{(Xi − µx)(Yi − µy)2} 1
n

∑n
i=1(Xi −Xn)(Yi − Y n)2

The method of moments is based on estimating population moments by the corresponding
sample moments. For the model D ∼ Pθ with θ ∈ Θ, the population moments are a
function of θ. The procedure is to first find θ as a function of the population moments,
and then estimate θ with that function of the sample moments.

Let m denote a vector of population moments, and let m̂ denote the corresponding
vector of sample moments. First, find m = g(θ). Then solve for θ, obtaining θ = g−1(m).

Let θ̂ = g−1(m̂). It doesn’t matter if you solve first or put hats on first11.

For example, suppose X1, . . . , Xn
i.i.d∼ U(0, θ). That is, the data are a random sample

from a uniform distribution on (0, θ), so that the model density is f(x) = 1
θ

for 0 < x < θ.
First, find the moment (expected value).

E(Xi) =

∫ θ

0

x
1

θ
dx

=
1

θ

∫ θ

0

x dx

=
1

θ

x2

2

∣∣∣∣θ
0

=
1

2θ
(θ2 − 0)

=
θ

2

So m = θ
2
⇔ θ = 2m, and θ̂ = 2X.

Sample problem Let X1, . . . , Xn be a random sample from a uniform distribution on
(0, θ). Estimate θ by the Method of Moments for the following data. Your answer is a
number. Show some work. Data: 4.09 0.13 0.84 3.83 2.13 4.67 4.61 0.40 4.19

0.71.
11 For most models the function g is well behaved, with continuous mixed partial derivatives. In

that case the multivariate delta method from the end of Section A.5 guarantees that θ̂ is asymptotically
multivariate normal even when the data are definitely not normal. This yields distribution-free tests and
confidence intervals with surprisingly little effort.
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Answer X = 2.56 so θ̂ = 2X = 2 ∗ 2.56 = 5.12.
Method of moments estimators are not unique. What moments you use are up to you.

E(X2
i ) =

1

θ

∫ θ

0

x2 dx =
θ2

3

So set m = θ2

3
⇔ θ =

√
3m, and

θ̂ =

√√√√ 3

n

n∑
i=1

X2
i ,

which is not equal to 2X. Presumably estimates based on lower-order moments are better
in some sense, but I don’t know the details.

To compare the two estimates θ̂1 = 2X and θ̂2 =
√

3
n

∑n
i=1 X

2
i for the numerical

example,

x 4.09 0.13 0.84 3.83 2.13 4.67 4.61 0.40 4.19 0.71

x^2 16.7281 0.0169 0.7056 14.6689 4.5369 21.8089 21.2521 0.16 17.5561 0.5041

yielding θ̂1 = 5.12 and θ̂2 = 5.42.

Method of Moments estimator for the normal Let X1, . . . , Xn
i.i.d∼ N(µ, σ2). From

the moment-generating function or a textbook, E(Xi) = µ and E(X2
i ) = σ2 +µ2. Solving

for the parameters, µ = E(Xi) and σ2 = E(X2
i ) − (E(Xi))

2. The Method of Moments

estimators are µ̂ = X and σ̂2 = 1
n

∑n
i=1 X

2
i −X

2
= 1

n

∑n
i=1(Xi −X)2.

A regression example Independently for i = 1, . . . , n, let Yi = β0 + β1Xi + εi, where

• E(Xi) = µx, V ar(Xi) = σ2
x

• E(εi) = 0, V ar(εi) = σ2
ε

• Xi and εi are independent.

The distributions of Xi and εi are unknown, so they are part of the parameter. The
parameter is (β0, β1, Fε(ε), Fx(x)). As mentioned earlier, there is no conceptual problem
with parameters that are functions (infinite-dimensional) instead of just real numbers or
vectors.

We want to estimate β0 and β1, a two-dimensional function of the parameter. First,
calculate some moments.

E(Xi) = µx V ar(Xi) = σ2
x

E(Yi) = β0 + β1µx Cov(Xi, Yi) = β1σ
2
x
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Use the Centering Rule on Page ?? to get the last one:

Cov(Xi, Yi) = E(
c

X i

c

Y i)

= E{
c

X i (β1

c

X i +εi)}

= E{β1

c

X
2
i +

c

X i εi)}

= β1E{
c

X
2
i}+ E{

c

X i}E{εi}
= β1σ

2
x

Putting hats on first (optional), we solve Y = β̂0 + β̂1X and σ̂xy = β̂1σ̂
2
x for β̂0 and β̂1,

obtaining

β̂1 =
σ̂xy
σ̂2
x

=

∑n
i=1(Xi −Xn)(Yi − Y n)∑n

i=1(Xi −Xn)2
and

β̂0 = Y − β̂1X

These happen to be the same as the least-squares estimates.
Since β̂0 and β̂1 are nice differentiable functions of various quantities that are essentially

sample means, the multivariate delta method from the end of Section A.5 implies that
the asymptotic joint distribution of β̂0 and β̂1 is bivariate normal. This holds regardless
of the distributions of Xi and εi, provided only that their moments exist, and opens the
door to distribution-free tests and confidence intervals. The story for multiple regression
is almost exactly the same. The only requirement is a sample large enough for the Central
Limt Theorem to work.

A.6.3 Maximum Likelihood Estimation

The idea behind maximum likelihood is to estimate the unknown parameter by the quan-
tity that makes the probability of obtaining the observed data as large as possible. This
probability is represented12 by the likelihood function

L(θ) =
n∏
i=1

f(di; θ),

where f(di; θ) is the density or probability mass function evaluated at di.

Let θ̂ denote the usual Maximum Likelihood Estimate (MLE). That is, it is the pa-
rameter value for which the likelihood function is greatest, over all θ ∈ Θ. Because the
log is an increasing function, maximizing the likelihood is equivalent to maximizing the
log likelihood, which will be denoted

`(θ) = lnL(θ).

12If the data are discrete, the likelihood function is exactly the probability of observing the data that
actually were observed. In the continuous case the likelihood function is approximately proportional to
the probability of observing a data vector that falls into a small region surrounding the vector (point)
that was observed.
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In elementary situations where the support of the distribution does not depend on the
parameter, you get the MLE by closing your eyes, differentiating the log likelihood, setting
the derivative to zero, and solving for θ. Then if you are being careful, you carry out the
second derivative test; if `′′(θ̂) < 0, the log likelihood is concave down at your answer,
and you have found the maximum. Here is an example, useful mostly to clarify ideas and
serve as a contrast to more realistic cases.

Example Let D1, . . . , Dn be a random sample (independent and identically distributed
random variables) from a distribution with density f(y) = θ

(d+1)θ+1 for d > 0, where the
unknown parameter θ is strictly greater than zero. The log likelihood is

`(θ) = ln
n∏
i=1

θ

(di + 1)θ+1

=
n∑
i=1

(ln θ − (θ + 1) ln(di + 1))

= n ln θ − (θ + 1)
n∑
i=1

ln(di + 1)

Differentiating with respect to θ,

`′(θ) =
n

θ
−

n∑
i=1

ln(di + 1)
set
= 0

⇒ θ =
n∑n

i=1 ln(di + 1)
.

Carrying out the second derivative test,

`′′(θ) = −nθ−2 = − n
θ2
< 0,

so the log likelihood function is concave down and we have located a maximum. This
justifies writing θ̂ = n/

∑n
i=1 ln(di + 1). In R, if the data were in a numeric vector called

d, the MLE would be thetahat = 1/mean(log(d+1)).

Some Very Basic Math

If the calculations in that last example seemed obvious, you can skip this section.
I have noticed that a major obstacle for many students when doing maximum likeli-

hood calculations is a set of basic mathematical operations they actually know. But the
mechanics are rusty, or the notation used in Statistics is troublesome. So, with sincere
apologies to those who don’t need this, here are some basic rules.

• The distributive law: a(b+ c) = ab+ ac. You may see this in a form like

θ
n∑
i=1

xi =
n∑
i=1

θxi
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• Power of a product is the product of powers: (ab)c = ac bc. You may see this in a
form like (

n∏
i=1

xi

)α

=
n∏
i=1

xαi

• Multiplication is addition of exponents: abac = ab+c. You may see this in a form
like

n∏
i=1

θe−θxi = θn exp(−θ
n∑
i=1

xi)

• Powering is multiplication of exponents: (ab)c = abc. You may see this in a form
like

(eµt+
1
2
σ2t2)n = enµt+

1
2
nσ2t2

• Log of a product is sum of logs: ln(ab) = ln(a) + ln(b). You may see this in a form
like

ln
n∏
i=1

xi =
n∑
i=1

lnxi

• Log of a power is the exponent times the log: ln(ab) = b ln(a). You may see this in
a form like

ln(θn) = n ln θ

• The log is the inverse of the exponential function: ln(ea) = a. You may see this in
a form like

ln

(
θn exp(−θ

n∑
i=1

xi)

)
= n ln θ − θ

n∑
i=1

xi

Exercises A.6.3

1. Choose the correct answer.

(a)
∏n

i=1 e
xi =

i. exp(
∏n

i=1 xi)

ii. enxi

iii. exp(
∑n

i=1 xi)

(b)
∏n

i=1 λe
−λxi =

i. λe−λ
nxi

ii. λne−λnxi

iii. λn exp(−λ
∑n

i=1 xi)

iv. λn exp(−nλ
∑n

i=1 xi)

v. λn exp(−λn
∑n

i=1 xi)
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(c)
∏n

i=1 a
b
i =

i. nab

ii. anb

iii. (
∏n

i=1 ai)
b

(d)
∏n

i=1 a
bi =

i. nabi

ii. anbi

iii.
∑n

i=1 a
bi

iv. a
∏n
i=1 bi

v. a
∑n
i=1 bi

(e)
(
eλ(et−1)

)n
=

i. neλ(et−1)

ii. enλ(et−1)

iii. eλ(ent−1)

iv. enλ(et−n)

(f)
(∏n

i=1 e
−λxi

)2
=

i. e−2nλxi

ii. e−2λ
∑n
i=1 xi

iii. 2e−λ
∑n
i=1 xi

2. True, or False?

(a)
∑n

i=1
1
xi

= 1∑n
i=1 xi

(b)
∏n

i=1
1
xi

= 1∏n
i=1 xi

(c) a
b+c

= a
b

+ a
c

(d) ln(a+ b) = ln(a) + ln(b)

(e) ea+b = ea + eb

(f) ea+b = eaeb

(g) eab = eaeb

(h)
∏n

i=1(xi + yi) =
∏n

i=1 xi +
∏n

i=1 yi

(i) ln(
∏n

i=1 a
b
i) = b

∑n
i=1 ln(ai)

(j)
∑n

i=1

∏n
j=1 aj = n

∏n
j=1 aj

(k)
∑n

i=1

∏n
j=1 ai =

∑n
i=1 a

n
i

(l)
∑n

i=1

∏n
j=1 ai,j =

∏n
j=1

∑n
i=1 ai,j

3. Simplify as much as possible.
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(a) ln
∏n

i=1 θ
xi(1− θ)1−xi

(b) ln
∏n

i=1

(
m
xi

)
θx(1− θ)m−xi

(c) ln
∏n

i=1
e−λλxi
xi!

(d) ln
∏n

i=1 θ(1− θ)xi−1

(e) ln
∏n

i=1
1
θ
e−xi/θ

(f) ln
∏n

i=1
1

βαΓ(α)
e−xi/βxα−1

i

(g) ln
∏n

i=1
1

2ν/2Γ(ν/2)
e−xi/2x

ν/2−1
i

(h) ln
∏n

i=1
1

σ
√

2π
e−

(xi−µ)
2

2σ2

(i)
∏n

i=1
1

β−αI(α ≤ xi ≤ β) (Express in terms of the minimum and maximum y1

and yn.)

Maximum likelihood for the multivariate normal

Maximum likelihood estimation for the multivariate normal distribution plays an impor-
tant role in this book. It’s a case where closing your eyes and differentiating will get you
nowhere. It’s helpful to express the MLE as a theorem, making it easy to reference in the
main body of the text.

Theorem A.2 Let x1, . . . ,xn be a random sample from a Np(µ,Σ) distribution. The

unique maximum likelihood estimate is µ̂ = x and Σ̂ = 1
n

∑n
i=1(xi − x)(xi − x)>.

When I am producing proofs for a student audience, I frequently wonder whether I should
provide a model of how to write a clean proof, or give a longer proof that is easier to follow.
Perhaps because I’m naturally long-winded anyway, I often wind up giving more detail.
Here, I will try doing it both ways. The brief one comes first. If you can fill in the gaps
without too much effort, great. If necessary or if you wish, look at the second proof.

Proof One Rather than maximizing the likelihood, equivalently minimize

− 2

n
log

L(µ,Σ)

L(µ̂, Σ̂)
= tr(Σ̂Σ

−1
)− log |Σ̂Σ

−1
| − p+ (x− µ)>Σ−1(x− µ).

Because Σ is positive definite, the last term is nonnegative, and equal to zero if and only

if µ = x. Setting µ = x, the task is now to minimize tr(Σ̂Σ
−1

)− log |Σ̂Σ
−1
|.

The matrix Σ̂Σ−1 is similar to Σ−1/2Σ̂Σ−1/2, so the eigenvalues of Σ̂Σ−1 are real, and
positive with probability one. Thus,

tr(Σ̂Σ
−1

)− log |Σ̂Σ
−1
| =

p∑
j=1

λj −
p∑
j=1

log λj =

p∑
j=1

(λj − log λj) .

Each term in the sum is positive, and uniquely minimized when λj = 1. So to maximize the
likelihood, all the eigenvalues of Σ must equal one. By the spectral decomposition (A.9),

Σ−1/2Σ̂Σ−1/2 = CDC> = CIpC
> = Ip, so that Σ = Σ̂. �
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Proof Two Rather than maximizing the likelihood, equivalently, (1) Divide the likeli-
hood by a well-chosen expression that is constant with respect to µ and Σ, (2) Take the
natural log, (3) Multiply by − 2

n
, and (4) minimize the result. Using Property 9 of the

multivariate normal on page 554,

− 2

n
log

L(µ,Σ)

L(µ̂, Σ̂)
= − 2

n
log
|Σ|−n/2(2π)−np/2 exp−n

2

{
tr(Σ̂Σ

−1
) + (x− µ)>Σ−1(x− µ)

}
|Σ̂|−n/2(2π)−np/2 exp−n

2

{
tr(Σ̂Σ̂

−1
) + (x− x)>Σ̂

−1
(x− x)

}
= − 2

n
log
|Σ|−n/2 exp−n

2

{
tr(Σ̂Σ

−1
) + (x− µ)>Σ−1(x− µ)

}
|Σ̂|−n/2 exp−n

2
{tr(Ip) + 0}

= − 2

n
log

 |Σ| exp
{
tr(Σ̂Σ

−1
) + (x− µ)>Σ−1(x− µ)

}
|Σ̂| exp {p}

−
n
2

= log

 |Σ| exp
{
tr(Σ̂Σ

−1
) + (x− µ)>Σ−1(x− µ)

}
|Σ̂|ep


= log

|Σ|
|Σ̂|

+ tr(Σ̂Σ
−1

) + (x− µ)>Σ−1(x− µ)− p

= tr(Σ̂Σ
−1

)− log
|Σ̂|
|Σ|
− p+ (x− µ)>Σ−1(x− µ)

= tr(Σ̂Σ
−1

)− log |Σ̂Σ
−1
| − p+ (x− µ)>Σ−1(x− µ)

If Σ is positive definite, so is Σ−1. Therefore the last term is nonnegative, and equal to
zero if and only if x − µ = 0 ⇐⇒ µ = x. That is, the function is minimized when
µ = x, regardless of what the positive definite matrix Σ happens to be.

This establishes µ̂ = x. Setting µ = x, the last term vanishes, and the task is now to
minimize

tr(Σ̂Σ
−1

)− log |Σ̂Σ
−1
| (A.25)

over all symmetric and positive definite Σ.

Recall that the square matrix B is said to be similar to A if there is an invertible matrix
P with B = P−1AP. Similar matrices share important characteristics; for example,
they have the same eigenvalues, and the numbers of times each eigenvalue occurs (the
multiplicities) are the same for the two matrices.

Choosing P = Σ−1/2, write

Σ−1/2
(
Σ̂Σ−1

)
Σ1/2 = Σ−1/2Σ̂Σ−1/2.

Thus Σ−1/2Σ̂Σ−1/2 is similar to Σ̂Σ−1. The matrix Σ̂ has an inverse with probability
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one13. Therefore the symmetric matrix Σ−1/2Σ̂Σ−1/2 has an inverse, is positive definite,
and all its eigenvalues are strictly positive. This means the eigenvalues of Σ̂Σ−1 are
positive too, and

tr(Σ̂Σ
−1

)− log |Σ̂Σ
−1
| =

p∑
j=1

λj − log

p∏
j=1

λj

=

p∑
j=1

λj −
p∑
j=1

log λj

=

p∑
j=1

(λj − log λj) . (A.26)

For x > 0, the function y = x − log x > 0, and achieves a unique minimum when x = 1.

Thus (A.26) can be minimized by choosing Σ so that the eigenvalues of Σ̂Σ
−1

all equal

one. Such a choice is possible, because Σ = Σ̂ yields Σ̂Σ
−1

= Ip. The conclusion is that

Σ̂ is a maximum likelihood estimator of Σ. Now we will see it is the only one. Let Σ be

another covariance matrix such that all the eigenvalues of Σ̂Σ
−1

equal one.
The similarity of Σ−1/2Σ̂Σ−1/2 to Σ̂Σ−1 means that the eigenvalues of Σ−1/2Σ̂Σ−1/2

are also all equal to one. Thus by the spectral decomposition theorem (A.9),

Σ−1/2Σ̂Σ−1/2 = CDC>

= CIpC
> = CC> = Ip,

because the eigenvectors in the columns of C are orthonormal. Then,

Ip = Σ−1/2Σ̂Σ−1/2

⇐⇒ Σ1/2 Ip Σ1/2 = Σ1/2
(
Σ−1/2Σ̂Σ−1/2

)
Σ1/2

⇐⇒ Σ = Σ̂.

This establishes that with probability one, the likelihood function has a unique maximum
at µ = x and and Σ = Σ̂. �

A.6.4 Numerical maximum likelihood

In this course, as in much of applied statistics, you will find that you can write the log
likelihood and differentiate it easily enough, but when you set the derivatives to zero,
you obtain a set of equations that are impossible to solve explicitly. This means that the
problem needs to be solved numerically. That is, you use a computer to calculate the

13The multivariate normal distribution is continuous, and for that reason, so is the joint distribution
of the unique variances and covariances in Σ̂. The set of variances and covariances such that one of the
columns is a linear combination of others is a set of volume zero in Rp(p+1)/2, and hence has probability
zero.
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value of the log likelihood for a set of parameter values, and you search until you have
found the biggest one.

But how do you search? It’s easy in one or two dimensions, but structural equation
models can easily involve dozens, scores or even hundreds of parameters. It’s a bit like
being dropped by helicopter onto a mountain range, and asked to find the highest peak
blindfolded. All you can do is walk uphill. The gradient is the direction of steepest
increase, so walk that way. How big a step should you take? That’s a good question.
When you come to a place where the surface is level, or approximately level, stop. How
level is level enough? That’s another good question. Once you find a “level” place, you
can check to see if the surface is concave down there. If so, you’re at a maximum. Is it
the global maximum (the real MLE), or just a local maximum? It’s usually impossible
to tell for sure. You can get the helicopter to drop you in several different places fairly
far apart, and if you always arrive at the same maximum you will feel more confident
of your answer. But it could still be just a local maximum that is easy to reach. The
main thing to observe is that where you start is very important. Another point is that
for realistically big problems, you need high-grade, professionally written software.

The following example is one that you can do by hand, though maybe not with your
eyes closed. But it will serve to illustrate the basic ideas of numerical maximum likelihood.

Example A.6.1 Normal with Mean Equal to Standard Deviation

Let D1, . . . , Dn be a random sample from a normal distribution with mean θ and variance
θ2. A sample of size 50 yields:

5.85 -15.02 -13.24 -1.63 -0.07 -2.40 -3.02 -3.19 -5.16 0.79 -1.03 -10.69

-12.96 -4.55 0.57 -7.94 -6.80 2.95 -9.01 -9.33 -11.93 -7.13 10.34 -1.01

-4.18 -1.30 -7.56 -1.25 -4.64 -4.88 -4.06 -1.91 -1.81 -6.92 -13.27 -5.52

4.40 -12.17 -4.55 -5.82 -0.81 -19.28 -4.97 -7.78 -5.07 -5.45 -4.27 -4.98

-9.56 -9.33

Find the maximum likelihood estimate of θ. You only need an approximate value; one
decimal place of accuracy will do.

Again, this is a problem that can be solved explicitly by differentiation, and the reader
is invited to give it a try before proceeding. Have the answer? Is it still the same day you
started? Now for the numerical solution. First, write the log likelihood as

`(θ) = ln
n∏
i=1

1

|θ|
√

2π
e−

(di−θ)
2

2θ2

= −n ln |θ| − n

2
ln(2π)−

∑n
i=1 d

2
i

2θ2
+

∑n
i=1 di
θ

− n

2
.

We will do this in R. The data are in a file called norm1.data. Read it. Remember
that > is the R prompt.
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> D <- scan("norm1.data")

Read 50 items

Now define a function to compute the log likelihood.

loglike1 <- function(theta) # Assume data are in a vector called D

{

sumdsq <- sum(D^2); sumd <- sum(D); n <- length(D)

loglike1 <- -n * log(abs(theta)) - (n/2)*log(2*pi) - sumdsq/(2*theta^2) +

sumd/theta - n/2

loglike1 # Return value of function

} # End definition of function loglike1

Just to show how the function works, compute it at a couple of values, say θ = 2 and
θ = −2.

> loglike1(2)

[1] -574.2965

> loglike1(-2)

[1] -321.7465

Negative values of the parameter look more promising, but it is time to get systematic.
The following is called a grid search. It is brutal, inefficient, and usually effective. It is
too slow to be practical for large problems, but this is a one-dimensional parameter and
we are only asked for one decimal place of accuracy. Where should we start? Since the
parameter is the mean of the distribution, it should be safe to search within the range of
the data. Start with widely spaced values and then refine the search. All we are doing
is to calculate the log likelihood for a set of (equally spaced) parameter values and see
where it is greatest. After all, that is the idea behind the MLE.

> min(D); max(D)

[1] -19.28

[1] 10.34

> Theta <- -20:10

> cbind(Theta,loglike1(Theta))

Theta

[1,] -20 -211.5302

[2,] -19 -208.6709

[3,] -18 -205.6623

[4,] -17 -202.4911

[5,] -16 -199.1423

[6,] -15 -195.6002

[7,] -14 -191.8486

[8,] -13 -187.8720

[9,] -12 -183.6580

[10,] -11 -179.2022
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[11,] -10 -174.5179

[12,] -9 -169.6565

[13,] -8 -164.7513

[14,] -7 -160.1163

[15,] -6 -156.4896

[16,] -5 -155.6956

[17,] -4 -162.7285

[18,] -3 -193.8796

[19,] -2 -321.7465

[20,] -1 -1188.0659

[21,] 0 NaN

[22,] 1 -1693.1659

[23,] 2 -574.2965

[24,] 3 -362.2463

[25,] 4 -289.0035

[26,] 5 -256.7156

[27,] 6 -240.6729

[28,] 7 -232.2734

[29,] 8 -227.8888

[30,] 9 -225.7788

[31,] 10 -225.0279

First, we notice that at θ = 0, the log likelihood is indeed Not a Number. For this
problem, the parameter space is all the real numbers except zero – unless one wants to
think of a normal random variable with zero variance as being degenerate at µ; that is,
P (D = µ) = 1. (In his case, what would the data look like?)

But the log likelihood is greatest around θ = −5. We are asked for one decimal place
of accuracy, so,

> Theta <- seq(from=-5.5,to=-4.5,by=0.1)

> Loglike <- loglike1(Theta)

> cbind(Theta,Loglike)

Theta Loglike

[1,] -5.5 -155.5445

[2,] -5.4 -155.4692

[3,] -5.3 -155.4413

[4,] -5.2 -155.4660

[5,] -5.1 -155.5487

[6,] -5.0 -155.6956

[7,] -4.9 -155.9136

[8,] -4.8 -156.2106

[9,] -4.7 -156.5950

[10,] -4.6 -157.0767

[11,] -4.5 -157.6665

> thetahat <- Theta[Loglike==max(Loglike)]
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> # Theta such that Loglike is the maximum of Loglike

> thetahat

[1] -5.3

To one decimal place of accuracy, the maximum is at θ = −5.3. It would be easy to refine
the grid and get more accuracy, but that will do. This is the last time we will see our
friend the grid search, but you may find the approach useful in homework.

Now let’s do the search in a more sophisticated way, using R’s nlm (non-linear mini-
mization) function. 14 The nlm function has quite a few arguments; try help(nlm). The
ones you always need are the first two: the name of the function, and a starting value (or
vector of starting values, for multiparameter problems).

Where should we start? Since the parameter equals the expected value of the distribu-
tion, how about the sample mean? It is often a good strategy to use Method of Moment
estimators as starting values for numerical maximum likelihood. Method of Moments
estimation is reviewed in Section ??.

One characteristic that nlm shares with most optimization routines is that it likes to
minimize rather than maximizing. So we will minimize the negative of the log likelihood
function. For this, it is necessary to define a new function, loglike2.

> mean(D)

[1] -5.051

> loglike2 <- function(theta) { loglike2 <- -loglike1(theta); loglike2 }

> nlm(loglike2,mean(D))

$minimum

[1] 155.4413

$estimate

[1] -5.295305

$gradient

[1] -1.386921e-05

$code

[1] 1

$iterations

[1] 4

By default, nlm returns a list with four elements; minimum is the value of the function
at the point where it reaches its minimum, estimate is the value at which the minimum

14The nlm function is good but generic. See Numerical Recipes for a really good discussion of routines
for numerically minimizing a function. They also provide source code. The Numerical Recipes books have
versions for the Pascal, Fortran and Basic languages as well as C. This is a case where a book definitely
delivers more than the title promises. It may be a cookbook, but it is a very good cookbook written by
expert chemists.
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was located; that’s the MLE. Gradient is the slope in the direction of greatest increase;
it should be near zero. Code is a diagnosis of how well the optimization went; the value
of 1 means everything seemed okay. See help(nlm) for more detail.

We could have gotten just the MLE with

> nlm(loglike2,mean(D))$estimate

[1] -5.295305

That’s the answer, but the numerical approach misses some interesting features of the
problem, which can be done with paper and pencil in this simple case. Differentiating the
log likelihood separately for θ < 0 and θ > 0 to get rid of the absolute value sign, and
then re-uniting the two cases since the answer is the same, we get

`′(θ) = −n
θ

+

∑n
i=1 d

2
i

θ3
−
∑n

i=1 di
θ2

.

Setting `′(θ) = 0 and re-arranging terms, we get

nθ2 + (
n∑
i=1

di)θ − (
n∑
i=1

d2
i ) = 0.

Of course this expression is not valid at θ = 0, because the function we are differentiating
is not even defined there. The quadratic formula yields two solutions:

−
∑n

i=1 di ±
√

(
∑n

i=1 di)
2 + 4n

∑n
i=1 d

2
i

2n
=

1

2

(
−d±

√
d

2
+ 4

∑n
i=1 d

2
i

n

)
, (A.27)

where d is the sample mean.
Let’s calculate these for the given data.

> meand <- mean(D) ; meandsq <- sum(D^2)/length(D)

> (-meand + sqrt(meand^2 + 4*meandsq) )/2

[1] 10.3463

> (-meand - sqrt(meand^2 + 4*meandsq) )/2

[1] -5.2953

The second solution is the one we found with the numerical search. What about the other
one? Is it a minimum? Maximum? Saddle point? The second derivative test will tell us.
The second derivative is

`′′(θ) =
n

θ2
− 3

∑n
i=1 d

2
i

θ4
+

2
∑n

i=1 di
θ3

.

Substituting A.27 into this does not promise to be much fun, so we will be content with
a numerical answer for this particular data set. Call the first root t1 and the second one
(our MLE) t2.
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> t1 <- (-meand + sqrt(meand^2 + 4*meandsq) )/2 ; t1

[1] 10.3463

> t2 <- (-meand - sqrt(meand^2 + 4*meandsq) )/2 ; t2

[1] -5.2953

> n <- length(D)

> # Now calculaate second derivative at t1 and t2

> n/t1^2 - 3*sum(D^2)/t1^4 + 2*sum(D)/t1^3

[1] -0.7061484

> n/t2^2 - 3*sum(D^2)/t2^4 + 2*sum(D)/t2^3

[1] -5.267197

The second derivative is negative in both cases; they are both local maxima! Which peak
is higher?

> loglike1(t1)

[1] -224.9832

> loglike1(t2)

[1] -155.4413

So the maximum we found is higher, which makes sense because it’s within the range of
the data. But we only found it because we started searching near the correct answer.

Let’s plot the log likelihood function, and see what this thing looks like. We know
that because the natural log function goes to minus infinity as its (positive) argument
approaches zero, the log likelihood plunges to −∞ at θ = 0. A plot would look like a
giant icicle and we would not be able to see any detail where it matters. So we will zoom
in by limiting the range of the y axis. Here is the R code.

Theta <- seq(from=-15,to=20,by=0.25); Theta <- Theta[Theta!=0]

Loglike <- loglike1(Theta)

# Check where to break off the icicle

max(Loglike); Loglike[Theta==-3]; Loglike[Theta==3]

plot(Theta,Loglike,type=’l’,xlim=c(-15,20),ylim=c(-375,-155),

xlab=expression(theta),ylab="Log Likelihood")

# This is how you get Greek letters.

Here is the picture. You can see the local maxima around θ = −5 and θ = 10, and also
that the one for negative θ is a higher.

Presumably we would have reached the bad answer if we had started the search in a
bad place. Let’s try starting the search at θ = +3.

> nlm(loglike2,3)

$minimum

[1] 283.7589
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Figure A.1: Log Likelihood for Example A.6.1
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$estimate

[1] 64.83292

$gradient

[1] 0.701077

$code

[1] 4

$iterations

[1] 100

What happened?! The answer is way off, nowhere near the positive root of 10.3463. And
the minimum (of minus the log likelihood) is over 283, when it would have been 224.9832
at θ = 10.3463.

What happened was that the slope of the function was very steep at our starting value
of θ = 3, so nlm took a huge step in a positive direction. It was too big, and landed in
a nearly flat place. Then nlm wandered around until it ran out of its default number
of iterations (notice iterations=100). The exit code of 4 means maximum number of
iterations exceeded.

It should be better if we start close to the answer, say at θ = 8.

> nlm(loglike2,8)

$minimum

[1] 224.9832
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$estimate

[1] 10.34629

$gradient

[1] -4.120564e-08

$code

[1] 1

$iterations

[1] 6

That’s better. The moral of this story is clear. Good starting are very important.
Now let us look at an example of a multi-parameter problem where an explicit formula

for the MLE is impossible, and numerical methods are required.

Example A.6.2 The Gamma Distribution

Let D1, . . . , Dn be a random sample from a Gamma distribution with parameters
α > 0 and β > 0. The probability density function is

f(x;α, β) =
1

βαΓ(α)
e−x/βxα−1

for x > 0, and zero otherwise. Here is a random sample of size n = 50. For this example,
the data are simulated using R, with known parameter values α = 2 and β = 3. The seed
for the random, number generator is set so the pseudo-random numbers can be recovered
if necessary.

> set.seed(3201); alpha=2; beta=3

> D <- round(rgamma(50,shape=alpha, scale=beta),2); D

[1] 20.87 13.74 5.13 2.76 4.73 2.66 11.74 0.75 22.07 10.49 7.26 5.82 13.08

[14] 1.79 4.57 1.40 1.13 6.84 3.21 0.38 11.24 1.72 4.69 1.96 7.87 8.49

[27] 5.31 3.40 5.24 1.64 7.17 9.60 6.97 10.87 5.23 5.53 15.80 6.40 11.25

[40] 4.91 12.05 5.44 12.62 1.81 2.70 3.03 4.09 12.29 3.23 10.94

> mean(D); alpha*beta

[1] 6.8782

[1] 6

> var(D); alpha*beta^2

[1] 24.90303

[1] 18

The parameter vector θ = (α, β), and the parameter space Θ is the first quadrant of
R2.

Θ = {(α, β) : α > 0, β > 0}
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The log likelihood is

`(α, β) = ln
n∏
i=1

1

βαΓ(α)
e−di/βdα−1

i

= ln

β−nα Γ(α)−n exp(− 1

β

n∑
i=1

di)

(
n∏
i=1

di

)α−1


= −nα ln β − n ln Γ(α)− 1

β

n∑
i=1

di + (α− 1)
n∑
i=1

ln di.

The next step would be to partially differentiate the log likelihood with respect to α and
β, set both partial derivatives to zero, and solve two equations in two unknowns. But
even if you are confident that the gamma function is differentiable (it is), you will be
unable to solve the equations. It has to be done numerically.

Define an R function for the minus log likelihood. Notice the lgamma function, a direct
numerical approximation of ln Γ(α). The plan is to numerically minimize the minus log
likelihood function over all (α, β) pairs, for this particular set of data values.

> # Gamma minus log likelihood: alpha=a, beta=b

> gmll <- function(theta,datta)

+ {

+ a <- theta[1]; b <- theta[2]

+ n <- length(datta); sumd <- sum(datta); sumlogd <- sum(log(datta))

+ gmll <- n*a*log(b) + n*lgamma(a) + sumd/b - (a-1)*sumlogd

+ gmll

+ } # End function gmll

Where should the numerical search start? One approach is to start at reasonable esti-
mates of α and β — estimates that can be calculated directly rather than by a numerical
approximation. As in Example A.6.1, Method of Moments estimators are a convenient,
high-quality choice.

For a gamma distribution, E(D) = αβ and V ar(D) = αβ2. So,

α =
E(D)2

V ar(D)
and β =

V ar(D)

E(D)
.

Replacing population moments by sample moments and writing
∼
α and

∼
β for the resulting

Method of Moments estimators, we obtain

∼
α=

D
2

S2
D

and
∼
β=

S2
D

D
,

where D is the sample mean and S2
D is the sample variance. For these data, the Method

of Moments estimates are reasonably close to the correct values of α = 2 and β = 3, but
they are not perfect. Parameter estimates are not the same as parameters!
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> momalpha <- mean(D)^2/var(D); momalpha

[1] 1.899754

> mombeta <- var(D)/mean(D); mombeta

[1] 3.620574

Now for the numerical search. This time, we will request that the nlm function return
the Hessian at the place where the search stops. The Hessian is defined as follows.
Suppose we are minimizing a function g(θ1, . . . , θk) – say, a minus log likelihood. The
Hessian is a k × k matrix of mixed partial derivatives. It may be written in terms of its
(i, j) element s

H =

[
∂2g

∂θi∂θj

]
. (A.28)

In the following, notice how the nlm function assumes that the first argument of the
function being minimized is a vector of arguments over which we should minimize, and
any other arguments (in this case, the name of the data vector) can be specified by name
in the nlm function call.

> gammasearch = nlm(gmll,c(momalpha,mombeta),hessian=T,datta=D); gammasearch

$minimum

[1] 142.0316

$estimate

[1] 1.805930 3.808674

$gradient

[1] 2.847002e-05 9.133932e-06

$hessian

[,1] [,2]

[1,] 36.68932 13.127271

[2,] 13.12727 6.222282

$code

[1] 1

$iterations

[1] 6

> eigen(gammasearch$hessian)$values

[1] 41.565137 1.346466

The nlm object gammasearch is a linked list. The item minimum is the value of the minus
log likelihood function where the search stops. The item estimate is the point at which
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the search stops, so α̂ = 1.805930 and β̂ = 3.808674. The gradient is(
− ∂`
∂α

,− ∂`
∂β

)>
.

Besides being the direction of steepest decrease, it’s something that should be zero at the
MLE. And indeed it is, give or take a bit of numerical inaccuracy.

The Hessian at the stopping place is in gammasearch$hessian. The Hessian is the
matrix of mixed partial derivatives defined by

H =

[
∂2(−`)
∂θi∂θj

]
. (A.29)

The rules about Hessian matrices are

• If the second derivatives are continuous, H is symmetric.

• If the gradient is zero at a point and |H| 6= 0

– If H is positive definite, there is a local minimum at the point.

– If H is negative definite, there is a local maximum at the point.

– If H has both positive and negative eigenvalues, the point is a saddle point.

The eigen command returns a linked list; one item is an array of the eigenvalues, and
the other is the eigenvectors in the form of a matrix. Since for real symmetric matrices,
positive definite is equivalent to all positive eigenvalues, it is convenient to check the
eigenvalues to determine whether the numerical search has located a minimum. In this
case it has. Finally, code=1 means normal termination of the search, and iterations=6

means the function took 6 steps downhill to reach its target.
It is very helpful to have the true parameter values α = 2 and β = 3 for this example.

α̂ = 1.8 seems pretty close, while and β̂ = 3.8 seems farther off. This is a reminder of
how informative confidence intervals and tests can be.

A.6.5 The Invariance Principle

The Invariance Principle of maximum likelihood estimation says that the MLE of a func-
tion is that function of the MLE. An example comes first, followed by formal details.

Example A.6.3 Parameterizing in Terms of Odds Rather than Probability

Let D1, . . . , Dn be a random sample from a Bernoulli distribution (1=Yes, 0=No) with
parameter θ, 0 < θ < 1. The parameter space is Θ = (0, 1), and the likelihood function is

L(θ) =
n∏
i=1

θdi(1− θ)1−di = θ
∑n
i=1 di(1− θ)n−

∑n
i=1 di .
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Differentiating the log likelihood with respect to θ, setting the derivative to zero and
solving yields the usual estimate θ̂ = d, the sample proportion.

Now suppose that instead of the probability, we write this model in terms of the odds
of Di = 1, a re-parameterization that is often useful in categorical data analysis. Denote
the odds by θ′. The definition of odds is

θ′ =
θ

1− θ
= g(θ). (A.30)

As θ ranges from zero to one, θ′ ranges from zero to infinity. So there is a new parameter
space: θ′ ∈ Θ′ = (0,∞).

To write the likelihood function in terms of θ′, first solve for θ, obtaining

θ =
θ′

1 + θ′
= g−1(θ′).

The likelihood in terms of θ′ is then

L(g−1(θ′)) = θ
∑n
i=1 di(1− θ)n−

∑n
i=1 di

=

(
θ′

1 + θ′

)∑n
i=1 di

(
1− θ′

1 + θ′

)n−∑n
i=1 di

=

(
θ′

1 + θ′

)∑n
i=1 di

(
1 + θ′ − θ′

1 + θ′

)n−∑n
i=1 di

=
θ′

∑n
i=1 di

(1 + θ′)n
.

Note how re-parameterization changes the functional form of the likelihood function. The
general formula is L′(θ′) = L(g−1(θ′). For this example,

L′(θ′) =
θ′

∑n
i=1 di

(1 + θ′)n
. (A.31)

At this point one could differentiate the log of (A.31) with respect to θ′, set the
derivative to zero, and solve for θ′. The point of the invariance principle is that this is
unnecessary. The maximum likelihood estimator of g(θ) is g(θ̂), so one need only look
at (A.30) and write

θ̂′ =
θ̂

1− θ̂
=

d

1− d
.

It is often convenient to parameterize a statistical model in more than one way. The
invariance principle can save a lot of work in practice, because it says that you only have
to maximize the likelihood function once. It is useful theoretically too.

In Example A.6.3, the likelihood function has only one maximum and the function g
linking θ′ to θ′ is one-to-one, which is why we can write g−1. This is the situation where
the invariance principle is clearest and most useful. Here is a proof.
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Let the parameter θ ∈ Θ, and re-parameterize by θ′ = g(θ). The new parameter
space is Θ′ = {θ′ : θ′ = g(θ), θ ∈ Θ}. The function g : Θ → Θ′ is one-to-one, meaning
that there exists a function g−1 such that g−1(g(θ)) = θ for all θ ∈ Θ. Suppose the

likelihood function L(θ) has a unique maximum at θ̂ ∈ Θ, so that for all θ ∈ Θ with

θ 6= θ̂, L(θ̂) > L(θ). For every θ ∈ Θ,

L(θ) = L(g−1(g(θ))) = L(g−1(θ′)) = L′(θ′)

Maximizing L′(θ′) over θ′ ∈ Θ′ yields θ̂′ satisfying L′(θ̂′) ≥ L′(θ′) for all θ′ ∈ Θ′. The

invariance principle says θ̂′ = g(θ̂).

Let θ0 = g−1(θ̂′) so that g(θ0) = θ̂′. The objective is to show that this value θ0 ∈ Θ

equals θ̂. Suppose on the contrary that θ0 6= θ̂. Then because the maximum of L(θ) over

Θ is unique, L(θ̂) > L(θ0). Therefore,

L(g−1(g(θ̂))) > L(g−1(g(θ0)))

⇒ L′(g(θ̂)) > L′(g(θ0))

⇒ L′(g(θ̂)) > L′(θ̂′).

Since g(θ̂) ∈ Θ′, this contradicts L′(θ̂′) ≥ L′(θ′) for all θ′ ∈ Θ′, showing θ̂ = θ0. Not

leaving anything to the imagination, we then have g(θ̂) = g(θ0) = θ̂′.
This concludes the proof, but it may be useful to establish the “obvious” fact that

uniqueness of the maximum over Θ implies uniqueness of the maximum over Θ′. If θ̂′1
and θ̂′2 are two points in Θ′ with L′(θ̂′1) ≥ L′(θ′) and L′(θ̂′2) ≥ L′(θ′) for all θ′ ∈ Θ′, the

preceding argument shows that g(θ̂) = θ̂′1 and g(θ̂) = θ̂′2. Because function values are

unique, this can only happen if θ̂′1 = θ̂′2

Exercises A.6.4

A.6.1) For each of the following distributions, derive a general expression for the Maximum
Likelihood Estimator (MLE). Carry out the second derivative test to make sure you
have a maximum. (What is the relationship of this to the Hessian?) Then use the
data to calculate a numerical estimate.

(a) p(x) = θ(1− θ)x for x = 0, 1, . . ., where 0 < θ < 1. Data: 4, 0, 1, 0, 1, 3,

2, 16, 3, 0, 4, 3, 6, 16, 0, 0, 1, 1, 6, 10. Answer: 0.2061856

(b) f(x) = α
xα+1 for x > 1, where α > 0. Data: 1.37, 2.89, 1.52, 1.77, 1.04,

2.71, 1.19, 1.13, 15.66, 1.43 Answer: 1.469102

(c) f(x) = τ√
2π
e−

τ2x2

2 , for x real, where τ > 0. Data: 1.45, 0.47, -3.33, 0.82,

-1.59, -0.37, -1.56, -0.20 Answer: 0.6451059

(d) f(x) = 1
θ
e−x/θ for x > 0, where θ > 0. Data: 0.28, 1.72, 0.08, 1.22,

1.86, 0.62, 2.44, 2.48, 2.96 Answer: 1.517778
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A.6.2) The univariate normal density is

f(y|µ, σ2) =
1

σ
√

2π
e

(y−µ)2

σ2

(a) Show that the univariate normal likelihood may be written

L(µ, σ2) = (2πσ2)−n/2 exp− n

2σ2

{
σ̂2 + (y − µ)2

}
,

where σ̂2 = 1
n

∑n
i=1(yi − y)2. Hint: Add and subtract y.

(b) How does this expression allow you to see without differentiating that the MLE
of µ is y?

A.6.3) Let X1, . . . , X5 be a random sample from a Gamma distribution with parameters
α > 0 and β = 1. That is, the density is

f(x;α) =
1

Γ(α)
e−xxα−1

for x > 0, and zero otherwise.

The five data values are 2.06, 1.08, 0.96, 1.32, 1.53. Find an approximate numerical
value of the maximum likelihood estimate of α. Your final answer is one number.
For this question you will hand in a one-page printout. On the back, you will write
a brief explanation of what you did.

A.6.4) For each of the following distributions, try to derive a general expression for the
Maximum Likelihood Estimator (MLE). Then, use R’s nlm function to obtain the
MLE numerically for the data supplied for the problem. The data are in a separate
HTML document, because it saves a lot of effort to copy and paste rather than typing
the data in by hand, and PDF documents can contain invisible characters that mess
things up. NOTE! Put them here as well as in assignment HTML document.

(a) f(x) = 1
π[1+(x−θ)2]

for x real, where −∞ < θ <∞.

-3.77 -3.57 4.10 4.87 -4.18 -4.59 -5.27 -8.33 5.55 -4.35 -0.55 5.57

-34.78 5.05 2.18 4.12 -3.24 3.78 -3.57 4.86

For this one, try at least two different starting values and plot the minus log
likelihood function!

(b) f(x) = 1
2
e−|x−θ| for x real, where −∞ < θ <∞.

3.36 0.90 2.10 1.81 1.62 0.16 2.01 3.35 4.75 4.27 2.04

(c) f(x) = Γ(α+β)
Γ(α)Γ(β)

xα−1(1− x)β−1 for 0 < x < 1, where α > 0 and β > 0.

0.45 0.42 0.38 0.26 0.43 0.24 0.32 0.50 0.44 0.29 0.45 0.29 0.29 0.32 0.30

0.32 0.30 0.38 0.43 0.35 0.32 0.33 0.29 0.20 0.46 0.31 0.35 0.27 0.29 0.46

0.43 0.37 0.32 0.28 0.20 0.26 0.39 0.35 0.35 0.24 0.36 0.28 0.32 0.23 0.25

0.43 0.30 0.43 0.33 0.37
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If you are getting a lot of warnings, maybe it’s because the numerical search is
leaving the parameter space. If so and if you are using R, try help(nlminb).

For each distribution, be able to state (briefly) why differentiating the log likelihood
and setting the derivative to zero does not work. For the computer part, bring to
the quiz one sheet of printed output for each of the 3 distributions. The three sheets
should be separate, because you may hand only one of them in. Each printed page
should show the following, in this order.

• Definition of the function that computes the likelihood, or log likelihood, or
minus log likelihood or whatever.

• How you got the data into R – probably a scan statement.

• Listing of the data for the problem.

• The nlm statement and resulting output.

A.6.5) Let Y = Xβ + ε, where X is an n×p matrix of known constants, β is a p×1 vector
of unknown constants, and ε is multivariate normal with mean zero and covariance
matrix σ2In, with σ2 > 0 an unknown constant.

(a) What is the distribution of Y? There is no need to show any work.

(b) Assuming that the columns of X are linearly independent, show that the max-
imum likelihood estimate of β is β̂ = (X>X)−1X>Y . Don’t use derivatives.
The trick is to add and subtract β̂, distribute the expected value, and simplify.
Does your answer apply for any value of σ2? Why or why not?

(c) Given the MLE of β, find the MLE of σ2. Show your work. This time you
may differentiate.

A.6.6 Interval Estimation and Testing

All the tests and confidence intervals here are based on large-sample approximations,
primarily the Central Limit Theorem. See Section A.5 for basic definitions and results.
They are valid as the sample size n → ∞, but frequently perform well for samples that
are only fairly large. How big is big enough? This is a legitimate question, and the honest
answer is that it depends upon the distribution of the data. In practice, people often just
apply these tools almost regardless of the sample size, because nothing better is available.
Some do it with their eyes closed, some squint, and some have their eyes wide open.

The basic result comes from the research of Abraham Wald (give a source) in the 1950s.

As the sample size n increases, the distribution of the maximum likelihood estimator θ̂n
approaches a multivariate normal with expected value θ and variance-covariance matrix
Vn(θ). It is quite remarkable that anyone could figure this out, given that it includes
cases like the Gamma, where no closed-form expressions for the maximum likelihood
estimators are possible. The theorem in question is not true for every distribution, but it
is true if the distribution of the data is not too strange. The precise meaning of “not too
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strange” is captured in a set of technical conditions called regularity conditions. Volume
2 of Kendall’s advanced theory of statistics [63] is a good textbook source for the details.

If θ is a k × 1 matrix, then Vn(θ) is a k × k matrix, called the asymptotic covariance
matrix of the estimators. It’s not too surprising that it depends on the parameter θ,
and it also depends on the sample size n. Using the asymptotic covariance matrix, it is
possible to construct a variety of useful tests and confidence intervals.

Fisher Information

The fact that Vn(θ) depends on the unknown parameter will present no problem; substi-

tuting θ̂n for θ yields an estimated asymptotic covariance matrix. So consider the form
of the matrix V.

Think of a one-parameter maximum likelihood problem, where we differentiate the log
likelihood, set the derivative to zero and solve for θ; the solution is θ̂. The log likelihood
will be concave down at θ̂, but the exact way it looks will depend on the distribution
as well as the sample size. In particular, it could be almost flat at θ̂, or it could be
nearly a sharp peak, with extreme downward curvature. In the latter case, clearly the log
likelihood is more informative about θ. It contains more information. One of the many
good ideas of R. A. F. Fisher was that the second derivative reflects curvature, and and
can be viewed as a measure of the information provided by the sample data. It is called
the Fisher Information in his honour.

Now with increasing sample size, nearly all log likelihood functions acquire more and
more downward curvature at the MLE. This makes sense – more data provide more
information. But how about the information from just one observation? If you look at
the second derivative of the log likelihood function,

∂2`

∂θ2
=

∂2

∂θ2
ln

n∏
i=1

f(di; θ) =
n∑
i=1

∂2

∂θ2
ln f(di; θ),

you see that it is the sum of n quantities. Each observation is contributing a piece
to the downward curvature. But how much? Well, it depends on the particular data
value xi. But the data are a random sample, so in fact the contribution is a random
quantity: ∂2

∂θ2
ln f(Xi; θ). How about the information one would expect an observation

to contribute? Okay, take the expected value. Finally, note that because the curvature
is down at the MLE, the quantity we are discussing is negative. But we want to call
this “information,” and it would be nicer if it were a positive number, so higher values
meant more information. Okay, multiply by −1. This leads to the definition of the Fisher
Information in a single observation:

I(θ) = E

[
− ∂2

∂θ2
ln f(Di; θ)

]
. (A.32)

The information is the same for i = 1, . . . , n, and the Fisher Information in the entire
sample is just nI(θ).
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It was clear that Fisher was onto something good, because for many problems where
the variance of θ̂ can be calculated exactly, it is one divided by the Fisher Information.
Subsequently Cramér and Rao discovered the Cramér-Rao Inequality, which says that for
any statistic T that is an unbiased estimator of θ,

V ar(T ) ≥ 1

nI(θ)
.

That’s impressive, because to have a small variance is a great property in an esti-
mator; it means precise estimation. The Cramér-Rao inequality tells us that in terms
of variance, one cannot do better than an unbiased estimator whose variance equals hte
reciprocal (inverse) of the Fisher Information, and many MLEs do that. Subsequently,
Wald15 showed that under some regularity conditions, the variances of maximum likeli-
hood estimators in general attain the Cramér-Rao lower bound as n→∞. Thus, to learn
the asymptotic variance of θ̂, you do not need an explicit formula for θ̂. All you need is
the Fisher Information. Also, in terms of variance nothing can beat maximum likelihood
estimation, at least for large samples. So if the distribution of the data is known so you
can write down the likelihood, it is difficult to justify any method of estimation other
than maximum likelihood.

Calculating the expected value in (A.32) is often not too hard because taking the log
and differentiating twice results in some simplification; it’s a source of many fun homework
problems. But still it can be a chore, especially for multiparameter problems, which will
be taken up shortly. For larger sample sizes, the Law of Large Numbers (Section A.5)
guarantees that the expected value can be approximated quite well by a sample mean, so
that

I(θ) = E

(
− ∂2

∂θ2
ln f(D1; θ)

]
≈ 1

n

n∑
i=1

− ∂2

∂θ2
ln f(Di; θ).

This is sometimes called the observed Fisher Information.
Multiplying the observed Fisher Information by n to get the approximate information

in the entire sample yields

n∑
i=1

− ∂2

∂θ2
ln f(Di; θ) =

∂2

∂θ2

n∑
i=1

− ln f(Di; θ) =
∂2

∂θ2

(
− ln

n∏
i=1

f(Di; θ)

)
.

That’s just the second derivative of the minus log likelihood.
The parameter θ is unknown, so to get the estimated Fisher Information in the whole

sample, substitute θ̂. The result is

∂2

∂θ2

(
− ln

n∏
i=1

f(Di; θ̂)

)
.

That’s the second derivative of minus the log likelihood, evaluated at the maximum like-
lihood estimate. And, it’s a function of the sample data that is not a function of any

15Need a reference
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unknown parameters; in other words it is a statistic. If you have already carried out the
second derivative test to check that you really had a maximum, all you need to do to
estimate the variance of θ̂ is take the reciprocal of the second derivative and multiply by
−1. It is truly remarkable how neatly this all works out.

Generalization to the multivariate case is very natural. Now the parameter is θ =
(θ1, . . . , θk)

> and the Fisher Information Matrix is a k × k matrix of (expected) mixed
partial derivatives, defined by

I(θ) =

[
−E

(
∂2

∂θi∂θj
f(D1;θ)

)]
, (A.33)

where the boldface Di is an acknowledgement that the data might also be multivariate.
To estimate the Fisher information matrix, one may simply put a hat on θ in A.33.

If calculating the expected values is too much of a pain, one may replace the expected
value by a sample mean as well as replacing θ with θ̂. The result is

J (θ̂) =

[
∂2

∂θi∂θj

(
− ln

n∏
q=1

f(Dq; θ̂)

)]
=

[
∂2

∂θi∂θj

(
−`(θ̂)

)]
. (A.34)

I(θ̂) is sometimes loosely called the “expected” Fisher information, and J (θ̂) is some-
times called the “observed” Fisher information, even though it would be more accurate to
call it the estimated observed Fisher information. They are both excellent large-sample
estimates of I(θ) in (A.33).

In the one-dimensional case, one divided by the estimated Fisher Information is the
(estimated) asymptotic variance of the maximum likelihood estimator. In the multi-
parameter case, the estimated Fisher Information is a matrix, and the corresponding esti-
mated asymptotic variance-covariance matrix is its inverse. Assume that the true Fisher
information matrix is being estimated by J (θ̂), and denote the estimated asymptotic

covariance matrix by V̂n. In that case we have

V̂n = J (θ̂n)−1. (A.35)

Now comes the really good part. Comparing Formula (A.34) for the Fisher Information to
Formula (A.29) for the Hessian, we see that they are exactly the same. And the Hessian

evaluated at θ̂ is a by-product of the numerical search for the MLE 16.
So to get a good estimate of the asymptotic covariance matrix, minimize minus the log

likelihood, tell the software to give you the Hessian, and calculate its inverse by computer.
The theoretical story may be a bit long here, but what you have to do in practice is quite
simple.

Continuing with the Gamma distribution Example A.6.2, the Hessian is

16At least for generic numerical minimization routines like R’s nlm. Some specialized methods like
iterative proportional fitting of log-linear models and Fisher scoring (iteratively re-weighted least squares)
for generalized linear models maximize the likelihood indirectly and do not require calculation of the
Hessian.
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> gammasearch$hessian

[,1] [,2]

[1,] 36.68932 13.127271

[2,] 13.12727 6.222282

and the asymptotic covariance is just

> Vhat = solve(gammasearch$hessian); V

[,1] [,2]

[1,] 0.1111796 -0.2345577

[2,] -0.2345577 0.6555638 .

The diagonal elements of V̂ are the estimated variances of the sampling distributions
of α̂ and β̂ respectively, and their square roots are the standard errors.

> SEalphahat = sqrt(Vhat[1,1]); SEbetahat = sqrt(Vhat[2,2])

In general, let θ denote an element of the parameter vector, let θ̂ be its maximum likelihood
estimator, and let the standard error of θ̂ be written Sθ̂. Then Wald’s Central Limit
Theorem for maximum likelihood estimators tells us that

Z =
θ̂ − θ
Sθ̂

(A.36)

has an approximate standard normal distribution. In particular, for the Gamma example

Z1 =
α̂− α
Sα̂

and Z2 =
β̂ − β
Sβ̂

may be treated as standard normal.

Confidence Intervals

These quantities may be used to produce both tests and confidence intervals. For example,
a 95% confidence interval for the parameter θ is obtained as follows.

0.95 ≈ Pr{−1.96 ≤ Z ≤ 1.96}

= Pr

{
−1.96 ≤ θ̂ − θ

Sθ̂
≤ 1.96

}
= Pr

{
θ̂ − 1.96Sθ̂ ≤ θ ≤ θ̂ + 1.96Sθ̂

}
This could also be written θ̂ ± 1.96Sθ̂ .

If you are used to seeing confidence intervals with a
√
n and wondering where it went,

recall that SX = S√
n
. The

√
n is also present in the confidence interval for θ, but it is

embedded in Sθ̂.
Here are the 95% confidence intervals for the Gamma distribution example:
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> alphahat = gammasearch$estimate[1]; betahat = gammasearch$estimate[2]

> Lalpha = alphahat - 1.96*SEalphahat; Ualpha = alphahat + 1.96*SEalphahat

> Lbeta = betahat - 1.96*SEbetahat; Ubeta = betahat + 1.96*SEbetahat

> cat("\nEstimated alpha = ",round(alphahat,2)," 95 percent CI from ",

+ round(Lalpha,2)," to ",round(Ualpha,2), "\n\n")

Estimated alpha = 1.81 95 percent CI from 1.15 to 2.46

> cat("\nEstimated beta = ",round(betahat,2)," 95 percent CI from ",

+ round(Lbeta,2)," to ",round(Ubeta,2), "\n\n")

Estimated beta = 3.81 95 percent CI from 2.22 to 5.4

Notice that while the parameter estimates may not seem very accurate, the 95% confidence
intervals do include the true parameter values α = 2 and β = 3.

Z-tests

The standard normal variable in (A.36) can be used to form a Z-test of H0 : θ = θ0 using

Z =
θ̂ − θ0

Sθ̂
.

So for example, suppose the data represent time intervals between events occurring in
time, and we wonder whether the events arise from a Poisson process. In this case the
distribution of times would be exponential, which means α = 1. To test this null hypoth-
esis at the 0.05 level,

> Z = (alphahat-1)/SEalphahat; Z

[1] 2.417046

> pval = 2*(1-pnorm(abs(Z))); pval # Two-sided test

[1] 0.01564705

So, the null hypothesis is rejected, and because the value is positive, the conclusion is
that the true value of α is greater than one17.

17The following basic question arises from time to time. Suppose a null hypothesis is rejected in favour
of a two-sided alternative. Are we then “allowed” to look at the sign of the test statistic and conclude
that θ < θ0 or θ > θ0, or must we just be content with saying θ 6= θ0? The answer is that directional
conclusions are theoretically justified as well as practically desirable. Think of splitting up the two-
sided level α test (call it the overall test) into two one-sided tests with significance level α/2. The null
hypotheses of these tests are H0,a : θ ≤ θ0 and H0,b : θ ≥ θ0. Exactly one of these null hypotheses will be
rejected if and only if the null hypothesis of the overall test is rejected, so the set of two one-sided tests
is fully equivalent to the overall two-sided test. And directional conclusions from the one-sided tests are
clearly justified.

On a deeper level, notice that the null hypothesis of the overall test is the intersection of the null
hypotheses of the one-sided tests, and its critical region (rejection region) is the union of the critical
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When statistical software packages display this kind of large-sample Z-test, they usu-
ally just divide θ̂ by its standard error, testing the null hypothesis H0 : θ = 0. For
parameters like regression coefficients, this is usually a good generic choice.

A.6.7 Wald Tests

The approximate multivariate normality of the MLE can be used to construct a larger class
of hypothesis tests for linear null hypotheses. A linear null hypothesis sets a collection
of linear combinations of the parameters to zero. Suppose θ = (θ1, . . . , θk)

> is a k × 1
vector. A linear null hypothesis can be written

H0 : Lθ = h,

where L is an r × k matrix of constants, with rank r, r ≤ k. As an example let θ =
(θ1, . . . θ7)>, and the null hypothesis is

θ1 = θ2, θ6 = θ7,
1

3
(θ1 + θ2 + θ3) =

1

3
(θ4 + θ5 + θ6) .

This may be expressed in the form Lθ = h as follows:

 1 −1 0 0 0 0 0
0 0 0 0 0 1 −1
1 1 1 −1 −1 −1 0




θ1

θ2

θ3

θ4

θ5

θ6

θ7


=

 0
0
0

 .

Recall from Section A.4 of this appendix that if X ∼ Nk(µ,Σ), and L is an r × k
constant matrix of rank r, then

CX ∼ Nr(Lµ,LΣL>)

and

(CX− Lµ)>(LΣC>)−1(LX− Lµ) ∼ χ2(r).

Similar facts hold asymptotically — that is approximately, as the sample size n ap-
proaches infinity. Because (approximately) θ̂n ∼ Nk(θ, V̂n),

Lθ̂n ∼ Nr(Lθ,LV̂nL
>)

regions of the one-sided tests. This makes the two one-sided tests a set of union-intersection multiple
comparisons, which are always simultaneously protected against Type I error at the significance level of
the overall test. Performing the two-sided test and then following up with a one-sided test is very much
like following up a statistically significant ANOVA with Scheffeé tests. Indeed, Scheffé tests are another
example of union-intersection multiple comparisons. See [30] for details.
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and
(Lθ̂n − Lθ)>(CV̂nL

>)−1(Lθ̂n − Lθ) ∼ χ2(r).

So, if H0 : Lθ = h is true, we have the Wald test statistic

Wn = (Lθ̂n − h)>(CV̂nL
>)−1(Lθ̂n − h) ∼ χ2(r), (A.37)

where again,

V̂n = J (θ̂)−1 =

[
∂2

∂θi∂θj

(
−`(θ̂)

)]−1

.

Here is a test of H0 : α = β for the Gamma distribution example. A little care must
be taken to ensure that the matrices in (A.37) are the right size.

> # H0: C theta = 0 is that alpha = beta <=> alpha-beta=0

> # Name C is used by R

> CC = rbind(c(1,-1)); is.matrix(CC); dim(CC)

[1] TRUE

[1] 1 2

> thetahat = as.matrix(c(alphahat,betahat)); dim(thetahat)

[1] 2 1

> W = t(CC%*%thetahat) %*% solve(CC%*%Vhat%*%t(CC)) %*% CC%*%thetahat

> W = as.numeric(W) # it was a 1x1 matrix

> pval2 = 1-pchisq(W,1)

> cat("Wald Test: W = ", W, ", p = ", pval2, "\n")

Wald Test: W = 3.245501 , p = 0.07161978

We might as well define a function to do Wald tests in general. The function returns
a pair of quantities, the Wald test statistic and the p-value.

> WaldTest = function(C,thetahat,h=0) # H0: C theta = h

+ {

+ WaldTest = numeric(2)

+ names(WaldTest) = c("W","p-value")

+ dfree = dim(C)[1]

+ W = t(C%*%thetahat-h) %*% solve(C%*%Vhat%*%t(C)) %*% (C%*%thetahat-h)

+ W = as.numeric(W)

+ pval = 1-pchisq(W,dfree)

+ WaldTest[1] = W; WaldTest[2] = pval

+ WaldTest

+ } # End function WaldTest

Here is the same test of H0 : α = β done immediately above, just to test out the
function. Notice that the default value of h in H0 : Lθ = h is zero, so it does not have to
be specified. The matrix CC has already been created, and the computed values are the
same as before, naturally.
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> WaldTest(CC,as.matrix(c(alphahat,betahat)))

W p-value

3.24550127 0.07161978

Here is a test of H0 : α = 2, β = 3, which happen to be the true parameter values.
The null hypothesis is not rejected.

> C2 = rbind(c(1,0),

+ c(0,1) )

> WaldTest(C2,as.matrix(c(alphahat,betahat)),c(2,3))

W p-value

1.3305497 0.5141322

Finally, here is a test of H0 : α = 1, which was done earlier with a Z-test.

> WaldTest(t(c(1,0)),as.matrix(c(alphahat,betahat)),1)

W p-value

5.84210645 0.01564708

> Z; pval

[1] 2.417045

[1] 0.01564708

> Z^2

[1] 5.842106

The results of the Wald and Z tests are identical, with Wn = Z2. In general, suppose the
matrix L in H0 : Lθ = h has just a single row, and that row contains one 1 in position
j and all the rest zeros. Take a look at Formula (A.37) for the Wald test statistic. Pre-

multiplying by L in CV̂n picks out row j of V̂n, and post-multiplying by L> picks out
column j of the result, so that CV̂nL

> = v̂j,j, and inverting it puts it in the denominator.

In the numerator, (Lθ̂n − h)>(Lθ̂n − h) = (θ̂j − θj,0)2, so that Wn = Z2. Thus, squaring
a large-sample Z-test gives a Wald chisquare test with one degree of freedom.

A.6.8 Likelihood Ratio Tests

Likelihood ratio tests fall into two categories, exact and large-sample. The main examples
of exact likelihood ratio tests include are the standard F -tests and t-tests associated with
regression and the analysis of variance for normal data. Here, we concentrate on the
large-sample likelihood ratio tests.

Consider the following hypothesis-testing framework. The data are D1, . . . , Dn. The
distribution of these independent and identically distributed random variables depends
on the parameter θ, and we are testing a null hypothesis H0.

D1, . . . , Dn
i.i.d.∼ Pθ, θ ∈ Θ,

H0 : θ ∈ Θ0 v.s. HA : θ ∈ Θ ∩Θc
0,
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For example, let D1, . . . , Dn
i.i.d.∼ N(µ, σ2). The null hypothesis is H0 : µ = µ0 v.s. versus

HA : µ 6= µ0. The full parameter space is Θ = {(µ, σ2) : −∞ < µ < ∞, σ2 > 0} and
the restricted parameter space is Θ0 = {(µ, σ2) : µ = µ0, σ

2 > 0}. The full and restricted
parameter spaces are shown in Figure A.2.

Figure A.2: Full versus reduced parameter spaces for H0 : µ = µ0 versus HA : µ 6= µ0

µ

σ2

µ
0

In general, the data have likelihood function

L(θ) =
n∏
i=1

f(di; θ),

where f(di; θ) is the density or probability mass function evaluated at di. Let θ̂ denote the
usual Maximum Likelihood Estimate (MLE). That is, it is the parameter value for which

the likelihood function is greatest, over all θ ∈ Θ. Let θ̂0 denote the restricted MLE. The
restricted MLE is the parameter value for which the likelihood function is greatest, over
all θ ∈ Θ0. This MLE is restricted by the null hypothesis H0 : θ ∈ Θ0. It should be clear
that L(θ̂0) ≤ L(θ̂), so that the likelihood ratio.

λ =
L(θ̂0)

L(θ̂)
≤ 1.

The likelihood ratio will equal one if and only if the overall MLE θ̂ is located in Θ0. In
this case, there is no reason to reject the null hypothesis.

Suppose that the likelihood ratio is strictly less than one. If it’s a lot less than one,
then the data are a lot less likely to have been observed under the null hypothesis than
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under the alternative hypothesis, and the null hypothesis is questionable. This is the basis
of the likelihood ratio tests.

If λ is small (close to zero), then ln(λ) is a large negative number, and −2 lnλ is a
large positive number.

Tests will be based on

G2 = −2 ln

(
maxθ∈Θ0 L(θ)

maxθ∈Θ L(θ)

)
= −2 ln

(
L(θ̂0)

L(θ̂)

)
= −2 lnL(θ̂0)− [−2 lnL(θ̂)]

= 2
(
−`(θ̂0)− [−`(θ̂)]

)
. (A.38)

Thus, the test statistic G2 is the difference between two −2 log likelihood functions. This
means that to carry out a test, you can minimize −`(θ) twice, first over all θ ∈ Θ, and
then over all θ ∈ Θ0. The test statistic is the difference between the two minimum values,
multiplied by two.

If the null hypothesis is true, then the test statistic G has, if the sample size is large,
an approximate chisquare distribution, with degrees of freedom equal to the difference of
the dimension of Θ and Θ0. For example, if the null hypothesis is that 4 elements of θ
equal zero, then the degrees of freedom are equal to 4. If the null hypothesis imposes
r linearly independent linear restrictions on θ (as in H0 : Lθ = h), then the degrees of
freedom equal r, the number or rows in L. Another way to obtain the degrees of freedom
is by counting the equal signs in the null hypothesis.

The p-value associated with the test statistic G2 is Pr{X > G2}, where X is a
chisquare random variable with r degrees of freedom. If p < α, we reject H0 and call the
results “statistically significant.” The standard choice is α = 0.05.

Many null hypotheses are linear statements of the form H0 : Lθ = h, but some are
not.

Example A.6.4 A Non-linear Null Hypothesis

Suppose you wanted to test H0 : σ2 = µ2 based on a normal random sample. The
restricted MLE is fairly easy to find numerically (see Example A.6.1), and it seems like
the degrees of freedom should equal one because the null hypothesis has one equals sign.
Can this be justified formally?

The original proof published in 1938 by Wilks [70] applies to linear null hypotheses,
and if you look at high-level textbooks like the Advanced Theory of Statistics [63], you
will find only Wilks’ proof, without modification. A way around this that often works
is to use the Invariance Principle of Section A.6.5. Suppose the null hypothesis is that
one or more non-linear functions of θ equal zero. If you can, make those functions part
of a function that is one-to-one, and then re-parameterize. Your null hypothesis is now a
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linear null hypothesis in the new paraameter space. Wilks’ theorem applies, and you are
done. Furthermore, you don’t have to literally re-parameterize. A glance at the proof of
the Invariance Principle confirms that the likelihood ratio test statistic is the same under
the original and re-parameterized models. Thus, the degrees of freedon equals he number
of equals signs in the null hypothesis, period.

For Example A.6.4, let θ′1 = σ2 − µ2 and θ′2 = µ. The function is one-to-one, because
µ = θ′2 and σ2 = θ′1 + θ′22 . The null hypothesis is H0 : θ′1 = 0. That’s is a linear null
hypothesis, so by Wilks’ Theorem, the test statistic has a chi-squared distribution with
df = 1.

Sometimes this lovely trick does not work. In a regression, it is easy to test the null
hypothesis that β1 and β2 are both zero; this is a linear null hypothesis. But suppose that
you want to test the null hypothesis that β1 or β2 (or maybe both) are equal to zero. This
is reasonable and attractive, because the alternative is that they are both non-zero, and
it would be nice to have a single test for this. The null hypothesis is H0 : β1β2 = 0, which
is non-linear. Furthermore, any function that yields θ′1 = β1β2 = 0 can’t be one-to-one,
because recovering β1 or β2 would potentially involve dividing by zero. Thus, while it
would be perfectly possible to obtain the restricted MLE θ̂0 numerically and calculate the
likelihood ratio statistic, its distribution under the null hypothesis is mysterious (to me,
anyway). So, transforming a non-linear null hypothesis into a linear one by a one-to-one
re-parameterization is a method that often works, but not always.

To illustrate the likelihood ratio tests, consider (one last time) the Gamma distribution
Example A.6.2. For comparison, the likelihood ratio method will be used test the same
three null hypotheses that were tested earlier using Wald tests. They are

• H0 : α = 1

• H0 : α = β

• H0 : α = 2, β = 3

For H0 : α = 1, the restricted parameter space is Θ0 = {(α, β) : α = 1, β > 0}.
Because the Gamma distribution with α = 1 is exponential, the restricted MLE is θ̂0 =
(1, d). It is more informative, though, to use numerical methods.

To maximize the likelihood function (or minimize minus the log likelihood) over Θ0,
it might be tempting to impose the restriction on θ, simplify the log likelihood, and write
the code for a new function to minimize. But this strategy is not recommended. It’s time
consuming, and mistakes are possible. In the R work shown below, notice how the function
gmll1 is just a “wrapper” for the unrestricted minus log likelihood function gmll. It is a
function of β (and the data, of course), but all it does is call gmll with α set to one and
β free to vary.

> gmll1 <- function(b,datta) # Restricted gamma minus LL with alpha=1

+ { gmll1 <- gmll(c(1,b),datta)

+ gmll1

+ } # End of function gmll1
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> mean(D) # Resticted MLE of beta, just to check

[1] 6.8782

The next step is to invoke the nonlinear minimization function nlm. The second
argument is a (vector of) starting value(s). Starting the search at β = 1 turns out to be
unfortunate.

> gsearch1 <- nlm(gmll1,1,datta=D); gsearch1

$minimum

[1] 282.6288

$estimate

[1] 278.0605

$gradient

[1] 0.1753689

$code

[1] 4

$iterations

[1] 100

The answer g1search$estimate=278.0605 is way off the correct answer of d = 6.8782, it
took 100 steps, and the exit code of 4 means the function ran out of the default number
of iterations. Starting at the unrestricted β̂ works better.

> gsearch1 <- nlm(gmll1,betahat,datta=D); gsearch1

$minimum

[1] 146.4178

$estimate

[1] 6.878195

$gradient

[1] -1.768559e-06

$code

[1] 1

$iterations

[1] 7

That’s better. Good starting values are important! Now the test statistic is easy to
calculate.
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> Gsq = 2 * (gsearch1$minimum-gammasearch$minimum); pval = 1-pchisq(Gsq,df=1)

> Gsq; pval

[1] 8.772448

[1] 0.003058146

Let us carry out the other two tests, and then compare the Wald and likelihood ratio test
results together in a table.

For H0 : α = β, the restricted parameter space is Θ0 = {(α, β) : α = β > 0}.

> gmll2 <- function(ab,datta) # Restricted gamma minus LL with alpha=1

+ { gmll2 <- gmll(c(ab,ab),datta)

+ gmll2

+ } # End of function gmll2

> abstart = (alphahat+betahat)/2

> gsearch2 <- nlm(gmll2,abstart,datta=D); gsearch2

Warning messages:

1: NaNs produced in: log(x)

2: NA/Inf replaced by maximum positive value

$minimum

[1] 144.1704

$estimate

[1] 2.562369

$gradient

[1] -4.991384e-07

$code

[1] 1

$iterations

[1] 4

> Gsq = 2 * (gsearch2$minimum-gammasearch$minimum); pval = 1-pchisq(Gsq,df=1)

> Gsq; pval

[1] 4.277603

[1] 0.03861777

This seems okay; it only took 4 iterations and the exit code of 1 is a clean bill of health.
But the warning messages are a little troubling. Probably they just indicate that the
search tried a negative parameter value, outside the parameter space. The R function
nlminb does minimization with bounds. Let’s try it.

> gsearch2b <- nlminb(start=abstart,objective=gmll2,lower=0,datta=D); gsearch2b

$par



A.6. ESTIMATION AND INFERENCE 607

[1] 2.562371

$objective

[1] 144.1704

$convergence

[1] 0

$message

[1] "relative convergence (4)"

$iterations

[1] 5

$evaluations

function gradient

7 8

Since nlminb gives almost the same restricted α̂ = β̂ = 2.5624 (and no warnings), the
warning messages from nlm were probably nothing to worry about.

Finally, for H0 : α = 2, β = 3 the restricted parameter space Θ0 is a single point and
no optimization is necessary. All we need to do is calculate the minus log likelihood there.

> Gsq = 2 * (gmll(c(2,3),D)-gammasearch$minimum); pval = 1-pchisq(Gsq,df=1)

> Gsq; pval

[1] 2.269162

[1] 0.1319713

The top panel of Table A.1 shows the Wald and likelihood ratio tests that have been
done on the Gamma distribution data. But this is n = 50, which is not a very large
sample. In the lower panel, the same tests were done for a sample of n = 200, formed by
adding another 150 cases to the original data set. The results are typical; the χ2 values
are much closer except where they are far out on the tails, and both test lead to the same
conclusions (though not always to the truth).

Like the Wald tests, likelihood ratio tests are very flexible and are distributed ap-
proximately as chi-square under the null hypothesis for large samples. In fact, they are
asymptotically equivalent under H0, meaning that if the null hypothesis is true, the differ-
ence between the likelihood ratio statistic and the Wald statistic goes to zero in probability
as the sample size approaches infinity.

Since the Wald and likelihood ratio tests are equivalent, does it matter which one you
use? The answer is that usually, Wald tests and likelihood ratio tests lead to the same
conclusions and their numerical values are close. But the tests are only equivalent as
n→∞. When there is a meaningful difference, the likelihood ratio tests usually perform
better, especially in terms of controlling Type I error rate for relatively small sample
sample sizes.
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Table A.1: Tests on data from a gamma distribution with α = 2 and β = 3

n = 50
Wald Likelihood Ratio

H0 χ2 p-value χ2 p-value
α = 1 5.8421 0.0156 8.7724 0.0031
α = β 3.2455 0.0762 4.2776 0.0386
α = 2, β = 3 1.3305 0.5141 2.2692 0.1320

n = 200
α = 1 34.1847 5.01e-09 58.2194 2.34e-14
α = β 0.9197 0.3376 0.9664 0.3256
α = 2, β = 3 1.5286 0.4657 1.2724 0.2593

Table A.2: Wald versus likelihood ratio: Type I error in 10,000 simulated datasets

n
Test 50 100 250 500 1000
Wald 1180 1589 1362 0749 0556

Likelihood Ratio 0330 0391 0541 0550 0522

Table A.2 below contains the most extreme example I know. For a particular structural
equation model with normal data (details don’t matter for now), ten thousand data sets
were randomly generated so that the null hypothesis was true. This was done for several
sample sizes: n = 50, 100, 250, 500 and 1, 000. Using each of the 50,000 resulting data
sets, the null hypothesis was tested with a Wald test and a likelihood ratio test at the
α = 0.05 significance level. If the asymptotic results held, we would expect both tests to
reject H0 500 times at each sample size.

So for this deliberately nasty example, the Wald test requires n = 1, 000 before it
settles down to something like the theoretical 0.05 significance level. The likelihood ratio
test needs n = 250, and for smaller sample sizes it is conservative, with a Type I error
rate somewhat lower than 0.0518. In general, when the Wald and likelihood ratio tests
have a contest of this sort, it is usually a draw. When there is a winner, it is always the
likelihood ratio test, but the margin of victory is seldom as large as this.

Exercises A.6.8

A.6.1) Let Y1, . . . , Yn be a random sample from a distribution with density f(y) = 1
θ
e−

y
θ

for y > 0, where the parameter θ > 0. We are interested in testing H0 : θ = θ0.

18This suggests that the power will not be wonderful for smaller sample sizes, in this example. But
keeping Type I error rates below 0.05 is the first priority.
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(a) What is Θ?

(b) What is Θ0?

(c) What is Θ1?

(d) Derive a general expression for the large-sample likelihood ratio statistic G2 =

−2 log `(
̂̂
θ)

`(θ̂)
.

(e) A sample of size n = 100 yields Y = 1.37 and S2 = 1.42. One of these
quantities is unnecessary and just provided to irritate you. Well, actually it’s
a mild substitute for reality, which always provides you with a huge pile of
information you don’t need. Anyway, we want to test H0 : θ = 1. You can do
this with a calculator. When I did it a long time ago I got G2 = 11.038.

(f) At α = 0.05, the critical value of chisquare with one degree of freedom is
3.841459. Do you reject H0? Answer Yes or No.

A.6.2) The label on the peanut butter jar says peanuts, partially hydrogenated peanut oil,
salt and sugar. But we all know there is other stuff in there too. In the United
States, the Food and Drug administration requires that a shipment of peanut butter
be rejected if it contains an average of more than 8 rat hairs per pound (well, I’m
not sure if it’s exactly 8, but let’s pretend). There is very good reason to assume
that the number of rat hairs per pound has a Poisson distribution with mean λ,
because it’s easy to justify a Poisson process model for how the hairs get into the
jars. We will test H0 : λ = λ0.

(a) What is Θ?

(b) What is Θ0?

(c) What is Θ1?

(d) Derive a general expression for the large-sample likelihood ratio statistic.

(e) We sample 100 1-pound jars, and observe a sample mean of Y = 8.57. Should
we reject the shipment? We want to test H0 : λ = 8. What is the value of
G2? You can do this with a calculator. When I did it a long time ago I got
G2 = 3.97.

(f) Do you reject H0 at α = 0.05? Answer Yes or No.

(g) Do you reject the shipment of peanut butter? Answer Yes or No.

A.6.3) The normal distribution has density

f(y) =
1

σ
√

2π
exp

{
−(y − µ)2

2σ2

}
.

Find an explicit formula for the MLE of θ = (µ, σ2). This example is in practically
every mathematical statistics textbook, so the full solution is available. But please
try it yourself first.
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A.6.4) Write an R function that performs a large-sample likelihood ratio test of H0 : σ2 = σ2
0

for data from a single normal random sample. The function should take the sample
data and σ2

0 as input, and return 3 values: G2, the degrees of freedom, and the
p-value. Run your function on the data in var.dat, testing H0 : σ2 = 2; see link to
the data on the course web page.

For this question, you need to bring a printout with a listing of your function
(showing how it is defined), and also part of an R session showing execution of the
function, and the resulting output.

A.6.5) For k samples from independent normal distributions, the usual one-way analysis of
variance tests equality of means assuming equal variances. Now you will construct
a large-sample likelihood ratio test for equality of means, except that you will not
assume equal variances. Write an R function to do it.

Input to the function should be the sample data, in the form of a matrix. The first
column should contain group membership (the explanatory variable). It is okay to
assume that the unique values in this column are the integers from 1 to k. The
second column should contain values of the normal random variates – the response
variable.

The function should return 3 values: G2, the degrees of freedom, and the p-value.
Run your function on the sample in kars.dat; see link to the data on the course
web page. This data set shows country of origin and gas mileage for a sample of
automobiles.

A.6.6) Let X1, . . . ,Xn be a random sample from a multivariate normal population with
mean µ and variance-covariance matrix Σ. Using the MLEs

µ̂ = X and Σ̂ =
1

n

n∑
i=1

(Xi −X)(Xi −X)>,

derive the large-sample likelihood ratio test G2 for testing whether the components
of the random vectors Xi are independent. That is, we want to test whether Σ is
diagonal. It is okay to use material from the class notes without proof.

A.6.7) Using R, write a program to compute the test you derived in the preceding question.
Your program should return 3 values: G2, the degrees of freedom, and the p-value.
Run it on the sample in fourvars.dat; see link to the data on the course web page.
Bring a printout listing your program and illustrating the run on fourvars.dat. Of
course it would be nice if your program were general, but it is not required. Note
that for this problem, numerical maximum likelihood is not needed. Both your
restricted and your unrestricted MLEs can and should be in explicit form.

A.6.9 The Bootstrap

Sometimes, the distribution of a statistic or vector of statistics can be tough to figure out.
You may not be able to do it at all. Or, maybe you could get an asymptotic answer using
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the multivariate delta method, but it would be a big job requiring extensive paper and
pencil calculations followed by careful programming. The bootstrap, due to Efron [22], is
a computer-intensive method that can yield fairly automatic answers in such situations.

Let x = (X1, . . . , Xn) be a random sample from some distribution F . Let T = T (x) be
a statistic or vector of statistics. We need to know the distribution of T ; an approximate
answer will be good enough. You should not turn up your nose at the word “approximate.”
Bootstrap solutions are approximate in the same sense that a consistent estimator is
approximate.

The name “bootstrap” comes from the saying “Pull yourself up by your bootstraps.”
Figure A.3 shows a pair of boots19. The little loops at the back of the boots are the

Figure A.3: A pair of boots with bootstraps

bootstraps; if you hook your fingers in the loops, it’s easier to pull your boots on. Pulling
yourself up by your bootstraps is physically impossible, but it’s a metaphor for getting
the job done with the resources you have available, even though it may seem impossible.

To appreciate the statistical bootstrap, recall how the idea of a sampling distribution is
introduced in an elementary statistics class. One does not terrorize the students by refer-
ring to functions of a random variable. Instead, the sampling distribution is described as
follows. Imagine drawing repeated random samples from the same population. Either the
sampling is with replacement, or the population is so large that the distinction between
with and without replacement makes no difference. For each sample, calculate the statis-
tic. Make a relative frequency histogram of the values of the statistic. As the number of
samples increases, the histogram gets closer and closer to the sampling distribution of the
statistic.

So, select a random sample from the population. If the sample size is large, the sample
is similar to the population. Sample repeatedly from the sample with replacement; this
is called resampling. Calculate the statistic for every bootstrap sample. A histogram of
the resulting values approximates the shape of the sampling distribution of the statistic.

19This photograph was taken by Tarquin. It is licensed under a Creative Commons Attribution -
ShareAlike 3.0 Unported License. For more information, see the entry at the wikimedia site.

http://creativecommons.org/licenses/by-sa/3.0/deed.en_US
http://creativecommons.org/licenses/by-sa/3.0/deed.en_US
http://commons.wikimedia.org/wiki/File:Dr_Martens,_black,_old.jpg
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To visualize re-sampling, think of writing the n sample data values on marbles, putting
the marbles in a jar, and drawing n marbles with replacement. Naturally, there will
be some repeats; don’t worry about it. In many applications, you will be re-sampling
vectors of data values, like x1, x2, x3 and x4. In such cases, keep the values from a given
individual together20. Think of n strings of beads, with four beads on each string. You
randomly sample strings of beads. Of course, in practice all this is done by computer
using pseudo-random number generation, but the physical analogy may be helpful as a
way of understanding the process.

More formally, let x = (X1, . . . , Xn) be a random sample from some distribution F ,
possibly a multivariate distribution. T = T (x) is a statistic or a vector of statistics.
Form a “bootstrap sample” x∗ by sampling n values from x with replacement. Repeat
this process B times, obtaining x∗1, . . . ,x

∗
B. Calculate the statistic (or vector of statistics)

for each bootstrap sample, obtaining T ∗1 , . . . , T
∗
B. The relative frequencies of T ∗1 , . . . , T

∗
B

approximate the sampling distribution of T .

It works because the empirical distribution converges to the true distribution function.

F̂ (x) =
1

n

n∑
i=1

I{Xi ≤ x} a.s.→ E(I{Xi ≤ x}) = F (x)

Resampling from x with replacement is the same as simulating a random variable whose
distribution is the empirical distribution function F̂ (x). Suppose the distribution func-
tion of T is a nice smooth function of F . Then as n → ∞ and B → ∞, bootstrap
sample moments and quantiles21 of T ∗1 , . . . , T

∗
B converge to the corresponding moments

and quantiles of the distribution of T . If the distribution of x is discrete and supported
on a finite number of points, the technical issues are modest. For continuous distributions
with unbounded support it’s more challenging, but the conclusions still hold.

Estimating the covariance matrix of a vector of statistics

In structural equation modeling, it is quite common to have a vector of estimators that are
known to be consistent and asymptotically multivariate normal. An asymptotic variance-
covariance matrix is available provided that the observable data are multivariate normal,
but the normality assumption is either doubtful or demonstrably false. So constructing
tests and confidence intervals is not routine.

There are two main ways this situation can emerge. In the first scenario, the statis-
tics in question are nice explicit functions of the sample variance-covariance matrix of
the observable data. Even when the data are not normally distributed, Theorem A.1 on
page 564 establishes that the joint distribution of the sample variances and covariances is

20Well, if you were interested in testing independence of x1 and x2 from x3 and x4, you could put the
(x1, x2) pairs in one jar and the (x3, x4) pairs in another jar, and draw independently from the two jars
to assemble a set of four values. This is an example of bootstrapping under the null hypothesis, a very
nice way to construct tests that make no assumptions about the distribution of the data.

21The q quantile of a distribution is the point with q of the distribution at or below it, where 0 ≤ q ≤ 1.
Quantiles are like percentiles.
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asymptotically multivariate normal, and then by the multivariate delta method, differen-
tiable functions of those variances and covariances are approximately multivariate normal
too. The asymptotic variances and covariances of the sample variances and covariances –
and functions of them – are actually available and can be estimated consistently, but it’s
a big, unpleasant chore.

In the other scenario, the statistics in question are MLEs, but they are MLEs based
on the assumption that the observable data are multivariate normal – an assumption
that is questionable or worse. The good news is that by Theorem 5.1 and the “Corollary
to Huber’s corollary” (Expression 5.4 on page 432) in Chapter 5, these pseudo-MLEs
are consistent and have an asymptotic distribution that is multivariate normal. The bad
news is that the normal-theory estimates of the asymptotic variance-covariance matrix are
incorrect in general, though some exceptions are given in Chapter 5. Again, estimating
the right variance-covariance matrix is not out of the question, but it’s a big job involving
mathematical calculations and computer coding that might never be needed again.

It’s a lot easier using the bootstrap. The bootstrap provides a good picture of the
sampling distribution of that vector of statistics. The only feature of the sampling dis-
tribution that matters is their variance-covariance matrix. Proceed as follows. Draw B
bootstrap samples from the sample data, and for each one calculate the vector of statis-
tics. Assemble the results into a sort of data file, with B rows, and one column for each
statistic. Calculate the sample variance-covariance matrix of that. The result is an excel-
lent approximation of the asymptotic variance-covariance matrix that’s needed for tests
and confidence intervals.

Here is an example. In the United States, admission to university is sometimes based
partly on the Scholastic Aptitude Test, or SAT. In the old days there were two subtests,
Verbal and Math. The data file openSAT.data.txt22 has Verbal score, Math score and
first-year grade point average for a sample of 200 students. We first read the data and
look at the correlation matrix.

> sat = read.table("https://www.utstat.toronto.edu/brunner/openSEM/data/openSAT.data.txt")

> head(sat)

VERBAL MATH GPA

1 578 567 2.68

2 474 653 2.51

3 546 657 1.95

4 664 686 2.81

5 600 619 2.79

6 488 738 2.36

> cor(sat)

VERBAL MATH GPA

VERBAL 1.0000000 0.2751041 0.3224927

MATH 0.2751041 1.0000000 0.1941086

GPA 0.3224927 0.1941086 1.0000000

These correlations are not too impressive, but remember that the students were admit-
ted largely on the basis of having high SAT scores, so this is an example of how restricted

22This is a reconstructed data set based on a Minitab data set. I believe the Minitab data set is a
cleaned-up version of real data from Penn State University.
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range can weaken an observed correlation. Verbal score appears to be more highly corre-
lated with GPA than Math score, but is the difference statistically significant? This is a
meaningful but non-standard question.

By Theorem A.1 and the multivariate delta method, the asymptotic distribution of the
sample correlation coefficients is multivariate normal and centered on the true correlations.
For a Wald test and a confidence interval, all we need is an estimate of the covariance
matrix.

Now we’ll follow the recipe. Put the row numbers in a “jar.” Sample from the jar with
replacement, putting the rows into a bootstrap data set. Calculate the correlations. Do
this B times, saving the results in an array that will be called bootdata.

> # Bootstrap the correlations

> n = dim(sat)[1] # Sample size is the number of rows in the data file

> set.seed(9999) # Set random number seed so results can be duplicated.

> jar = 1:n; B = 1000

> bootdata = matrix(NA,B,3)

> colnames(bootdata) = c(’Verbal-Math’,’Verbal-GPA’,’Math-GPA’)

> for(j in 1:B)

+

+ rowz = sample(jar,size=n,replace=TRUE)

+ xstar = sat[rowz,]

+ kor = cor(xstar)

+ bootdata[j,1] = kor[1,2] # Correlation of Verbal with Math

+ bootdata[j,2] = kor[1,3] # Correlation of Verbal with GPA

+ bootdata[j,3] = kor[2,3] # Correlation of Math with GPA

+ # Next bootstrap sample

> head(bootdata)

Verbal-Math Verbal-GPA Math-GPA

[1,] 0.3020368 0.3171977 0.2320282

[2,] 0.3589208 0.2834930 0.2247893

[3,] 0.1572560 0.3590254 0.2988522

[4,] 0.1989407 0.3582051 0.0998772

[5,] 0.3165621 0.3644107 0.2394445

[6,] 0.2808987 0.2934830 0.1626899

The estimated covariance matrix we need is just the sample covariance matrix of these
bootstrapped statistics.

> Vhat = var(bootdata); Vhat # Asymptotic covariance matrix

Verbal-Math Verbal-GPA Math-GPA

Verbal-Math 0.0044099830 0.0002516633 0.001059281

Verbal-GPA 0.0002516633 0.0037209355 0.001182263

Math-GPA 0.0010592808 0.0011822628 0.004240506

To test for difference between the two correlations, we’ll use the Wtest function. The
present application isn’t quite a Wald test strictly speaking, but the theory applies.

> # Now use it

> # Test H0: Corr(Verbal,GPA) = Corr(Math,GPA)

> source("http://www.utstat.utoronto.ca/~brunner/Rfunctions/Wtest.txt")
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> # function(L,Tn,Vn,h=0) # H0: L theta = h

> LL = cbind(0,1,-1)

> estcorr = c(corsat[1,2],corsat[1,3],corsat[2,3])

> Wtest(L=LL,Tn=estcorr,Vn=Vhat)

W df p-value

2.94491891 1.00000000 0.08614802

So the difference between is not statistically significant at the 0.05 level. How about a
confidence interval?

> # 95 percent CI for Corr(Verbal,GPA) - Corr(Math,GPA)

> estdiff = corsat[1,3]-corsat[2,3]; estdiff # Estimated difference between correlations

[1] 0.128384

> sediff = as.numeric(sqrt( LL %*% Vhat %*% t(LL) ))

> CI = c(estdiff - 1.96*sediff, estdiff + 1.96*sediff); round(CI,4)

[1] -0.0182 0.2750

Observe that the confidence interval includes zero, which must happen since the hypothesis
of zero difference was not rejected. It absolutely must happen because squaring the z
statistic corresponding to the confidence interval yields the Wald chi-square.

Bootstrapping MLEs In structural equation modeling it is common practice to esti-
mate the model parameters with normal theory maximum likelihood, even if there is no
particular reason to believe that the data are normally distributed. Fortunately, almost
regardless of the distribution of the sample data, the resulting estimators are consistent
by Theorem 5.1, and have asymptotically normal distributions by Corollary 5.4 on page
432. The normal theory estimates of the variances and covariances of the estimators might
not be correct (see Chapter 5), but that problem is neatly solved by bootstrapping the
pseudo-MLE’s and estimating their variance-covariance matrix, exactly as in the exam-
ple above. In lavaan, the se="bootstrap" option does the trick. Here are a couple of
examples.

boot = lavaan(fullmod, data=X, se="bootstrap")

fit3 = cfa(model3,data=simdat, se="bootstrap")

Quantile Bootstrap Confidence Intervals An alternative to normal-theory confi-
dence intervals are the quantile confidence intervals, which use more information about
the exact shape of the sampling distribution out on the tails. Suppose Tn is a consistent
estimator of θ, and the distribution of Tn is approximately symmetric around θ. Then
the lower (1−α)100% confidence limit for θ is the α/2 sample quantile of T ∗1 , . . . , T

∗
B, and

the upper limit is the 1− α/2 sample quantile. For example, the 95% confidence interval
ranges from the 2.5th to the 97.5th percentile of T ∗1 , . . . , T

∗
B.

Symmetry is a requirement that is often ignored when computing quantile bootstrap
intervals. The distribution of Tn symmetric about θ means for all d > 0, P{Tn > θ+d} =
P{Tn < θ − d}. See Figure A.4.
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Figure A.4: A symmetric distribution

 

 

θθ − d θ + d

Select d so that P{Tn > θ + d} = P{Tn < θ − d} equals α/2. Then

1− α = P{θ − d < Tn < θ + d}
= P{Tn − d < θ < Tn + d}

To use this result, an estimate of d is required.
There are two natural estimates. Letting Qα/2 denote the true α/2 quantile of the

distribution of Tn,

1− α = P{θ − d < Tn < θ + d} = P{Qα/2 < Tn < Q1−α/2}.

The estimates should satisfy

θ̂ − d̂1 = Q̂α/2 ⇒ d̂1 = Tn − Q̂α/2

θ̂ + d̂2 = Q̂1−α/2 ⇒ d̂2 = Q̂1−α/2 − Tn,

where Tn has been used to estimate θ, and Q̂α/2 and Q̂1−α/2 are the bootstrap quantiles.
Then, take 1 − α = P{Tn − d < θ < Tn + d} and plug in the estimates of d1 and d2.

Using d̂1 on the left yields

Tn − d̂1 = Tn − (Tn − Q̂α/2) = Q̂α/2

Using d̂2 on the right yields

Tn + d̂2 = Tn + (Q̂1−α/2 − Tn) = Q̂1−α/2,

so that the (1− α)100% bootstrap quantile confidence interval is(
Q̂α/2, Q̂1−α/2

)
. (A.39)

There are indications that the coverage of this interval can approach 1 − α faster with
increasing sample size than a confidence interval based on the central limit theorem. See
Chapter 22 of Efron and Tibshirani [23].

To test hypotheses like H0 : θ = θ0, one can simply check whether the (1 − α)100%
quantile confidence interval for θ includes θ0, and reject the null hypothesis at significance
level α if it does.
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Justifying the Assumption of Symmetry All this depends on the statistic Tn having
a distribution that is approximately symmetric. When the distribution of the estimator
is not symmetric about the parameter being estimated, quantile confidence intervals are
unjustified and often quite inaccurate. Ignoring this point has led to confusion ans suspi-
cion about the bootstrap, especially among non-statisticians. So how does one justify the
assumption of symmetry, particularly when the distribution of Tn is elusive? The easiest
answer is asymptotic normality. Smooth functions of asymptotic normals are asymptoti-
cally normal, and this includes maximum likelihood estimators as well as functions of the
sample moments. Of course the normal distribution is symmetric, and this justifies the
use of quantile confidence intervals. Here is an illustration using the SAT data.

> # Now a quantile confidence interval

> difcorr = bootdata[,2]-bootdata[,3]

> difcorr = sort(difcorr)

> # 0.025 * 1000 = 25, so go midway between number 25 and number 26,

> # And midway between number 974 and 975

> LowerQuant = (difcorr[25]+difcorr[26])/2

> UpperQuant = (difcorr[974]+difcorr[975])/2

> qCI = c(LowerQuant,UpperQuant) # 95% Quantile interval

> round(qCI,4)

[1] -0.0281 0.2704

This confidence interval is very similar to the one directly based on asymptotic normality.
Again, it provides no evidence that the correlation between Verbal SAT and first-year
GPA is different from the correlation between Math SAT and first-year GPA.



Appendix B

Symbolic Mathematics with Sagemath

B.1 Introduction to Sagemath

What is Sagemath, and why use it?

Sagemath is free, open source mathematics software. Lots of software can carry out
numerical calculations, and so can Sagemath. What makes Sagemath special is that it
can also do symbolic computation. That is, it is able to manipulate symbols as well as
numbers.

If you think about it, you will realize that a lot of the “mathematics” you do in your
statistics courses does not really require much mathematical thinking. Sometimes, all you
are really doing is pushing symbols around. You might have to do something like partially
differentiate a log likelihood function with respect to several variables, set all the expres-
sions to zero and solve the resulting equations. To do this you need to know some rules,
apply them accurately, and pay attention to detail. This kind of “thinking” is something
that computers do a lot better than humans. So particularly for big, complicated tasks,
why not let a computer do the grunt work? Symbolic mathematics software is designed
for this purpose.

There are several commercial products that do symbolic math. The best known are
Mathematica (http://www.wolfram.com) and Maple (http://www.maplesoft.com). There
are also quite a few free, open source alternatives that are developed and maintained by
volunteers. Sagemath is one of them. What makes Sagemath really special is that in
addition to its own core capabilities, it incorporates and more or less unifies quite a few
of the other mathematical programs using a single convenient interface. After all, why
not? They are free and open source, so there are no legal obstacles (like copyrights) to
prevent the Sagemath programmers from sending a particular task to the program that
does it best1.

It’s all accomplished with Python scripts. In fact, Sagemath is largely a set of sophis-
ticated Python functions. So if you know the Python programming language, you have a

1A by-product of this approach is that if you download a copy of Sagemath, you’ll see that it’s huge.
This is because you’re really downloading six or seven complete applications.

618

http://www.wolfram.com
http://www.maplesoft.com
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huge head start in learning Sagemath. If you want to do something in Sagemath and you
can figure out how to do it in Python, try it. Probably the Python code will work.

Reference Materials

This appendix is intended to be more or less complete. For further information and docu-
mentation, see the Sagemath project home page at http://www.sagemath.org. Another
useful source of information is the Wikipedia article:

http://en.wikipedia.org/wiki/Sage (mathematics software)

A Guided tour

To follow this tour actively by trying things out as you read about them, you will need
access to Sagemath, either on your computer or on a server. For more information, see
Section B.3: Using Sagemath on your Computer.

The Interface

Sagemath has a browser interface. So, whether the software resides on a remote server or
you have downloaded and installed your own free copy as described in Section B.3, you
type your input and see your output using an ordinary Web browser like Firefox.

Sagemath also has a text-only interface, in which the output as well as input is in plain
text format. Many mathematicians who use Sagemath prefer the simplicity of plain text,
and most Sagemath documentation uses plan text. But a great strength of Sagemath,
and our main reason for using it, is that we can manipulate and view the results of
calculations using Greek symbols. This capability depends on the browser interface, so
we’ll stick exclusively to that.

When you first start up Sagemath, you’ll see the Sagemath Notebook with a list of
your active Worksheets. You can save your worksheets and go back to them later. It’s
great, but right now you don’t have any worksheets. Your screen looks roughly like this:

Click on “New Worksheet.” A new window opens. It looks like this:

http://www.sagemath.org
http://en.wikipedia.org/wiki/Sage_(mathematics_software)
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Type in an informative name and click Rename. I called mine Tour1, because we’re on a
guided tour of Sagemath. Now the browser window looks like something like this:

You definitely want to check the “Typeset” box, so you can see nice Greek letters. Now,
the way it works is that you type (or paste) your commands into the upper box and
Sagemath writes the output in the box below it. As soon as you click in the upper box,
the underlined word evaluate appears below. It looks like this.
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Now you type your input, which in this case is numerical as well as mathematically
profound. Pressing the Enter (or Return) key just lets you type another line of input.
To execute the command(s), click evaluate. An alternative to clicking evaluate is to hold
down the Shift key and press Enter. Here is the result.

Notice that now there’s another box for your next set of input. Here’s a variation on
1 + 1 = 2.

In the first case, Sagemath was doing integer arithmetic. In the second case, part of the
input was interpreted as real-valued because it had a decimal point. Integer plus real is
real, so Sagemath converted the 1 to 1.0 and did a floating-point calculation. This kind of
“dynamic typing” is a virtue that Sagemath shares with Python. Sagemath is very good
at integer arithmetic. In the next example, everything following # is a comment.
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For comparison, this is how the calculation goes in R.

> prod(1:100)/(prod(1:60)*prod(1:30)*prod(1:10))

[1] 1.165214e+37

The whole thing is a floating point calculation, and R returns the answer in an imprecise
scientific notation.

Exact integer arithmetic is nice, but it’s not why we’re using Sagemath. Let’s calculate

the third derivative ∂3

∂x3

(
e4x

1+e4x

)
. This is something you could do by hand, but would you

want to?
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You can see how the worksheet grows. At any time, you can click on the Save button if
you like what you have. You can also print it just as you would any other Web page.

You can edit the contents of an input box by clicking in the box. When you do,
evaluate appears beneath the box. Click on it, and the code in the box is executed.
You can re-do all the calculations in order by choosing Evaluate All from the Action menu
(upper left). When you quit Sagemath and come back to a worksheet later, you may want
to Evaluate All so all the objects you’ve defined – like f(x) above – are available. When
you’re done (for the present), click the Save & Quit button. If you click Discard & Quit,
all the material since the last Save will be lost; sometimes this is what you want. When
you Save & Quit, you see something like this:
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Click on Sign out (upper right) and you’re done. Next time you run Sagemath the work-
sheet will be available. You can double-click on it to work on it some more, or start a
new one.

The guided tour will resume now, but without continuing to illustrate the interface.
Instead, the input will be given in a typewriter typeface like this, and then the output
will given, usually in typeset form2.

Limits, Integrals and Derivatives (Plus a little plotting and solving)

Now we return to the Tour1 worksheet and choose Evaluate All from the Action menu.
Then

f(x)

and clicking on evaluate yields

e(4 x)

(e(4 x)+1)

This really looks like a cumulative distribution function. Is it? Let’s try lim
x→−∞

f(x).

limit(f(x),x=-Infinity);limit(f(x),x=Infinity)

evaluate

0
1

Okay! So it’s a distribution function. Notice the two commands on the same line, sep-
arated by a semi-colon. Without the semi-colon, only the last item is displayed. An
alternative to the semi-colon is the show command:

show(limit(f(x),x=-Infinity))

show(limit(f(x),x=Infinity))

evaluate

0

1

The (single) derivative of f(x) is a density.

2In case you are interested in how this works, Sagemath uses the open source LATEX typesetting system
to produce output in mathematical script. The LATEX code produced by Sagemath is available. So, in
the Tour1 worksheet, if I enter f(x) in the input box, I get nice-looking mathematical output (see above).
Then if I type print(latex( )) in the next input box, I get the LATEX code for the preceding expression.
Since this book is written in LATEX, I can directly paste in the machine-generated LATEX code without
having to typeset it myself. My code might be a bit cleaner and more human-readable, but this is very
convenient.
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derivative(f(x),x)

evaluate

4 e(4 x)

(e(4 x)+1)
− 4 e(8 x)

(e(4 x)+1)
2

Here is another way to get the same thing.

# Another way

f(x).derivative(x)

evaluate

4 e(4 x)

e(4 x)+1
− 4 e(8 x)

(e(4 x)+1)
2

This second version of the syntax is more like Python, and makes it clear that the deriva-
tive is an attribute, or method associated with the object f(x). Many tasks can be re-
quested either way, but frequently only the second form (object followed by a dot, followed
by the attribute) is available. It is preferable from a programming perspective.

The expression for f ′(x) could and should be simplified. Sagemath has a simplify

command that does nothing in this case and in many others, because simplify is auto-
matically applied before any expression is displayed. But factor does the trick nicely.

g(x) = factor(f(x).derivative(x)); g(x)

evaluate

4 e(4 x)

(e(4 x)+1)
2

Want to see what it looks like? Plotting functions is straightforward.

plot(g(x),x,-5,5)

evaluate

-4 -2 2 4

0.2

0.4

0.6

0.8

1
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It’s easy to add labels and so on to make the plot look nicer, but that’s not the point
here. The objective was just to take a quick look to see what’s going on.

Actually, the picture is a bit surprising. It looks like the density is symmetric around
x = 0, which would make the median and the mean both equal to zero. But the formula
for g(x) above does not suggest symmetry. Well, it’s easy to verify that the median is
zero.

f(0)

evaluate

1
2

How about symmetry? The first try is unsuccessful, because the answer is not obviously
zero (though it is). But then factor works.

g(x)-g(-x)

evaluate

4 e(4 x)

(e(4 x)+1)
2 − 4 e(−4 x)

(e(−4 x)+1)
2

factor(g(x)-g(-x))

evaluate

0

Is this right? Yes. To see it, just multiply numerator and denominator of g(−x) by e8x.
Sagemath does not show its work, but it’s a lot less likely to make a mistake than you are.
And even if you’re the kind of person who likes to prove everything, Sagemath is handy
because it can tell you what you should try to prove.

Clearly, the number 4 in f(x) is arbitrary, and could be any positive number. So we’ll
replace 4 with θ. Now Sagemath, like most software, will usually complain if you try
to use variables that have not been defined yet. So we have to declare θ as a symbolic
variable, using a var statement. The variable x is the only symbolic variable that does
not have to be declared. It comes pre-defined as symbolic3.

var(’theta’)

F(x) = exp(theta*x)/(1+exp(theta*x)); F(x)

evaluate

e(θx)

e(θx)+1

Is F (x) a distribution function? Let’s see.

3In Mathematica, all variables are symbolic by default unless they are assigned a numeric value. I
wish Sagemath did this too, but I’m not complaining. Sagemath has other strengths that Mathematica
lacks.
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limit(F(x),x=-Infinity)

evaluate

Traceback (click to the left of this block for traceback)

...

Is theta positive, negative, or zero?

This is how error messages are displayed. You can click on the blank space to the left
of the error message for more information, but in this case it’s unnecessary. Sagemath

asks a very good question about θ. Well, actually, the question is asked by the excellent
open-source calculus program Maxima, and Sagemath relays the question. In Maxima, you
could answer the question interactively through the console and the calculation would
proceed, but this capability is not available in Sagemath. The necessary information can
be provided non-interactively. Go back into the box and edit the text.

assume(theta>0)

F(x).limit(x=-oo); F(x).limit(x=oo)

evaluate
0
1

Notice how two small letter o characters can be used instead of typing out Infinity. Now
we’ll differentiate F (x) to get the density. It will be called f(x), and that will replace the
existing definition of f(x).

f(x) = factor(F(x).derivative(x)); f(x)

evaluate

θe(θx)

(e(θx)+1)
2

Of course this density is also symmetric about zero, just like the special case with
θ = 4. It’s easy to verify.

factor(f(x)-f(-x))

evaluate
0

Symmetry of the density about zero implies that the expected value is zero, because the
expected value is the physical balance point. Direct calculation confirms this.

# Expected value

integrate(x*f(x),x,-oo,oo)

evaluate
0
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It would be nice to calculate the variance too, but the variance emerges in terms of an
obscure function called the polylog. The calculation will not be shown.

This distribution (actually, a version of the logistic distribution) is a good source of
cute homework problems because the parameter θ has to be estimated numerically. So,
for the benefit of some lucky future students, let’s figure out how to simulate a random
sample from F (x). First, we’ll add a location parameter, because two-parameter problems
are more fun. The following definition rubs out the previous F (x).

# Add a location parameter

var(’mu’)

F(x) = exp(theta*(x-mu))/(1+exp(theta*(x-mu))); F(x)

evaluate

e(−(µ−x)θ)

e(−(µ−x)θ)+1

I can’t control the order of variables in Sagemath output. It looks alphabetical, with the
m in mu coming before x.

It’s well known that if U is a random variable with a uniform density on the interval
(0, 1) and F (x) is the cumulative distribution function of a continuous random variable,
then if you transform U with the inverse of F (x), the result is a random variable with
distribution function F (x). Symbolically,

F−1(U) = X ∼ F (x)

Of course this is something you could do by hand, but it’s so fast and easy with Sagemath:

# Inverse of cdf

var(’X U’)

solve(F(X)==U,X) # Solve F(X)=U for X

evaluate[
X =

µθ+log(− U
U−1)

θ

]
It might be a bit better to write this as

X = µ+
1

θ
log

(
U

1− U

)
,

but what Sagemath gives us is quite nice. A few technical comments are in order. First,
the double equal sign in F(X)==U indicates a logical relation. For example,

1==4

evaluate

False
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Second, the solve returns a list of solutions. Sagemath uses brackets to indicate a list.
In this case, there is only one solution so the list contains only one element. It’s element
zero in the list, not element one. Like Python, Sagemath starts all lists and array indices
with element zero. It’s a hard-core computer science feature, and mildly irritating for the
ordinary user. Here’s how one can extract element zero from the list of solutions.

solve(F(X)==U,X)[0]

evaluate

X =
µθ+log(− U

U−1)
θ

The equals sign in that last expression is actually a double equals. If you’re going to
use something like that solution in later calculations, it can matter. In Sagemath, the
underscore character always refers to the output of the preceding command. It’s quite
handy. The print function means “Please don’t typeset it.”

print(_)

evaluate

X == (mu*theta + log(-U/(U - 1)))/theta

Just for completeness, here’s how that inverse function could be used to simulate data
from F (x) in R.

> n = 20; mu = -2; theta = 4

> U = runif(n)

> X = mu + log(U/(1-U))/theta; X

[1] -1.994528 -2.455775 -2.389822 -2.996261 -1.477381 -2.422011 -1.855653

[8] -2.855570 -2.358733 -1.712423 -2.075641 -1.908347 -2.018621 -2.019441

[15] -1.956178 -2.015682 -2.846583 -1.727180 -1.726458 -2.207717

Random number generation is available from within Sagemath too, and in fact R is one of
the programs incorporated in Sagemath, but to me it’s more convenient to use R directly
– probably just because I’m used to it.

You have to declare most variables (like θ, µ, X, U and so on) before you can use them,
but there are exceptions. The pre-defined symbolic variable x is one. Here is another.

pi

evaluate

π

Is that really the ratio of a circle’s circumference to its diameter, or just the Greek letter?

cos(pi)
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evaluate

−1

That’s pretty promising. Evaluate it numerically.

n(pi) # Could also say pi.n()

evaluate

3 : 14159265358979

gamma(1/2)

evaluate
√
π

So it’s really π. Let’s try using pi in the normal distribution.

# Normal density

var(’mu, sigma’)

assume(sigma>0)

f(x) = 1/(sigma*sqrt(2*pi)) * exp(-(x-mu)^2/(2*sigma^2)); f(x)

evaluate

√
2e

(
− (µ−x)2

2σ2

)
2
√
πσ

# Integrate the density

integrate(f(x),x,-oo,oo)

evaluate

1

Calculate the expected value.

# E(X)

integrate(x*f(x),x,-oo,oo)

evaluate

µ

Obtain the variance directly.

# E(X-mu)^2

integrate((x-mu)^2*f(x),x,-oo,oo)

evaluate

σ2
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Calculate the moment-generating function and use it to get E(X4).

# Moment-generating function M(t) = E(e^{Xt})

var(’t’)

M(t) = integrate(exp(x*t)*f(x),x,-oo,oo); M(t)

evaluate

e(
1
2
σ2t2+µt)

# Differentiate four times, set t=0

derivative(M(t),t,4)(t=0)

evaluate

µ4 + 6µ2σ2 + 3σ4

Discrete distributions are easy to work with, too. In the geometric distribution, a
coin with Pr{Head} = θ is tossed repeatedly, and X is the number of tosses required to
get the first head. Notice that two separate assume statements are required to establish
0 < θ < 1. All the commands work as expected, but only the output from the last one is
displayed.

# Geometric

var(’theta’)

assume(0<theta); assume(theta<1)

p(x) = theta*(1-theta)^(x-1); p(x)

p(x).sum(x,1,oo) # Sum the pmf

(x*p(x)).sum(x,1,oo) # Expected value

((x-1/theta)^2*p(x)).sum(x,1,oo) # Variance

evaluate

− θ−1
θ2

In the next example, the parameter λ of the Poisson distribution must be treated specially
because it has a specific advanced programming meaning and the word is reserved. It
can still be used as a symbol if it is assigned to a variable and used with an underscore
as illustrated. Lambdas with subscripts present no problems. In fact, lambda can be
viewed as a λ with an invisible subscript.

# Poisson - lambda has a special meaning. But if you assign

# it to a variable and define it WITH AN UNDERSCORE you can

# still use it as a symbol.

L = var(’lambda_’)

p(x) = exp(-L) * L^x / factorial(x) ; p(x)

evaluate
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λxe(−λ)

x!

p(x).sum(x,0,oo) # Sums nicely to one

(x*p(x)).sum(x,0,oo) # Expected value

evaluate

λ
Here is some sample code for the Gamma distribution. Note the use of full simplify

on ratios of gamma functions.

# Gamma

var(’alpha beta’)

assume(alpha>0); assume(beta>0)

assume(alpha,’noninteger’); assume(beta,’noninteger’)

f(x) = 1/(beta^alpha*gamma(alpha)) * exp(-x/beta) * x^(alpha-1)

integrate(f(x),x,0,oo) # Equals one

integrate(x*f(x),x,0,oo) # E(X)

evaluate

βΓ(α+1)
Γ(α)

_.full_simplify() # Underscore refers to the preceding expression.

evaluate

αβ

Now for the the moment-generating function. When I first tried it Sagemath asked “Is
beta*t-1 positive, negative, or zero?” Because the moment-generating function
only needs be defined in a neighbourhood of zero. I said assume(beta*t<1), which is
equivalent to t < 1

β
. In this way, Sagemath makes us specify the radius of convergence

of the moment-generating function, but only when the radius of convergence is not the
whole real line. Sagemath may be just a calculator, but it’s a very smart calculator. It
helps keep us mathematically honest. You have to love it.

# Moment-generating function

var(’t’); assume(beta*t<1)

M(t) = integrate(exp(x*t)*f(x),x,0,oo).full_simplify(); M(t)

derivative(M(t),t,2)(t=0).full_simplify() # Lovely

evaluate

(α2 + α)β2

Here is some sample code for the Binomial distribution. Only the input is given.

# Binomial
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var(’n theta’)

assume(n,’integer’); assume(n>-1)

assume(0<theta); assume(theta<1)

p(x) = factorial(n)/(factorial(x)*factorial(n-x)) * theta^x * (1-theta)^(n-x)

p(x).sum(x,0,n) # Adds to one

(x*p(x)).sum(x,0,n).full_simplify() # E(X)

(x^2*p(x)).sum(x,0,n).full_simplify() # E(X^2)

((x-n*theta)^2*p(x)).sum(x,0,n).full_simplify() # cov(X) directly

Maxima and Minima in Several Variables (Maximum Likelihood)

The standard way to derive maximum likelihood estimators is to partially differentiate the
log likelihood with respect to each parameter, set the resulting expressions to zero, and
solve for the parameters. This task is routine with Sagemath, except for one part. The
“one part” is actually a nasty clerical chore that a symbolic math program like Sagemath

should be able to do for us. Writing the likelihood function as

L(θ) =
n∏
i=1

f(xi|θ),

the task is to carry out the multiplication, using the fact that multiplication is addition of
exponents. The result is often an expression in the parameter θ and a a set of (sufficient)
statistics – that is, functions of the sample data that could be calculated without knowing
any of the parameters. I’m not insisting this step cannot be done with Sagemath, only
that I’ve tried hard, I can’t do it with Mathematica either, and other knowledgeable users4

can’t seem to make Sagemath do it either.

The Univariate Normal Distribution For the normal distribution, one version of
the calculation goes like this.

L(µ, σ) =
n∏
i=1

(
=

1

σ
√

2π
e−

(xi−µ)
2

2σ2

)
=

1

σn(2π)n/2
e−

1
2σ2

∑n
i=1(xi−µ)2

=
1

σn(2π)n/2
e−

1
2σ2

∑n
i=1(x2i−2xiµ+µ2)

=
1

σn(2π)n/2
e−

1
2σ2

(
∑n
i=1 x

2
i−2µ

∑n
i=1 xi+nµ

2)

4Somebody is a statistician in New Zealand who uses Sagemath in her classes. I have not asked her
directly, but in the material she posts online she simplifies likelihood functions by hand, just as I am
forced to do here.
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This is not actually the best way to do the calculation. Better is to add and subtract x
in the exponent. But this way requires a bit less insight (or experience), and leads to a
more complicated problem that illustrates Sagemath’s power. Continuing, the minus log
likelihood function is

−`(µ, σ) = n log σ +
n

2
log 2π +

1

2σ2

((
n∑
i=1

x2
i

)
− 2µ

(
n∑
i=1

xi

)
+ nµ2

)
.

Notice how the likelihood has been simplified to an expression that depends on the sample
data only through a two-dimensional sufficient statistic5. This is what we need to minimize
over the pair (µ, σ). In the Sagemath code,

∑n
i=1 xi will be denoted by s1 and

∑n
i=1 x

2
i

will be denoted by s2.

# Minus Log Likelihood for univariate normal

# s1 is sum of x, s2 is sum of x^2

var(’mu sigma s1 s2 n’)

mLL = n*log(sigma) + n/2 * log(2*pi) + 1/(2*sigma^2) * (s2 - 2*mu*s1 + n*mu^2)

mLL

evaluate

1
2
n log (2 π) + n log (σ) + µ2n−2µs1+s2

2σ2

Now partially differentiate the minus log likelihood with respect to µ and σ, set the
derivates to zero, and solve.

d1 = derivative(mLL,mu); d2 = derivative(mLL,sigma)

eq = [d1==0,d2==0]; eq

evaluate[
µn−s1
σ2 = 0, n

σ
− µ2n−2µs1+s2

σ3 = 0
]

# Solution is a list of lists

sol1 = solve(eq,[mu,sigma]); sol1

evaluate[[
µ = s1

n
, σ = −

√
ns2−s21
n

]
,

[
µ = s1

n
, σ =

√
ns2−s21
n

]]
Notice that there is only one solution for µ; it’s µ = s1

n
= x. But there are two solutions

for σ; they simplify to plus and minus the sample standard deviation (with n rather than
n− 1 in the denominator).

Of course we discard the negative solution because it’s outside the parameter space,
but this illustrates a feature of Sagemath that can be easy to forget. It doesn’t know as

5The fact that the sufficient statistic has the same dimension as the parameter suggests that we will
live happily ever after.
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much about the problem as you do. Not only does it not know that variances can’t be
negative, it does not know that the quantity under the square root sign has to be positive,
or even that all the symbols represent real numbers rather than complex numbers. I tried
playing around with assume, but to no avail. There were always two solutions. It’s easy
enough to get the one we want. It’s element one in the list of lists – the second one.

# Extract the second list of solutions

sol1[1]

evaluate[
µ = s1

n
, σ =

√
ns2−s21
n

]
Later, it will be handy to evaluate the parameter vector at the vector of MLEs. So,
this time, get the solution in the form of a dictionary (exactly like a Python dictionary).
Actually, solve returns a list of dictionaries, and we want the second one.

# This time, get the solutions in the form of a LIST of dictionaries.

# Save item one, the second one. (Indices begin with zero, not one.)

mle = solve(eq,[mu,sigma],solution_dict=True)[1]; mle

evaluate{
σ :

√
ns2−s21
n

, µ : s1
n

}

# Refer to the elements of a dictionary using the keys.

mle[mu] # MLE of mu

evaluate

s1
n

For this particular case, it’s not hard to show by elementary methods that the likeli-
hood function attains its maximum at the sample mean and standard deviation, rather
than a minimum or saddle point. But the general method is of interest. For a function
g(θ1, . . . , θt), define the Hessian as the t× t matrix of mixed partial derivatives whose i, j
element is

∂2g

∂θi∂θj
. (B.1)

If the eigenvalues of the Hessian are all positive at a critical point, the function is concave
up there. If they are all negative, it’s concave down. If some are positive and some are
negative, it’s a saddle point.

In Sagemath, functions have a built-in Hessian attribute, but unfortunately, it ap-
plies to all symbolic variables. So mLL.hessian() returns a 5 × 5 matrix, correspond-
ing to (µ, n, s1, s2, σ), in alphabetical order. And mLL.hessian([mu,sigma]) (which
is natural, and similar to expressions that work with gradients and Jacobians) yields
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TypeError: hessian() takes no arguments (1 given). So we’ll construct the Hes-
sian from scratch. Start by making an empty matrix that will be filled with partial
derivates. It’s critical that the matrix be of the right type (symbolic). Also, note that
a lot of burdensome High School algebra is avoided by the quiet use of factor in the
calculations below.

# H will be hessian of MINUS log likelihood

H = identity_matrix(SR,2); H # SR is the Symbolic Ring

evaluate(
1 0
0 1

)

# Fill it with mixed partial derivatives

H[0,0] = derivative(mLL,mu,2); H[0,1] = derivative(mLL,[mu,sigma])

H[1,0] = H[0,1] ; H[1,1] = derivative(mLL,sigma,2)

H = factor(H); H

evaluate(
n
σ2 −2 (µn−s1)

σ3

−2 (µn−s1)
σ3

(3µ2n−nσ2−6µs1+3 s2)
σ4

)

# Evaluate at mle

hmle = factor(H(mle)); hmle

evaluate(
n3

(ns2−s21)
0

0 2 n3

(ns2−s21)

)

# Function is concave up at critical point iff all eigenvalues > 0 there.

hmle.eigenvalues()

evaluate[
n3

(ns2−s21)
, 2 n3

(ns2−s21)

]
The denominator of both eigenvalues equals

n
n∑
i=1

x2
i −

(
n∑
i=1

xi

)2

= n
n∑
i=1

(xi − x)2,

so both eigenvalues are positive and the minus log likelihood is concave up at the MLE.
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The Multinomial Distribution The multinomial distribution is based on a statistical
experiment in which one of k outcomes occurs, with probability θj, j = 1, . . . , k, where∑k

j=1 θj = 1. For example, consumers might be asked to smell six perfumes, and indicate
which one they like most. The probability of preferring perfume j is θj, for j = 1, . . . , 6.

The likelihood function may be written in terms of multinomial random vectors made
up of k indicators random variables: For case i, xij = 1 if event j occurs, and zero

otherwise.
∑k

j=1 xij = 1. The likelihood function is

L(θ) =
n∏
i=1

θ
xi,1
1 θ

xi,2
2 · · · θxi,kk

= θ
∑n
i=1 xi,1

1 θ
∑n
i=1 xi,2

2 · · · θ
∑n
i=1 xi,k

k .

Using xj to represent the sum
∑n

i=1 xi,j, the likelihood may be expressed in a non-
redundant way in terms of k − 1 parameters and k − 1 sufficient statistics, as follows:

L(θ) = θx11 θ
x2
2 · · · θ

xk
k

= θx11 · · · θ
xk−1

k−1

(
1−

k−1∑
j=1

θj

)n−
∑k−1
j=1 xj

.

Here’s an example with k = 6 (six perfumes).

# Multinomial Maximum likelihood - 6 categories

var(’theta1 theta2 theta3 theta4 theta5 x1 x2 x3 x4 x5 n’)

theta = [theta1, theta2, theta3, theta4, theta5]

LL = x1*log(theta1) + x2*log(theta2) + x3*log(theta3) +

x4*log(theta4) + x5*log(theta5) +

(n-x1-x2-x3-x4-x5)*log(1-theta1-theta2-theta3-theta4-theta5)

LL

evaluate

(n− x1 − x2 − x3 − x4 − x5) log (−θ1 − θ2 − θ3 − θ4 − θ5 + 1) + x1 log (θ1) + x2 log (θ2) +
x3 log (θ3) + x4 log (θ4) + x5 log (θ5)

Instead of calculating all five partial derivatives, it’s easier to request the gradient – which
is the same thing. Then we loop through the element of the gradient list, setting each
derivative to zero, displaying the equation, and appending it to a list of equations that
need to be solved. Notice the use of the colon (:) and indentation for looping. Sagemath
shares this syntax with Python.
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# Gradient is zero at MLE. It’s a tuple, not a list.

gr = LL.gradient(theta)

# Setting the derivatives to zero ...

eq = [] # Start with empty list

for a in gr :
equation = (a==0)

show(equation) # Display the equation

eq.append(equation) # Append equation to list eq.

evaluate

n−x1−x2−x3−x4−x5
θ1+θ2+θ3+θ4+θ5−1

+ x1
θ1

= 0

n−x1−x2−x3−x4−x5
θ1+θ2+θ3+θ4+θ5−1

+ x2
θ2

= 0

n−x1−x2−x3−x4−x5
θ1+θ2+θ3+θ4+θ5−1

+ x3
θ3

= 0

n−x1−x2−x3−x4−x5
θ1+θ2+θ3+θ4+θ5−1

+ x4
θ4

= 0

n−x1−x2−x3−x4−x5
θ1+θ2+θ3+θ4+θ5−1

+ x5
θ5

= 0

Now we will solve for θ1, . . . , θ5. While it’s true that the Sagemath calculation is
specific to k = 6 categories, the list of equations to solve makes the pattern clear, and
points the way to a general solution. Here is the specific solution:

# Get the solutions in the form of a LIST of dictionaries.

# Dictionary items are not in any particular order.

# Save item zero, the first dictionary.

ThetaHat = solve(eq,theta,solution_dict=True)[0]

ThetaHat # The mean (vector)

evaluate

{
θ3 : x3

n
, θ2 : x2

n
, θ1 : x1

n
, θ5 : x5

n
, θ4 : x4

n

}
So for j = 1, . . . , 5, the MLE is θ̂j =

∑n
i=1 xij
n

= xj, or the sample proportion. There’s
little doubt that this is really where the likelihood function achieves its maximum, and
not a minimum or saddle point. But it’s instructive to check. Here is the Hessian of the
minus log likelihood.
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# Is it really the maximum?

# H will be hessian of MINUS log likelihood

H = identity_matrix(SR,5) # SR is the Symbolic Ring

for i in interval(0,4) :
for j in interval(0,i) :

H[i,j] = derivative(-LL,[theta[i],theta[j]])

H[j,i] = H[i,j] # It’s symmetric

H

evaluate



n−x1−x2−x3−x4−x5
(θ1+θ2+θ3+θ4+θ5−1)2

+
x1
θ21

n−x1−x2−x3−x4−x5
(θ1+θ2+θ3+θ4+θ5−1)2

n−x1−x2−x3−x4−x5
(θ1+θ2+θ3+θ4+θ5−1)2

n−x1−x2−x3−x4−x5
(θ1+θ2+θ3+θ4+θ5−1)2

n−x1−x2−x3−x4−x5
(θ1+θ2+θ3+θ4+θ5−1)2

n−x1−x2−x3−x4−x5
(θ1+θ2+θ3+θ4+θ5−1)2

n−x1−x2−x3−x4−x5
(θ1+θ2+θ3+θ4+θ5−1)2

+
x2
θ22

n−x1−x2−x3−x4−x5
(θ1+θ2+θ3+θ4+θ5−1)2

n−x1−x2−x3−x4−x5
(θ1+θ2+θ3+θ4+θ5−1)2

n−x1−x2−x3−x4−x5
(θ1+θ2+θ3+θ4+θ5−1)2

n−x1−x2−x3−x4−x5
(θ1+θ2+θ3+θ4+θ5−1)2

n−x1−x2−x3−x4−x5
(θ1+θ2+θ3+θ4+θ5−1)2

n−x1−x2−x3−x4−x5
(θ1+θ2+θ3+θ4+θ5−1)2

+
x3
θ23

n−x1−x2−x3−x4−x5
(θ1+θ2+θ3+θ4+θ5−1)2

n−x1−x2−x3−x4−x5
(θ1+θ2+θ3+θ4+θ5−1)2

n−x1−x2−x3−x4−x5
(θ1+θ2+θ3+θ4+θ5−1)2

n−x1−x2−x3−x4−x5
(θ1+θ2+θ3+θ4+θ5−1)2

n−x1−x2−x3−x4−x5
(θ1+θ2+θ3+θ4+θ5−1)2

n−x1−x2−x3−x4−x5
(θ1+θ2+θ3+θ4+θ5−1)2

+
x4
θ24

n−x1−x2−x3−x4−x5
(θ1+θ2+θ3+θ4+θ5−1)2

n−x1−x2−x3−x4−x5
(θ1+θ2+θ3+θ4+θ5−1)2

n−x1−x2−x3−x4−x5
(θ1+θ2+θ3+θ4+θ5−1)2

n−x1−x2−x3−x4−x5
(θ1+θ2+θ3+θ4+θ5−1)2

n−x1−x2−x3−x4−x5
(θ1+θ2+θ3+θ4+θ5−1)2

n−x1−x2−x3−x4−x5
(θ1+θ2+θ3+θ4+θ5−1)2

+
x5
θ25



All its eigenvalues should be positive at the critical point where the derivates simultane-
ously equal zero.

# Evaluate at critical point

Hmle = factor(H(ThetaHat)); Hmle

evaluate



(n−x2−x3−x4−x5)n2

(n−x1−x2−x3−x4−x5)x1
n2

n−x1−x2−x3−x4−x5
n2

n−x1−x2−x3−x4−x5
n2

n−x1−x2−x3−x4−x5
n2

n−x1−x2−x3−x4−x5
n2

n−x1−x2−x3−x4−x5
(n−x1−x3−x4−x5)n2

(n−x1−x2−x3−x4−x5)x2
n2

n−x1−x2−x3−x4−x5
n2

n−x1−x2−x3−x4−x5
n2

n−x1−x2−x3−x4−x5
n2

n−x1−x2−x3−x4−x5
n2

n−x1−x2−x3−x4−x5
(n−x1−x2−x4−x5)n2

(n−x1−x2−x3−x4−x5)x3
n2

n−x1−x2−x3−x4−x5
n2

n−x1−x2−x3−x4−x5
n2

n−x1−x2−x3−x4−x5
n2

n−x1−x2−x3−x4−x5
n2

n−x1−x2−x3−x4−x5
(n−x1−x2−x3−x5)n2

(n−x1−x2−x3−x4−x5)x4
n2

n−x1−x2−x3−x4−x5
n2

n−x1−x2−x3−x4−x5
n2

n−x1−x2−x3−x4−x5
n2

n−x1−x2−x3−x4−x5
n2

n−x1−x2−x3−x4−x5
(n−x1−x2−x3−x4)n2

(n−x1−x2−x3−x4−x5)x5



# Concave up iff all eigenvalues > 0

Hmle.eigenvalues()

evaluate

Traceback (click to the left of this block for traceback)

...

ArithmeticError: could not determine eigenvalues exactly using symbolic

matrices; try using a different type of matrix via self.change_ring(),

if possible

It seems that Sagemath cannot solve for the eigenvalues symbolically. A numerical
solution for a particular set of sample data would be routine. But there is another way out.
A real symmetric matrix has all positive eigenvalues if and only if it’s positive definite.
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And Sylvester’s Criterion6 is a necessary and sufficient condition for a real symmetric
matrix to be positive definite. A minor of a matrix is the determinant of a square sub-
matrix that is formed by deleting selected rows and columns from the original matrix.
The principal minors of a square matrix are the determinants of the upper left 1 × 1
matrix, the upper left 2× 2 matrix, and so on. Sylvester’s Criterion says that the matrix
is positive definite if and only if all the principal minors are positive.

Here, there are five determinants to evaluate, one of which is just the upper left matrix
element. We’ll do it in a loop. The submatrix(h,i,j,k) attribute returns the submatrix
starting in row h and column i, consisting of j rows and k columns. As usual, index
numbering starts with zero. For full documentation, try something like Hmle.submatrix?

Hmle.submatrix(0,0,2,2) # Upper left 2x2, just to see

evaluate(
(n−x2−x3−x4−x5)n2

(n−x1−x2−x3−x4−x5)x1
n2

n−x1−x2−x3−x4−x5
n2

n−x1−x2−x3−x4−x5
(n−x1−x3−x4−x5)n2

(n−x1−x2−x3−x4−x5)x2

)

# Calculate and display determinants

for j in interval(1,5) :
show(Hmle.submatrix(0,0,j,j).determinant().factor())

evaluate

(n−x2−x3−x4−x5)n2

(n−x1−x2−x3−x4−x5)x1

(n−x3−x4−x5)n4

(n−x1−x2−x3−x4−x5)x1x2

(n−x4−x5)n6

(n−x1−x2−x3−x4−x5)x1x2x3

(n−x5)n8

(n−x1−x2−x3−x4−x5)x1x2x3x4

n11

(n−x1−x2−x3−x4−x5)x1x2x3x4x5

Assuming the sample size is large enough so that there’s at least one observation in each
category, these quantities are obviously all positive. You can also see that while Sagemath
performs calculations that are very specific to the problem at hand, the answers can reveal
regular patters that could be exploited in something like a proof by induction. And the
effort involved is tiny, compared to doing it by hand.

Incidentally, the submatrix function can be used to obtain Hessians a bit more easily.
Recall that Sagemath functions have a hessian attribute, but it’s calculated with respect
to all the variables, which is never what you want for likelihood calculations. But the rows
and columns are in alphabetical order, which in the present case is n, θ1, . . . , θ5, x1, . . . , x5.

6The Wikipedia has a nice article on this, including a formal proof. See
http://www.en.wikipedia.org/.

http://www.en.wikipedia.org/wiki/Sylvester's_criterion
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So the 5× 5 Hessian we want is easy to extract. Check and see if it’s what we calculated
earlier in a double loop.

-LL.hessian().submatrix(1,1,5,5) == H

evaluate

True

Ho Ho!

Fisher Information

There are many places in mathematical Statistics where Sagemath can save a lot of tedious
calculation. One of these is in conjunction with Fisher Information (See Appendix A
for some discussion). For a model with parameter vector θ = (θ1, . . . , θt)

′, the Fisher
information matrix is a t× t matrix I(θ) whose (i, j) element is

−E
(

∂2

∂θi∂θj
log f(X|θ)

)
.

This is the information about θ in a single observation. The information in n independent
and identically distributed observations is n I(θ). Under some regularity conditions that
amount to smoothness of the functions involved, the vector of MLEs is approximately
multivariate normal for large samples, with mean θ and covariance matrix (n I(θ))−1.
This is a source of large-sample tests and confidence intervals.

The Univariate Normal Distribution Comparing the formula for the Fisher Infor-
mation to Expression (B.1), it is clear that the Fisher information is just the expected
value of the Hessian of the minus log density7. We’ll start by calculating the Hessian.
The last line says “Take minus the log of f(X), calculate the Hessian, extract the 2 × 2
matrix with upper left entry (1, 1), and factor it. Then put the result in h; display h.” In
this case and many others, factoring yields a lot of simplification.

# Normal

var(’mu, sigma, X, n’); assume(sigma>0)

f(x) = 1/(sigma*sqrt(2*pi)) * exp(-(x-mu)^2/(2*sigma^2))

# Extract lower right 2x2 of Hessian of minus log density

# That is, of Hessian with respect to X, mu, sigma.

# X is alphabetically first because it’s capitalized.

h = -log(f(X)).hessian().submatrix(1,1,2,2).factor(); h

evaluate

7The Hessian reflects curvature of the function. Fisher’s insight was that the greater the curvature of
the log likelihood function at the true parameter value, the more information the data provide about the
parameter. Further discussion of the connection between the Hessian and the Fisher Information may be
found in Appendix A.
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(
1
σ2

2 (X−µ)
σ3

2 (X−µ)
σ3

3X2−6Xµ+3µ2−σ2

σ4

)
Now take the expected value. In the lower right we’ll directly integrate, though it could
also be done by substituting in known quantities and then simplifying. The other cells
can be done by inspection.

# Fisher information in one observation is expected h

info = h

info[0,1]=0; info[1,0]=0 # Because E(X)=mu

info[1,1] = integrate(info[1,1]*f(X),X,-oo,oo)

info

evaluate(
1
σ2 0
0 2

σ2

)
That’s the Fisher Information in one observation. To get the asymptotic (approximate,
for large n) covariance matrix, multiply by n and invert the matrix.

# Fisher info in n observations is n * info in one observation.

# MLEs are asymptotically multivariate normal with mean theta

# and variance-covariance matrix the inverse of the Fisher info.

avar = (n*info).inverse(); avar

evaluate(
σ2

n
0

0 σ2

2n

)
That’s a standard example that can be done by hand, though perhaps it’s a little unusual
because the model is parameterized in terms of the standard deviation rather than the
variance. This next one, however, would be fearsome to do by hand.

The Multinomial Distribution We’ll stay with the case of six categories. Now,
because the MLE equals the sample mean vector in this case, the multivariate Central
Limit Theorem (see Appendix A) can be used directly without going through the Fisher
Information. We’ll do it this way first, because it’s a good way to check Sagemath’s final
answer.

The multivariate Central Limit Theorem says that if X1, . . . ,Xn are i.i.d. random vec-
tors with expected value vector µ and covariance matrix Σ. Then

√
n(Xn−µ) converges

in distribution to a multivariate normal with mean 0 and covariance matrix Σ. That is,
for large n, Xn has a distribution that is approximately multivariate normal, with mean
µ and covariance matrix 1

n
Σ.

Here, each of the i.i.d. random vectors is filled with k − 1 = 5 zeros and possibly
a single 1 , with the number 1 indicating which event occurred. If all five entries of
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Xi equal zero, then the sixth event occurred. The marginal distributions are Bernoulli,
so E(Xi,j) = θj and µ = (θ1, . . . , θ5)′. The variances are V ar(Xi,j) = θj(1 − θj), for
j = 1, . . . , 5. Since, Pr{Xi,jXi,m = 0} for j 6= m, E(Xi,jXi,m) = 0, and

Cov(Xi,jXi,m) = E(Xi,jXi,m)− E(Xi,j)E(Xi,m)

= −θjθm.

So by the Central Limit Theorem, the asymptotic mean of the MLE is µ = (θ1, . . . , θ5)′,
and the asymptotic covariance matrix is

1

n
Σ =


θ1(1−θ1)

n
− θ1θ2

n
− θ1θ3

n
− θ1θ4

n
− θ1θ5

n

− θ1θ2
n

θ2(1−θ2)
n

− θ2θ3
n

− θ2θ4
n

− θ2θ5
n

− θ1θ3
n

− θ2θ3
n

θ3(1−θ3)
n

− θ3θ4
n

− θ3θ5
n

− θ1θ4
n

− θ2θ4
n

− θ3θ4
n

θ4(1−θ4)
n

− θ4θ5
n

− θ1θ5
n

− θ2θ5
n

− θ3θ5
n

− θ4θ5
n

θ5(1−θ5)
n

 (B.2)

To compare this to what we get from the likelihood approach, first calculate the Hessian
of the minus log probability mass function.

# Multinomial - 6 categories again

var(’theta1 theta2 theta3 theta4 theta5 X1 X2 X3 X4 X5 n’)

Lp = X1*log(theta1) + X2*log(theta2) + X3*log(theta3)

+ X4*log(theta4) + X5*log(theta5) + (1-X1-X2-X3-X4-X5)

* log(1-theta1-theta2-theta3-theta4-theta5)

h = -Lp.hessian().submatrix(5,5,5,5); h

evaluate
−X1+X2+X3+X4+X5−1

(θ1+θ2+θ3+θ4+θ5−1)2
+ X1

θ21
−X1+X2+X3+X4+X5−1

(θ1+θ2+θ3+θ4+θ5−1)2
−X1+X2+X3+X4+X5−1

(θ1+θ2+θ3+θ4+θ5−1)2
−X1+X2+X3+X4+X5−1

(θ1+θ2+θ3+θ4+θ5−1)2
−X1+X2+X3+X4+X5−1

(θ1+θ2+θ3+θ4+θ5−1)2

−X1+X2+X3+X4+X5−1
(θ1+θ2+θ3+θ4+θ5−1)2

−X1+X2+X3+X4+X5−1
(θ1+θ2+θ3+θ4+θ5−1)2

+ X2

θ22
−X1+X2+X3+X4+X5−1

(θ1+θ2+θ3+θ4+θ5−1)2
−X1+X2+X3+X4+X5−1

(θ1+θ2+θ3+θ4+θ5−1)2
−X1+X2+X3+X4+X5−1

(θ1+θ2+θ3+θ4+θ5−1)2

−X1+X2+X3+X4+X5−1
(θ1+θ2+θ3+θ4+θ5−1)2

−X1+X2+X3+X4+X5−1
(θ1+θ2+θ3+θ4+θ5−1)2

−X1+X2+X3+X4+X5−1
(θ1+θ2+θ3+θ4+θ5−1)2

+ X3

θ23
−X1+X2+X3+X4+X5−1

(θ1+θ2+θ3+θ4+θ5−1)2
−X1+X2+X3+X4+X5−1

(θ1+θ2+θ3+θ4+θ5−1)2

−X1+X2+X3+X4+X5−1
(θ1+θ2+θ3+θ4+θ5−1)2

−X1+X2+X3+X4+X5−1
(θ1+θ2+θ3+θ4+θ5−1)2

−X1+X2+X3+X4+X5−1
(θ1+θ2+θ3+θ4+θ5−1)2

−X1+X2+X3+X4+X5−1
(θ1+θ2+θ3+θ4+θ5−1)2

+ X4

θ24
−X1+X2+X3+X4+X5−1

(θ1+θ2+θ3+θ4+θ5−1)2

−X1+X2+X3+X4+X5−1
(θ1+θ2+θ3+θ4+θ5−1)2

−X1+X2+X3+X4+X5−1
(θ1+θ2+θ3+θ4+θ5−1)2

−X1+X2+X3+X4+X5−1
(θ1+θ2+θ3+θ4+θ5−1)2

−X1+X2+X3+X4+X5−1
(θ1+θ2+θ3+θ4+θ5−1)2

−X1+X2+X3+X4+X5−1
(θ1+θ2+θ3+θ4+θ5−1)2

+ X5

θ25


Sometimes, Sagemath output runs off the right side of the screen and you have to scroll
to see it all. In this document, it just gets chopped off. But you can still see that all the
Xj quantities appear in the numerator, and taking the expected values would be easy by
hand.

# Computing expected values is just substituting theta_j for X_j

info = h(X1=theta1,X2=theta2,X3=theta3,X4=theta4,X5=theta5)

info

evaluate
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
− 1
θ1+θ2+θ3+θ4+θ5−1

+ 1
θ1

− 1
θ1+θ2+θ3+θ4+θ5−1

− 1
θ1+θ2+θ3+θ4+θ5−1

− 1
θ1+θ2+θ3+θ4+θ5−1

− 1
θ1+θ2+θ3+θ4+θ5−1

− 1
θ1+θ2+θ3+θ4+θ5−1

− 1
θ1+θ2+θ3+θ4+θ5−1

+ 1
θ2

− 1
θ1+θ2+θ3+θ4+θ5−1

− 1
θ1+θ2+θ3+θ4+θ5−1

− 1
θ1+θ2+θ3+θ4+θ5−1

− 1
θ1+θ2+θ3+θ4+θ5−1

− 1
θ1+θ2+θ3+θ4+θ5−1

− 1
θ1+θ2+θ3+θ4+θ5−1

+ 1
θ3

− 1
θ1+θ2+θ3+θ4+θ5−1

− 1
θ1+θ2+θ3+θ4+θ5−1

− 1
θ1+θ2+θ3+θ4+θ5−1

− 1
θ1+θ2+θ3+θ4+θ5−1

− 1
θ1+θ2+θ3+θ4+θ5−1

− 1
θ1+θ2+θ3+θ4+θ5−1

+ 1
θ4

− 1
θ1+θ2+θ3+θ4+θ5−1

− 1
θ1+θ2+θ3+θ4+θ5−1

− 1
θ1+θ2+θ3+θ4+θ5−1

− 1
θ1+θ2+θ3+θ4+θ5−1

− 1
θ1+θ2+θ3+θ4+θ5−1

− 1
θ1+θ2+θ3+θ4+θ5−1

+ 1
θ5



The asymptotic covariance matrix is obtained by multiplying by n and taking the inverse.
Inverting the matrix by hand is possible, but it would be a brutal experience. With
Sagemath, it takes a few seconds, including the typing.

# Asymptotic covariance matrix

avar = (n*info).inverse().factor(); avar

evaluate
− (θ1−1)θ1

n
− θ1θ2

n
− θ1θ3

n
− θ1θ4

n
− θ1θ5

n

− θ1θ2
n
− (θ2−1)θ2

n
− θ2θ3

n
− θ2θ4

n
− θ2θ5

n

− θ1θ3
n

− θ2θ3
n
− (θ3−1)θ3

n
− θ3θ4

n
− θ3θ5

n

− θ1θ4
n

− θ2θ4
n

− θ3θ4
n
− (θ4−1)θ4

n
− θ4θ5

n

− θ1θ5
n

− θ2θ5
n

− θ3θ5
n

− θ4θ5
n
− (θ5−1)θ5

n


This is the same as Expression B.2, which came from the Central Limit Theorem. It’s an
unqualified success.

Taylor Expansions

There are many versions of Taylor’s Theorem. Here is a useful one. Let the nth derivative
f (n) of the function f(x) be continuous in [a, b] and differentiable in (a, b), with x and x0

in (a, b). Then there exists a point ξ between x and x0 such that

f(x) = f(x0) + f ′(x0) (x− x0) +
f ′′(x0)(x− x0)2

2!
+ . . . +

f (n)(x0)(x− x0)n

n!

+
f (n+1)(ξ)(x− x0)n+1

(n+ 1)!
(B.3)

where Rn = f (n+1)(ξ)(x−x0)n+1

(n+1)!
is called the remainder term. If Rn → 0 as n → ∞, the

resulting infinite series is called the Taylor Series for f(x).
In certain styles of applied statistics, when people are having trouble with a function,

they approximate it by just taking the first two or three terms of a Taylor expansion, and
discarding the remainder. Sometimes, the approximation can be quite helpful. Consider,
for example, a simple8 logistic regression in which a linear model for the log odds of Y = 1
leads to

Pr{Y = 1|X = x} = E(Y |X = x) =
eβ0+β1x

1 + eβ0+β1x
.

Under this model, what is the covariance between X and Y ? It’s easy to wonder, but not
easy to calculate. Suppose X has a distribution with expected value µ and variance σ2.

8One explanatory variable.
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Perhaps X is normal. Let’s use the formula Cov(X, Y ) = E(XY )− E(X)E(Y ), and try
double expectation. That is,

E[Y ] = E[E(Y |X)]

=

∫ ∞
−∞

E(Y |X = x) f(x) dx

=

∫ ∞
−∞

eβ0+β1x

1 + eβ0+β1x
f(x) dx. (B.4)

If X is normal, I certainly can’t do this integral. I have tried many times and failed.
Sagemath can’t do it either. Details are omitted.

Let’s approximate g(X) = E(Y |X) with the first few terms of a Taylor series. Then
it’s easier to work with. Note that you can find out what atributes the function g has
with print(dir(g)), and then get details about the taylor attribute with g.taylor? .

# Cov(X,Y) for logistic regression (Taylor)

var(’X beta0 beta1 mu sigma’)

g = exp(beta0 + beta1*X)/(1+exp(beta0 + beta1*X))

# print(dir(g))

# g.taylor?

t1 = g.taylor(X,mu,2); t1 # Expand function of X about mu, degree 2 (3 terms)

evaluate

(X−µ)β1e(β1µ+β0)

2 e(β1µ+β0)+e(2 β1µ+2 β0)+1
+

(X−µ)2(β2
1e

(β1µ+β0)−β2
1e

(2 β1µ+2 β0))
2 (3 e(β1µ+β0)+3 e(2 β1µ+2 β0)+e(3 β1µ+3 β0)+1)

+ e(β1µ+β0)

e(β1µ+β0)+1

Taking the expected value with respect to X will cause the first term to disappear, and
replace (X − µ)2 with σ2 in the second term. We’ll integrate with respect to the normal
distribution, but that’s just for convenience. Any distribution with expected value µ and
variance σ2 would yield the same result.

# Use normal to take expected value Just a convenience :
f = 1/(sigma*sqrt(2*pi)) * exp(-(X-mu)^2/(2*sigma^2))

assume(sigma>0)

EY = (t1*f).integrate(X,-oo,oo).factor(); EY

evaluate

−(β2
1σ

2e(β1µ+β0)−β2
1σ

2−4 e(β1µ+β0)−2 e(2 β1µ+2 β0)−2)e(β1µ+β0)

2 (e(β1µ+β0)+1)
3

That’s pretty messy, but maybe there will be some simplification when we calculate
Cov(X, Y ) = E(XY )− E(X)E(Y ). First we need an approximation of E(XY ).

# Double expectation for E(XY) - First, approximate XE(Y|X)

t2 = (X*g).taylor(X,mu,2); t2 # Looks pretty hairy

EXY = (t2*f).integrate(X,-oo,oo).factor(); EXY
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evaluate

−(β2
1µσ

2e(β1µ+β0)−β2
1µσ

2−2β1σ2e(β1µ+β0)−2β1σ2−4µe(β1µ+β0)−2µe(2 β1µ+2 β0)−2µ)e(β1µ+β0)

2 (e(β1µ+β0)+1)
3

# Finally, approximate the covariance

Cov = (EXY-mu*EY).factor(); Cov

evaluate

β1σ2e(β1µ+β0)

(e(β1µ+β0)+1)
2

Well, you have to admit that’s nice! Some of the intermediate steps were fiercely compli-
cated, but the final result is clean and simple. Sagemath has saved us a lot of unpleasant
work. Furthermore, the result makes sense because the sign of the covariance is the same
as the sign of β1, as it should be.

However, we really don’t know if it’s a good approximation or not. That’s right. Taylor
expansions are more accurate closer to the point about which you expand the function,
and they are more accurate the more terms you take. Beyond that, it’s generally unknown,
unless you have more information (like perhaps the remainder you’ve discarded approaches
zero as the sample size increases, or something).

So we need to investigate it a bit more, and the easiest thing to do is to try some
numerical examples. With specific numbers for the parameters, Sagemath will be able to
calculate E(Y ) and E(XY ) by numerical integration. First, we’ll try µ = 0, σ = 2, β0 =
0, β1 = 1. The approximation is

# Example 1, with mu=0,beta0=0,sigma=2,beta1=1

Cov(mu=0,beta0=0,sigma=2,beta1=1)

evaluate

1

The calculation of Cov(X, Y ) = E(XY ) by double expectation is similar to (B.4).

E[XY ] = E[E(XY |X)]

=

∫ ∞
−∞

E(XY |X = x) f(x) dx

=

∫ ∞
−∞

E(xY |X = x) f(x) dx

=

∫ ∞
−∞

xE(Y |X = x) f(x) dx

=

∫ ∞
−∞

x
eβ0+β1x

1 + eβ0+β1x
f(x) dx. (B.5)

In the material below, the result of show(EXY1) tells us that E(XY ), though it’s simplified
a bit, is an integral that Sagemath cannot take any farther, even with specific numerical
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values. Then, EXY1.n() says please evaluate it numerically. The numerical evaluation
attribute, in the case of an integral, is a sophisticated numerical integration algorithm.

# This will be the covariance, since mu=0

EXY1 = (X*g*f)(mu=0,beta0=0,sigma=2,beta1=1).integrate(X,-oo,oo)

show(EXY1)

EXY1.n()

evaluate

√
2
∫+∞
−∞

Xe
(− 1

8 X
2+X)

eX+1
dX

4
√
π

0.605705509602159

That’s not too promising. Is the approximation really this bad? While Sagemath is
extremely accurate compared to almost any human being, mistakes in the input can
cause big problems. Typos are the main source of trouble, but misunderstandings are
possible too, and the results can be even worse. So, when a result is a bit surprising
like this, it’s important to cross-check it somehow. Let’s try a simulation with R. The
idea is to first simulate a large collection of X values from a normal distribution with
mean µ = 0 and standard deviation σ = 2, calculate Pr{Y = 1|Xi}, using β0 = 0 and
β1 = 1. Finally, generate binary Y values using those probabilities, and calculate the
sample covariance. By the Strong Law of Large Numbers, the probability equals one that
the sample covariance approaches the true covariance as n → ∞, like an ordinary limit.
So with a very large n, we’ll get a good approximation of Cov(X, Y ). Is it closer to 1, or
0.606? Here is the R calculation, without further comment.

> n = 100000; mu=0; beta0=0; sigma=2; beta1=1

> x = rnorm(n,mu,sigma)

> xb = beta0 + beta1*x

> p = exp(xb)/(1+exp(xb))

> y = rbinom(n,1,p)

> var(cbind(x,y))

x y

x 3.9687519 0.6039358

y 0.6039358 0.2499991

Now we can be confident that the numerical integration (and the double expectation
reasoning behind it) produced correct results, and the Taylor series approximation was
poor. It can easily get worse. For example, with µ = 1, σ = 10, β0 = 1, β1 = 1, the Taylor
series approximation of the covariance is 10.499, while the correct answer by numerical
integration is 3.851.

The story has a two-part moral. Taylor series approximations are easy with Sagemath,
but whether they are accurate enough to be useful is another matter. This point is some-
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times overlooked in applied Statistics. To be clear, this is not a problem with Sagemath;
the problem is with the practice of blindly linearizing everything.

To leave a better taste about Taylor series approximations, let X1, . . . , Xn be a random
sample from a Bernoulli distribution, with Pr{Xi = 1} = θ. A quantity that is useful in
categorical data analysis is the log odds :

Log Odds = log
θ

1− θ
,

where log refers to the natural logarithm.
The best estimator of θ is the sample proportion: X = 1

n

∑n
i=1Xi. The log odds is

estimated by

Y = log
X

1−X
.

The variance of X is θ(1−θ)
n

, but what is the variance of the estimated log odds Y ? As we
shall see, it’s possible to give an exact answer for any given n, but the expression is very
complicated and hard to use in later calculations.

Instead, for any statistic Tn that estimates θ, and any differentiable function g(t) (of
which g(t) = log t

1−t is an example), expand g(t) about θ, taking just the first two terms
of a Taylor expansion (see Expression B.3) and discarding the remainder. Then

V ar (g(Tn)) ≈ V ar (g(θ) + g′(θ)(Tn − θ))
= 0 + g′(θ)2V ar(Tn) + 0

= g′(θ)2V ar(Tn). (B.6)

The only reason for making Tn a statistic that estimates θ is so it will be reasonable to
expand g(t) about θ. Actually, Tn could be any random variable and θ could be any real
number, but in that case the approximation could be arbitrarily bad.

Formula (B.6) for the variance of a function is quite general. We don’t need taylor;
instead, we’ll just use Sagemath to take the derivative, square it, multiply by the variance
of Tn, and simplify.

# Variance of log odds

var(’n theta’)

g = log(theta/(1-theta))

vTn = theta*(1-theta)/n

v = ( g.derivative(theta)^2 * vTn ).factor(); v

evaluate

− 1
(θ−1)nθ

Let’s try a numerical example, with θ = 0.1 and n = 200.

v(theta=0.1,n=200)

evaluate
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0.0555555555555556

Is this a good approximation? We certainly can’t take it for granted. Now, for any
fixed n, the random variable Xn (also known as Tn) is just X

n
, where X is binomial with

parameters n and θ. So,

Y = Y (X) = log
X

1−X

= log
X/n

1−X/n

= log
X

n−X
,

and we can calculate

E(Y ) =
n∑
x=0

y(x)Pr{X = x}

=
n∑
x=0

log

(
X

n−X

)
Pr{X = x}

=
n∑
x=0

log

(
X

n−X

)(
n

x

)
θx(1− θ)n−x.

The calculation of E(Y 2) is similar, and then V ar(Y ) = E(Y 2)− [E(Y )]2.

Because we’re actually going to do it (an insane proposition by hand), we notice that
the variance of the estimated log odds is not even defined for any finite n. Everything falls
apart for x = 0 and x = n.

Now in standard categorical data analysis, it assumed that θ is strictly between zero
and one, and the sample size is large enough so that the events X = 0 and X = n
(whose probability goes to zero as n → ∞ do not occur. In practice if they did occur,
the statistician would move to a different technology. So, the variance we want is actually
conditional on 1 ≤ X ≤ n− 1.

Adjusting Pr{X = x} to make it a conditional probability involves dividing by 1 −
Pr{X = 0}−Pr{X = n}, which for n = 200 is a number extremely close to one. So will
it be okay to just discard x = 0 and x = n rather than really adjusting? Take a look at
how small the probabilities are.

# Is it okay to just drop x=0 and x=200?

p(x) = n.factorial()/(x.factorial() * (n-x).factorial()) * theta^x * (1-theta)^(n-x)

p(0)(theta=0.1); p(200)(theta=0.1)

evaluate

7.05507910865537× 10−10

1.00000000000001× 10−200
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Okay, we’ll just sum from x = 1 to x = n − 1, and call it an “exact” calculation. In
the Sagemath work below, note that because n is so large, the binomial coefficient in
p(x) can be big enough to overflow the computer’s memory, while at the same time
the product of θ and (1 − θ) values can be small enough to underflow. To avoid the
numerical inaccuracy that would come from this, θ is written as a ratio of two integers.
Then inside the loop, p(x) is evaluated by exact integer arithmetic and then factored,
resulting in numerous cancellations so that the result is as accurate as possible before it
is numerically evaluated and multiplied by the numerical version of log x

n−x . By the way,
it’s a lot faster to do it this way rather than doing the whole calculation symbolically and
then numerically evaluating the final result.

# Calculate exactly, trying to minimize rounding error

y(x) = log(x/(n-x))

n=200; EY=0.0; EYsq=0.0

for x in interval(1,n-1) :
EY = EY + y(x).n()*(p(x)(theta=1/10).factor().n())

EYsq = EYsq + (y(x)^2).n()*(p(x)(theta=1/10).factor().n())

vxact = EYsq-EY^2; vxact

evaluate

0.0595418877731042

As a check on this, one can randomly generate a large number of Binomial(n, θ) pseudo-
random numbers. Dividing each one by n gives a random sample of Xn values, and then
computing any function of the Xn values yields a collection of random variables that is
a nice estimate of the sampling distribution of the statistic in question. With ten million

Binomial(n, θ) values, this approach is used to approximate V ar
(

log
(

Xn

1−Xn

))
.

> set.seed(9999)

> n = 200; theta = 0.1; m=10000000

> xbar = rbinom(m,n,theta)/n

> logodds = log(xbar/(1-xbar))

> var(logodds)

[1] 0.05955767

So the “exact” calculation is right, and the Taylor series approximation is pretty close.
Is it a coincidence? No. By the Law of Large Numbers, the probability distribution
of the sample proportion Xn becomes increasingly concentrated around θ as the sample
size increases, so that within a tiny interval enclosing θ, the linear approximation of g(t)
in (B.6) is very accurate in the neighbourhood where most of the probability distribution
resides. As the sample size increases, it becomes even better, and the approximation of
the variance becomes even better.

As a final note about Taylor series, Sagemath can easily calculate truncated Taylor
series approximations of functions of several variables, in which derivatives are replaced
by matrices of partial derivatives (Jacobians).
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Matrices and linear algebra

Sagemath is very good at matrix calculations with numbers, but Sagemath’s ability to do
matrix calculations with symbols is what makes it useful for structural equation modeling.
The algorithm that Sagemath uses for a particular task will depend on the ring (a concept
from Algebra) to which the matrix belongs. When the contents of a matrix are symbols,
the matrix belongs to the symbolic ring, abbreviated SR. As in Python, a matrix is a list
of rows, and the rows are lists of matrix elements.

var(’alpha beta gamma delta’)

A = matrix( SR, [[alpha, beta],[gamma, delta]] ); A

evaluate(
α β
γ δ

)
Also as in Python, index numbering begins with zero, not one. This may be easy to
forget.

A[0,1]

evaluate

β

Of course you need not be bound by this awkward convention, but in the following example
you do need to remember that A[0,0] = x11. By the way, I cannot figure out how to get
nice-looking double subscripts separated by commas; I don’t even know if it’s possible.
However, it’s not a problem for small examples.

# Note the nice subscripts

var(’x11 x12 x13 x21 x22 x23’)

B = matrix(SR, [[x11, x12, x13], [x21, x22, x23]])

B

evaluate(
x11 x12 x13

x21 x22 x23

)
Multiplication by a scalar does what you would hope.

a=2

a*A

evaluate
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(
2α 2 β
2 γ 2 δ

)
Matrix multiplication also uses asterisks. Of course the matrices must be the right size
or Sagemath raises an error.

C = A*B; C

evaluate(
αx11 + βx21 αx12 + βx22 αx13 + βx23

γx11 + δx21 γx12 + δx22 γx13 + δx23

)
Transpose, inverse, trace, determinant — all are available using a notation that quickly
becomes natural if it is not already. First look at A again, and then the transpose.

show(A)

A.transpose()

evaluate(
α β
γ δ

)
(
α γ
β δ

)
A.trace()

evaluate

α + δ

A.determinant()

evaluate

αδ − βγ

The following result runs off the page (Sagemath has a scrollbar) and is a reminder of
Sagemath’s ability to calculate expressions that are almost too complicated to look at.

D = C.transpose() # C is 2x3, D is 3x2

E = (C*D).inverse() # Inverse of C*D

factor(E) # E is HUGE! This is not as bad. Factor is a good way to simplify.

evaluate
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 γ2x2
11+γ

2x2
12+γ

2x2
13+2 δγx11x21+δ

2x2
21+2 δγx12x22+δ

2x2
22+2 δγx13x23+δ

2x2
23

(x2
12x

2
21+x

2
13x

2
21−2 x11x12x21x22+x2

11x
2
22+x

2
13x

2
22−2 x11x13x21x23−2 x12x13x22x23+x2

11x
2
23+x

2
12x

2
23)(αδ−βγ)2

−αγx
2
11+αγx

2
12+αγx

2
13+αδx11x21+βγx11x21+βδx

2
21+αδx12x22+βγx12x22+βδx

2
22+αδx13x23+βγx13x23+βδx

2
23

(x2
12x

2
21+x

2
13x

2
21−2 x11x12x21x22+x2

11x
2
22+x

2
13x

2
22−2 x11x13x21x23−2 x12x13x22x23+x2

11x
2
23+x

2
12x

2
23)(αδ−βγ)2

−αγx
2
11+αγx

2
12+αγx

2
13+αδx11x21+βγx11x21+βδx

2
21+αδx12x22+βγx12x22+βδx

2
22+αδx13x23+βγx13x23+βδx

2
23

(x2
12x

2
21+x

2
13x

2
21−2 x11x12x21x22+x2

11x
2
22+x

2
13x

2
22−2 x11x13x21x23−2 x12x13x22x23+x2

11x
2
23+x

2
12x

2
23)(αδ−βγ)2

α2x2
11+α

2x2
12+α

2x2
13+2αβx11x21+β

2x2
21+2αβx12x22+β

2x2
22+2αβx13x23+β

2x2
23

(x2
12x

2
21+x

2
13x

2
21−2 x11x12x21x22+x2

11x
2
22+x

2
13x

2
22−2 x11x13x21x23−2 x12x13x22x23+x2

11x
2
23+x

2
12x

2
23)(αδ−βγ)2



A.inverse() # Here is something we can look at without a scrollbar.

evaluate 1
α

+ βγ

α2(δ−βγα )
− β

α(δ−βγα )
− γ

α(δ−βγα )
1

δ−βγ
α


Ainverse = factor(_) # Factor the last expression.

Ainverse

evaluate(
δ

αδ−βγ −
β

αδ−βγ
− γ
αδ−βγ

α
αδ−βγ

)
That’s better. Notice how Sagemath quietly assumes that αδ 6= βγ. This is typical
behaviour, and usually what you want.
It’s easy to get at the contents.

denominator(Ainverse[0,1])

evaluate

αδ − βγ

For a numerical (or partly numerical) example, just treat the matrix as a function.

Ainverse(alpha=1,gamma=2)

evaluate(
− δ

2β−δ
β

2β−δ
2

2β−δ −
1

2β−δ

)
Recall the earlier example.

C

evaluate(
αx11 + βx21 αx12 + βx22 αx13 + βx23

γx11 + δx21 γx12 + δx22 γx13 + δx23

)
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We had D = L>, so D is 3× 2.

(D.nrows(),D.ncols()) # A tuple

evaluate

(3, 2)

This means DC is 3 × 3. It’s awful to look at, but since the rank of a product is the
minimum of the rank of the matrices being multiplied, the rank of DC must be two (with
Sagemath’s usual optimistic assumptions about symbolic functions not being equal to zero
unless there is more information).

DC = D*C

DC.rank()

evaluate

2

A.eigenvalues() # Returns a list

evaluate[
1
2
α + 1

2
δ − 1

2

√
α2 − 2αδ + δ2 + 4 βγ, 1

2
α + 1

2
δ + 1

2

√
α2 − 2αδ + δ2 + 4 βγ

]
The eigenvalues of a real symmetric matrix are real, and observe that in the last result
the expression under the square root sign will be non-negative if A is symmetric — that
is, if β = γ. Sagemath doesn’t care about this; imaginary numbers are fine.

This is really just the basics. Sagemath’s capabilities in linear algebra go much deeper,
including Cholesky and Jordan decompositions, vector spaces and subspaces – the list goes
on. As usual, you need to know the math to use it effectively. We have all we need for
now.

Applications to structural equation modeling In structural equation modeling, we
often find ourselves calculating the covariance matrix of the observable data as a function
of the model parameters. For real-world models with lots of variables this can be a big,
tedious job. It’s largely a clerical task that Sagemath can do for you. Here, we’ll just
calculate the covariance matrices for a couple of structural equation models to illustrate
how it goes. It’s even easier with the sem package of Section B.2.

Example B.1.1

The first example is a small regression model with one latent explanatory variable and
three observable response variables. A path diagram is shown in Figure B.1. Indepen-
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dently for i = 1, . . . , n,

Wi = Xi + ei

Yi,1 = β1Xi + εi,1

Yi,2 = β2Xi + εi,2

Yi,3 = β3Xi + εi,3,

where Xi, ei, εi,1, εi,2 and εi,3 are all independent, V ar(Xi) = φ, V ar(ei) = ω, V ar(εi,1) =
ψ1, V ar(εi,2) = ψ2, V ar(εi,3) = ψ3, all expected values are zero, and the regression
coefficients β1, β2 and β3 are fixed constants.

Figure B.1: Path diagram for Example B.1.1
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To calculate the covariance matrix, write the model equations in matrix form as

Yi = βXi + εi,

with Xi and εi independent, cov(Xi) = Φ, and cov(εi) = Ψ. In the present case, this
means 

Wi

Yi,1
Yi,2
Yi,3

 =


1
β1

β2

β3

 (Xi) +


ei
εi,1
εi,2
εi,3

 ,

with cov(Xi) = Φ equal to the 1× 1 matrix (φ), and

cov


ei
εi,1
εi,2
εi,3

 = Ψ =


ω 0 0 0
0 ψ1 0 0
0 0 ψ2 0
0 0 0 ψ3

 .

The variance-covariance matrix of the observable variables is then

cov(Yi) = cov (βXi + εi)

= βΦβ> + Ψ.
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This is the quantity we’ll compute with Sagemath.

# Ex 1 - Single measurement but 3 response variables

beta = matrix(SR,4,1) # SR is the Symbolic Ring. Want 4 rows, 1 col.

beta[0,0] = 1 ; beta[1,0] = var(’beta1’); beta[2,0] = var(’beta2’);

beta[3,0] = var(’beta3’)

beta

evaluate
1
β1

β2

β3


Phi = matrix(SR,1,1); Phi[0,0] = var(’phi’)

show(Phi)

Psi = matrix(SR,4,4)

Psi[0,0] = var(’omega’); Psi[1,1] = var(’psi1’)

Psi[2,2] = var(’psi2’); Psi[3,3] = var(’psi3’)

Psi

evaluate(
φ
)


ω 0 0 0
0 ψ1 0 0
0 0 ψ2 0
0 0 0 ψ3


Sigma = beta*Phi*beta.transpose() + Psi ; Sigma

evaluate
ω + φ β1φ β2φ β3φ
β1φ β2

1φ+ ψ1 β1β2φ β1β3φ
β2φ β1β2φ β2

2φ+ ψ2 β2β3φ
β3φ β1β3φ β2β3φ β2

3φ+ ψ3


It is clear that all the parameters will be identifiable provided that at least two of the
three regression coefficients are non-zero. This condition could be verified in practice by
testing whether simple correlations are different from zero.

Example B.1.2

This example is a latent variable regression that does not fit the standard rules. The
latent variable component is over-identified while the measurement component is under-
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identified. Parameter identifiability for the combined model is unknown, and it’s back to
the drawing board. Here is the path diagram.

Figure B.2: Path Diagram for Example B.1.2
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The distinctive features of this model are that while Y1 depends on both X1 and X2,
Y2 depends only on X2 — and at the same time, there is double measurement of X1

and Y1, but only single measurement of X2 and Y2. There are 14 unknown parameters
and 6(6 + 1)/2 = 21 covariance structure equations, so the model passes the test of the
parameter count rule. Identifiability is possible, but not guaranteed. The first step is to
calculate the 21 unique variances and covariances, a substantial amount of work if the
calculation is done by hand.

It’s a lot easier with Sagemath, but still a bit more challenging than Example B.1.1.
First, we calculate the covariance matrix for a latent model, stitching together a par-
titioned matrix consisting of the variance of the exogenous variables, the covariance of
the exogenous and endogenous variables, and the variance of the endogenous variables.
Then that matrix is used as the covariance matrix of the latent variables (“factors”) in a
measurement model. The model equations are (independently for i = 1, . . . , n)

(
Yi,1
Yi,2

)
=

(
β1,1 β1,2

0 β2,2

)(
Xi,1

Xi,2

)
+

(
εi,1
εi,2

)
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and

Di =


Wi,1

Wi,2

Wi,3

Vi,1
Vi,2
Vi,3

 =


1 0 0 0
1 0 0 0
0 1 0 0
0 0 1 0
0 0 1 0
0 0 0 1




Xi,1

Xi,2

Yi,1
Yi,2

+


ei,1
ei,2
ei,3
ei,4
ei,5
ei,6

 ,

where

• cov
(
Xi,1

Xi,2

)
= Φx =

(
φ11 φ12

φ12 φ22

)
,

• Φx is positive definite,

• cov(εi,1) = ψ2, cov(εi,2) = ψ2,

• cov(ei,j) = ωj for j = 1, . . . , 6 and

• All the error terms are independent of one another, and independent of Xi,1 and
Xi,2.

To calculate the covariance matrix of the observed data Di, write the model equations as

Yi = βXi + εi

Di = ΛFi + ei,

where Fi =

(
Xi

Yi

)
. That is, the vector of latent variables or “factors” is just Xi stacked

on top of Yi. Denoting the variance-covariance matrices by cov(Xi) = Φx, cov(εi) = Ψ
and cov(ei) = Ω, we first calculate the variance-covariance matrix of Fi as the partitioned
matrix

cov(Fi) = Φ =

(
Φx Φxβ

>

βΦx βΦxβ
> + Ψ

)
,

and then using that, the variance-covariance matrix of the observed data:

cov(Di) = Σ = ΛΦΛ> + Ω.

Here is the calculation in Sagemath.
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# Ex 2 - More challenging

# Y = beta X + epsilon

# F = (X,Y)’

# D = Lambda F + e

# cov(X) = Phi11, cov(epsilon) = Psi, cov(e) = Omega

# Set up matrices

beta = matrix(SR,2,2)

beta[0,0] = var(’beta11’); beta[0,1] = var(’beta12’)

beta[1,0] = var(’beta21’); beta[1,1] = var(’beta22’)

beta[1,0] = 0

show(beta)

evaluate(
β11 β12

0 β22

)

Phi11 = matrix(SR,2,2) # cov(X), Symmetric

Phi11[0,0] = var(’phi11’); Phi11[0,1] = var(’phi12’)

Phi11[1,0] = var(’phi12’); Phi11[1,1] = var(’phi22’)

show(Phi11)

evaluate(
φ11 φ12

φ12 φ22

)

Psi = matrix(SR,2,2) # cov(epsilon)

Psi[0,0] = var(’psi1’) ; Psi[1,1] = var(’psi2’)

show(Psi)

evaluate(
ψ1 0
0 ψ2

)

Omega = matrix(SR,6,6) # cov(e)

Omega[0,0] = var(’omega1’) ; Omega[1,1] = var(’omega2’)

Omega[2,2] = var(’omega3’) ; Omega[3,3] = var(’omega4’)

Omega[4,4] = var(’omega5’); Omega[5,5] = var(’omega6’)

show(Omega)

evaluate
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
ω1 0 0 0 0 0
0 ω2 0 0 0 0
0 0 ω3 0 0 0
0 0 0 ω4 0 0
0 0 0 0 ω5 0
0 0 0 0 0 ω6


Lambda = matrix(SR,6,4)

Lambda[0,0]=1; Lambda[1,0]=1; Lambda[2,1]=1

Lambda[3,2]=1; Lambda[4,2]=1; Lambda[5,3]=1

show(Lambda)

evaluate
1 0 0 0
1 0 0 0
0 1 0 0
0 0 1 0
0 0 1 0
0 0 0 1


# Calculate Phi = cov(F)

EXY = Phi11 * beta.transpose()

VY = beta*Phi11*beta.transpose() + Psi

top = Phi11.augment(EXY) # Phi11 on left, EXY on right

bot = EXY.transpose().augment(VY)

Phi = (top.stack(bot)).factor() # Stack top over bot, then factor

show(Phi)

evaluate
φ11 φ12 β11φ11 + β12φ12 β22φ12

φ12 φ22 β11φ12 + β12φ22 β22φ22

β11φ11 + β12φ12 β11φ12 + β12φ22 β2
11φ11 + 2 β11β12φ12 + β2

12φ22 + ψ1 (β11φ12 + β12φ22)β22

β22φ12 β22φ22 (β11φ12 + β12φ22)β22 β2
22φ22 + ψ2


# Calculate Sigma = cov(D)

Sigma = Lambda * Phi * Lambda.transpose() + Omega

show(Sigma)

evaluate
ω1 + φ11 φ11 φ12 β11φ11 + β12φ12 β11φ11 + β12φ12 β22φ12

φ11 ω2 + φ11 φ12 β11φ11 + β12φ12 β11φ11 + β12φ12 β22φ12
φ12 φ12 ω3 + φ22 β11φ12 + β12φ22 β11φ12 + β12φ22 β22φ22

β11φ11 + β12φ12 β11φ11 + β12φ12 β11φ12 + β12φ22 β2
11φ11 + 2β11β12φ12 + β2

12φ22 + ω4 + ψ1 β2
11φ11 + 2β11β12φ12 + β2

12φ22 + ψ1 (β11φ12 + β12φ22)β22
β11φ11 + β12φ12 β11φ11 + β12φ12 β11φ12 + β12φ22 β2

11φ11 + 2β11β12φ12 + β2
12φ22 + ψ1 β2

11φ11 + 2β11β12φ12 + β2
12φ22 + ω5 + ψ1 (β11φ12 + β12φ22)β22

β22φ12 β22φ12 β22φ22 (β11φ12 + β12φ22)β22 (β11φ12 + β12φ22)β22 β2
22φ22 + ω6 + ψ2


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Again, this is the covariance matrix of the observable data vector Di = (Wi,1,Wi,2,Wi,3, Vi,1, Vi,2, Vi,3)>.
The covariance matrix is big and the last two columns got cut off, but in Sagemath you
can scroll to the right and see something like the following:

· · ·

β11φ11 + β12φ12 β11φ11 + β12φ12 β22φ12
β11φ11 + β12φ12 β11φ11 + β12φ12 β22φ12
β11φ12 + β12φ22 β11φ12 + β12φ22 β22φ22

β2
11φ11 + 2β11β12φ12 + β2

12φ22 + ω4 + ψ1 β2
11φ11 + 2β11β12φ12 + β2

12φ22 + ψ1 (β11φ12 + β12φ22)β22
β2
11φ11 + 2β11β12φ12 + β2

12φ22 + ψ1 β2
11φ11 + 2β11β12φ12 + β2

12φ22 + ω5 + ψ1 (β11φ12 + β12φ22)β22
(β11φ12 + β12φ22)β22 (β11φ12 + β12φ22)β22 β2

22φ22 + ω6 + ψ2



Now it appears that at points in the parameter space where φ12 6= 0, the regression
parameters β11, β12 and β22 may be identifiable in spite of the single measurement. This
is just a tentative conclusion based on inspecting the equations without actually doing all
the work. We will continue to work on this example using the tools of the sem package.

B.2 The sem Package

B.2.1 Introduction and Examples

Example B.1.2 showed how Sagemath can be used to carry out useful symbolic calculations
that are too tedious to perform by hand. Even with Sagemath, parts of the job can be
repetitive and this can be a barrier to using the technology. Fortunately, it is easy for
users to write special purpose functions. The sem package is a collection of functions
for structural equation modeling. Currently, it is limited to symbolic calculation. For
numerical model fitting, it is necessary to use specialized statistical software9.

To load the sem package,

sem = ’http://www.utstat.toronto.edu/~brunner/openSEM/sage/sem.sage’

load(sem)

# load(’~/sem.sage’) # To load a local version in your home directory

evaluate

After the package is loaded, Contents() will display a list of the available functions.
For help on a particular function, type the function name followed by a question mark,
like PathCov?

The sem package currently includes the following functions. You can go directly to
the documentation for a particular function, or continue reading to see how the functions
are used together in context.

9Sagemath has very strong numerical capabilities, and it would not be very difficult to write a function
to do numerical maximum likelihood estimation. What holds me back is the issue of starting values.
Programs like Amos, Lisrel and SAS proc calis have extensive bags of tricks for generating automatic
starting values, and typically they are very good. It is difficult to appreciate how convenient they are
until you have tried to come up with your own starting values for a few models.
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1. Matrix Creation

1a) DiagonalMatrix(size,symbol=’psi’,double=False)

1b) GeneralMatrix(nrows,ncols,symbol)

1c) IdentityMatrix(size)

1d) SymmetricMatrix(size,symbol,corr=False)

1e) ZeroMatrix(nrows,ncols)

2. Covariance Matrix Calculation

2a) EqsCov(beta,gamma,Phi,oblist,simple=True)

2b) FactorAnalysisCov(Lambda,Phi,Omega)

2c) NoGammaCov(Beta,Psi)

2d) PathCov(Phi,Beta,Gamma,Psi,simple=True)

2e) RegressionCov(Phi,Gamma,Psi,simple=True)

3. Manipulation

3a) GroebnerBasis(polynomials,variables)

3b) LSTarget(M,x,y)

3c) Parameters(M)

3d) SigmaOfTheta(M,symbol=’sigma’)

3e) Simplify(x)

4. Utility

4a) BetaCheck(Beta)

4b) Contents()

4c) CovCheck(Psi)

4d) MultCheck(Beta,Psi)

4e) Pad(M)

Here is Example B.1.2 again from the beginning, using the sem package. Repeating the
model equations,
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yi = β xi + εi(
yi,1
yi,2

)
=

(
β1,1 β1,2

0 β2,2

) (
xi,1
xi,2

)
+

(
εi,1
εi,2

)
di = Λ Fi + ei
wi,1
wi,2
wi,3
vi,1
vi,2
vi,3

 =


1 0 0 0
1 0 0 0
0 1 0 0
0 0 1 0
0 0 1 0
0 0 0 1




xi,1
xi,2
yi,1
yi,2

 +


ei,1
ei,2
ei,3
ei,4
ei,5
ei,6


sem = ’http://www.utstat.toronto.edu/~brunner/openSEM/sage/sem.sage’

load(sem)

# Set up matrices (Remember, indices begin with zero)

beta = GeneralMatrix(2,2,’beta’); beta[1,0]=0

Phi11 = SymmetricMatrix(2,’phi’) # cov(X)

Psi = DiagonalMatrix(2,’psi’) # cov(epsilon)

Omega = DiagonalMatrix(6,’omega’) # cov(e)

Lambda = ZeroMatrix(6,4) # Factor loadings

Lambda[0,0]=1; Lambda[1,0]=1; Lambda[2,1]=1

Lambda[3,2]=1; Lambda[4,2]=1; Lambda[5,3]=1

evaluate

The GeneralMatrix function generates doubly subscripted symbols by default; it is easy
to replace the lower left entry with a zero. The other functions are pretty much self-
explanatory, but see the links to function documentation above. In general, native
Sagemath functions are lower case, while functions in the sem package are capitalized.
This makes them easy to distinguish in the examples. Next we calculate Σ the easy way.
The output is not shown because it is big and you have seen it before on page 661.

# Calculate Phi = cov(F)

Phi = RegressionCov(Phi11,beta,Psi) # The first argument is cov(X)

# Calculate Sigma = cov(D)

Sigma = FactorAnalysisCov(Lambda,Phi,Omega); Sigma

evaluate

Based on inspection of Σ, I tentatively concluded that the parameters were identifiable, at
least in most of the parameter space. Now we will nail it down. The SetupEqns function
assembles a list of covariance structure equations. Each equation is displayed with its
index as a tuple – not very pretty, but useful when one needs to refer to equations by
number (starting with zero). Note the Python syntax for looping.



664 APPENDIX B. SYMBOLIC MATHEMATICS WITH SAGEMATH

eqlist = SetupEqns(Sigma); k = len(eqlist)

for index in range(k): index,eqlist[index]

evaluate

(0, ω1 + φ11 = σ11)
(1, φ11 = σ12)
(2, φ12 = σ13)
(3, β11φ11 + β12φ12 = σ14)
(4, β11φ11 + β12φ12 = σ15)
(5, β22φ12 = σ16)
(6, ω2 + φ11 = σ22)
(7, φ12 = σ23)
(8, β11φ11 + β12φ12 = σ24)
(9, β11φ11 + β12φ12 = σ25)
(10, β22φ12 = σ26)
(11, ω3 + φ22 = σ33)
(12, β11φ12 + β12φ22 = σ34)
(13, β11φ12 + β12φ22 = σ35)
(14, β22φ22 = σ36)
(15, β2

11φ11 + 2 β11β12φ12 + β2
12φ22 + ω4 + ψ1 = σ44)

(16, β2
11φ11 + 2 β11β12φ12 + β2

12φ22 + ψ1 = σ45)
(17, (β11φ12 + β12φ22)β22 = σ46)
(18, β2

11φ11 + 2 β11β12φ12 + β2
12φ22 + ω5 + ψ1 = σ55)

(19, (β11φ12 + β12φ22)β22 = σ56)
(20, β2

22φ22 + ω6 + ψ2 = σ66)

The next step is to assemble a list of model parameters. The function Parameters returns
a list of the parameters in a parameter matrix — that is, a list of the unique elements that
are not one or zero. Unfortunately, it cannot operate on a computed covariance matrix,
just on the parmeter matrices that are used as input. Still, it’s better than doing the job
by hand.

# Assemble a list of model parameters. I count 14 by hand.

param = Parameters(beta) # Start with parameters in beta

param.extend(Parameters(Phi11)) # Add the parameters in Phi11

param.extend(Parameters(Psi)) # Add the parameters in Psi

param.extend(Parameters(Omega)) # Add the parameters in Omega

param.extend(Parameters(Lambda)) # Add the parameters in Lambda

show(param)

len(eqlist), len(param) # This many equations in this many unknowns

evaluate

[β11, β12, β22, φ11, φ12, φ22, ψ1, ψ2, ω1, ω2, ω3, ω4, ω5, ω6]
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(21, 14)

So there are 21 equations in 14 unknowns. Sagemath’s very powerful solve function
requires the same number of equations as unknowns and will not work here. However,
we’ll try it anyway to see what happens.

solve(eqlist,param,solution_dict=True)

evaluate

[]

That little rectangle is a left square bracket followed by a right square bracket; it’s an
empty list (empty set), meaning that the system of equations has no general solution.
This happens because, for example, equation number two in the list says φ12 = σ13, while
equation seven says φ12 = σ23. To Sagemath, σ13 and σ23 are just numbers, and there is
no reason to assume they are equal. Thus there is no general solution.

Actually, because we think of the σij values as arising from a single, fixed point in the
parameter space, we recognize σ13 = σ24 as a distinctive feature that the model imposes
on the covariance matrix Σ. But Sagemath does not know this, and I don’t know how to
tell it without specifying exactly what the restrictions are. One solution is to set aside
the redundant equations and then give the solve function a system with the same number
of equations and unknowns. Unfortunately, this is not automatic because it is not always
obvious which equations are redundant. Groebner basis methods (to be discussed later
in this appendix) can do the job automatically when they work.

Because there are 21 equations in 14 unknowns, there should be seven equality con-
straints; seven equations should be redundant. Carefully inspecting the covariance struc-
ture equations, I conclude

• σ15, σ24 and σ25 are redundant with σ14.

• σ26 is redundant with σ16.

• σ23 is redundant with σ13.

• σ35 is redundant with σ34.

• σ56 is redundant with σ46.
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# Set redundant equations aside.

extra = [4,8,9,7,10,13,19] # Indices of redundant equations

extra.sort() # Sort them (change in place)

# Save and display the redundant equations

aside = [] # Empty list to start

for index in extra:

extraeq = eqlist[index]

show(extraeq)

aside.append(extraeq)

evaluate

β11φ11 + β12φ12 = σ15φ12 = σ23

β11φ11 + β12φ12 = σ24

β11φ11 + β12φ12 = σ25

β22φ12 = σ26

β11φ12 + β12φ22 = σ35

(β11φ12 + β12φ22)β22 = σ56

# Remove extra equations

for item in aside: eqlist.remove(item)

len(eqlist) # Should be 14 now

evaluate

14

# Solve, returning solutions as a list of dictionaries

solist = solve(eqlist,param,solution_dict=True)

len(solist) # Should have one item (unique solution)

evaluate

0

The length of the list is zero; there are no solutions, meaning no general solutions according
to Sagemath. This is a sure sign of redundancy in the covariance structure equations we are
trying to solve. They still imply one or more constraints on the σij quantities – constraints
that Sagemath does not accept. In other words, we missed something. Looking at the
covariance structure equations again,

for item in eqlist: item

evaluate
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ω1 + φ11 = σ11

φ11 = σ12

φ12 = σ13

β11φ11 + β12φ12 = σ14

β22φ12 = σ16

ω2 + φ11 = σ22

ω3 + φ22 = σ33

β11φ12 + β12φ22 = σ34

β22φ22 = σ36

β2
11φ11 + 2 β11β12φ12 + β2

12φ22 + ω4 + ψ1 = σ44

β2
11φ11 + 2 β11β12φ12 + β2

12φ22 + ψ1 = σ45

(β11φ12 + β12φ22)β22 = σ46

β2
11φ11 + 2 β11β12φ12 + β2

12φ22 + ω5 + ψ1 = σ55

β2
22φ22 + ω6 + ψ2 = σ66

To be honest, it took me a while to see it. The parameters ω6 and ψ2 appear only in the
last equation, as a sum. This means that infinitely many pairs (ω6, ψ2) will satisfy the
system of equations. Those parameters are not identifiable. A glance at the path diagram
on 656 shows why. Because Y2 does not influence any other variables in the latent model,
measuring it just once means that the variance of V2 is just the variance of Y2 plus ω6,
with no hope of separating ω6 from ψ2.

The solution is easy; re-parameterize by combining ω6 and ψ2 into a single variance
parameter. This could be accomplished by re-writing the path diagram and running
an arrow directly from X1 to V3. When a purely endogenous variable (that is, purely
endogenous in the latent model) is measured once, pretending that it is measured without
error is a standard, harmless trick. Here, it’s unnecessary to make a new path diagram and
calculate the covariance structure equations again. Just setting ω6 = 0 would effectively
treat ω6 + ψ2 as a single parameter now called ψ2.

But now there are more equations than unknowns, implying another equality con-
straint I missed. After looking at the equations for a while, I finally saw it. It’s the third
equation from the bottom. Starting at the third equation from the top, φ12 is identified
from σ13, and using that, β22 is identified from σ16. The equation for σ46 (third from
the bottom) is β22 multiplied by the expression for σ34. So the third equation from the
bottom is redundant, and induces an equality constraint. Starting with zero, that should
be equation eleven. Check it.

sig46 = eqlist[11]; sig46

evaluate

(β11φ12 + β12φ22)β22 = σ46

Now we’ll remove that equation from the list of covariance structure equations and add
it to the list of equations we set aside. Once we finally get a list of explicit solutions of
the covariance structure equations, we can obtain the equality constraints by substituting
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the solutions into the the equations that were set aside.

aside.append(sig46)

eqlist.remove(sig46); len(eqlist)

evaluate

13

We now have thirteen equations in fourteen unknown parameters. Before re-parameterizing
by setting ω6 = 0, let’s see how Sagemath deals with infinitely many solutions. One might
expect it to hang up, but the task is completed instantly.

# Now there are 13 equations in 14 unknown parameters. See what happens

# when we try to solve. Return the solutions as a list of dictionaries.

solist = solve(eqlist,param,solution_dict=True)

len(solist)

evaluate

1

One dictionary (essentially a Python dictionary) looks like one solution – unique. This is
odd. How many items are in the dictionary?

sol = solist[0]

len(sol)

evaluate

14

There are fourteen items in the dictionary, suggesting one solution for each of the 14
parameters. This is unexpected, because we know there are infinitely many solutions.
Let’s take a look. The keys of the dictionary are the parameters, and the corresponding
values are the solutions in terms of the σijs. As in Python, dictionary[key] yields
value.

# Display the solutions. item==sol[item] just causes that equation

# to be displayed.

for item in param: item==sol[item]

evaluate
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β11 = σ16σ34−σ14σ36
σ13σ16−σ12σ36

β12 = σ13σ14σ16−σ12σ16σ34
σ2
13σ16−σ12σ13σ36

β22 = σ16
σ13

φ11 = σ12

φ12 = σ13

φ22 = σ13σ36
σ16

ψ1 = −2σ13σ14σ16σ34−σ12σ16σ2
34−σ13σ2

14σ36−(σ2
13σ16−σ12σ13σ36)σ45

σ2
13σ16−σ12σ13σ36

ψ2 = r1

ω1 = σ11 − σ12

ω2 = −σ12 + σ22

ω3 = σ16σ33−σ13σ36
σ16

ω4 = σ44 − σ45

ω5 = −σ45 + σ55

ω6 = − r1σ13+σ16σ36−σ13σ66
σ13

Scanning down the list, we see ψ2 = r1. The quantity r1 (which we have not seen before)
is an arbitrary variable that could be anything10. I believe the Sagemath people call it a
parameter, which is vastly different from a parameter in statistical estimation. Right at
the bottom of the list is the solution ω6 = − r1σ13+σ16σ36−σ13σ66

σ13
. This neatly expresses the

infinitely many solutions to the covariance structure equations. All the other solutions are
unique (provided that denominators are non-zero), but the pair (ω6, ψ2) can be recovered
from Σ in infinitely many ways, one for each r1 > 0.

This is so nice that we will not bother to re-parameterize and obtain a unique solution.
Of course with real data, one would have to re-parameterize ω6 and ψ2 in order to estimate
the other parameters by maximum likelihood, because otherwise the maximum would not
be unique and there would be unpleasant numerical consequences.

Our main interest is in β11, β12 and β22. The existence of unique solutions means that
these parameters are identifiable (and as a practical matter, estimable) as long as the
denominators are non-zero. The natural thing is to substitute for those σij quantities in
the denominators, in terms of model parameters. Perhaps the denominators are never
zero, or perhaps the βijs can be identified in some other way when they are.

The formula for β22 is simplest. Scanning the list of solutions, we see φ12 = σ13. So,
the solution for β22 does not apply when the two latent explanatory variables have zero
covariance. Perhaps there is another way.

10Sagemath does not know that r1 = ψ2 is positive, or even that it’s a real number.
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# Can beta22 be identified when phi12=0?

factor(Sigma(phi12=0))

evaluate
ω1 + φ11 φ11 0 β11φ11 β11φ11 0

φ11 ω2 + φ11 0 β11φ11 β11φ11 0
0 0 ω3 + φ22 β12φ22 β12φ22 β22φ22

β11φ11 β11φ11 β12φ22 β2
11φ11 + β2

12φ22 + ω4 + ψ1 β2
11φ11 + β2

12φ22 + ψ1 β12β22φ22
β11φ11 β11φ11 β12φ22 β2

11φ11 + β2
12φ22 + ψ1 β2

11φ11 + β2
12φ22 + ω5 + ψ1 β12β22φ22

0 0 β22φ22 β12β22φ22 β12β22φ22 β2
22φ22 + ω6 + ψ2


Yes! As long as β12 6= 0,

σ46

σ34

=
β12β22φ22

β12φ22

= β22

Actually, this way of identifying β22 works even when φ12 6= 0. We could scroll up and
look at the orignal Σ in terms of the parameters. Or, the sem package’s pad function can
be used to add a row and column of zeros to a matrix, making it more convenient to refer
to the elements.

# Does sigma46/sigma34 work without phi12=0?

padSigma = Pad(Sigma)

show(padSigma[4,6]); show(padSigma[3,4])

evaluate

(β11φ12 + β12φ22)β22

β11φ12 + β12φ22

The identifying solution β22 = σ46
σ34

is superior to the solution β22 = σ16
σ13

on page 669,
because it only fails when both β12 = 0 and (β11 = 0 or φ12 = 0). Some ways of solving
the covariance structure equations are better than others, in the sense that they reveal
more clearly where in the parameter space the parameters are identifiable. Sagemath’s
solve function will not necessarily locate the most informative solution, and neither will
you if you do it by hand.

The solution β22 = σ46
σ34

does not apply when both φ12 = 0, and β12 = 0, but it is a
good idea to examine Σ under these conditions to see if yet another solution appears.

# What if both phi12 and beta12 equal zero?

factor(Sigma(phi12=0,beta12=0))

evaluate
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
ω1 + φ11 φ11 0 β11φ11 β11φ11 0

φ11 ω2 + φ11 0 β11φ11 β11φ11 0
0 0 ω3 + φ22 0 0 β22φ22

β11φ11 β11φ11 0 β2
11φ11 + ω4 + ψ1 β2

11φ11 + ψ1 0
β11φ11 β11φ11 0 β2

11φ11 + ψ1 β2
11φ11 + ω5 + ψ1 0

0 0 β22φ22 0 0 β2
22φ22 + ω6 + ψ2


It seems that β22 is not identifiable when both φ12, and β12 equal zero. The only way
to get at it is through φ22, which is not accessible at all. The conclusion is that β22 is
identifiable if either β12 6= 0, or if both β11 and φ12 are non-zero.

It is worth noting that the sufficient condition β12 6= 0 was concealed until we actually
set φ12 = 0 and took another look at the covariance matrix. The general principle is that
when the solution for a parameter in terms of σij quantities is a fraction, the parameter
is identifiable at points in the parameter space where the denominator is non-zero. While
it is tempting to think that identifiability fails where the denominator is zero, this need
not be the case. If the model imposes equality constraints on the covariance matrix, there
may be other ways to recover the parameter.

In our examination of identifiability for β22, it was easy (with Sagemath) to re-calculate
the covariance matrix with φ12 = 0 to see if it was possible to solve for β22 in that part of
the parameter space. Doing this by hand would have been possible though tedious. For
β11 and β12, hand calculation is almost out of the question because the denominators are
so complicated; it’s quite easy with Sagemath and the sem package.

# Look at beta11 and beta12.

show(beta11 == sol[beta11]); show(beta12 == sol[beta12])

evaluate

β11 = σ16σ34−σ14σ36
σ13σ16−σ12σ36

β12 = σ13σ14σ16−σ12σ16σ34
σ2
13σ16−σ12σ13σ36

To see where in the parameter space the denominators equal zero, we need to take the
formulas for the σijs in terms of the parameters, and substitute them into the denomina-
tors (just the denominators, of course). The SigmaOfTheta function of the sem package
is designed to make this task easy. Given a covariance matrix that is a function of model
parameters, SigmaOfTheta makes a dictionary that will allow any function of the σij
variances and covariances to be evaluated at the model parameters. In the following,
SigmaOfTheta is used to create a dictionary called theta, and the denominator of the
solution for β11 is put into d1. Then, d1(theta) gives d1 as a function of the model
parameters. The notation is simple and natural, partly because theta is a very good
name for the dictionary. The Simplify function first expands an expression (multiplies it
out), and then factors the result. I find it more helpful than Sagemath’s built-in simplify

function, which is already applied to everything automatically anyway.
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# Now examine denominators of the solutions to see exactly where in

# the parameter space they equal zero.

theta = SigmaOfTheta(Sigma)

d1 = denominator(sol[beta11])

Simplify(d1(theta))

evaluate

(φ2
12 − φ11φ22)β22

See how nice that was? The denominator is just −|Φx|β22. Since Φx is positive definite,
the denominator will be zero if and only if β22 = 0.

# What if beta22=0?

Sigma(beta22=0)

evaluate
ω1 + φ11 φ11 φ12 β11φ11 + β12φ12 β11φ11 + β12φ12 0

φ11 ω2 + φ11 φ12 β11φ11 + β12φ12 β11φ11 + β12φ12 0
φ12 φ12 ω3 + φ22 β11φ12 + β12φ22 β11φ12 + β12φ22 0

β11φ11 + β12φ12 β11φ11 + β12φ12 β11φ12 + β12φ22 β2
11φ11 + 2β11β12φ12 + β2

12φ22 + ω4 + ψ1 β2
11φ11 + 2β11β12φ12 + β2

12φ22 + ψ1 0
β11φ11 + β12φ12 β11φ11 + β12φ12 β11φ12 + β12φ22 β2

11φ11 + 2β11β12φ12 + β2
12φ22 + ψ1 β2

11φ11 + 2β11β12φ12 + β2
12φ22 + ω5 + ψ1 0

0 0 0 0 0 ω6 + ψ2


The answer got cut off and there is no scrollbar in this document, but you can see that
the only useable equations involving β11 are variations of

σ42 = β11φ11 + β12φ12 (B.7)

σ43 = β11φ12 + β12φ22

The parameters φ11 and φ12 are immediately identifiable, but φ22 is inaccessible when
β22 = 0. This means that solving two linear equations in two unknowns won’t work. The
parameter of interest, β11, can only be recovered if φ12 = 0 as well as β22 = 0.

The conclusion is that β11 is identifiable provided that β22 6= 0 or β22 = φ12 = 0.

# Study the identifiability of beta12

d2 = denominator(sol[beta12]); Simplify(d2(theta))

evaluate

(φ2
12 − φ11φ22)β22φ12

It looks like we need both β22 and φ12 non-zero. Earlier, we calculated the covariance
matrix Σ with φ12 = 0 but not β22. In that case,

β12 =
σ46

σ36

=
β12β22φ22

β22φ22

.
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If β22 but not φ12 = 0, we are back to the two linear equations (B.7). We can’t solve the
two equations for β11 and β12 because φ22 isn’t identifiable. However, we can recover β12

if β11 = 0. Okay, so far we have established that β12 is identifiable if

• β22 6= 0, or

• β22 = 0 and φ12 6= 0 and β11 = 0.

Now let’s see what happens if both β22 and φ12 equal zero.

# If both beta22 and phi12 equal zero,

Sigma(beta22=0,phi12=0)

evaluate
ω1 + φ11 φ11 0 β11φ11 β11φ11 0

φ11 ω2 + φ11 0 β11φ11 β11φ11 0
0 0 ω3 + φ22 β12φ22 β12φ22 0

β11φ11 β11φ11 β12φ22 β2
11φ11 + β2

12φ22 + ω4 + ψ1 β2
11φ11 + β2

12φ22 + ψ1 0
β11φ11 β11φ11 β12φ22 β2

11φ11 + β2
12φ22 + ψ1 β2

11φ11 + β2
12φ22 + ω5 + ψ1 0

0 0 0 0 0 ω6 + ψ2


The sign of β12 can be identified but not the value, because φ22 can’t be recovered.

We now have a detailed picture of the identifiability of the key parameters β11, β12

and β22, a picture that would be just too much work to obtain without a symbolic math
program like Sagemath. If at this point you are wishing that you didn’t know so much
about the identifiability of the βij, think again. For example, it would be natural to try
testing H0 : β11 = β12 = β22 = 0 with a likeihood ratio test, but this would be a disaster
because the parameters are not identifiable under the null hypothesis.

Next, we will obtain explicit formulas for the model-induced equality constraints on
the variances and covariances of the observable data, by substituting solutions for the pa-
rameters into the equations that were set aside. Results without an = sign are polynomials
implicitly set to zero.

for item in aside: factor(item(sol))

evaluate
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σ14 − σ15

σ13 − σ23

σ14 − σ24

σ14 − σ25

σ16 − σ26

σ34 − σ35

σ16σ34
σ13

= σ56

σ16σ34
σ13

= σ46

If the last two polynomials are multiplied through by σ13, we get

σ16σ34 = σ13σ56 = σ13σ56,

which is a nice way to express the constraints because the statement remains true when the
denominator σ13 = φ12 equals zero. This claim is verified by evaluating the σij quantities
at the model parameters, as follows.

# Are constraints still true when sigma13=0?

equal3 = [sigma16*sigma34, sigma13*sigma56, sigma13*sigma46]

for item in equal3: show(item(theta))

evaluate

(β11φ12 + β12φ22)β22φ12

(β11φ12 + β12φ22)β22φ12

(β11φ12 + β12φ22)β22φ12

The equality constraints we have worked so hard to obtain can be quite valuable in data
analysis. If the model is re-parameterized by making ψ2 + ω6 a single parameter, we
have 21 covariance structure equations in 13 unknown parameters. The likelihood ratio
chi-squared test for goodness of fit will have 21− 13 = 8 degrees of freedom, and the null
hypothesis is that exactly those eight equality constraints hold. If the model does not fit,
the constraints can be tested individually to track down why the model does not fit, and
suggest how it might be fixed up.

Groebner Basis While there is no doubt that Sagemath can make life easier by reducing
the computational burden of studying a model, it’s still too bad that so much thinking
is required. In particular, in order to prove identifiability by obtaining explicit solutions
for the parameters, you need to figure out which equations are redundant so you can give
solve a system that has a general solution. To do this, you almost have to solve the
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equations by hand, or at least look at them carefully and decide how you would proceed
if you were going to do it by hand.

An alternative that sometimes works (but not always) is to apply Groebner basis
methods. If you subtract the σij from both sides of the covariance structure equations,
you get a set of multivariate polynomials, and the roots of those polynomials are the
solutions of the equations. A Groebner basis is a set of polynomials having the same
roots as the input set, but they are typically much easier to solve. See the documentation
for the GroebnerBasis function on page 686 for more details.

Input to the GroebnerBasis function is a list of polynomials and a list of variables.
The polynomials correspond to the covariance structure equations, and are produced as
an option by the SetupEqns function. The “variables” are the model parameters and the
σij quantities. Ordering of the list of variables is very important. The σij come last. The
model parameters go before the σij quantities, usually in reverse order of how interesting
or important they are.

If the σij quantities are last in the input list of variables and there are equality con-
straints among them, the first set of polynomials in the Groebner basis will involve only
σijs. Setting these to zero gives you the equality constraints. Then come the model
parameters. If the first parameter (the last you mentioned in the list of variables) is
identifiable it will appear by itself, accompanied only by covariances. If fortune smiles,
the next polynomial will involve two model parameters, and so on.

The Groebner basis algorithm simplifies the input by multiplying polynomials together
and then adding multiples of polynomials to other polynomials. Depending on the size
and structure of the problem, the number of polynomials can become very large before
finally reducing to a small set with a nice simple form. As a mathematical certainty,
the target (a Groebner basis) exits and algorithm terminates at the right answer, but in
practice this may not happen during your lifetime. As I said, Groebner basis does not
always work, but when it works it is beautiful. In the following, we will just hand the
whole system of Example B.1.2 to the GroebnerBasis function, warts and all.

Notice how the list of parameters is reversed, so that the βij come last and therefore
the solutions for those parameters will emerge first. The σij quantities are reversed as
well. This makes the output of the GroebnerBasis function easier to compare with earlier
work. I may as well explain why, because it sheds light on how Groebner basis works in
practice, as well as features of some other functions in the sem package.

The GroebnerBasis function requires σij quantities as input, and I do not want to type
in the names of the 21 unique elements. Parameters(SymmetricMatrix(6,’sigma’))

does the trick. When I examine a covariance matrix, my preference is to look at the upper
triangle, scanning from left to right. For this reason, the SymmetricMatrix function,
which produces a matrix containing only unique elements, puts copies of the upper triangle
into the lower triangle. So, for example, row 4 column 2 contains σ24. In this example, the
Parameters function detects that the matrix is symmetric, and returns the main diagonal
and the upper triangle, from left to right and top to bottom.

When I was deciding which equations to set aside, I followed my usual practice of
looking at the upper triangle left to right an top to bottom. If I discovered an equation
that was redundant with the earlier ones, I selected it for deletion. When I did this I was
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just trying to be systematic and not thinking about Groebner basis, but it was fortunate.
Groebner basis works from the end of the list of input variables (parameters and σij
quantities). When a variable appears in the list of output polynomials for the first time,
it will tend to appear with variables closer to the end of the list.

With the σij reversed as well as at the end, the list of variables looks like . . . σ13, σ12, σ11].
This means, for example, that if σ14 = σ15, other polynomials in the output (and the cor-
responding solutions for the model parameters) will be in terms of σ14 rather than σ15.
That’s exactly the way I did it. It is only because of this happy coincidence that we have a
prayer of checking that the Groebner basis results are consistent with what we did before
without doing a lot of work.

param2 = copy(param) # Work with a copy to avoid changing the original.

param2.reverse() # Reversed order of interest

sigmaij = Parameters(SymmetricMatrix(6,’sigma’))

sigmaij.reverse() # Reverse the sigma_ij too

param2.extend(sigmaij) # Put sigma_ij values at the end

polynoms = SetupEqns(Sigma,poly=True) # Covariance structure polynomials

# Throw the whole thing at GroebnerBasis.

basis1 = GroebnerBasis(polynoms,param2)

evaluate

Defining tT1, tT2, tT3, tT4, tT5, tT6, tT7, tT8, tT9, tT10, tT11, tT12,

tT13, tT14, tT15, tT16, tT17, tT18, tT19, tT20, tT21, tT22, tT23, tT24,

tT25, tT26, tT27, tT28, tT29, tT30, tT31, tT32, tT33, tT34, tT35

To my surprise, it finished almost immediately. Take a look.

for item in basis1: show(item)

evaluate
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−σ14 + σ15

−σ13 + σ23

−σ14 + σ24

−σ14 + σ25

−σ16 + σ26

−σ34 + σ35

−σ16σ34 + σ13σ46

−σ46 + σ56

−β11σ13σ16 + β11σ12σ36 + σ16σ34 − σ14σ36

β11σ12 + β12σ13 − σ14

β12σ16σ34 + β11σ12σ46 − σ14σ46

β11σ16 + β12σ36 − σ46

β22σ13 − σ16

β22σ34 − σ46

β11β22σ12 − β22σ14 + β12σ16

φ11 − σ12

φ12 − σ13

φ22σ16 − σ13σ36

−σ34σ36 + φ22σ46

β11φ22σ12 − β11σ
2
13 − φ22σ14 + σ13σ34

β12φ22 + β11σ13 − σ34

β22φ22 − σ36

β11σ14 + β12σ34 + ψ1 − σ45

ω1 − σ11 + σ12

ω2 + σ12 − σ22

ω3 + φ22 − σ33

ω4 − σ44 + σ45

ω5 + σ45 − σ55

β22σ36 + ω6 + ψ2 − σ66

These polynomials have the same roots as the input set. There are more polynomials
than in the input set, but not hundreds — something that can easily happen. The first
eight polynomials in the Groebner basis involve only σij quantities. Comparing them to
the constraints we obtained earlier (see page 674), we see that they are exactly the same,
except just a little better. The first six constraints are even in the same order. For the
last two, the Groebner basis is better because σ16σ34

σ13
= σ56 and σ16σ34

σ13
= σ46 do imply

σ46 = σ56. A simple equality between covariances is preferable to a product set equal to
another product.

The next polynomial involves β11, which appears first because it is the last parameter
on the input list. Setting it equal to zero and solving yields the solution on page 669.
Next comes not one but three polynomials involving β11 and β12. If the solution for β11 in
terms of σij is substituted into the first polynomial yields the solution for β12 on page 669.
The other two yield alternative solutions for β12; these solutions are also correct. Setting
any two of them equal yields a complicated equality constraint on the σij — a constraint
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that causes solve to think the whole system has no general solution. There is nothing
new though, because these constraints are implied by the constraints located earlier.

The next two polynomials involve β22 and σij quantities. Setting the first one equal to
zero yields the solution for β22 on page 669. Setting the second one equal to zero yields
the “superior” solution on page 670.

This is the way it goes. There may be multiple ways of solving for a particular
parameter in terms of σij quantities and parameters that have come before. Because of the
way the variables are ordered in this example, the first polynomial involving a particular
parameter always corresponds to one of the solutions given on page 669. When more
than one way of solving for a parameter is indicated by the Gorebner basis, sometimes
one of them is preferable because it’s simpler or applies in more of the parameter space;
sometimes not. Almost always, the polynomials are simple enough that one can verify
the existence of a solution by inspection without actually calculating it.

The last polynomial in the set is β22σ36 +ω6 +ψ2−σ66. This is the first time either ψ2

or ω6 appears, and the fact that they appear together tells you they are not identifiable.
They come last not because they are non-identifiable, but because one of them, ω6, is first
in the list of variables. The way they appear together as a sum reflects the way they are
non-identifiable.

When Groebner basis works, it is hard to exaggerate how excellent it is. Equality
constraints involving the σij quantities appear immediately without all the hard work,
and identifiability or lack of identifiability can usually be verified by inspection. It is
really wonderful that the equality constraints implied by models whose parameters are
non-identifiable can be so easy to obtain, because it makes these models testable (falsifi-
able) without finding a way to re-parameterize them in a way that preserves the equality
constraints.

But as I have mentioned several times, the Groebner basis approach does not always
work. When it fails, it usually fails by not finishing. I have had most trouble with
unrestricted factor analysis, and multi-stage models of the a influences b influences c
variety — the kind for which identifiablity would be established by the Acyclic Rule. It
seems likely that this case could be resolved by ordering the variables better.

B.2.2 Function Documentation

To use the sem functions, you must load them once per session.

sem = ’http://www.utstat.toronto.edu/~brunner/openSEM/sage/sem.sage’

load(sem)

# load(’~/sem.sage’) # To load a local version in your home directory

evaluate

After the package is loaded, Contents() will display a list of the available functions. For
help on a particular function, type the function name followed by a question mark, like
“PathCov?”
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1. Matrix Creation

1a) DiagonalMatrix(size,symbol=’psi’)

1b) GeneralMatrix(nrows,ncols,symbol)

1c) IdentityMatrix(size)

1d) SymmetricMatrix(size,symbol,corr=False)

1e) ZeroMatrix(nrows,ncols)

2. Covariance Matrix Calculation

2a) EqsCov(beta,gamma,Phi,oblist,simple=True)

2b) FactorAnalysisCov(Lambda,Phi,Omega)

2c) NoGammaCov(Beta,Psi)

2d) PathCov(Phi,Beta,Gamma,Psi,simple=True)

2e) RegressionCov(Phi,Gamma,Psi,simple=True)

3. Manipulation

3a) GroebnerBasis(polynomials,variables)

3b) LSTarget(M,x,y)

3c) Parameters(M)

3d) SigmaOfTheta(M,symbol=’sigma’)

3e) Simplify(x)

4. Utility

4a) BetaCheck(Beta)

4b) Contents()

4c) CovCheck(Psi)

4d) MultCheck(Beta,Psi)

4e) Pad(M)

For each function, explanation is followed by the function definition (without the docu-
mentation string).

1. Matrix Creation

(a) DiagonalMatrix(size,symbol=’psi’,double=False)

This function creates a diagonal symbolic matrix (size by size) with Greek-letter
symbols (default ψ), and single subscripts. Double subscripts are optional. The
arguments of the function are
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• size: Number of rows, equal to number of columns

• symbol: A string containing the root. It is usually a Greek letter, but does
not have to be. Notice the single quotes in the examples below.

• double: Should diagonal elements be doubly subscripted? Default is no,
use single subscripts.

Examples:

DiagonalMatrix(4) # Will have psi1 to psi4 on main diagonal

DiagonalMatrix(4,double=True) # Will have psi11 to psi44 on main diagonal

DiagonalMatrix(2,’phi’)

DiagonalMatrix(2,’phi’,True)

DiagonalMatrix(size=2,symbol=’phi’)

DiagonalMatrix(3,’omega’)

evaluate ω1 0 0
0 ω2 0
0 0 ω3


Here is the function definition without the documentation string.

def DiagonalMatrix(size,symbol=’psi’,double=False):

M = identity_matrix(SR,size) # SR stands for Symbolic Ring

for i in interval(1,size):

subscr = str(i)

if double: subscr = subscr+str(i)

M[i-1,i-1] = var(symbol+subscr)

return M

(b) GeneralMatrix(nrows,ncols,symbol)

This function returns a general symbolic matrix containing symbols with spec-
ified root, usually a Greek letter. In each cell of the matrix are the root symbol
and subscript(s). The argumments are

• nrows: Number of rows

• ncols: Number of columns

• symbol: A string containing the root. It is usually a Greek letter, but does
not have to be. Notice the single quotes in the examples below.

Because it is difficult (impossible?) to get good doubly subscripted variables
with the two subscripts separated by a comma, there is potential ambiguity
when either nrows or ncols gets into double figures. What is γ111? Is it
γ1,11 or γ11,1? For this reason, if either the number of rows or the number of
columns exceeds 9, the contents of the matrix returned by this function are
singly subscripted.
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Examples:

GeneralMatrix(6,2,’lambda’)

GeneralMatrix(11,3,’L’)

GeneralMatrix(3,4,’gamma’)

GeneralMatrix(nrows=3,ncols=4,symbol=’gamma’)

Gamma = GeneralMatrix(nrows=3,ncols=5,symbol=’gamma’)

Gamma

evaluate γ11 γ12 γ13 γ14 γ15

γ21 γ22 γ23 γ24 γ25

γ31 γ32 γ33 γ34 γ35


Here is the function definition without the documentation string.

def GeneralMatrix(nrows,ncols,symbol):

M = matrix(SR,nrows,ncols) # SR is the Symbolic Ring

if nrows < 10 and ncols < 10:

for i in interval(1,nrows):

for j in interval(1,ncols):

M[i-1,j-1] = var(symbol+str(i)+str(j))

else:

index=1

for i in interval(1,nrows):

for j in interval(1,ncols):

M[i-1,j-1] = var(symbol+str(index))

index = index+1

return M

(c) IdentityMatrix(size)

This function returns a symbolic identity matrix of specified size. It’s the same
as identity_matrix(SR,size).

Example: IdentityMatrix(3)

Here is the function definition without the documentation string.

def IdentityMatrix(size):

M = identity_matrix(SR,size) # SR is the Symbolic Ring

return M

(d) SymmetricMatrix(size,symbol,corr=False)

This function returns a square symmetric matrix of the symbolic type, con-
taining symbols with a specified root, usually a Greek letter. In each cell of the
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matrix is the root symbol with subscript(s). The matrix contains only unique
elements; the lower triangle contains symbols from the upper triangle, so that
the element in row 5 and column 2 is something like σ25.

The arguments of the function are

• size: Number of rows, equal to number of columns

• symbol: A string containing the root. It is usually a Greek letter, but does
not have to be. Notice the single quotes in the examples below.

• corr: A logical variable (True or False) specifying whether it’s a correlation
matrix. If True, there are ones on the main diagonal. This argument is
optional, with a default of False.

Examples:

SymmetricMatrix(6,’phi’)

SymmetricMatrix(11,’psi’)

SymmetricMatrix(4,’rho’,True)

SymmetricMatrix(size=4,symbol=’rho’,corr=True)

Because it is difficult or maybe even impossible with Sagemath to get good
doubly subscripted variables with the two subscripts separated by a comma,
there is potential ambiguity when either nrows or ncols gets into double fig-
ures. What is σ111? Is it σ1,11 or σ11,1? For this reason, if either the number of
rows or the number of columns exceeds 9, the contents of the matrix returned
by this function are singly subscripted. In this case the diagonal elements are
numbered last, which is usually what you want once you get used to it.

Phi = SymmetricMatrix(5,’phi’); Phi

evaluate
φ11 φ12 φ13 φ14 φ15

φ12 φ22 φ23 φ24 φ25

φ13 φ23 φ33 φ34 φ35

φ14 φ24 φ34 φ44 φ45

φ15 φ25 φ35 φ45 φ55


Here is the function definition without the documentation string.

def SymmetricMatrix(size,symbol,corr=False):

M = identity_matrix(SR,size) # SR is the Symbolic Ring

if size < 10:

for i in interval(1,size):

for j in interval(i+1,size):

M[i-1,j-1] = var(symbol+str(i)+str(j))

M[j-1,i-1] = M[i-1,j-1]

if not corr:
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for i in interval(1,size):

M[i-1,i-1] = var(symbol+str(i)+str(i))

else:

index=1

for i in interval(1,size):

for j in interval(i+1,size):

M[i-1,j-1] = var(symbol+str(index))

M[j-1,i-1] = M[i-1,j-1]

index = index+1

if not corr:

for i in interval(1,size):

M[i-1,i-1] = var(symbol+str(index))

index = index+1

return M

(e) ZeroMatrix(nrows,ncols)

This function returns a symbolic matrix with specified number of rows and
nummber of columns, full of zeros. It’s the same as the sage function matrix(SR,size).
The ZeroMatrix function is particularly useful for setting up parameter ma-
trices that consist mostly of zeros.

Example: ZeroMatrix(4,4)

Here is the function definition without the documentation string.

def ZeroMatrix(nrowz,ncolz):

M = matrix(SR,nrowz,ncolz) # SR is the Symbolic Ring

return M

2. Covariance Matrix Calculation

(a) EqsCov(beta,gamma,Phi,oblist,simple=True)

The EqsCov function is alphabetically first in the category of covariance ma-
trix calculation, but it is among the less frequently used. It calculates the
covariance matrix of an obvservable data vector for the EQS model of Bentler
and Weeks (1980). The EQS model makes no distinction between error terms
and other exogenous variables, and there is no notationalq difference between
latent and observable variables. Instead, the covariance matrix of all variables
in the model is calculated, and then the rows end columns corresponding to the
observable variables are selected to form Σ , the common covariance matrix of
the n observable data vectors.

The model equations are
ηi = βηi + γξi,

with cov(ξi) = Φ.

The exogenous variables (including error terms) are in the vector ξi, which is
spelled “xi” and pronounced more or less like the letter “c.” The endogenous
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variables are in ηi, which is spelled “eta” and pronounced like “I can’t believea
I atea the whole thing.” Because ξi includes error terms as well as ordinary
exogenous variables, the EqsCov function is useful for calculating the covariance
matrix for pathological but disturbingly realistic models in which exogenous
variables are correlated with error terms, or measurement errors are correlated
with errors in the latent variable model. Other functions in the sem package
are based on standard models which do not admit this possibility.

In the EqsCov function, V = cov

(
ηi
ξi

)
is first calculated, and then the

covariance matrix Σ is formed by selecting rows and columns corresponding to
the observable variables.

The indices of the observable variables are given in the function argument
oblist. The indices start with one, not zero. Following EQS conventions, the
endogenous variables come first in the list of variables (ηi, ξi).

The arguments of the function are

• beta: A square matrix containing the coefficients from each element of eta
to each other element. Number of rows equals number of columns equals
number of exogenous variables, including error terms. Diagonal elements
of Beta should be zeros.

• gamma: A matrix of regression coefficients linking each exogenous (ξ) vari-
able to each endogenous (η) variable. There is one row for each eta variable
and one column for each ξ variable. Thus, the number of rows in gamma

must equal the number of rows (and columns) in beta, and the number of
columns in gamma must equal the number of rows (and columns) in Phi.

• Phi: The variance-covariance matrix of the exogenous variables ηi.

• oblist: List of indices of observable variables. First index is one, not
zero. May be in any order. Following EQS conventions, the endogenous
variables come first in the list of variables (ηi, ξi). So the variable with
index one is the first endogenous variable.

• simple: Should the covariance matrix be simplified? Simplification con-
sists of expanding and then factoring all the elements of Σ. This is time
consuming, but usually worth it. The default for this optional argument
is True.

Example: EqsCov(beeta,gammma,fee,pickout)

The following more detailed example is an extension of Example 0.5.1 on
page 36, which was about the relationship between income and credit card
debt among real estate agents. In the path diagram of Figure B.3, X is re-
ported income (Tx measured with error), Y is reported credit card debt (Ty
measured with error), and W is local average selling price of a resale home
(real estate agents typically get a percentage of the the selling price). Be-
cause of numerous omitted variables, the error terms are all correlated with
one another.
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Figure B.3: Massively correlated error terms
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In the notation of the EQS model,

ξi =


εi,1
ε2,1
εi,3
εi,4
Wi

 and ηi =


Txi
Tyi
Xi

Yi



# In EsqCov, eta = beta eta + gamma xi, with cov(xi) = Phi

# eta’ = (Tx,Ty,X,Y) and xi’ = (epsilon1,epsilon2,epsilon3,epsilon4,W)

B = ZeroMatrix(4,4) # beta

B[1,0] = var(’beta3’) ; B[2,0] = var(’beta2’) ; B[3,1] = var(’beta4’)

G[0,0] = 1; G[0,4] = var(’beta1’); G[1,1] = 1; G[2,3] = 1; G[3,2] = 1

P = SymmetricMatrix(5,’psi’); P[4,4]=var(’phi’) # This is the Phi matrix

# No correlations between W and the errors

for j in interval(0,3):

P[j,4] = 0

P[4,j] = 0

P

evaluate
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
ψ11 ψ12 ψ13 ψ14 0
ψ12 ψ22 ψ23 ψ24 0
ψ13 ψ23 ψ33 ψ34 0
ψ14 ψ24 ψ34 ψ44 0

0 0 0 0 φ



pickout = 9,3,4 # Indices of observable variables, order eta, xi

Sigma = EqsCov(B,G,P,pickout); Sigma

evaluate φ β1β2φ β1β3β4φ
β1β2φ β2

1β
2
2φ+ β2

2ψ11 + 2 β2ψ14 + ψ44 β2
1β2β3β4φ+ β2β3β4ψ11 + β2β4ψ12 + β3β4ψ14 + β2ψ13 + β4ψ24 + ψ34

β1β3β4φ β2
1β2β3β4φ+ β2β3β4ψ11 + β2β4ψ12 + β3β4ψ14 + β2ψ13 + β4ψ24 + ψ34 β2

1β
2
3β

2
4φ+ β2

3β
2
4ψ11 + 2 β3β

2
4ψ12 + 2 β3β4ψ13 + β2

4ψ22 + 2 β4ψ23 + ψ33


(b) FactorAnalysisCov(Lambda,Phi,Omega)

(c) NoGammaCov(Beta,Psi)

(d) PathCov(Phi,Beta,Gamma,Psi,simple=True)

(e) RegressionCov(Phi,Gamma,Psi,simple=True)

3. Manipulation

(a) GroebnerBasis(polynomials,variables)

(b) LSTarget(M,x,y)

(c) Parameters(M)

(d) SigmaOfTheta(M,symbol=’sigma’)

(e) Simplify(x)

4. Utility

(a) BetaCheck(Beta)

(b) Contents()

(c) CovCheck(Psi)

(d) MultCheck(Beta,Psi)

(e) Pad(M)

Indices of arrays and vectors in Sagemath start with zero, which can be a minor
irritant to those of us who are used to counting on our fingers. This function
returns a “padded” version of a matrix by inserting a row zero and a column
zero consisting entirely of zeros. This makes it more convenient to refer to
elements of the matrix.

Here is the function definition without the documentation string.
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def Pad(M):

"""

Pad by making first row and first col all zeros, so it is

Argument: A matrix that needs padding

Result: A padded matrix, with one additional row and one additional

column.

Example

SIGMA = Pad(Sigma)

"""

nrowz = M.nrows(); nrowz = nrowz+1 # Strange work-around

ncolz = M.ncols(); ncolz = ncolz+1

padM = matrix(SR,nrowz,ncolz)

for i in interval(1,M.nrows()):

for j in interval(1,M.ncols()):

padM[i,j] = M[i-1,j-1]

return padM

Phi = SymmetricMatrix(5,’phi’)

PadPhi = Pad(Phi); PadPhi

evaluate
0 0 0 0 0 0
0 φ11 φ12 φ13 φ14 φ15

0 φ12 φ22 φ23 φ24 φ25

0 φ13 φ23 φ33 φ34 φ35

0 φ14 φ24 φ34 φ44 φ45

0 φ15 φ25 φ35 φ45 φ55


Here is the function definition without the documentation string.
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B.3 Using Sagemath on your Computer

Sagemath has a browser interface, which means you interact with it through an ordinary
Web browser11. This means that the actual Sagemath software can reside either on your
computer or a remote server. In practice, there are three possibilities:

1. You may use Sagemath free of charge on computers maintained by the Sagemath

development group. To do it this way, go to http://sagenb.com, set up a free
account, and start using Sagemath. This is the easiest way to get started, but be
aware that many people may be trying to use the service at the same time. My
experience is that performance is sometimes quick and pleasant (for example, during
the summer), and sometimes very slow. So this is an excellent way to give Sagemath
a try and it’s very handy for occasional use, but depending on it to do homework
assignments is a bit risky.

2. You can connect to Sagemath on a server at your university or organization, provided
that someone has gone to the trouble to set it up. If you can use Sagemath this
way, you are fortunate, and you only have some minor font issues to take care of.
These are discussed below.

3. You can download and install Sagemath on your own computer. You still use a
Web browser, but the Web server is your own machine, and it serves only you. It’s
pretty straightforward, but the details depend on your operating system. Some of
these details may change, because the Sagemath developers are constantly working
(without payment) to improve the package. They also are responding to the actions
of various companies like Apple, Google and Microsoft.

Mac OS and Linux There are two steps. First, go to http://www.sagemath.org,
download the software, and install it as usual. As of March 2013, there was almost12

nothing out of the ordinary for Mac OS, and this appeared to be the case for linux as
well.

The second step is probably needed if you do not already have LATEX installed, which
will be the case for many students. Even if you do have LATEX installed, the following
is very helpful if you plan to use Sagemath on the servers at http://sagenb.com, even
occasionally. Go to

http://www.math.union.edu/ dpvc/jsMath/download/jsMath-fonts.html,

download the jsMath fonts, and install them. You should only download one set of fonts.
To install, Mac users can open the System folder, open the library sub-folder, and then
drag the fonts to the Fonts sub-sub folder. You may need to click “Authenticate” and
type your password. A re-start will be required before the new fonts are available.

11The Sagemath website says Mozilla Firefox and Google Chrome are recommended, and if you are a
Windows user, you should believe it. In a Mac environment, I have had no trouble with Safari.

12Under Mac OS, the “App” version of the software is recommended. It works like any other Mac
application. The first time you start it, you might have to wait

http://sagenb.com
http://www.sagemath.org
http://sagenb.com
http://www.math.union.edu/~dpvc/jsMath/download/jsMath-fonts.html
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Microsoft Windows As mentioned earlier, Sagemath incorporates a number of other
open source math programs, and makes them work together using a common interface.
This marvelous feat, which is accomplished mostly with Python scripts, depends heavily
on features that are part of the linux and unix operating systems, but are missing from
Microsoft Windows. This makes it difficult or perhaps actually impossible to construct a
native version of Sagemath for Windows. The current (and possibly final) solution is to
run Sagemath in a virtual machine – a set of software instructions that act like a separate
computer within Windows. The virtual machine uses the linux operating system, and
has Sagemath preinstalled. The http://www.sagemath.org website calls it the “Sage
appliance.”

The software that allows the virtual machine to function under Windows is Oracle
Corporation’s free open-source VirtualBox, and you need to install that first. Start at
http://wiki.sagemath.org/SageApplianceInstallation, and follow the directons. You will
see that the first step is to download VirtualBox.

Then, go to http://wiki.sagemath.org/SageAppliance, and follow the directions
there. It is highly recommended that you set up a folder for sharing files between Windows
and the Sage appliance, because a good way of printing your Sagemath output depends
on it. Follow all the directions, including the part about resetting the virtual machine.

Now you are ready to use Sagemath and see your output on screen. Printing under
Windows is a separate issue, but it’s easy once you know how.

Printing Under Windows The virtual machine provided by VirtualBox is incomplete
by design; it lacks USB support13. So, most printers don’t work easily. I know of four
ways to print, and I have gotten the first three to work. The fourth way is speculation
only and I don’t intend to try it. The methods are ordered in terms of my personal
preference.

1. In the Sagemath appliance, click on the printer icon or press the right mouse button
and choose Print from the resulting menu. The default will be to Save as PDF.
To choose the location to save the file, click on File System, then media, then the
name of the shared folder14. Click Save. In Windows, go to the shared folder and
print the pdf file15. An advantage of this method is that you don’t need to install
any fonts, because the jsMath fonts are already installed in the linux system of the
Sage Applicance.

2. For this method, you do need to install the jsMath fonts under Windows. Go to

13Presumably this is a strategic decision by Oracle Corporation. As of this writing, USB support
is available from Oracle as a separate free add-on. It’s free to individual users for their personal use,
meaning nobody can legally re-sell a virtual machine that includes it without paying Oracle a royalty.
Sagemath would give it away and not sell it, but the developers strongly prefer to keep Sagemath fully
free under the GNU public license.

14You set up the shared folder when you installed the Sage applicance.
15When working with Sagemath in a Windows environment, it may be helpful to keep the shared folder

open in Windows Explorer. As soon as you save the file you want to print, you will see it appear in
Windows Explorer.

http://www.sagemath.org
http://wiki.sagemath.org/SageApplianceInstallation
 http://wiki.sagemath.org/SageAppliance
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http://www.math.union.edu/ dpvc/jsMath/download/jsMath-fonts.html,

download the jsMath fonts, and install them; A darkness level of 25 is good. To
install under Windows 7, I needed to double-click on each font individually and click
install. More experienced Windows users may be able to install the fonts some other
way, or perhaps it’s easier with later versions of Windows. A re-start is required.

Now once the jsMath fonts are installed, note that you can reach the Sagemath

runnning in your virtual machine from Windows. Minimize the browser in the vir-
tual machine, and open Firefox or Chrome under Windows. Go to https://localhost:8000.
Now you can do whatever calculations you wish and print as usual. When you are
done, you need to close the browser in the Sagemath appliance as well as Windows,
and sent the shutdown signal before closing Virtualbox.

3. When you choose Print from within the Sagemath appliance, the default is Save as
PDF. But because the Web browser in the Sage appliance is Google Chrome, Google
Cloud Print is also an option. You can connect your printer to Google Cloud Print
provided that Google Chrome is installed under Windows, and you have a Google
(gmail) account. Using Chrome, go to http://www.google.com/cloudprint/learn
and locate the instructions to set up your printer. If the printer is physically con-
nected to the computer (not wireless), it’s called a “classic” printer. Once your
printer is connected, you can print to it from the Sage appliance through Google’s
servers, provided you are connected to the Internet and signed in to your Google
account under Windows at the time. There is no need to install any fonts; they are
already installed on the virtual linux machine.

4. Finally, in principle one should be able to install the appropriate printer driver (if
one exists) in the virtual linux machine and print directly from the Sage appliance.
Under Windows, you can access the linux command line using the free open source
PuTTy SSH client, which can be obtained from www.putty.org. Once the Sagemath

appliance is running, connect using Host Name localhost through port 2222. The
user name is sage and the password is also sage. There may be better ways to
reach the linux shell, but this works. You can ignore all the warnings.

A package containing USB support for VirtualBox is available at https://www.virtualbox.org.
Once it’s installed, you can start looking for a linux driver for your printer. This
printing method is appropriate only for those with linux experience who feel like
playing around.

http://www.math.union.edu/~dpvc/jsMath/download/jsMath-fonts.html
https://localhost:8000
http://www.google.com/cloudprint/learn
www.putty.org
https://www.virtualbox.org


Appendix C

Data Sets

This appendix gives links to the data sets used in the text and homework problems,
along with a listing of the first few lines. A zip archive of the data sets is also included
with the full distribution of this text. All data sets are provided under the GNU Free
Documentation license.

• Baby Double: Simulated W1,W2, Y for an easy double measurement regression
example. See Section 0.10.2 starting on Page 66.
http://www.utstat.toronto.edu/∼brunner/data/legal/Babydouble.data.txt

W1 W2 Y

1 9.94 12.24 15.23

2 12.42 11.32 14.55

3 10.43 10.40 12.40

4 9.07 9.85 17.09

5 11.04 11.98 16.83

6 10.40 10.85 15.04

• BMI Health: Age, BMI, percent body fat, cholesterol level, and diastolic blood
pressure were measured twice. See Page 89 for details.
http://www.utstat.toronto.edu/∼brunner/data/legal/bmi.data.txt

age1 bmi1 fat1 cholest1 diastol1 age2 bmi2 fat2 cholest2 diastol2

1 63 24.5 16.5 195.4 38 60 23.9 20.1 203.5 66

2 42 13.0 1.9 184.3 86 44 14.8 2.6 197.3 78

3 32 22.5 14.6 354.1 104 33 21.7 20.4 374.3 73

4 59 25.5 19.0 214.6 93 58 28.5 20.0 203.7 106

5 45 26.5 17.8 324.8 97 43 25.0 12.3 329.7 92

6 31 19.4 17.1 280.7 92 42 19.9 19.9 276.7 87

• :
http://www.utstat.toronto.edu/∼brunner/data/legal/
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• :
http://www.utstat.toronto.edu/∼brunner/data/legal/

• :
http://www.utstat.toronto.edu/∼brunner/data/legal/

• :

• :

• :

• :

http://www.utstat.toronto.edu/~brunner/data/legal/
http://www.utstat.toronto.edu/~brunner/data/legal/


Appendix D

Rules for Parameter Identifiability

Note: The rules listed here assume that errors are independent of exogenous variables
that are not errors, and that all variables have been centered to have expected value zero.
The following definition (Definition 3.1) is used frequently.

An indicator for a latent variable is an observable variable that is a function only of that
latent variable and an error term. The factor loading is non-zero.

1. Parameter Count Rule (p. 61): If a model has more parameters than covariance
structure equations, the parameter vector can be identifiable on at most a set of
volume zero in the parameter space. This applies to all models.

2. Measurement model (Factor analysis) In these rules, latent variables that are not
error terms are described as “factors.”

(a) Double Measurement Rule (p. 1.6): Parameters of the double measurement
model are identifiable. All factor loadings equal one. Correlated measurement
errors are allowed within sets of measurements, but not between sets.

(b) Three-variable Rule (p. 295) The parameters of a factor analysis model are
identifiable provided

• There are at least three indicators for each factor.

• For each factor, either the variance equals one and the sign of one factor
loading is known, or the factor loading for at least one indicator is equal
to one.

• Errors are independent of one another.

(c) Reference Variable Rule (p. 304) The parameters of a factor analysis model
are identifiable except possibly on a set of volume zero in the parameter space,
provided

• The number of observable variables (including indicators) is at least three
times the number of factors.

• There is at least one indicator for each factor.
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• For each factor, either the variance equals one and the sign of the indica-
tor’s factor loading is known, or the factor loading of the indicator is equal
to one.

• Divide the observable variables into sets. The first set contains one in-
dicator for each factor. The number of variables in the second set and
the number in the third set is also equal to the number of factors. The
fourth set may contain any number of additional variables, including zero.
The error terms for the variables in the first three sets may have non-
zero covariance within sets, but not between sets. The error terms for the
variables in the fourth set may have non-zero covariance within the set,
and with the error terms of sets two and three, but they must have zero
covariance with the error terms of the indicators.

(d) Two-variable Rule (p. 313) The parameters of a factor analysis model are
identifiable provided

• There are at least two factors.

• There are at least two indicators for each factor.

• For each factor, either the variance equals one and the sign of one factor
loading is known, or the factor loading of at least one indicator is equal to
one.

• Each factor has a non-zero covariance with at least one other factor.

• Errors are independent of one another.

(e) Two-variable Addition Rule (p. 313) A factor with just two indicators may
be added to a measurement model whose parameters are identifiable, and the
parameters of the combined model will be identifiable provided

• The errors for the two additional indicators are independent of one another
and of the error terms already in the model.

• For each factor, either the variance equals one and the sign of one factor
loading is known, or the factor loading of at least one indicator is equal to
one.

• In the existing model with identifiable parameters,

– There is at least one indicator for each factor, and

– At least one factor has a non-zero covariance with the new factor.

(f) Combination Rule (p. 315) Suppose that two factor analysis models are based
on non-overlapping sets of observable variables from the same data set, and
that the parameters of both models are identifiable. The two models may
be combined into a single model provided that the error terms of the first
model are independent of the error terms in the second model. The additional
parameters of the combined model are the covariances between the two sets of
factors. These are all identifiable, except possibly on a set of volume zero in
the parameter space.
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(g) Extra Variables Rule (p. 317) If the parameters of a factor analysis model are
identifiable, then a set of additional observable variables (without any new
factors) may be added to the model. In the path diagram, straight arrows
with factor loadings on them may point from each existing factor to each new
variable. Error terms for the new variables may have non-zero covariances
with each other. If the error terms of the new set have zero covariance with
the error terms of the initial set and with the factors, then the parameters of
the combined model are identifiable, except possibly on a set of volume zero
in the parameter space.

(h) Error-Free Rule (p. 318) A set of observable variables may be added to the
factors of a measurement model whose parameters are identifiable, provided
that the new observed variables are independent of the error terms that are
already in the model. The parameters of the resulting model are identifiable,
except possibly on a set of volume zero in the parameter space.

(i) Equivalence Rule (p. 299) For a centered factor analysis model with at least one
indicator for each factor, suppose that surrogate models are obtained by either
standardizing the factors, or by setting the factor loading of an indicator to one
for each factor. Then the parameters of one surrogate model are identifiable if
and only if the parameters of the other surrogate model are identifiable.

3. Latent variable model : yi = βyi + Γxi + εi Here, identifiability means that the
parameters involved are functions of cov(Fi) = Φ.

(a) Regression Rule: (p. 376) If no endogenous variables are influenced by other
endogenous variables in the latent variable model, the result is a regression
model. The parameters of a regression model are identifiable.

(b) Acyclic Rule: (p. 377) The parameters of the latent variable model are identi-
fiable if the model is acyclic (no feedback loops through straight arrows) and
the following conditions hold.

• Organize the variables that are not error terms into sets. Set 0 consists of
all the exogenous variables. They may have non-zero covariances.

• For j = 1, . . . ,m, each endogenous variable in set j may be influenced by
all the variables in sets ` < j.

• Error terms for the endogenous variables in a set may have non-zero co-
variances. All other covariances between error terms are zero.

4. Two-Step Rule: This applies to models with both a measurement component and a
latent variable component, including the full two-stage structural equation model.

1: Consider the latent variable model as a model for observed variables. Check
identifiability (usually using the Regression Rule and the Acyclic Rule).

2: Consider the measurement model as a factor analysis model, ignoring the struc-
ture of cov(Fi). Check identifiability.
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If both identification checks are successful, the parameters of the combined model
are identifiable.
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GNU Free Documentation License

Version 1.3, 3 November 2008
Copyright c© 2000, 2001, 2002, 2007, 2008 Free Software Foundation, Inc.

http://fsf.org

Everyone is permitted to copy and distribute verbatim copies of this license document,
but changing it is not allowed.

Preamble

The purpose of this License is to make a manual, textbook, or other functional and
useful document “free” in the sense of freedom: to assure everyone the effective freedom
to copy and redistribute it, with or without modifying it, either commercially or noncom-
mercially. Secondarily, this License preserves for the author and publisher a way to get
credit for their work, while not being considered responsible for modifications made by
others.

This License is a kind of “copyleft”, which means that derivative works of the document
must themselves be free in the same sense. It complements the GNU General Public
License, which is a copyleft license designed for free software.

We have designed this License in order to use it for manuals for free software, because
free software needs free documentation: a free program should come with manuals provid-
ing the same freedoms that the software does. But this License is not limited to software
manuals; it can be used for any textual work, regardless of subject matter or whether it
is published as a printed book. We recommend this License principally for works whose
purpose is instruction or reference.

1. APPLICABILITY AND DEFINITIONS

This License applies to any manual or other work, in any medium, that contains a
notice placed by the copyright holder saying it can be distributed under the terms of this
License. Such a notice grants a world-wide, royalty-free license, unlimited in duration,
to use that work under the conditions stated herein. The “Document”, below, refers
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to any such manual or work. Any member of the public is a licensee, and is addressed
as “you”. You accept the license if you copy, modify or distribute the work in a way
requiring permission under copyright law.

A “Modified Version” of the Document means any work containing the Document
or a portion of it, either copied verbatim, or with modifications and/or translated into
another language.

A “Secondary Section” is a named appendix or a front-matter section of the Doc-
ument that deals exclusively with the relationship of the publishers or authors of the
Document to the Document’s overall subject (or to related matters) and contains nothing
that could fall directly within that overall subject. (Thus, if the Document is in part a
textbook of mathematics, a Secondary Section may not explain any mathematics.) The
relationship could be a matter of historical connection with the subject or with related
matters, or of legal, commercial, philosophical, ethical or political position regarding them.

The “Invariant Sections” are certain Secondary Sections whose titles are designated,
as being those of Invariant Sections, in the notice that says that the Document is released
under this License. If a section does not fit the above definition of Secondary then it is
not allowed to be designated as Invariant. The Document may contain zero Invariant
Sections. If the Document does not identify any Invariant Sections then there are none.

The “Cover Texts” are certain short passages of text that are listed, as Front-Cover
Texts or Back-Cover Texts, in the notice that says that the Document is released under
this License. A Front-Cover Text may be at most 5 words, and a Back-Cover Text may
be at most 25 words.

A “Transparent” copy of the Document means a machine-readable copy, represented
in a format whose specification is available to the general public, that is suitable for re-
vising the document straightforwardly with generic text editors or (for images composed
of pixels) generic paint programs or (for drawings) some widely available drawing editor,
and that is suitable for input to text formatters or for automatic translation to a variety of
formats suitable for input to text formatters. A copy made in an otherwise Transparent
file format whose markup, or absence of markup, has been arranged to thwart or dis-
courage subsequent modification by readers is not Transparent. An image format is not
Transparent if used for any substantial amount of text. A copy that is not “Transparent”
is called “Opaque”.

Examples of suitable formats for Transparent copies include plain ASCII without
markup, Texinfo input format, LaTeX input format, SGML or XML using a publicly
available DTD, and standard-conforming simple HTML, PostScript or PDF designed
for human modification. Examples of transparent image formats include PNG, XCF
and JPG. Opaque formats include proprietary formats that can be read and edited only
by proprietary word processors, SGML or XML for which the DTD and/or processing
tools are not generally available, and the machine-generated HTML, PostScript or PDF
produced by some word processors for output purposes only.

The “Title Page” means, for a printed book, the title page itself, plus such following
pages as are needed to hold, legibly, the material this License requires to appear in the
title page. For works in formats which do not have any title page as such, “Title Page”
means the text near the most prominent appearance of the work’s title, preceding the
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beginning of the body of the text.
The “publisher” means any person or entity that distributes copies of the Document

to the public.
A section “Entitled XYZ” means a named subunit of the Document whose title

either is precisely XYZ or contains XYZ in parentheses following text that translates
XYZ in another language. (Here XYZ stands for a specific section name mentioned below,
such as “Acknowledgements”, “Dedications”, “Endorsements”, or “History”.) To
“Preserve the Title” of such a section when you modify the Document means that it
remains a section “Entitled XYZ” according to this definition.

The Document may include Warranty Disclaimers next to the notice which states that
this License applies to the Document. These Warranty Disclaimers are considered to be
included by reference in this License, but only as regards disclaiming warranties: any
other implication that these Warranty Disclaimers may have is void and has no effect on
the meaning of this License.

2. VERBATIM COPYING

You may copy and distribute the Document in any medium, either commercially or
noncommercially, provided that this License, the copyright notices, and the license notice
saying this License applies to the Document are reproduced in all copies, and that you
add no other conditions whatsoever to those of this License. You may not use technical
measures to obstruct or control the reading or further copying of the copies you make
or distribute. However, you may accept compensation in exchange for copies. If you
distribute a large enough number of copies you must also follow the conditions in section 3.

You may also lend copies, under the same conditions stated above, and you may
publicly display copies.

3. COPYING IN QUANTITY

If you publish printed copies (or copies in media that commonly have printed covers)
of the Document, numbering more than 100, and the Document’s license notice requires
Cover Texts, you must enclose the copies in covers that carry, clearly and legibly, all
these Cover Texts: Front-Cover Texts on the front cover, and Back-Cover Texts on the
back cover. Both covers must also clearly and legibly identify you as the publisher of
these copies. The front cover must present the full title with all words of the title equally
prominent and visible. You may add other material on the covers in addition. Copying
with changes limited to the covers, as long as they preserve the title of the Document and
satisfy these conditions, can be treated as verbatim copying in other respects.

If the required texts for either cover are too voluminous to fit legibly, you should put
the first ones listed (as many as fit reasonably) on the actual cover, and continue the rest
onto adjacent pages.

If you publish or distribute Opaque copies of the Document numbering more than 100,
you must either include a machine-readable Transparent copy along with each Opaque
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copy, or state in or with each Opaque copy a computer-network location from which
the general network-using public has access to download using public-standard network
protocols a complete Transparent copy of the Document, free of added material. If you use
the latter option, you must take reasonably prudent steps, when you begin distribution of
Opaque copies in quantity, to ensure that this Transparent copy will remain thus accessible
at the stated location until at least one year after the last time you distribute an Opaque
copy (directly or through your agents or retailers) of that edition to the public.

It is requested, but not required, that you contact the authors of the Document well
before redistributing any large number of copies, to give them a chance to provide you
with an updated version of the Document.

4. MODIFICATIONS

You may copy and distribute a Modified Version of the Document under the conditions
of sections 2 and 3 above, provided that you release the Modified Version under precisely
this License, with the Modified Version filling the role of the Document, thus licensing
distribution and modification of the Modified Version to whoever possesses a copy of it.
In addition, you must do these things in the Modified Version:

A. Use in the Title Page (and on the covers, if any) a title distinct from that of the
Document, and from those of previous versions (which should, if there were any, be
listed in the History section of the Document). You may use the same title as a
previous version if the original publisher of that version gives permission.

B. List on the Title Page, as authors, one or more persons or entities responsible for
authorship of the modifications in the Modified Version, together with at least five
of the principal authors of the Document (all of its principal authors, if it has fewer
than five), unless they release you from this requirement.

C. State on the Title page the name of the publisher of the Modified Version, as the
publisher.

D. Preserve all the copyright notices of the Document.

E. Add an appropriate copyright notice for your modifications adjacent to the other
copyright notices.

F. Include, immediately after the copyright notices, a license notice giving the public
permission to use the Modified Version under the terms of this License, in the form
shown in the Addendum below.

G. Preserve in that license notice the full lists of Invariant Sections and required Cover
Texts given in the Document’s license notice.

H. Include an unaltered copy of this License.
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I. Preserve the section Entitled “History”, Preserve its Title, and add to it an item
stating at least the title, year, new authors, and publisher of the Modified Version as
given on the Title Page. If there is no section Entitled “History” in the Document,
create one stating the title, year, authors, and publisher of the Document as given
on its Title Page, then add an item describing the Modified Version as stated in the
previous sentence.

J. Preserve the network location, if any, given in the Document for public access to
a Transparent copy of the Document, and likewise the network locations given in
the Document for previous versions it was based on. These may be placed in the
“History” section. You may omit a network location for a work that was published
at least four years before the Document itself, or if the original publisher of the
version it refers to gives permission.

K. For any section Entitled “Acknowledgements” or “Dedications”, Preserve the Title
of the section, and preserve in the section all the substance and tone of each of the
contributor acknowledgements and/or dedications given therein.

L. Preserve all the Invariant Sections of the Document, unaltered in their text and in
their titles. Section numbers or the equivalent are not considered part of the section
titles.

M. Delete any section Entitled “Endorsements”. Such a section may not be included
in the Modified Version.

N. Do not retitle any existing section to be Entitled “Endorsements” or to conflict in
title with any Invariant Section.

O. Preserve any Warranty Disclaimers.

If the Modified Version includes new front-matter sections or appendices that qualify
as Secondary Sections and contain no material copied from the Document, you may at
your option designate some or all of these sections as invariant. To do this, add their
titles to the list of Invariant Sections in the Modified Version’s license notice. These titles
must be distinct from any other section titles.

You may add a section Entitled “Endorsements”, provided it contains nothing but
endorsements of your Modified Version by various parties—for example, statements of
peer review or that the text has been approved by an organization as the authoritative
definition of a standard.

You may add a passage of up to five words as a Front-Cover Text, and a passage of up
to 25 words as a Back-Cover Text, to the end of the list of Cover Texts in the Modified
Version. Only one passage of Front-Cover Text and one of Back-Cover Text may be added
by (or through arrangements made by) any one entity. If the Document already includes
a cover text for the same cover, previously added by you or by arrangement made by the
same entity you are acting on behalf of, you may not add another; but you may replace
the old one, on explicit permission from the previous publisher that added the old one.
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The author(s) and publisher(s) of the Document do not by this License give permission
to use their names for publicity for or to assert or imply endorsement of any Modified
Version.

5. COMBINING DOCUMENTS

You may combine the Document with other documents released under this License,
under the terms defined in section 4 above for modified versions, provided that you in-
clude in the combination all of the Invariant Sections of all of the original documents,
unmodified, and list them all as Invariant Sections of your combined work in its license
notice, and that you preserve all their Warranty Disclaimers.

The combined work need only contain one copy of this License, and multiple identical
Invariant Sections may be replaced with a single copy. If there are multiple Invariant
Sections with the same name but different contents, make the title of each such section
unique by adding at the end of it, in parentheses, the name of the original author or
publisher of that section if known, or else a unique number. Make the same adjustment
to the section titles in the list of Invariant Sections in the license notice of the combined
work.

In the combination, you must combine any sections Entitled “History” in the various
original documents, forming one section Entitled “History”; likewise combine any sections
Entitled “Acknowledgements”, and any sections Entitled “Dedications”. You must delete
all sections Entitled “Endorsements”.

6. COLLECTIONS OF DOCUMENTS

You may make a collection consisting of the Document and other documents released
under this License, and replace the individual copies of this License in the various docu-
ments with a single copy that is included in the collection, provided that you follow the
rules of this License for verbatim copying of each of the documents in all other respects.

You may extract a single document from such a collection, and distribute it individ-
ually under this License, provided you insert a copy of this License into the extracted
document, and follow this License in all other respects regarding verbatim copying of
that document.

7. AGGREGATION WITH INDEPENDENT

WORKS

A compilation of the Document or its derivatives with other separate and independent
documents or works, in or on a volume of a storage or distribution medium, is called an
“aggregate” if the copyright resulting from the compilation is not used to limit the legal
rights of the compilation’s users beyond what the individual works permit. When the
Document is included in an aggregate, this License does not apply to the other works in
the aggregate which are not themselves derivative works of the Document.
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If the Cover Text requirement of section 3 is applicable to these copies of the Document,
then if the Document is less than one half of the entire aggregate, the Document’s Cover
Texts may be placed on covers that bracket the Document within the aggregate, or the
electronic equivalent of covers if the Document is in electronic form. Otherwise they must
appear on printed covers that bracket the whole aggregate.

8. TRANSLATION

Translation is considered a kind of modification, so you may distribute translations of
the Document under the terms of section 4. Replacing Invariant Sections with translations
requires special permission from their copyright holders, but you may include translations
of some or all Invariant Sections in addition to the original versions of these Invariant
Sections. You may include a translation of this License, and all the license notices in the
Document, and any Warranty Disclaimers, provided that you also include the original
English version of this License and the original versions of those notices and disclaimers.
In case of a disagreement between the translation and the original version of this License
or a notice or disclaimer, the original version will prevail.

If a section in the Document is Entitled “Acknowledgements”, “Dedications”, or “His-
tory”, the requirement (section 4) to Preserve its Title (section 1) will typically require
changing the actual title.

9. TERMINATION

You may not copy, modify, sublicense, or distribute the Document except as expressly
provided under this License. Any attempt otherwise to copy, modify, sublicense, or dis-
tribute it is void, and will automatically terminate your rights under this License.

However, if you cease all violation of this License, then your license from a particular
copyright holder is reinstated (a) provisionally, unless and until the copyright holder
explicitly and finally terminates your license, and (b) permanently, if the copyright holder
fails to notify you of the violation by some reasonable means prior to 60 days after the
cessation.

Moreover, your license from a particular copyright holder is reinstated permanently if
the copyright holder notifies you of the violation by some reasonable means, this is the
first time you have received notice of violation of this License (for any work) from that
copyright holder, and you cure the violation prior to 30 days after your receipt of the
notice.

Termination of your rights under this section does not terminate the licenses of parties
who have received copies or rights from you under this License. If your rights have been
terminated and not permanently reinstated, receipt of a copy of some or all of the same
material does not give you any rights to use it.

10. FUTURE REVISIONS OF THIS LICENSE
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The Free Software Foundation may publish new, revised versions of the GNU Free
Documentation License from time to time. Such new versions will be similar in spirit to
the present version, but may differ in detail to address new problems or concerns. See
http://www.gnu.org/copyleft/.

Each version of the License is given a distinguishing version number. If the Document
specifies that a particular numbered version of this License “or any later version” applies
to it, you have the option of following the terms and conditions either of that specified
version or of any later version that has been published (not as a draft) by the Free Software
Foundation. If the Document does not specify a version number of this License, you may
choose any version ever published (not as a draft) by the Free Software Foundation. If
the Document specifies that a proxy can decide which future versions of this License can
be used, that proxy’s public statement of acceptance of a version permanently authorizes
you to choose that version for the Document.

11. RELICENSING

“Massive Multiauthor Collaboration Site” (or “MMC Site”) means any World Wide
Web server that publishes copyrightable works and also provides prominent facilities for
anybody to edit those works. A public wiki that anybody can edit is an example of such a
server. A “Massive Multiauthor Collaboration” (or “MMC”) contained in the site means
any set of copyrightable works thus published on the MMC site.

“CC-BY-SA” means the Creative Commons Attribution-Share Alike 3.0 license pub-
lished by Creative Commons Corporation, a not-for-profit corporation with a principal
place of business in San Francisco, California, as well as future copyleft versions of that
license published by that same organization.

“Incorporate” means to publish or republish a Document, in whole or in part, as part
of another Document.

An MMC is “eligible for relicensing” if it is licensed under this License, and if all
works that were first published under this License somewhere other than this MMC, and
subsequently incorporated in whole or in part into the MMC, (1) had no cover texts or
invariant sections, and (2) were thus incorporated prior to November 1, 2008.

The operator of an MMC Site may republish an MMC contained in the site under
CC-BY-SA on the same site at any time before August 1, 2009, provided the MMC is
eligible for relicensing.

ADDENDUM: How to use this License for your

documents

To use this License in a document you have written, include a copy of the License in
the document and put the following copyright and license notices just after the title page:
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Copyright c© YEAR YOUR NAME. Permission is granted to copy, distribute
and/or modify this document under the terms of the GNU Free Documenta-
tion License, Version 1.3 or any later version published by the Free Software
Foundation; with no Invariant Sections, no Front-Cover Texts, and no Back-
Cover Texts. A copy of the license is included in the section entitled “GNU
Free Documentation License”.

If you have Invariant Sections, Front-Cover Texts and Back-Cover Texts, replace the
“with . . . Texts.” line with this:

with the Invariant Sections being LIST THEIR TITLES, with the Front-Cover
Texts being LIST, and with the Back-Cover Texts being LIST.

If you have Invariant Sections without Cover Texts, or some other combination of the
three, merge those two alternatives to suit the situation.

If your document contains nontrivial examples of program code, we recommend re-
leasing these examples in parallel under your choice of free software license, such as the
GNU General Public License, to permit their use in free software.
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