
Appendix B

Symbolic Mathematics with Sage

B.1 Introduction to Sage

What is Sage, and why use it?

Sage is free, open source mathematics software. Lots of software can carry out numerical
calculations, and so can Sage. What makes Sage special is that it can also do symbolic
computation. That is, it is able to manipulate symbols as well as numbers.

If you think about it, you will realize that a lot of the “mathematics” you do in your
statistics courses does not really require much mathematical thinking. Sometimes, all you
are really doing is pushing symbols around. You might have to do something like partially
differentiate a log likelihood function with respect to several variables, set all the expres-
sions to zero and solve the resulting equations. To do this you need to know some rules,
apply them accurately, and pay attention to detail. This kind of “thinking” is something
that computers do a lot better than humans. So particularly for big, complicated tasks,
why not let a computer do the grunt work? Symbolic mathematics software is designed
for this purpose.

There are several commercial products that do symbolic math. The best known are
Mathematica (http://www.wolfram.com) and Maple (http://www.maplesoft.com). There
are also quite a few free, open source alternatives that are developed and maintained by
volunteers. Sage is one of them. What makes Sage really special is that in addition to
its own core capabilities, it incorporates and more or less unifies quite a few of the other
mathematical programs using a single convenient interface. After all, why not? They are
free and open source, so there are no legal obstacles (like copyrights) to prevent the Sage
programmers from sending a particular task to the program that does it best1.

It’s all accomplished with Python scripts. In fact, Sage is largely a set of sophisticated
Python functions. So if you know the Python programming language, you have a huge
head start in learning Sage. If you want to do something in Sage and you can figure out
how to do it in Python, try it. Probably the Python code will work.

1A by-product of this approach is that if you download a copy of Sage, you’ll see that it’s huge. This
is because you’re really downloading six or seven complete applications.

207

http://www.wolfram.com
http://www.maplesoft.com

208 APPENDIX B. SYMBOLIC MATHEMATICS WITH SAGE

Reference Materials

This appendix is intended to be more or less complete. For further information and
documentation, see the Sage project home page at http://www.sagemath.org. Another
useful source of information is the Wikipedia article:

http://en.wikipedia.org/wiki/Sage (mathematics software)

A Guided tour

To follow this tour actively by trying things out as you read about them, you will need
access to Sage, either on your computer or on a server. For more information, see Sec-
tion B.3: Using Sage on your Computer.

The Interface

Sage has a browser interface. So, whether the software resides on a remote server or you
have downloaded and installed your own free copy as described in Section B.3, you type
your input and see your output using an ordinary Web browser like Firefox.

Sage also has a text-only interface, in which the output as well as input is in plain text
format. Many mathematicians who use Sage prefer the simplicity of plain text, and most
Sage documentation uses plan text. But a great strength of Sage, and our main reason
for using it, is that we can manipulate and view the results of calculations using Greek
symbols. This capability depends on the browser interface, so we’ll stick exclusively to
that.

When you first start up Sage, you’ll see the Sage Notebook with a list of your active
Worksheets. You can save your worksheets and go back to them later. It’s great, but
right now you don’t have any worksheets. Your screen looks roughly like this:

Click on “New Worksheet.” A new window opens. It looks like this:

http://www.sagemath.org
http://en.wikipedia.org/wiki/Sage_(mathematics_software)

B.1. INTRODUCTION TO SAGE 209

Type in a nice informative name and click Rename. I called mine Tour1, because we’re
on a guided tour of Sage. Now the browser window looks like something like this:

You definitely want to check the “Typeset” box, so you can see nice Greek letters. Now,
the way it works is that you type (or paste) your commands into the upper box and
Sage writes the output in the box below it. As soon as you click in the upper box, the
underlined word evaluate appears below. It looks like this.

210 APPENDIX B. SYMBOLIC MATHEMATICS WITH SAGE

Now you type your input, which in this case is numerical as well as mathematically
profound. Pressing the Enter (or Return) key just lets you type another line of input.
To execute the command(s), click evaluate. An alternative to clicking evaluate is to hold
down the Shift key and press Enter. Here is the result.

Notice that now there’s another box for your next set of input. Here’s a variation on
1 + 1 = 2.

In the first case, Sage was doing integer arithmetic. In the second case, part of the input
was interpreted as real-valued because it had a decimal point. Integer plus real is real, so
Sage converted the 1 to 1.0 and did a floating-point calculation. This kind of “dynamic
typing” is a virtue that Sage shares with Python. Sage is very good at integer arithmetic.
In the next example, everything following # is a comment.

B.1. INTRODUCTION TO SAGE 211

For comparison, this is how the calculation goes in R.

> prod(1:100)/(prod(1:60)*prod(1:30)*prod(1:10))

> prod(1:100)/(prod(1:60)*prod(1:30)*prod(1:10))

[1] 1.165214e+37

The whole thing is a floating point calculation, and R returns the answer in an imprecise
scientific notation.

Exact integer arithmetic is nice, but it’s not why we’re using Sage. Let’s calculate

the third derivative ∂3

∂x3

(
e4x

1+e4x

)
. This is something you could do by hand, but would you

want to?

212 APPENDIX B. SYMBOLIC MATHEMATICS WITH SAGE

You can see how the worksheet grows. At any time, you can click on the Save button if
you like what you have. You can also print it just as you would any other Web page.

You can edit the contents of an input box by clicking in the box. When you do,
evaluate appears beneath the box. Click on it, and the code in the box is executed. You
can re-do all the calculations in order by choosing Evaluate All from the Action menu
(upper left). When you quit Sage and come back to a worksheet later, you may want
to Evaluate All so all the objects you’ve defined – like f(x) above – are available. When
you’re done (for the present), click the Save & Quit button. If you click Discard & Quit,
all the material since the last Save will be lost; sometimes this is what you want. When
you Save & Quit, you see something like this:

B.1. INTRODUCTION TO SAGE 213

Click on Sign out (upper right) and you’re done. Next time you run Sage the worksheet
will be available. You can double-click on it to work on it some more, or start a new one.

The guided tour will resume now, but without continuing to illustrate the interface.
Instead, the input will be given in a typewriter typeface like this, and then the output
will given, usually in typeset form2.

Limits, Integrals and Derivatives (Plus a little plotting and solving)

Now we return to the Tour1 worksheet and choose Evaluate All from the Action menu.
Then

f(x)

and clicking on evaluate yields

e(4 x)

(e(4 x)+1)

This really looks like a cumulative distribution function. Is it? Let’s try lim
x→−∞

f(x).

limit(f(x),x=-Infinity);limit(f(x),x=Infinity)

evaluate

0
1

Okay! So it’s a distribution function. Notice the two commands on the same line, sep-
arated by a semi-colon. Without the semi-colon, only the last item is displayed. An
alternative to the semi-colon is the show command:

show(limit(f(x),x=-Infinity))

show(limit(f(x),x=Infinity))

evaluate

0

1

The (single) derivative of f(x) is a density.

derivative(f(x),x)

2In case you are interested in how this works, Sage uses the open source LATEX typesetting system
to produce output in mathematical script. The LATEX code produced by Sage is available. So, in the
Tour1 worksheet, if I enter f(x) in the input box, I get nice-looking mathematical output (see above).
Then if I type print(latex()) in the next input box, I get the LATEX code for the preceding expression.
Since this book is written in LATEX, I can directly paste in the machine-generated LATEX code without
having to typeset it myself. My code might be a bit cleaner and more human-readable, but this is very
convenient.

214 APPENDIX B. SYMBOLIC MATHEMATICS WITH SAGE

evaluate

4 e(4 x)

(e(4 x)+1)
− 4 e(8 x)

(e(4 x)+1)
2

Here is another way to get the same thing.

Another way

f(x).derivative(x)

evaluate

4 e(4 x)

e(4 x)+1
− 4 e(8 x)

(e(4 x)+1)
2

This second version of the syntax is more like Python, and makes it clear that the deriva-
tive is an attribute, or method associated with the object f(x). Many tasks can be re-
quested either way, but frequently only the second form (object followed by a dot, followed
by the attribute) is available. It is preferable from a programming perspective.

The expression for f ′(x) could and should be simplified. Sage has a simplify com-
mand that does nothing in this case and in many others, because simplify is automati-
cally applied before any expression is displayed. But factor does the trick nicely.

g(x) = factor(f(x).derivative(x)); g(x)

evaluate

4 e(4 x)

(e(4 x)+1)
2

Want to see what it looks like? Plotting functions is straightforward.

plot(g(x),x,-5,5)

evaluate

-4 -2 2 4

0.2

0.4

0.6

0.8

1

B.1. INTRODUCTION TO SAGE 215

It’s easy to add labels and so on to make the plot look nicer, but that’s not the point
here. The objective was just to take a quick look to see what’s going on.

Actually, the picture is a bit surprising. It looks like the density is symmetric around
x = 0, which would make the median and the mean both equal to zero. But the formula
for g(x) above does not suggest symmetry. Well, it’s easy to verify that the median is
zero.

f(0)

evaluate

1
2

How about symmetry? The first try is unsuccessful, because the answer is not obviously
zero (though it is). But then factor works.

g(x)-g(-x)

evaluate

4 e(4 x)

(e(4 x)+1)
2 − 4 e(−4 x)

(e(−4 x)+1)
2

factor(g(x)-g(-x))

evaluate

0

Is this right? Yes. To see it, just multiply numerator and denominator of g(−x) by e8x.
Sage does not show its work, but it’s a lot less likely to make a mistake than you are. And
even if you’re the kind of person who likes to prove everything, Sage is handy because it
can tell you what you should try to prove.

Clearly, the number 4 in f(x) is arbitrary, and could be any positive number. So we’ll
replace 4 with θ. Now Sage, like most software, will usually complain if you try to use
variables that have not been defined yet. So we have to declare θ as a symbolic variable,
using a var statement. The variable x is the only symbolic variable that does not have
to be declared. It comes pre-defined as symbolic3.

var(’theta’)

F(x) = exp(theta*x)/(1+exp(theta*x)); F(x)

evaluate

e(θx)

e(θx)+1

Is F (x) a distribution function? Let’s see.

3In Mathematica, all variables are symbolic by default unless they are assigned a numeric value. I
wish Sage did this too, but I’m not complaining. Sage has other strengths that Mathematica lacks.

216 APPENDIX B. SYMBOLIC MATHEMATICS WITH SAGE

limit(F(x),x=-Infinity)

evaluate

Traceback (click to the left of this block for traceback)

...

Is theta positive, negative, or zero?

This is how error messages are displayed. You can click on the blank space to the
left of the error message for more information, but in this case it’s unnecessary. Sage

asks a very good question about θ. Well, actually, the question is asked by the excellent
open-source calculus program Maxima, and Sage relays the question. In Maxima, you could
answer the question interactively through the console and the calculation would proceed,
but this capability is not available in Sage. The necessary information can be provided
non-interactively. Go back into the box and edit the text.

assume(theta>0)

F(x).limit(x=-oo); F(x).limit(x=oo)

evaluate
0
1

Notice how two small letter o characters can be used instead of typing out Infinity. Now
we’ll differentiate F (x) to get the density. It will be called f(x), and that will replace the
existing definition of f(x).

f(x) = factor(F(x).derivative(x)); f(x)

evaluate

θe(θx)

(e(θx)+1)
2

Of course this density is also symmetric about zero, just like the special case with θ = 4.
It’s easy to verify.

factor(f(x)-f(-x))

evaluate
0

Symmetry of the density about zero implies that the expected value is zero, because the
expected value is the physical balance point. Direct calculation confirms this.

Expected value

integrate(x*f(x),x,-oo,oo)

evaluate
0

B.1. INTRODUCTION TO SAGE 217

It would be nice to calculate the variance too, but the variance emerges in terms of an
obscure function called the polylog. The calculation will not be shown.

This distribution (actually, a version of the logistic distribution) is a good source of
cute homework problems because the parameter θ has to be estimated numerically. So,
for the benefit of some lucky future students, let’s figure out how to simulate a random
sample from F (x). First, we’ll add a location parameter, because two-parameter problems
are more fun. The following definition rubs out the previous F (x).

Add a location parameter

var(’mu’)

F(x) = exp(theta*(x-mu))/(1+exp(theta*(x-mu))); F(x)

evaluate

e(−(µ−x)θ)

e(−(µ−x)θ)+1

I can’t control the order of variables in Sage output. It looks alphabetical, with the m in
mu coming before x.

It’s well known that if U is a random variable with a uniform density on the interval
(0, 1) and F (x) is the cumulative distribution function of a continuous random variable,
then if you transform U with the inverse of F (x), the result is a random variable with
distribution function F (x). Symbolically,

F−1(U) = X ∼ F (x)

Of course this is something you could do by hand, but it’s so fast and easy with Sage:

Inverse of cdf

var(’X U’)

solve(F(X)==U,X) # Solve F(X)=U for X

evaluate[
X =

µθ+log(− U
U−1)

θ

]
It might be a bit better to write this as

X = µ+
1

θ
log

(
U

1− U

)
,

but what Sage gives us is quite nice. A few technical comments are in order. First, the
double equal sign in F(X)==U indicates a logical relation. For example,

1==4

evaluate

False

218 APPENDIX B. SYMBOLIC MATHEMATICS WITH SAGE

Second, the solve returns a list of solutions. Sage uses brackets to indicate a list. In this
case, there is only one solution so the list contains only one element. It’s element zero in
the list, not element one. Like Python, Sage starts all lists and array indices with element
zero. It’s a hard-core computer science feature, and mildly irritating for the ordinary user.
Here’s how one can extract element zero from the list of solutions.

solve(F(X)==U,X)[0]

evaluate

X =
µθ+log(− U

U−1)
θ

The equals sign in that last expression is actually a double equals. If you’re going to use
something like that solution in later calculations, it can matter. In Sage, the underscore
character always refers to the output of the preceding command. It’s quite handy. The
print function means “Please don’t typeset it.”

print(_)

evaluate

X == (mu*theta + log(-U/(U - 1)))/theta

Just for completeness, here’s how that inverse function could be used to simulate data
from F (x) in R.

> n = 20; mu = -2; theta = 4

> U = runif(n)

> X = mu + log(U/(1-U))/theta; X

[1] -1.994528 -2.455775 -2.389822 -2.996261 -1.477381 -2.422011 -1.855653

[8] -2.855570 -2.358733 -1.712423 -2.075641 -1.908347 -2.018621 -2.019441

[15] -1.956178 -2.015682 -2.846583 -1.727180 -1.726458 -2.207717

Random number generation is available from within Sage too, and in fact R is one of
the programs incorporated in Sage, but to me it’s more convenient to use R directly –
probably just because I’m used to it.

You have to declare most variables (like θ, µ, X, U and so on) before you can use them,
but there are exceptions. The pre-defined symbolic variable x is one. Here is another.

pi

evaluate

π

Is that really the ratio of a circle’s circumference to its diameter, or just the Greek letter?

B.1. INTRODUCTION TO SAGE 219

cos(pi)

evaluate

−1

That’s pretty promising. Evaluate it numerically.

n(pi) # Could also say pi.n()

evaluate

3 : 14159265358979

gamma(1/2)

evaluate
√
π

So it’s really π. Let’s try using pi in the normal distribution.

Normal density

var(’mu, sigma’)

assume(sigma>0)

f(x) = 1/(sigma*sqrt(2*pi)) * exp(-(x-mu)^2/(2*sigma^2)); f(x)

evaluate

√
2e

(
− (µ−x)2

2σ2

)
2
√
πσ

Integrate the density

integrate(f(x),x,-oo,oo)

evaluate

1

Calculate the expected value.

E(X)

integrate(x*f(x),x,-oo,oo)

evaluate

µ

Obtain the variance directly.

E(X-mu)^2

integrate((x-mu)^2*f(x),x,-oo,oo)

evaluate

220 APPENDIX B. SYMBOLIC MATHEMATICS WITH SAGE

σ2

Calculate the moment-generating function and use it to get E(X4).

Moment-generating function M(t) = E(e^{Xt})

var(’t’)

M(t) = integrate(exp(x*t)*f(x),x,-oo,oo); M(t)

evaluate

e(
1
2
σ2t2+µt)

Differentiate four times, set t=0

derivative(M(t),t,4)(t=0)

evaluate

µ4 + 6µ2σ2 + 3σ4

Discrete distributions are easy to work with, too. In the geometric distribution, a
coin with Pr{Head} = θ is tossed repeatedly, and X is the number of tosses required to
get the first head. Notice that two separate assume statements are required to establish
0 < θ < 1. All the commands work as expected, but only the output from the last one is
displayed.

Geometric

var(’theta’)

assume(0<theta); assume(theta<1)

p(x) = theta*(1-theta)^(x-1); p(x)

p(x).sum(x,1,oo) # Sum the pmf

(x*p(x)).sum(x,1,oo) # Expected value

((x-1/theta)^2*p(x)).sum(x,1,oo) # Variance

evaluate

− θ−1
θ2

In the next example, the parameter λ of the Poisson distribution must be treated specially
because it has a specific advanced programming meaning and the word is reserved. It
can still be used as a symbol if it is assigned to a variable and used with an underscore
as illustrated. Lambdas with subscripts present no problems. In fact, lambda can be
viewed as a λ with an invisible subscript.

Poisson - lambda has a special meaning. But if you assign

it to a variable and define it WITH AN UNDERSCORE you can

still use it as a symbol.

L = var(’lambda_’)

p(x) = exp(-L) * L^x / factorial(x) ; p(x)

B.1. INTRODUCTION TO SAGE 221

evaluate

λxe(−λ)

x!

p(x).sum(x,0,oo) # Sums nicely to one

(x*p(x)).sum(x,0,oo) # Expected value

evaluate

λ

Here is some sample code for the Gamma distribution. Note the use of full simplify

on ratios of gamma functions.

Gamma

var(’alpha beta’)

assume(alpha>0); assume(beta>0)

assume(alpha,’noninteger’); assume(beta,’noninteger’)

f(x) = 1/(beta^alpha*gamma(alpha)) * exp(-x/beta) * x^(alpha-1)

integrate(f(x),x,0,oo) # Equals one

integrate(x*f(x),x,0,oo) # E(X)

evaluate

βΓ(α+1)
Γ(α)

_.full_simplify() # Underscore refers to the preceding expression.

evaluate

αβ

Now for the the moment-generating function. When I first tried it Sage asked “Is
beta*t-1 positive, negative, or zero?” Because the moment-generating function
only needs be defined in a neighbourhood of zero. I said assume(beta*t<1), which is
equivalent to t < 1

β
. In this way, Sage makes us specify the radius of convergence of the

moment-generating function, but only when the radius of convergence is not the whole
real line. Sage may be just a calculator, but it’s a very smart calculator. It helps keep us
mathematically honest. You have to love it.

Moment-generating function

var(’t’); assume(beta*t<1)

M(t) = integrate(exp(x*t)*f(x),x,0,oo).full_simplify(); M(t)

derivative(M(t),t,2)(t=0).full_simplify() # Lovely

evaluate

(α2 + α)β2

222 APPENDIX B. SYMBOLIC MATHEMATICS WITH SAGE

Here is some sample code for the Binomial distribution. Only the input is given.

Binomial

var(’n theta’)

assume(n,’integer’); assume(n>-1)

assume(0<theta); assume(theta<1)

p(x) = factorial(n)/(factorial(x)*factorial(n-x)) * theta^x * (1-theta)^(n-x)

p(x).sum(x,0,n) # Adds to one

(x*p(x)).sum(x,0,n).full_simplify() # E(X)

(x^2*p(x)).sum(x,0,n).full_simplify() # E(X^2)

((x-n*theta)^2*p(x)).sum(x,0,n).full_simplify() # cov(X) directly

Maxima and Minima in Several Variables (Maximum Likelihood)

The standard way to derive maximum likelihood estimators is to partially differentiate the
log likelihood with respect to each parameter, set the resulting expressions to zero, and
solve for the parameters. This task is routine with Sage, except for one part. The “one
part” is actually a nasty clerical chore that a symbolic math program like Sage should be
able to do for us. Writing the likelihood function as

L(θ) =
n∏
i=1

f(xi|θ),

the task is to carry out the multiplication, using the fact that multiplication is addition of
exponents. The result is often an expression in the parameter θ and a a set of (sufficient)
statistics – that is, functions of the sample data that could be calculated without knowing
any of the parameters. I’m not insisting this step cannot be done with Sage, only that
I’ve tried hard, I can’t do it with Mathematica either, and other knowledgeable users4

can’t seem to make Sage do it either.

The Univariate Normal Distribution For the normal distribution, one version of
the calculation goes like this.

L(µ, σ) =
n∏
i=1

(
=

1

σ
√

2π
e−

(xi−µ)
2

2σ2

)
=

1

σn(2π)n/2
e−

1
2σ2

∑n
i=1(xi−µ)2

=
1

σn(2π)n/2
e−

1
2σ2

∑n
i=1(x2i−2xiµ+µ2)

=
1

σn(2π)n/2
e−

1
2σ2

(
∑n
i=1 x

2
i−2µ

∑n
i=1 xi+nµ

2)

4Somebody is a statistician in New Zealand who uses Sage in her classes. I have not asked her directly,
but in the material she posts online she simplifies likelihood functions by hand, just as I am forced to do
here.

B.1. INTRODUCTION TO SAGE 223

This is not actually the best way to do the calculation. Better is to add and subtract x in
the exponent. But this way requires a bit less insight (or experience), and leads to a more
complicated problem that illustrates Sage’s power. Continuing, the minus log likelihood
function is

−`(µ, σ) = n log σ +
n

2
log 2π +

1

2σ2

((
n∑
i=1

x2
i

)
− 2µ

(
n∑
i=1

xi

)
+ nµ2

)
.

Notice how the likelihood has been simplified to an expression that depends on the sample
data only through a two-dimensional sufficient statistic5. This is what we need to minimize
over the pair (µ, σ). In the Sage code,

∑n
i=1 xi will be denoted by s1 and

∑n
i=1 x

2
i will be

denoted by s2.

Minus Log Likelihood for univariate normal

s1 is sum of x, s2 is sum of x^2

var(’mu sigma s1 s2 n’)

mLL = n*log(sigma) + n/2 * log(2*pi) + 1/(2*sigma^2) * (s2 - 2*mu*s1 + n*mu^2)

mLL

evaluate

1
2
n log (2 π) + n log (σ) + µ2n−2µs1+s2

2σ2

Now partially differentiate the minus log likelihood with respect to µ and σ, set the
derivates to zero, and solve.

d1 = derivative(mLL,mu); d2 = derivative(mLL,sigma)

eq = [d1==0,d2==0]; eq

evaluate[
µn−s1
σ2 = 0, n

σ
− µ2n−2µs1+s2

σ3 = 0
]

Solution is a list of lists

sol1 = solve(eq,[mu,sigma]); sol1

evaluate[[
µ = s1

n
, σ = −

√
ns2−s21
n

]
,

[
µ = s1

n
, σ =

√
ns2−s21
n

]]
Notice that there is only one solution for µ; it’s µ = s1

n
= x. But there are two solutions

for σ; they simplify to plus and minus the sample standard deviation (with n rather than
n− 1 in the denominator).

Of course we discard the negative solution because it’s outside the parameter space,
but this illustrates a feature of Sage that can be easy to forget. It doesn’t know as much

5The fact that the sufficient statistic has the same dimension as the parameter suggests that we will
live happily ever after.

224 APPENDIX B. SYMBOLIC MATHEMATICS WITH SAGE

about the problem as you do. Not only does it not know that variances can’t be negative,
it does not know that the quantity under the square root sign has to be positive, or even
that all the symbols represent real numbers rather than complex numbers. I tried playing
around with assume, but to no avail. There were always two solutions. It’s easy enough
to get the one we want. It’s element one in the list of lists – the second one.

Extract the second list of solutions

sol1[1]

evaluate[
µ = s1

n
, σ =

√
ns2−s21
n

]
Later, it will be handy to evaluate the parameter vector at the vector of MLEs. So,
this time, get the solution in the form of a dictionary (exactly like a Python dictionary).
Actually, solve returns a list of dictionaries, and we want the second one.

This time, get the solutions in the form of a LIST of dictionaries.

Save item one, the second one. (Indices begin with zero, not one.)

mle = solve(eq,[mu,sigma],solution_dict=True)[1]; mle

evaluate{
σ :

√
ns2−s21
n

, µ : s1
n

}

Refer to the elements of a dictionary using the keys.

mle[mu] # MLE of mu

evaluate

s1
n

For this particular case, it’s not hard to show by elementary methods that the likeli-
hood function attains its maximum at the sample mean and standard deviation, rather
than a minimum or saddle point. But the general method is of interest. For a function
g(θ1, . . . , θt), define the Hessian as the t× t matrix of mixed partial derivatives whose i, j
element is

∂2g

∂θi∂θj
. (B.1)

If the eigenvalues of the Hessian are all positive at a critical point, the function is concave
up there. If they are all negative, it’s concave down. If some are positive and some are
negative, it’s a saddle point.

In Sage, functions have a built-in Hessian attribute, but unfortunately, it applies
to all symbolic variables. So mLL.hessian() returns a 5 × 5 matrix, corresponding to
(µ, n, s1, s2, σ), in alphabetical order. And mLL.hessian([mu,sigma]) (which is natural,
and similar to expressions that work with gradients and Jacobians) yields TypeError:

B.1. INTRODUCTION TO SAGE 225

hessian() takes no arguments (1 given). So we’ll construct the Hessian from scratch.
Start by making an empty matrix that will be filled with partial derivates. It’s critical
that the matrix be of the right type (symbolic). Also, note that a lot of burdensome High
School algebra is avoided by the quiet use of factor in the calculations below.

H will be hessian of MINUS log likelihood

H = identity_matrix(SR,2); H # SR is the Symbolic Ring

evaluate(
1 0
0 1

)

Fill it with mixed partial derivatives

H[0,0] = derivative(mLL,mu,2); H[0,1] = derivative(mLL,[mu,sigma])

H[1,0] = H[0,1] ; H[1,1] = derivative(mLL,sigma,2)

H = factor(H); H

evaluate(
n
σ2 −2 (µn−s1)

σ3

−2 (µn−s1)
σ3

(3µ2n−nσ2−6µs1+3 s2)
σ4

)

Evaluate at mle

hmle = factor(H(mle)); hmle

evaluate(
n3

(ns2−s21)
0

0 2 n3

(ns2−s21)

)

Function is concave up at critical point iff all eigenvalues > 0 there.

hmle.eigenvalues()

evaluate[
n3

(ns2−s21)
, 2 n3

(ns2−s21)

]
The denominator of both eigenvalues equals

n

n∑
i=1

x2
i −

(
n∑
i=1

xi

)2

= n
n∑
i=1

(xi − x)2,

so both eigenvalues are positive and the minus log likelihood is concave up at the MLE.

The Multinomial Distribution The multinomial distribution is based on a statistical
experiment in which one of k outcomes occurs, with probability θj, j = 1, . . . , k, where

226 APPENDIX B. SYMBOLIC MATHEMATICS WITH SAGE

∑k
j=1 θj = 1. For example, consumers might be asked to smell six perfumes, and indicate

which one they like most. The probability of preferring perfume j is θj, for j = 1, . . . , 6.
The likelihood function may be written in terms of multinomial random vectors made

up of k indicators random variables: For case i, xij = 1 if event j occurs, and zero

otherwise.
∑k

j=1 xij = 1. The likelihood function is

L(θ) =
n∏
i=1

θ
xi,1
1 θ

xi,2
2 · · · θxi,kk

= θ
∑n
i=1 xi,1

1 θ
∑n
i=1 xi,2

2 · · · θ
∑n
i=1 xi,k

k .

Using xj to represent the sum
∑n

i=1 xi,j, the likelihood may be expressed in a non-
redundant way in terms of k − 1 parameters and k − 1 sufficient statistics, as follows:

L(θ) = θx11 θ
x2
2 · · · θ

xk
k

= θx11 · · · θ
xk−1

k−1

(
1−

k−1∑
j=1

θj

)n−
∑k−1
j=1 xj

.

Here’s an example with k = 6 (six perfumes).

Multinomial Maximum likelihood - 6 categories

var(’theta1 theta2 theta3 theta4 theta5 x1 x2 x3 x4 x5 n’)

theta = [theta1, theta2, theta3, theta4, theta5]

LL = x1*log(theta1) + x2*log(theta2) + x3*log(theta3) +

x4*log(theta4) + x5*log(theta5) +

(n-x1-x2-x3-x4-x5)*log(1-theta1-theta2-theta3-theta4-theta5)

LL

evaluate

(n− x1 − x2 − x3 − x4 − x5) log (−θ1 − θ2 − θ3 − θ4 − θ5 + 1) + x1 log (θ1) + x2 log (θ2) +
x3 log (θ3) + x4 log (θ4) + x5 log (θ5)

Instead of calculating all five partial derivatives, it’s easier to request the gradient – which
is the same thing. Then we loop through the element of the gradient list, setting each
derivative to zero, displaying the equation, and appending it to a list of equations that
need to be solved. Notice the use of the colon (:) and indentation for looping. Sage shares
this syntax with Python.

Gradient is zero at MLE. It’s a tuple, not a list.

gr = LL.gradient(theta)

Setting the derivatives to zero ...

eq = [] # Start with empty list

for a in gr :
equation = (a==0)

show(equation) # Display the equation

eq.append(equation) # Append equation to list eq.

B.1. INTRODUCTION TO SAGE 227

evaluate

n−x1−x2−x3−x4−x5
θ1+θ2+θ3+θ4+θ5−1

+ x1
θ1

= 0

n−x1−x2−x3−x4−x5
θ1+θ2+θ3+θ4+θ5−1

+ x2
θ2

= 0

n−x1−x2−x3−x4−x5
θ1+θ2+θ3+θ4+θ5−1

+ x3
θ3

= 0

n−x1−x2−x3−x4−x5
θ1+θ2+θ3+θ4+θ5−1

+ x4
θ4

= 0

n−x1−x2−x3−x4−x5
θ1+θ2+θ3+θ4+θ5−1

+ x5
θ5

= 0

Now we will solve for θ1, . . . , θ5. While it’s true that the Sage calculation is specific
to k = 6 categories, the list of equations to solve makes the pattern clear, and points the
way to a general solution. Here is the specific solution:

Get the solutions in the form of a LIST of dictionaries.

Dictionary items are not in any particular order.

Save item zero, the first dictionary.

ThetaHat = solve(eq,theta,solution_dict=True)[0]

ThetaHat # The mean (vector)

evaluate{
θ3 : x3

n
, θ2 : x2

n
, θ1 : x1

n
, θ5 : x5

n
, θ4 : x4

n

}
So for j = 1, . . . , 5, the MLE is θ̂j =

∑n
i=1 xij
n

= xj, or the sample proportion. There’s
little doubt that this is really where the likelihood function achieves its maximum, and
not a minimum or saddle point. But it’s instructive to check. Here is the Hessian of the
minus log likelihood.

Is it really the maximum?

H will be hessian of MINUS log likelihood

H = identity_matrix(SR,5) # SR is the Symbolic Ring

for i in interval(0,4) :
for j in interval(0,i) :

H[i,j] = derivative(-LL,[theta[i],theta[j]])

H[j,i] = H[i,j] # It’s symmetric

H

evaluate



n−x1−x2−x3−x4−x5
(θ1+θ2+θ3+θ4+θ5−1)2

+
x1
θ21

n−x1−x2−x3−x4−x5
(θ1+θ2+θ3+θ4+θ5−1)2

n−x1−x2−x3−x4−x5
(θ1+θ2+θ3+θ4+θ5−1)2

n−x1−x2−x3−x4−x5
(θ1+θ2+θ3+θ4+θ5−1)2

n−x1−x2−x3−x4−x5
(θ1+θ2+θ3+θ4+θ5−1)2

n−x1−x2−x3−x4−x5
(θ1+θ2+θ3+θ4+θ5−1)2

n−x1−x2−x3−x4−x5
(θ1+θ2+θ3+θ4+θ5−1)2

+
x2
θ22

n−x1−x2−x3−x4−x5
(θ1+θ2+θ3+θ4+θ5−1)2

n−x1−x2−x3−x4−x5
(θ1+θ2+θ3+θ4+θ5−1)2

n−x1−x2−x3−x4−x5
(θ1+θ2+θ3+θ4+θ5−1)2

n−x1−x2−x3−x4−x5
(θ1+θ2+θ3+θ4+θ5−1)2

n−x1−x2−x3−x4−x5
(θ1+θ2+θ3+θ4+θ5−1)2

n−x1−x2−x3−x4−x5
(θ1+θ2+θ3+θ4+θ5−1)2

+
x3
θ23

n−x1−x2−x3−x4−x5
(θ1+θ2+θ3+θ4+θ5−1)2

n−x1−x2−x3−x4−x5
(θ1+θ2+θ3+θ4+θ5−1)2

n−x1−x2−x3−x4−x5
(θ1+θ2+θ3+θ4+θ5−1)2

n−x1−x2−x3−x4−x5
(θ1+θ2+θ3+θ4+θ5−1)2

n−x1−x2−x3−x4−x5
(θ1+θ2+θ3+θ4+θ5−1)2

n−x1−x2−x3−x4−x5
(θ1+θ2+θ3+θ4+θ5−1)2

+
x4
θ24

n−x1−x2−x3−x4−x5
(θ1+θ2+θ3+θ4+θ5−1)2

n−x1−x2−x3−x4−x5
(θ1+θ2+θ3+θ4+θ5−1)2

n−x1−x2−x3−x4−x5
(θ1+θ2+θ3+θ4+θ5−1)2

n−x1−x2−x3−x4−x5
(θ1+θ2+θ3+θ4+θ5−1)2

n−x1−x2−x3−x4−x5
(θ1+θ2+θ3+θ4+θ5−1)2

n−x1−x2−x3−x4−x5
(θ1+θ2+θ3+θ4+θ5−1)2

+
x5
θ25



228 APPENDIX B. SYMBOLIC MATHEMATICS WITH SAGE

All its eigenvalues should be positive at the critical point where the derivates simultane-
ously equal zero.

Evaluate at critical point

Hmle = factor(H(ThetaHat)); Hmle

evaluate


(n−x2−x3−x4−x5)n2

(n−x1−x2−x3−x4−x5)x1
n2

n−x1−x2−x3−x4−x5
n2

n−x1−x2−x3−x4−x5
n2

n−x1−x2−x3−x4−x5
n2

n−x1−x2−x3−x4−x5
n2

n−x1−x2−x3−x4−x5
(n−x1−x3−x4−x5)n2

(n−x1−x2−x3−x4−x5)x2
n2

n−x1−x2−x3−x4−x5
n2

n−x1−x2−x3−x4−x5
n2

n−x1−x2−x3−x4−x5
n2

n−x1−x2−x3−x4−x5
n2

n−x1−x2−x3−x4−x5
(n−x1−x2−x4−x5)n2

(n−x1−x2−x3−x4−x5)x3
n2

n−x1−x2−x3−x4−x5
n2

n−x1−x2−x3−x4−x5
n2

n−x1−x2−x3−x4−x5
n2

n−x1−x2−x3−x4−x5
n2

n−x1−x2−x3−x4−x5
(n−x1−x2−x3−x5)n2

(n−x1−x2−x3−x4−x5)x4
n2

n−x1−x2−x3−x4−x5
n2

n−x1−x2−x3−x4−x5
n2

n−x1−x2−x3−x4−x5
n2

n−x1−x2−x3−x4−x5
n2

n−x1−x2−x3−x4−x5
(n−x1−x2−x3−x4)n2

(n−x1−x2−x3−x4−x5)x5



Concave up iff all eigenvalues > 0

Hmle.eigenvalues()

evaluate

Traceback (click to the left of this block for traceback)

...

ArithmeticError: could not determine eigenvalues exactly using symbolic

matrices; try using a different type of matrix via self.change_ring(),

if possible

It seems that Sage cannot solve for the eigenvalues symbolically. A numerical solution
for a particular set of sample data would be routine. But there is another way out. A
real symmetric matrix has all positive eigenvalues if and only if it’s positive definite. And
Sylvester’s Criterion6 is a necessary and sufficient condition for a real symmetric matrix
to be positive definite. A minor of a matrix is the determinant of a square sub-matrix that
is formed by deleting selected rows and columns from the original matrix. The principal
minors of a square matrix are the determinants of the upper left 1× 1 matrix, the upper
left 2× 2 matrix, and so on. Sylvester’s Criterion says that the matrix is positive definite
if and only if all the principal minors are positive.

Here, there are five determinants to evaluate, one of which is just the upper left matrix
element. We’ll do it in a loop. The submatrix(h,i,j,k) attribute returns the submatrix
starting in row h and column i, consisting of j rows and k columns. As usual, index
numbering starts with zero. For full documentation, try something like Hmle.submatrix?

Hmle.submatrix(0,0,2,2) # Upper left 2x2, just to see

evaluate

6The Wikipedia has a nice article on this, including a formal proof. See
http://www.en.wikipedia.org/.

http://www.en.wikipedia.org/wiki/Sylvester's_criterion

B.1. INTRODUCTION TO SAGE 229

(
(n−x2−x3−x4−x5)n2

(n−x1−x2−x3−x4−x5)x1
n2

n−x1−x2−x3−x4−x5
n2

n−x1−x2−x3−x4−x5
(n−x1−x3−x4−x5)n2

(n−x1−x2−x3−x4−x5)x2

)

Calculate and display determinants

for j in interval(1,5) :
show(Hmle.submatrix(0,0,j,j).determinant().factor())

evaluate

(n−x2−x3−x4−x5)n2

(n−x1−x2−x3−x4−x5)x1

(n−x3−x4−x5)n4

(n−x1−x2−x3−x4−x5)x1x2

(n−x4−x5)n6

(n−x1−x2−x3−x4−x5)x1x2x3

(n−x5)n8

(n−x1−x2−x3−x4−x5)x1x2x3x4

n11

(n−x1−x2−x3−x4−x5)x1x2x3x4x5

Assuming the sample size is large enough so that there’s at least one observation in each
category, these quantities are obviously all positive. You can also see that while Sage

performs calculations that are very specific to the problem at hand, the answers can
reveal regular patters that could be exploited in something like a proof by induction. And
the effort involved is tiny, compared to doing it by hand.

Incidentally, the submatrix function can be used to obtain Hessians a bit more easily.
Recall that Sage functions have a hessian attribute, but it’s calculated with respect to
all the variables, which is never what you want for likelihood calculations. But the rows
and columns are in alphabetical order, which in the present case is n, θ1, . . . , θ5, x1, . . . , x5.
So the 5× 5 Hessian we want is easy to extract. Check and see if it’s what we calculated
earlier in a double loop.

-LL.hessian().submatrix(1,1,5,5) == H

evaluate

True

Ho Ho!

Fisher Information

There are many places in mathematical Statistics where Sage can save a lot of tedious
calculation. One of these is in conjunction with Fisher Information (See Appendix A
for some discussion). For a model with parameter vector θ = (θ1, . . . , θt)

′, the Fisher

230 APPENDIX B. SYMBOLIC MATHEMATICS WITH SAGE

information matrix is a t× t matrix I(θ) whose (i, j) element is

−E
(

∂2

∂θi∂θj
log f(X|θ)

)
.

This is the information about θ in a single observation. The information in n independent
and identically distributed observations is n I(θ). Under some regularity conditions that
amount to smoothness of the functions involved, the vector of MLEs is approximately
multivariate normal for large samples, with mean θ and covariance matrix (n I(θ))−1.
This is a source of large-sample tests and confidence intervals.

The Univariate Normal Distribution Comparing the formula for the Fisher Infor-
mation to Expression (B.1), it is clear that the Fisher information is just the expected
value of the Hessian of the minus log density7. We’ll start by calculating the Hessian.
The last line says “Take minus the log of f(X), calculate the Hessian, extract the 2 × 2
matrix with upper left entry (1, 1), and factor it. Then put the result in h; display h.” In
this case and many others, factoring yields a lot of simplification.

Normal

var(’mu, sigma, X, n’); assume(sigma>0)

f(x) = 1/(sigma*sqrt(2*pi)) * exp(-(x-mu)^2/(2*sigma^2))

Extract lower right 2x2 of Hessian of minus log density

That is, of Hessian with respect to X, mu, sigma.

X is alphabetically first because it’s capitalized.

h = -log(f(X)).hessian().submatrix(1,1,2,2).factor(); h

evaluate(
1
σ2

2 (X−µ)
σ3

2 (X−µ)
σ3

3X2−6Xµ+3µ2−σ2

σ4

)
Now take the expected value. In the lower right we’ll directly integrate, though it could
also be done by substituting in known quantities and then simplifying. The other cells
can be done by inspection.

Fisher information in one observation is expected h

info = h

info[0,1]=0; info[1,0]=0 # Because E(X)=mu

info[1,1] = integrate(info[1,1]*f(X),X,-oo,oo)

info

evaluate

7The Hessian reflects curvature of the function. Fisher’s insight was that the greater the curvature of
the log likelihood function at the true parameter value, the more information the data provide about the
parameter. Further discussion of the connection between the Hessian and the Fisher Information may be
found in Appendix A.

B.1. INTRODUCTION TO SAGE 231

(
1
σ2 0
0 2

σ2

)
That’s the Fisher Information in one observation. To get the asymptotic (approximate,
for large n) covariance matrix, multiply by n and invert the matrix.

Fisher info in n observations is n * info in one observation.

MLEs are asymptotically multivariate normal with mean theta

and variance-covariance matrix the inverse of the Fisher info.

avar = (n*info).inverse(); avar

evaluate(
σ2

n
0

0 σ2

2n

)
That’s a standard example that can be done by hand, though perhaps it’s a little unusual
because the model is parameterized in terms of the standard deviation rather than the
variance. This next one, however, would be fearsome to do by hand.

The Multinomial Distribution We’ll stay with the case of six categories. Now,
because the MLE equals the sample mean vector in this case, the multivariate Central
Limit Theorem (see Appendix A) can be used directly without going through the Fisher
Information. We’ll do it this way first, because it’s a good way to check Sage’s final
answer.

The multivariate Central Limit Theorem says that if X1, . . . ,Xn are i.i.d. random vec-
tors with expected value vector µ and covariance matrix Σ. Then

√
n(Xn−µ) converges

in distribution to a multivariate normal with mean 0 and covariance matrix Σ. That is,
for large n, Xn has a distribution that is approximately multivariate normal, with mean
µ and covariance matrix 1

n
Σ.

Here, each of the i.i.d. random vectors is filled with k − 1 = 5 zeros and possibly
a single 1 , with the number 1 indicating which event occurred. If all five entries of
Xi equal zero, then the sixth event occurred. The marginal distributions are Bernoulli,
so E(Xi,j) = θj and µ = (θ1, . . . , θ5)′. The variances are V ar(Xi,j) = θj(1 − θj), for
j = 1, . . . , 5. Since, Pr{Xi,jXi,m = 0} for j 6= m, E(Xi,jXi,m) = 0, and

Cov(Xi,jXi,m) = E(Xi,jXi,m)− E(Xi,j)E(Xi,m)

= −θjθm.
So by the Central Limit Theorem, the asymptotic mean of the MLE is µ = (θ1, . . . , θ5)′,
and the asymptotic covariance matrix is

1

n
Σ =


θ1(1−θ1)

n
− θ1θ2

n
− θ1θ3

n
− θ1θ4

n
− θ1θ5

n

− θ1θ2
n

θ2(1−θ2)
n

− θ2θ3
n

− θ2θ4
n

− θ2θ5
n

− θ1θ3
n

− θ2θ3
n

θ3(1−θ3)
n

− θ3θ4
n

− θ3θ5
n

− θ1θ4
n

− θ2θ4
n

− θ3θ4
n

θ4(1−θ4)
n

− θ4θ5
n

− θ1θ5
n

− θ2θ5
n

− θ3θ5
n

− θ4θ5
n

θ5(1−θ5)
n

 (B.2)

232 APPENDIX B. SYMBOLIC MATHEMATICS WITH SAGE

To compare this to what we get from the likelihood approach, first calculate the Hessian
of the minus log probability mass function.

Multinomial - 6 categories again

var(’theta1 theta2 theta3 theta4 theta5 X1 X2 X3 X4 X5 n’)

Lp = X1*log(theta1) + X2*log(theta2) + X3*log(theta3)

+ X4*log(theta4) + X5*log(theta5) + (1-X1-X2-X3-X4-X5)

* log(1-theta1-theta2-theta3-theta4-theta5)

h = -Lp.hessian().submatrix(5,5,5,5); h

evaluate
−X1+X2+X3+X4+X5−1

(θ1+θ2+θ3+θ4+θ5−1)2
+ X1

θ21
−X1+X2+X3+X4+X5−1

(θ1+θ2+θ3+θ4+θ5−1)2
−X1+X2+X3+X4+X5−1

(θ1+θ2+θ3+θ4+θ5−1)2
−X1+X2+X3+X4+X5−1

(θ1+θ2+θ3+θ4+θ5−1)2
−X1+X2+X3+X4+X5−1

(θ1+θ2+θ3+θ4+θ5−1)2

−X1+X2+X3+X4+X5−1
(θ1+θ2+θ3+θ4+θ5−1)2

−X1+X2+X3+X4+X5−1
(θ1+θ2+θ3+θ4+θ5−1)2

+ X2

θ22
−X1+X2+X3+X4+X5−1

(θ1+θ2+θ3+θ4+θ5−1)2
−X1+X2+X3+X4+X5−1

(θ1+θ2+θ3+θ4+θ5−1)2
−X1+X2+X3+X4+X5−1

(θ1+θ2+θ3+θ4+θ5−1)2

−X1+X2+X3+X4+X5−1
(θ1+θ2+θ3+θ4+θ5−1)2

−X1+X2+X3+X4+X5−1
(θ1+θ2+θ3+θ4+θ5−1)2

−X1+X2+X3+X4+X5−1
(θ1+θ2+θ3+θ4+θ5−1)2

+ X3

θ23
−X1+X2+X3+X4+X5−1

(θ1+θ2+θ3+θ4+θ5−1)2
−X1+X2+X3+X4+X5−1

(θ1+θ2+θ3+θ4+θ5−1)2

−X1+X2+X3+X4+X5−1
(θ1+θ2+θ3+θ4+θ5−1)2

−X1+X2+X3+X4+X5−1
(θ1+θ2+θ3+θ4+θ5−1)2

−X1+X2+X3+X4+X5−1
(θ1+θ2+θ3+θ4+θ5−1)2

−X1+X2+X3+X4+X5−1
(θ1+θ2+θ3+θ4+θ5−1)2

+ X4

θ24
−X1+X2+X3+X4+X5−1

(θ1+θ2+θ3+θ4+θ5−1)2

−X1+X2+X3+X4+X5−1
(θ1+θ2+θ3+θ4+θ5−1)2

−X1+X2+X3+X4+X5−1
(θ1+θ2+θ3+θ4+θ5−1)2

−X1+X2+X3+X4+X5−1
(θ1+θ2+θ3+θ4+θ5−1)2

−X1+X2+X3+X4+X5−1
(θ1+θ2+θ3+θ4+θ5−1)2

−X1+X2+X3+X4+X5−1
(θ1+θ2+θ3+θ4+θ5−1)2

+ X5

θ25


Sometimes, Sage output runs off the right side of the screen and you have to scroll to
see it all. In this document, it just gets chopped off. But you can still see that all the
Xj quantities appear in the numerator, and taking the expected values would be easy by
hand.

Computing expected values is just substituting theta_j for X_j

info = h(X1=theta1,X2=theta2,X3=theta3,X4=theta4,X5=theta5)

info

evaluate


− 1
θ1+θ2+θ3+θ4+θ5−1

+ 1
θ1

− 1
θ1+θ2+θ3+θ4+θ5−1

− 1
θ1+θ2+θ3+θ4+θ5−1

− 1
θ1+θ2+θ3+θ4+θ5−1

− 1
θ1+θ2+θ3+θ4+θ5−1

− 1
θ1+θ2+θ3+θ4+θ5−1

− 1
θ1+θ2+θ3+θ4+θ5−1

+ 1
θ2

− 1
θ1+θ2+θ3+θ4+θ5−1

− 1
θ1+θ2+θ3+θ4+θ5−1

− 1
θ1+θ2+θ3+θ4+θ5−1

− 1
θ1+θ2+θ3+θ4+θ5−1

− 1
θ1+θ2+θ3+θ4+θ5−1

− 1
θ1+θ2+θ3+θ4+θ5−1

+ 1
θ3

− 1
θ1+θ2+θ3+θ4+θ5−1

− 1
θ1+θ2+θ3+θ4+θ5−1

− 1
θ1+θ2+θ3+θ4+θ5−1

− 1
θ1+θ2+θ3+θ4+θ5−1

− 1
θ1+θ2+θ3+θ4+θ5−1

− 1
θ1+θ2+θ3+θ4+θ5−1

+ 1
θ4

− 1
θ1+θ2+θ3+θ4+θ5−1

− 1
θ1+θ2+θ3+θ4+θ5−1

− 1
θ1+θ2+θ3+θ4+θ5−1

− 1
θ1+θ2+θ3+θ4+θ5−1

− 1
θ1+θ2+θ3+θ4+θ5−1

− 1
θ1+θ2+θ3+θ4+θ5−1

+ 1
θ5



The asymptotic covariance matrix is obtained by multiplying by n and taking the inverse.
Inverting the matrix by hand is possible, but it would be a brutal experience. With Sage,
it takes a few seconds, including the typing.

Asymptotic covariance matrix

avar = (n*info).inverse().factor(); avar

evaluate

B.1. INTRODUCTION TO SAGE 233


− (θ1−1)θ1

n
− θ1θ2

n
− θ1θ3

n
− θ1θ4

n
− θ1θ5

n

− θ1θ2
n
− (θ2−1)θ2

n
− θ2θ3

n
− θ2θ4

n
− θ2θ5

n

− θ1θ3
n

− θ2θ3
n
− (θ3−1)θ3

n
− θ3θ4

n
− θ3θ5

n

− θ1θ4
n

− θ2θ4
n

− θ3θ4
n
− (θ4−1)θ4

n
− θ4θ5

n

− θ1θ5
n

− θ2θ5
n

− θ3θ5
n

− θ4θ5
n
− (θ5−1)θ5

n


This is the same as Expression B.2, which came from the Central Limit Theorem. It’s an
unqualified success.

Taylor Expansions

There are many versions of Taylor’s Theorem. Here is a useful one. Let the nth derivative
f (n) of the function f(x) be continuous in [a, b] and differentiable in (a, b), with x and x0

in (a, b). Then there exists a point ξ between x and x0 such that

f(x) = f(x0) + f ′(x0) (x− x0) +
f ′′(x0)(x− x0)2

2!
+ . . . +

f (n)(x0)(x− x0)n

n!

+
f (n+1)(ξ)(x− x0)n+1

(n+ 1)!
(B.3)

where Rn = f (n+1)(ξ)(x−x0)n+1

(n+1)!
is called the remainder term. If Rn → 0 as n → ∞, the

resulting infinite series is called the Taylor Series for f(x).
In certain styles of applied statistics, when people are having trouble with a function,

they approximate it by just taking the first two or three terms of a Taylor expansion, and
discarding the remainder. Sometimes, the approximation can be quite helpful. Consider,
for example, a simple8 logistic regression in which a linear model for the log odds of Y = 1
leads to

Pr{Y = 1|X = x} = E(Y |X = x) =
eβ0+β1x

1 + eβ0+β1x
.

Under this model, what is the covariance between X and Y ? It’s easy to wonder, but not
easy to calculate. Suppose X has a distribution with expected value µ and variance σ2.
Perhaps X is normal. Let’s use the formula Cov(X, Y) = E(XY)− E(X)E(Y), and try
double expectation. That is,

E[Y] = E[E(Y |X)]

=

∫ ∞
−∞

E(Y |X = x) f(x) dx

=

∫ ∞
−∞

eβ0+β1x

1 + eβ0+β1x
f(x) dx. (B.4)

If X is normal, I certainly can’t do this integral. I have tried many times and failed. Sage
can’t do it either. Details are omitted.

8One explanatory variable.

234 APPENDIX B. SYMBOLIC MATHEMATICS WITH SAGE

Let’s approximate g(X) = E(Y |X) with the first few terms of a Taylor series. Then
it’s easier to work with. Note that you can find out what atributes the function g has
with print(dir(g)), and then get details about the taylor attribute with g.taylor? .

Cov(X,Y) for logistic regression (Taylor)

var(’X beta0 beta1 mu sigma’)

g = exp(beta0 + beta1*X)/(1+exp(beta0 + beta1*X))

print(dir(g))

g.taylor?

t1 = g.taylor(X,mu,2); t1 # Expand function of X about mu, degree 2 (3 terms)

evaluate

(X−µ)β1e(β1µ+β0)

2 e(β1µ+β0)+e(2 β1µ+2 β0)+1
+

(X−µ)2(β2
1e

(β1µ+β0)−β2
1e

(2 β1µ+2 β0))
2 (3 e(β1µ+β0)+3 e(2 β1µ+2 β0)+e(3 β1µ+3 β0)+1)

+ e(β1µ+β0)

e(β1µ+β0)+1

Taking the expected value with respect to X will cause the first term to disappear, and
replace (X − µ)2 with σ2 in the second term. We’ll integrate with respect to the normal
distribution, but that’s just for convenience. Any distribution with expected value µ and
variance σ2 would yield the same result.

Use normal to take expected value Just a convenience :
f = 1/(sigma*sqrt(2*pi)) * exp(-(X-mu)^2/(2*sigma^2))

assume(sigma>0)

EY = (t1*f).integrate(X,-oo,oo).factor(); EY

evaluate

−(β2
1σ

2e(β1µ+β0)−β2
1σ

2−4 e(β1µ+β0)−2 e(2 β1µ+2 β0)−2)e(β1µ+β0)

2 (e(β1µ+β0)+1)
3

That’s pretty messy, but maybe there will be some simplification when we calculate
Cov(X, Y) = E(XY)− E(X)E(Y). First we need an approximation of E(XY).

Double expectation for E(XY) - First, approximate XE(Y|X)

t2 = (X*g).taylor(X,mu,2); t2 # Looks pretty hairy

EXY = (t2*f).integrate(X,-oo,oo).factor(); EXY

evaluate

−(β2
1µσ

2e(β1µ+β0)−β2
1µσ

2−2β1σ2e(β1µ+β0)−2β1σ2−4µe(β1µ+β0)−2µe(2 β1µ+2 β0)−2µ)e(β1µ+β0)

2 (e(β1µ+β0)+1)
3

Finally, approximate the covariance

Cov = (EXY-mu*EY).factor(); Cov

evaluate

B.1. INTRODUCTION TO SAGE 235

β1σ2e(β1µ+β0)

(e(β1µ+β0)+1)
2

Well, you have to admit that’s nice! Some of the intermediate steps were fiercely com-
plicated, but the final result is clean and simple. Sage has saved us a lot of unpleasant
work. Furthermore, the result makes sense because the sign of the covariance is the same
as the sign of β1, as it should be.

However, we really don’t know if it’s a good approximation or not. That’s right. Taylor
expansions are more accurate closer to the point about which you expand the function,
and they are more accurate the more terms you take. Beyond that, it’s generally unknown,
unless you have more information (like perhaps the remainder you’ve discarded approaches
zero as the sample size increases, or something).

So we need to investigate it a bit more, and the easiest thing to do is to try some
numerical examples. With specific numbers for the parameters, Sage will be able to
calculate E(Y) and E(XY) by numerical integration. First, we’ll try µ = 0, σ = 2, β0 =
0, β1 = 1. The approximation is

Example 1, with mu=0,beta0=0,sigma=2,beta1=1

Cov(mu=0,beta0=0,sigma=2,beta1=1)

evaluate

1

The calculation of Cov(X, Y) = E(XY) by double expectation is similar to (B.4).

E[XY] = E[E(XY |X)]

=

∫ ∞
−∞

E(XY |X = x) f(x) dx

=

∫ ∞
−∞

E(xY |X = x) f(x) dx

=

∫ ∞
−∞

xE(Y |X = x) f(x) dx

=

∫ ∞
−∞

x
eβ0+β1x

1 + eβ0+β1x
f(x) dx. (B.5)

In the material below, the result of show(EXY1) tells us that E(XY), though it’s simplified
a bit, is an integral that Sage cannot take any farther, even with specific numerical values.
Then, EXY1.n() says please evaluate it numerically. The numerical evaluation attribute,
in the case of an integral, is a sophisticated numerical integration algorithm.

This will be the covariance, since mu=0

EXY1 = (X*g*f)(mu=0,beta0=0,sigma=2,beta1=1).integrate(X,-oo,oo)

show(EXY1)

EXY1.n()

evaluate

236 APPENDIX B. SYMBOLIC MATHEMATICS WITH SAGE

√
2
∫+∞
−∞

Xe
(− 1

8 X
2+X)

eX+1
dX

4
√
π

0.605705509602159

That’s not too promising. Is the approximation really this bad? While Sage is extremely
accurate compared to almost any human being, mistakes in the input can cause big
problems. Typos are the main source of trouble, but misunderstandings are possible
too, and the results can be even worse. So, when a result is a bit surprising like this,
it’s important to cross-check it somehow. Let’s try a simulation with R. The idea is to
first simulate a large collection of X values from a normal distribution with mean µ = 0
and standard deviation σ = 2, calculate Pr{Y = 1|Xi}, using β0 = 0 and β1 = 1.
Finally, generate binary Y values using those probabilities, and calculate the sample
covariance. By the Strong Law of Large Numbers, the probability equals one that the
sample covariance approaches the true covariance as n → ∞, like an ordinary limit. So
with a very large n, we’ll get a good approximation of Cov(X, Y). Is it closer to 1, or
0.606? Here is the R calculation, without further comment.

> n = 100000; mu=0; beta0=0; sigma=2; beta1=1

> x = rnorm(n,mu,sigma)

> xb = beta0 + beta1*x

> p = exp(xb)/(1+exp(xb))

> y = rbinom(n,1,p)

> var(cbind(x,y))

x y

x 3.9687519 0.6039358

y 0.6039358 0.2499991

Now we can be confident that the numerical integration (and the double expectation
reasoning behind it) produced correct results, and the Taylor series approximation was
poor. It can easily get worse. For example, with µ = 1, σ = 10, β0 = 1, β1 = 1, the Taylor
series approximation of the covariance is 10.499, while the correct answer by numerical
integration is 3.851.

The story has a two-part moral. Taylor series approximations are easy with Sage, but
whether they are accurate enough to be useful is another matter. This point is sometimes
overlooked in applied Statistics. To be clear, this is not a problem with Sage; the problem
is with the practice of blindly linearizing everything.

To leave a better taste about Taylor series approximations, let X1, . . . , Xn be a random
sample from a Bernoulli distribution, with Pr{Xi = 1} = θ. A quantity that is useful in
categorical data analysis is the log odds :

Log Odds = log
θ

1− θ
,

where log refers to the natural logarithm.

B.1. INTRODUCTION TO SAGE 237

The best estimator of θ is the sample proportion: X = 1
n

∑n
i=1Xi. The log odds is

estimated by

Y = log
X

1−X
.

The variance of X is θ(1−θ)
n

, but what is the variance of the estimated log odds Y ? As we
shall see, it’s possible to give an exact answer for any given n, but the expression is very
complicated and hard to use in later calculations.

Instead, for any statistic Tn that estimates θ, and any differentiable function g(t) (of
which g(t) = log t

1−t is an example), expand g(t) about θ, taking just the first two terms
of a Taylor expansion (see Expression B.3) and discarding the remainder. Then

V ar (g(Tn)) ≈ V ar (g(θ) + g′(θ)(Tn − θ))
= 0 + g′(θ)2V ar(Tn) + 0

= g′(θ)2V ar(Tn). (B.6)

The only reason for making Tn a statistic that estimates θ is so it will be reasonable to
expand g(t) about θ. Actually, Tn could be any random variable and θ could be any real
number, but in that case the approximation could be arbitrarily bad.

Formula (B.6) for the variance of a function is quite general. We don’t need taylor;
instead, we’ll just use Sage to take the derivative, square it, multiply by the variance of
Tn, and simplify.

Variance of log odds

var(’n theta’)

g = log(theta/(1-theta))

vTn = theta*(1-theta)/n

v = (g.derivative(theta)^2 * vTn).factor(); v

evaluate

− 1
(θ−1)nθ

Let’s try a numerical example, with θ = 0.1 and n = 200.

v(theta=0.1,n=200)

evaluate

0.0555555555555556

Is this a good approximation? We certainly can’t take it for granted. Now, for any
fixed n, the random variable Xn (also known as Tn) is just X

n
, where X is binomial with

238 APPENDIX B. SYMBOLIC MATHEMATICS WITH SAGE

parameters n and θ. So,

Y = Y (X) = log
X

1−X

= log
X/n

1−X/n

= log
X

n−X
,

and we can calculate

E(Y) =
n∑
x=0

y(x)Pr{X = x}

=
n∑
x=0

log

(
X

n−X

)
Pr{X = x}

=
n∑
x=0

log

(
X

n−X

)(
n

x

)
θx(1− θ)n−x.

The calculation of E(Y 2) is similar, and then V ar(Y) = E(Y 2)− [E(Y)]2.
Because we’re actually going to do it (an insane proposition by hand), we notice that

the variance of the estimated log odds is not even defined for any finite n. Everything falls
apart for x = 0 and x = n.

Now in standard categorical data analysis, it assumed that θ is strictly between zero
and one, and the sample size is large enough so that the events X = 0 and X = n
(whose probability goes to zero as n → ∞ do not occur. In practice if they did occur,
the statistician would move to a different technology. So, the variance we want is actually
conditional on 1 ≤ X ≤ n− 1.

Adjusting Pr{X = x} to make it a conditional probability involves dividing by 1 −
Pr{X = 0}−Pr{X = n}, which for n = 200 is a number extremely close to one. So will
it be okay to just discard x = 0 and x = n rather than really adjusting? Take a look at
how small the probabilities are.

Is it okay to just drop x=0 and x=200?

p(x) = n.factorial()/(x.factorial() * (n-x).factorial()) * theta^x * (1-theta)^(n-x)

p(0)(theta=0.1); p(200)(theta=0.1)

evaluate

7.05507910865537× 10−10

1.00000000000001× 10−200

Okay, we’ll just sum from x = 1 to x = n − 1, and call it an “exact” calculation. In the
Sage work below, note that because n is so large, the binomial coefficient in p(x) can be
big enough to overflow the computer’s memory, while at the same time the product of θ
and (1− θ) values can be small enough to underflow. To avoid the numerical inaccuracy

B.1. INTRODUCTION TO SAGE 239

that would come from this, θ is written as a ratio of two integers. Then inside the loop,
p(x) is evaluated by exact integer arithmetic and then factored, resulting in numerous
cancellations so that the result is as accurate as possible before it is numerically evaluated
and multiplied by the numerical version of log x

n−x . By the way, it’s a lot faster to do it this
way rather than doing the whole calculation symbolically and then numerically evaluating
the final result.

Calculate exactly, trying to minimize rounding error

y(x) = log(x/(n-x))

n=200; EY=0.0; EYsq=0.0

for x in interval(1,n-1) :
EY = EY + y(x).n()*(p(x)(theta=1/10).factor().n())

EYsq = EYsq + (y(x)^2).n()*(p(x)(theta=1/10).factor().n())

vxact = EYsq-EY^2; vxact

evaluate

0.0595418877731042

As a check on this, one can randomly generate a large number of Binomial(n, θ) pseudo-
random numbers. Dividing each one by n gives a random sample of Xn values, and then
computing any function of the Xn values yields a collection of random variables that is
a nice estimate of the sampling distribution of the statistic in question. With ten million

Binomial(n, θ) values, this approach is used to approximate V ar
(

log
(

Xn

1−Xn

))
.

> set.seed(9999)

> n = 200; theta = 0.1; m=10000000

> xbar = rbinom(m,n,theta)/n

> logodds = log(xbar/(1-xbar))

> var(logodds)

[1] 0.05955767

So the “exact” calculation is right, and the Taylor series approximation is pretty close.
Is it a coincidence? No. By the Law of Large Numbers, the probability distribution
of the sample proportion Xn becomes increasingly concentrated around θ as the sample
size increases, so that within a tiny interval enclosing θ, the linear approximation of g(t)
in (B.6) is very accurate in the neighbourhood where most of the probability distribution
resides. As the sample size increases, it becomes even better, and the approximation of
the variance becomes even better.

As a final note about Taylor series, Sage can easily calculate truncated Taylor series
approximations of functions of several variables, in which derivatives are replaced by
matrices of partial derivatives (Jacobians).

Matrices and linear algebra

Sage is very good at matrix calculations with numbers, but Sage’s ability to do matrix
calculations with symbols is what makes it useful for structural equation modeling. The

240 APPENDIX B. SYMBOLIC MATHEMATICS WITH SAGE

algorithm that Sage uses for a particular task will depend on the ring (a concept from
Algebra) to which the matrix belongs. When the contents of a matrix are symbols, the
matrix belongs to the symbolic ring, abbreviated SR. As in Python, a matrix is a list of
rows, and the rows are lists of matrix elements.

var(’alpha beta gamma delta’)

A = matrix(SR, [[alpha, beta],[gamma, delta]]); A

evaluate(
α β
γ δ

)
Also as in Python, index numbering begins with zero, not one. This may be easy to
forget.

A[0,1]

evaluate

β

Of course you need not be bound by this awkward convention, but in the following example
you do need to remember that A[0,0] = x11. By the way, I cannot figure out how to get
nice-looking double subscripts separated by commas; I don’t even know if it’s possible.
However, it’s not a problem for small examples.

Note the nice subscripts

var(’x11 x12 x13 x21 x22 x23’)

B = matrix(SR, [[x11, x12, x13], [x21, x22, x23]])

B

evaluate(
x11 x12 x13

x21 x22 x23

)
Multiplication by a scalar does what you would hope.

a*A

evaluate(
2α 2 β
2 γ 2 δ

)
Matrix multiplication also uses asterisks. Of course the matrices must be the right size

B.1. INTRODUCTION TO SAGE 241

or Sage raises an error.

C = A*B; C

evaluate(
αx11 + βx21 αx12 + βx22 αx13 + βx23

γx11 + δx21 γx12 + δx22 γx13 + δx23

)
Transpose, inverse, trace, determinant — all are available using a notation that quickly
becomes natural if it is not already. First look at A again, and then the transpose.

show(A)

A.transpose()

evaluate(
α β
γ δ

)
(
α γ
β δ

)

A.trace()

evaluate

α + δ

A.determinant()

evaluate

αδ − βγ

The following result runs off the page (Sage has a scrollbar) and is a reminder of Sage’s
ability to expressions that are almost too complicated to look at.

D = C.transpose() # C is 2x3, D is 3x2

E = (C*D).inverse() # Inverse of C*D

factor(E) # E is HUGE! This is not as bad. Factor is a good way to simplify.

evaluate

242 APPENDIX B. SYMBOLIC MATHEMATICS WITH SAGE

 γ2x2
11+γ

2x2
12+γ

2x2
13+2 δγx11x21+δ

2x2
21+2 δγx12x22+δ

2x2
22+2 δγx13x23+δ

2x2
23

(x2
12x

2
21+x

2
13x

2
21−2 x11x12x21x22+x2

11x
2
22+x

2
13x

2
22−2 x11x13x21x23−2 x12x13x22x23+x2

11x
2
23+x

2
12x

2
23)(αδ−βγ)2

−αγx
2
11+αγx

2
12+αγx

2
13+αδx11x21+βγx11x21+βδx

2
21+αδx12x22+βγx12x22+βδx

2
22+αδx13x23+βγx13x23+βδx

2
23

(x2
12x

2
21+x

2
13x

2
21−2 x11x12x21x22+x2

11x
2
22+x

2
13x

2
22−2 x11x13x21x23−2 x12x13x22x23+x2

11x
2
23+x

2
12x

2
23)(αδ−βγ)2

−αγx
2
11+αγx

2
12+αγx

2
13+αδx11x21+βγx11x21+βδx

2
21+αδx12x22+βγx12x22+βδx

2
22+αδx13x23+βγx13x23+βδx

2
23

(x2
12x

2
21+x

2
13x

2
21−2 x11x12x21x22+x2

11x
2
22+x

2
13x

2
22−2 x11x13x21x23−2 x12x13x22x23+x2

11x
2
23+x

2
12x

2
23)(αδ−βγ)2

α2x2
11+α

2x2
12+α

2x2
13+2αβx11x21+β

2x2
21+2αβx12x22+β

2x2
22+2αβx13x23+β

2x2
23

(x2
12x

2
21+x

2
13x

2
21−2 x11x12x21x22+x2

11x
2
22+x

2
13x

2
22−2 x11x13x21x23−2 x12x13x22x23+x2

11x
2
23+x

2
12x

2
23)(αδ−βγ)2



A.inverse() # Here is something we can look at without a scrollbar.

evaluate 1
α

+ βγ

α2(δ−βγα)
− β

α(δ−βγα)
− γ

α(δ−βγα)
1

δ−βγ
α


Ainverse = factor(_) # Factor the last expression.

Ainverse

evaluate(
δ

αδ−βγ −
β

αδ−βγ
− γ
αδ−βγ

α
αδ−βγ

)
That’s better. Notice how Sage quietly assumes that αδ 6= βγ. This is typical behaviour,
and usually what you want.

For a numerical (or partly numerical) example, just treat the matrix as a function.

Ainverse(alpha=1,gamma=2)

evaluate(
− δ

2β−δ
β

2β−δ
2

2β−δ −
1

2β−δ

)
It’s easy to get at the contents.

denominator(Ainverse[0,1])

evaluate

αδ − βγ

Recall the earlier example.

C

evaluate

B.1. INTRODUCTION TO SAGE 243

(
αx11 + βx21 αx12 + βx22 αx13 + βx23

γx11 + δx21 γx12 + δx22 γx13 + δx23

)
We had D = C>, so D is 3× 2.

(D.nrows(),D.ncols()) # A tuple

evaluate

(3, 2)

This means DC is 3 × 3. It’s awful to look at, but since the rank of a product is the
minimum of the rank of the matrices being multiplied, the rank of DC must be two (with
Sage’s usual optimistic assumptions about symbolic functions not being equal to zero
unless there is more information).

DC = D*C

DC.rank()

evaluate

2

A.eigenvalues() # Returns a list

evaluate[
1
2
α + 1

2
δ − 1

2

√
α2 − 2αδ + δ2 + 4 βγ, 1

2
α + 1

2
δ + 1

2

√
α2 − 2αδ + δ2 + 4 βγ

]
The eigenvalues of a real symmetric matrix are real, and observe that in the last result
the expression under the square root sign will be non-negative if A is symmetric — that
is, if β = γ. Sage doesn’t care about this; imaginary numbers are fine.

This is really just the basics. Sage’s capabilities in linear algebra go much deeper,
including Cholesky and Jordan decompositions, vector spaces and subspaces – the list
goes on. As usual, you need to know the math to use it effectively. We have all we need
for now.

Applications to structural equation modeling In structural equation modeling, we
often find ourselves calculating the covariance matrix of the observable data as a function
of the model parameters. For real-world models with lots of variables this can be a big,
tedious job. It’s largely a clerical task that Sage can do for you. Here, we’ll just calculate
the covariance matrices for a couple of structural equation models to illustrate how it
goes. It’s even easier with the sem package of Section B.2.

Example B.1.1

244 APPENDIX B. SYMBOLIC MATHEMATICS WITH SAGE

The first example is a small regression model with one latent explanatory variable and
three observable response variables. A path diagram is shown in Figure B.1. Indepen-
dently for i = 1, . . . , n,

Wi = Xi + ei

Yi,1 = β1Xi + εi,1

Yi,2 = β2Xi + εi,2

Yi,3 = β3Xi + εi,3,

where Xi, ei, εi,1, εi,2 and εi,3 are all independent, V ar(Xi) = φ, V ar(ei) = ω, V ar(εi,1) =
ψ1, V ar(εi,2) = ψ2, V ar(εi,3) = ψ3, all expected values are zero, and the regression
coefficients β1, β2 and β3 are fixed constants.

Figure B.1: Path diagram for Example B.1.1

X

W Y
1

Y
2

e ε
1 ε

2

Y
3

ε
3

β
1

β
2

β
3

To calculate the covariance matrix, write the model equations in matrix form as

Yi = βXi + εi,

with Xi and εi independent, cov(Xi) = Φ, and cov(εi) = Ψ. In the present case, this
means 

Wi

Yi,1
Yi,2
Yi,3

 =


1
β1

β2

β3

 (Xi) +


ei
εi,1
εi,2
εi,3

 ,

with cov(Xi) = Φ equal to the 1× 1 matrix (φ), and

cov


ei
εi,1
εi,2
εi,3

 = Ψ =


ω 0 0 0
0 ψ1 0 0
0 0 ψ2 0
0 0 0 ψ3

 .

B.1. INTRODUCTION TO SAGE 245

The variance-covariance matrix of the observable variables is then

cov(Yi) = cov (βXi + εi)

= βΦβ> + Ψ.

This is the quantity we’ll compute with Sage.

Ex 1 - Single measurement but 3 response variables

beta = matrix(SR,4,1) # SR is the Symbolic Ring. Want 4 rows, 1 col.

beta[0,0] = 1 ; beta[1,0] = var(’beta1’); beta[2,0] = var(’beta2’);

beta[3,0] = var(’beta3’)

beta

evaluate
1
β1

β2

β3


Phi = matrix(SR,1,1); Phi[0,0] = var(’phi’)

show(Phi)

Psi = matrix(SR,4,4)

Psi[0,0] = var(’omega’); Psi[1,1] = var(’psi1’)

Psi[2,2] = var(’psi2’); Psi[3,3] = var(’psi3’)

Psi

evaluate(
φ
)


ω 0 0 0
0 ψ1 0 0
0 0 ψ2 0
0 0 0 ψ3


Sigma = beta*Phi*beta.transpose() + Psi ; Sigma

evaluate
ω + φ β1φ β2φ β3φ
β1φ β2

1φ+ ψ1 β1β2φ β1β3φ
β2φ β1β2φ β2

2φ+ ψ2 β2β3φ
β3φ β1β3φ β2β3φ β2

3φ+ ψ3


It is clear that all the parameters will be identifiable provided that at least two of the
three regression coefficients are non-zero. This condition could be verified in practice by
testing whether simple correlations are different from zero.

246 APPENDIX B. SYMBOLIC MATHEMATICS WITH SAGE

Example B.1.2

This example is a latent variable regression that does not fit the standard rules. The
latent variable component is over-identified while the measurement component is under-
identified. Parameter identifiability for the combined model is unknown, and it’s back to
the drawing board. Here is the path diagram.

Figure B.2: Path Diagram for Example B.1.2

1

Y

ε
1

W
3

V
1

Y

V
2

Y
1

Y
2

e
4 e

5

β
22

φ
12

β
12

X
1

X
2

W
1

W
2

e
1 e

2

V
3

ε
2

e
3 e

6

β
11

1 1 1

1 1

1 1

1

The distinctive features of this model are that while Y1 depends on both X1 and X2,
Y2 depends only on X2 — and at the same time, there is double measurement of X1

and Y1, but only single measurement of X2 and Y2. There are 14 unknown parameters
and 6(6 + 1)/2 = 21 covariance structure equations, so the model passes the test of the
Parameter Count Rule. Identifiability is possible, but not guaranteed. The first step is
to calculate the 21 unique variances and covariances, a substantial amount of work if the
calculation is done by hand.

It’s a lot easier with Sage, but still a bit more challenging than Example B.1.1. First,
we calculate the covariance matrix for a latent model, stitching together a partitioned ma-
trix consisting of the variance of the exogenous variables, the covariance of the exogenous
and endogenous variables, and the variance of the endogenous variables. Then that ma-
trix is used as the covariance matrix of the latent variables (“factors”) in a measurement
model. The model equations are (independently for i = 1, . . . , n)

B.1. INTRODUCTION TO SAGE 247

(
Yi,1
Yi,2

)
=

(
β1,1 β1,2

0 β2,2

)(
Xi,1

Xi,2

)
+

(
εi,1
εi,2

)
and

Di =


Wi,1

Wi,2

Wi,3

Vi,1
Vi,2
Vi,3

 =


1 0 0 0
1 0 0 0
0 1 0 0
0 0 1 0
0 0 1 0
0 0 0 1




Xi,1

Xi,2

Yi,1
Yi,2

+


ei,1
ei,2
ei,3
ei,4
ei,5
ei,6

 ,

where

• cov
(
Xi,1

Xi,2

)
= Φx =

(
φ11 φ12

φ12 φ22

)
,

• Φx is positive definite,

• cov(εi,1) = ψ2, cov(εi,2) = ψ2,

• cov(ei,j) = ωj for j = 1, . . . , 6 and

• All the error terms are independent of one another, and independent of Xi,1 and
Xi,2.

To calculate the covariance matrix of the observed data Di, write the model equations as

Yi = βXi + εi

Di = ΛFi + ei,

where Fi =

(
Xi

Yi

)
. That is, the vector of latent variables or “factors” is just Xi stacked

on top of Yi. Denoting the variance-covariance matrices by cov(Xi) = Φx, cov(εi) = Ψ
and cov(ei) = Ω, we first calculate the variance-covariance matrix of Fi as the partitioned
matrix

cov(Fi) = Φ =

(
Φx Φxβ

>

βΦx βΦxβ
> + Ψ

)
,

and then using that, the variance-covariance matrix of the observed data:

cov(Di) = Σ = ΛΦΛ> + Ω.

Here is the calculation in Sage.

248 APPENDIX B. SYMBOLIC MATHEMATICS WITH SAGE

Ex 2 - More challenging

Y = beta X + epsilon

F = (X,Y)’

D = Lambda F + e

cov(X) = Phi11, cov(epsilon) = Psi, cov(e) = Omega

Set up matrices

beta = matrix(SR,2,2)

beta[0,0] = var(’beta11’); beta[0,1] = var(’beta12’)

beta[1,0] = var(’beta21’); beta[1,1] = var(’beta22’)

beta[1,0] = 0

show(beta)

evaluate(
β11 β12

0 β22

)

Phi11 = matrix(SR,2,2) # cov(X), Symmetric

Phi11[0,0] = var(’phi11’); Phi11[0,1] = var(’phi12’)

Phi11[1,0] = var(’phi12’); Phi11[1,1] = var(’phi22’)

show(Phi11)

evaluate(
φ11 φ12

φ12 φ22

)

Psi = matrix(SR,2,2) # cov(epsilon)

Psi[0,0] = var(’psi1’) ; Psi[1,1] = var(’psi2’)

show(Psi)

evaluate(
ψ1 0
0 ψ2

)

Omega = matrix(SR,6,6) # cov(e)

Omega[0,0] = var(’omega1’) ; Omega[1,1] = var(’omega2’)

Omega[2,2] = var(’omega3’) ; Omega[3,3] = var(’omega4’)

Omega[4,4] = var(’omega5’); Omega[5,5] = var(’omega6’)

show(Omega)

evaluate

B.1. INTRODUCTION TO SAGE 249


ω1 0 0 0 0 0
0 ω2 0 0 0 0
0 0 ω3 0 0 0
0 0 0 ω4 0 0
0 0 0 0 ω5 0
0 0 0 0 0 ω6


Lambda = matrix(SR,6,4)

Lambda[0,0]=1; Lambda[1,0]=1; Lambda[2,1]=1

Lambda[3,2]=1; Lambda[4,2]=1; Lambda[5,3]=1

show(Lambda)

evaluate
1 0 0 0
1 0 0 0
0 1 0 0
0 0 1 0
0 0 1 0
0 0 0 1


Calculate Phi = cov(F)

EXY = Phi11 * beta.transpose()

VY = beta*Phi11*beta.transpose() + Psi

top = Phi11.augment(EXY) # Phi11 on left, EXY on right

bot = EXY.transpose().augment(VY)

Phi = (top.stack(bot)).factor() # Stack top over bot, then factor

show(Phi)

evaluate
φ11 φ12 β11φ11 + β12φ12 β22φ12

φ12 φ22 β11φ12 + β12φ22 β22φ22

β11φ11 + β12φ12 β11φ12 + β12φ22 β2
11φ11 + 2 β11β12φ12 + β2

12φ22 + ψ1 (β11φ12 + β12φ22)β22

β22φ12 β22φ22 (β11φ12 + β12φ22)β22 β2
22φ22 + ψ2


Calculate Sigma = cov(D)

Sigma = Lambda * Phi * Lambda.transpose() + Omega

show(Sigma)

evaluate
ω1 + φ11 φ11 φ12 β11φ11 + β12φ12 β11φ11 + β12φ12 β22φ12

φ11 ω2 + φ11 φ12 β11φ11 + β12φ12 β11φ11 + β12φ12 β22φ12
φ12 φ12 ω3 + φ22 β11φ12 + β12φ22 β11φ12 + β12φ22 β22φ22

β11φ11 + β12φ12 β11φ11 + β12φ12 β11φ12 + β12φ22 β2
11φ11 + 2β11β12φ12 + β2

12φ22 + ω4 + ψ1 β2
11φ11 + 2β11β12φ12 + β2

12φ22 + ψ1 (β11φ12 + β12φ22)β22
β11φ11 + β12φ12 β11φ11 + β12φ12 β11φ12 + β12φ22 β2

11φ11 + 2β11β12φ12 + β2
12φ22 + ψ1 β2

11φ11 + 2β11β12φ12 + β2
12φ22 + ω5 + ψ1 (β11φ12 + β12φ22)β22

β22φ12 β22φ12 β22φ22 (β11φ12 + β12φ22)β22 (β11φ12 + β12φ22)β22 β2
22φ22 + ω6 + ψ2



250 APPENDIX B. SYMBOLIC MATHEMATICS WITH SAGE

Again, this is the covariance matrix of the observable data vector Di = (Wi,1,Wi,2,Wi,3, Vi,1, Vi,2, Vi,3)>.
The covariance matrix is big and the last two columns got cut off, but in Sage you can
scroll to the right and see something like the following:

· · ·

β11φ11 + β12φ12 β11φ11 + β12φ12 β22φ12
β11φ11 + β12φ12 β11φ11 + β12φ12 β22φ12
β11φ12 + β12φ22 β11φ12 + β12φ22 β22φ22

β2
11φ11 + 2β11β12φ12 + β2

12φ22 + ω4 + ψ1 β2
11φ11 + 2β11β12φ12 + β2

12φ22 + ψ1 (β11φ12 + β12φ22)β22
β2
11φ11 + 2β11β12φ12 + β2

12φ22 + ψ1 β2
11φ11 + 2β11β12φ12 + β2

12φ22 + ω5 + ψ1 (β11φ12 + β12φ22)β22
(β11φ12 + β12φ22)β22 (β11φ12 + β12φ22)β22 β2

22φ22 + ω6 + ψ2



Now it appears that at points in the parameter space where φ12 6= 0, the regression
parameters β11, β12 and β22 may be identifiable in spite of the single measurement. This
is just a tentative conclusion based on inspecting the equations without actually doing all
the work. We will continue to work on this example using the tools of the sem package.

B.2 The sem Package

B.2.1 Introduction and Examples

Example B.1.2 showed how Sage can be used to carry out useful symbolic calculations
that are too tedious to perform by hand. Still, parts of the job can be repetitive and
this can be a barrier to using the technology. In Sage, it is easy for users to write special
purpose functions. The sem package is a collection of functions for structural equation
modeling. Currently, it is limited to symbolic calculation. For numerical model fitting, it
is necessary to use specialized statistical software9.

To load the sem package,

sem = ’http://www.utstat.toronto.edu/~brunner/openSEM/sage/sem.sage’

load(sem)

load(’~/sem.sage’) # To load a local version in your home directory

evaluate

After the package is loaded, Contents() will display a list of the available functions.
For help on a particular function, type the function name followed by a question mark,
like PathVar?

The sem package currently includes the following functions. You can go directly to
the documentation for a particular function, or continue reading to see how the functions
are used together in context.

9Sage has very strong numerical capabilities, and it would not be very difficult to write a function
to do numerical maximum likelihood estimation. What holds me back is the issue of starting values.
Programs like Amos, Lisrel and SAS proc calis have extensive bags of tricks for generating automatic
starting values, and typically they are very good. It is difficult to appreciate how convenient they are
until you have tried to come up with your own starting values for a few models.

B.2. THE SEM PACKAGE 251

1. Matrix Creation

1a) DiagonalMatrix(size,symbol=’psi’,double=False)

1b) GeneralMatrix(nrows,ncols,symbol)

1c) IdentityMatrix(size)

1d) SymmetricMatrix(size,symbol,corr=False)

1e) ZeroMatrix(nrows,ncols)

2. Covariance Matrix Calculation

2a) EqsVar(beta,gamma,Phi,oblist,simple=True)

2b) FactorAnalysisVar(Lambda,Phi,Omega)

2c) NoGammaVar(Beta,Psi)

2d) PathVar(Phi,Beta,Gamma,Psi,simple=True)

2e) RegressionVar(Phi,Gamma,Psi,simple=True)

3. Manipulation

3a) GroebnerBasis(polynomials,variables)

3b) LSTarget(M,x,y)

3c) Parameters(M)

3d) SigmaOfTheta(M,symbol=’sigma’)

3e) Simplify(x)

4. Utility

4a) BetaCheck(Beta)

4b) Contents()

4c) CovCheck(Psi)

4d) MultCheck(Beta,Psi)

4e) Pad(M)

Here is Example B.1.2 again from the beginning, using the sem package. Repeating the
model equations,

252 APPENDIX B. SYMBOLIC MATHEMATICS WITH SAGE

Yi = β Xi + εi(
Yi,1
Yi,2

)
=

(
β1,1 β1,2

0 β2,2

) (
Xi,1

Xi,2

)
+

(
εi,1
εi,2

)
Di = Λ Fi + ei
Wi,1

Wi,2

Wi,3

Vi,1
Vi,2
Vi,3

 =


1 0 0 0
1 0 0 0
0 1 0 0
0 0 1 0
0 0 1 0
0 0 0 1




Xi,1

Xi,2

Yi,1
Yi,2

 +


ei,1
ei,2
ei,3
ei,4
ei,5
ei,6


sem = ’http://www.utstat.toronto.edu/~brunner/openSEM/sage/sem.sage’

load(sem)

Set up matrices (Remember, indices begin with zero)

beta = GeneralMatrix(2,2,’beta’); beta[1,0]=0

Phi11 = SymmetricMatrix(2,’phi’) # cov(X)

Psi = DiagonalMatrix(2,’psi’) # cov(epsilon)

Omega = DiagonalMatrix(6,’omega’) # cov(e)

Lambda = ZeroMatrix(6,4) # Factor loadings

Lambda[0,0]=1; Lambda[1,0]=1; Lambda[2,1]=1

Lambda[3,2]=1; Lambda[4,2]=1; Lambda[5,3]=1

evaluate

The GeneralMatrix function generates doubly subscripted symbols by default; it is easy
to replace the lower left entry with a zero. The other functions are pretty much self-
explanatory, and very handy. In general, native Sage functions are lower case, while
functions in the sem package are capitalized. This makes them easy to distinguish in the
examples. Next we calculate Σ the easy way. The output is not shown because it is big
and you have seen it before.

Calculate Phi = cov(F)

Phi = RegressionVar(Phi11,beta,Psi) # The first argument is cov(X)

Calculate Sigma = cov(D)

Sigma = FactorAnalysisVar(Lambda,Phi,Omega); Sigma

evaluate

Based on inspection of Σ, I tentatively concluded that the parameters were identifiable, at
least in most of the parameter space. Now we will nail it down. The SetupEqns function
assembles a list of covariance structure equations. Each equation is displayed with its
index as a tuple – not very pretty, but useful when one needs to refer to equations by

B.2. THE SEM PACKAGE 253

number (starting with zero). Note the Python syntax for looping.

eqlist = SetupEqns(Sigma); k = len(eqlist)

for index in range(k): index,eqlist[index]

evaluate

(0, ω1 + φ11 = σ11)
(1, φ11 = σ12)
(2, φ12 = σ13)
(3, β11φ11 + β12φ12 = σ14)
(4, β11φ11 + β12φ12 = σ15)
(5, β22φ12 = σ16)
(6, ω2 + φ11 = σ22)
(7, φ12 = σ23)
(8, β11φ11 + β12φ12 = σ24)
(9, β11φ11 + β12φ12 = σ25)
(10, β22φ12 = σ26)
(11, ω3 + φ22 = σ33)
(12, β11φ12 + β12φ22 = σ34)
(13, β11φ12 + β12φ22 = σ35)
(14, β22φ22 = σ36)
(15, β2

11φ11 + 2 β11β12φ12 + β2
12φ22 + ω4 + ψ1 = σ44)

(16, β2
11φ11 + 2 β11β12φ12 + β2

12φ22 + ψ1 = σ45)
(17, (β11φ12 + β12φ22)β22 = σ46)
(18, β2

11φ11 + 2 β11β12φ12 + β2
12φ22 + ω5 + ψ1 = σ55)

(19, (β11φ12 + β12φ22)β22 = σ56)
(20, β2

22φ22 + ω6 + ψ2 = σ66)

The next step is to assemble a list of model parameters. The function Parameters returns
a list of the parameters in a parameter matrix — that is, a list of the unique elements that
are not one or zero. Unfortunately, it cannot operate on a computed covariance matrix,
just on the parmeter matrices that are used as input. Still, it’s better than doing the job
by hand.

Assemble a list of model parameters. I count 14 by hand.

param = Parameters(beta) # Start with parameters in beta

param.extend(Parameters(Phi11)) # Add the parameters in Phi11

param.extend(Parameters(Psi)) # Add the parameters in Psi

param.extend(Parameters(Omega)) # Add the parameters in Omega

param.extend(Parameters(Lambda)) # Add the parameters in Lambda

show(param)

len(eqlist), len(param) # This many equations in this many unknowns

254 APPENDIX B. SYMBOLIC MATHEMATICS WITH SAGE

evaluate

[β11, β12, β22, φ11, φ12, φ22, ψ1, ψ2, ω1, ω2, ω3, ω4, ω5, ω6]

(21, 14)

So there are 21 equations in 14 unknowns. Sage’s very powerful solve function requires
the same number of equations as unknowns and will not work here. However, we’ll try it
anyway to see what happens.

solve(eqlist,param,solution_dict=True)

evaluate

[]

That little rectangle is a left square bracket followed by a right square bracket; it’s an
empty list (empty set), meaning that the system of equations has no general solution.
This happens because, for example, equation number two in the list says φ12 = σ13, while
equation seven says φ12 = σ23. To Sage, σ13 and σ23 are just numbers, and there is no
reason to assume they are equal. Thus there is no general solution.

Actually, because we think of the σij values as arising from a single, fixed point in the
parameter space, we recognize σ13 = σ24 as a distinctive feature that the model imposes
on the covariance matrix Σ. But Sage does not know this, and I don’t know how to tell
it without specifying exactly what the restrictions are. One solution is to set aside the
redundant equations and then give the solve function a system with the same number of
equations and unknowns. Unfortunately, this is not automatic because it is not always
obvious which equations are redundant. Groebner basis methods (to be discussed later
in this appendix) can do the job automatically when they work.

Because there are 21 equations in 14 unknowns, there should be seven equality con-
straints; seven equations should be redundant. Carefully inspecting the covariance struc-
ture equations, I conclude

• σ15, σ24 and σ25 are redundant with σ14.

• σ26 is redundant with σ16.

• σ23 is redundant with σ13.

• σ35 is redundant with σ34.

• σ56 is redundant with σ46.

B.2. THE SEM PACKAGE 255

Set redundant equations aside.

extra = [4,8,9,7,10,13,19] # Indices of redundant equations

extra.sort() # Sort them (change in place)

Save and display the redundant equations

aside = [] # Empty list to start

for index in extra:

extraeq = eqlist[index]

show(extraeq)

aside.append(extraeq)

evaluate

β11φ11 + β12φ12 = σ15φ12 = σ23

β11φ11 + β12φ12 = σ24

β11φ11 + β12φ12 = σ25

β22φ12 = σ26

β11φ12 + β12φ22 = σ35

(β11φ12 + β12φ22)β22 = σ56

Remove extra equations

for item in aside: eqlist.remove(item)

len(eqlist) # Should be 14 now

evaluate

14

Solve, returning solutions as a list of dictionaries

solist = solve(eqlist,param,solution_dict=True)

len(solist) # Should have one item (unique solution)

evaluate

0

The length of the list is zero; there are no solutions, meaning no general solutions according
to Sage. This is a sure sign of redundancy in the covariance structure equations we
are trying to solve. They still imply one or more constraints on the σij quantities –
constraints that Sage does not accept. In other words, we missed something. Looking at
the covariance structure equations again,

for item in eqlist: item

256 APPENDIX B. SYMBOLIC MATHEMATICS WITH SAGE

evaluate

ω1 + φ11 = σ11

φ11 = σ12

φ12 = σ13

β11φ11 + β12φ12 = σ14

β22φ12 = σ16

ω2 + φ11 = σ22

ω3 + φ22 = σ33

β11φ12 + β12φ22 = σ34

β22φ22 = σ36

β2
11φ11 + 2 β11β12φ12 + β2

12φ22 + ω4 + ψ1 = σ44

β2
11φ11 + 2 β11β12φ12 + β2

12φ22 + ψ1 = σ45

(β11φ12 + β12φ22)β22 = σ46

β2
11φ11 + 2 β11β12φ12 + β2

12φ22 + ω5 + ψ1 = σ55

β2
22φ22 + ω6 + ψ2 = σ66

To be honest, it took me a while to see it. The parameters ω6 and ψ2 appear only in the
last equation, as a sum. This means that infinitely many pairs (ω6, ψ2) will satisfy the
system of equations. Those parameters are not identifiable. A glance at the path diagram
on 246 shows why. Because Y2 does not influence any other variables in the latent model,
measuring it just once means that the variance of V2 is just the variance of Y2 plus ω6,
with no hope of separating ω6 from ψ2.

The solution is easy; re-parameterize by combining ω6 and ψ2 into a single variance
parameter. This could be accomplished by re-writing the path diagram and running
an arrow directly from X1 to V3. When a purely endogenous variable (that is, purely
endogenous in the latent model) is measured once, pretending that it is measured without
error is a standard, harmless trick. Here, it’s unnecessary to make a new path diagram and
calculate the covariance structure equations again. Just setting ω6 = 0 would effectively
treat ω6 + ψ2 as a single parameter now called ψ2.

But now there are more equations than unknowns, implying another equality con-
straint I missed. After looking at the equations for a while, I finally saw it. It’s the third
equation from the bottom. Starting at the third equation from the top, φ12 is identified
from σ13, and using that, β22 is identified from σ16. The equation for σ46 (third from
the bottom) is β22 multiplied by the expression for σ34. So the third equation from the
bottom is redundant, and induces an equality constraint. Starting with zero, that should
be equation eleven. Check it.

sig46 = eqlist[11]; sig46

evaluate

(β11φ12 + β12φ22)β22 = σ46

Now we’ll remove that equation from the list of covariance structure equations and add

B.2. THE SEM PACKAGE 257

it to the list of equations we set aside. Once we finally get a list of explicit solutions of
the covariance structure equations, we can obtain the equality constraints by substituting
the solutions into the the equations that were set aside.

aside.append(sig46)

eqlist.remove(sig46); len(eqlist)

evaluate

13

We now have thirteen equations in fourteen unknown parameters. Before re-parameterizing
by setting ω6 = 0, let’s see how Sage deals with infinitely many solutions. One might
expect it to hang up, but the task is completed instantly.

Now there are 13 equations in 14 unknown parameters. See what happens

when we try to solve. Return the solutions as a list of dictionaries.

solist = solve(eqlist,param,solution_dict=True)

len(solist)

evaluate

1

One dictionary (essentially a Python dictionary) looks like one solution – unique. This is
odd. How many items are in the dictionary?

sol = solist[0]

len(sol)

evaluate

14

There are fourteen items in the dictionary, suggesting one solution for each of the 14
parameters. This is unexpected, because we know there are infinitely many solutions.
Let’s take a look. The keys of the dictionary are the parameters, and the corresponding
values are the solutions in terms of the σijs. As in Python, dictionary[key] yields
value.

Display the solutions. item==sol[item] just causes that equation

to be displayed.

for item in param: item==sol[item]

evaluate

258 APPENDIX B. SYMBOLIC MATHEMATICS WITH SAGE

β11 = σ16σ34−σ14σ36
σ13σ16−σ12σ36

β12 = σ13σ14σ16−σ12σ16σ34
σ2
13σ16−σ12σ13σ36

β22 = σ16
σ13

φ11 = σ12

φ12 = σ13

φ22 = σ13σ36
σ16

ψ1 = −2σ13σ14σ16σ34−σ12σ16σ2
34−σ13σ2

14σ36−(σ2
13σ16−σ12σ13σ36)σ45

σ2
13σ16−σ12σ13σ36

ψ2 = r1

ω1 = σ11 − σ12

ω2 = −σ12 + σ22

ω3 = σ16σ33−σ13σ36
σ16

ω4 = σ44 − σ45

ω5 = −σ45 + σ55

ω6 = − r1σ13+σ16σ36−σ13σ66
σ13

Scanning down the list, we see ψ2 = r1. The quantity r1 (which we have not seen before)
is an arbitrary variable that could be anything10. I believe the Sage people call it a
parameter, which is vastly different from a parameter in statistical estimation. Right at
the bottom of the list is the solution ω6 = − r1σ13+σ16σ36−σ13σ66

σ13
. This neatly expresses the

infinitely many solutions to the covariance structure equations. All the other solutions are
unique (provided that denominators are non-zero), but the pair (ω6, ψ2) can be recovered
from Σ in infinitely many ways, one for each r1 > 0.

This is so nice that we will not bother to re-parameterize and obtain a unique solution.
Of course with real data, one would have to re-parameterize ω6 and ψ2 in order to estimate
the other parameters by maximum likelihood, because otherwise the maximum would not
be unique and there would be unpleasant numerical consequences.

Our main interest is in β11, β12 and β22. The existence of unique solutions means that
these parameters are identifiable (and as a practical matter, estimable) as long as the
denominators are non-zero. The natural thing is to substitute for those σij quantities in
the denominators, in terms of model parameters. Perhaps the denominators are never
zero, or perhaps the βijs can be identified in some other way when they are.

The formula for β22 is simplest. Scanning the list of solutions, we see φ12 = σ13. So,
the solution for β22 does not apply when the two latent explanatory variables have zero
covariance. Perhaps there is another way.

10Sage does not know that r1 = ψ2 is positive, or even that it’s a real number.

B.2. THE SEM PACKAGE 259

Can beta22 be identified when phi12=0?

factor(Sigma(phi12=0))

evaluate
ω1 + φ11 φ11 0 β11φ11 β11φ11 0

φ11 ω2 + φ11 0 β11φ11 β11φ11 0
0 0 ω3 + φ22 β12φ22 β12φ22 β22φ22

β11φ11 β11φ11 β12φ22 β2
11φ11 + β2

12φ22 + ω4 + ψ1 β2
11φ11 + β2

12φ22 + ψ1 β12β22φ22
β11φ11 β11φ11 β12φ22 β2

11φ11 + β2
12φ22 + ψ1 β2

11φ11 + β2
12φ22 + ω5 + ψ1 β12β22φ22

0 0 β22φ22 β12β22φ22 β12β22φ22 β2
22φ22 + ω6 + ψ2


Yes! As long as β12 6= 0,

σ46

σ34

=
β12β22φ22

β12φ22

= β22

Actually, this way of identifying β22 works even when φ12 6= 0. We could scroll up and
look at the orignal Σ in terms of the parameters. Or, the sem package’s pad function can
be used to add a row and column of zeros to a matrix, making it more convenient to refer
to the elements.

Does sigma46/sigma34 work without phi12=0?

padSigma = Pad(Sigma)

show(padSigma[4,6]); show(padSigma[3,4])

evaluate

(β11φ12 + β12φ22)β22

β11φ12 + β12φ22

The identifying solution β22 = σ46
σ34

is superior to the solution β22 = σ16
σ13

on page 258,
because it only fails when both β12 = 0 and (β11 = 0 or φ12 = 0). Some ways of solving
the covariance structure equations are better than others, in the sense that they reveal
more clearly where in the parameter space the parameters are identifiable. Sage’s solve

function will not necessarily locate the most informative solution, and neither will you if
you do it by hand.

The solution β22 = σ46
σ34

does not apply when both φ12 = 0, and β12 = 0, but it is a
good idea to examine Σ under these conditions to see if yet another solution appears.

What if both phi12 and beta12 equal zero?

factor(Sigma(phi12=0,beta12=0))

evaluate

260 APPENDIX B. SYMBOLIC MATHEMATICS WITH SAGE


ω1 + φ11 φ11 0 β11φ11 β11φ11 0

φ11 ω2 + φ11 0 β11φ11 β11φ11 0
0 0 ω3 + φ22 0 0 β22φ22

β11φ11 β11φ11 0 β2
11φ11 + ω4 + ψ1 β2

11φ11 + ψ1 0
β11φ11 β11φ11 0 β2

11φ11 + ψ1 β2
11φ11 + ω5 + ψ1 0

0 0 β22φ22 0 0 β2
22φ22 + ω6 + ψ2


It seems that β22 is not identifiable when both φ12, and β12 equal zero. The only way
to get at it is through φ22, which is not accessible at all. The conclusion is that β22 is
identifiable if either β12 6= 0, or if both β11 and φ12 are non-zero.

It is worth noting that the sufficient condition β12 6= 0 was concealed until we actually
set φ12 = 0 and took another look at the covariance matrix. The general principle is that
when the solution for a parameter in terms of σij quantities is a fraction, the parameter
is identifiable at points in the parameter space where the denominator is non-zero. While
it is tempting to think that identifiability fails where the denominator is zero, this need
not be the case. If the model imposes equality constraints on the covariance matrix, there
may be other ways to recover the parameter.

In our examination of identifiability for β22, it was easy (with Sage) to re-calculate the
covariance matrix with φ12 = 0 to see if it was possible to solve for β22 in that part of the
parameter space. Doing this by hand would have been possible though tedious. For β11

and β12, hand calculation is almost out of the question because the denominators are so
complicated; it’s quite easy with Sage and the sem package.

Look at beta11 and beta12.

show(beta11 == sol[beta11]); show(beta12 == sol[beta12])

evaluate

β11 = σ16σ34−σ14σ36
σ13σ16−σ12σ36

β12 = σ13σ14σ16−σ12σ16σ34
σ2
13σ16−σ12σ13σ36

To see where in the parameter space the denominators equal zero, we need to take the
formulas for the σijs in terms of the parameters, and substitute them into the denomina-
tors (just the denominators, of course). The SigmaOfTheta function of the sem package
is designed to make this task easy. Given a covariance matrix that is a function of model
parameters, SigmaOfTheta makes a dictionary that will allow any function of the σij
variances and covariances to be evaluated at the model parameters. In the following,
SigmaOfTheta is used to create a dictionary called theta, and the denominator of the
solution for β11 is put into d1. Then, d1(theta) gives d1 as a function of the model
parameters. The notation is simple and natural, partly because theta is a very good
name for the dictionary. The Simplify function first expands an expression (multiplies
it out), and then factors the result. I find it more helpful than Sage’s built-in simplify

function, which is already applied to everything automatically anyway.

B.2. THE SEM PACKAGE 261

Now examine denominators of the solutions to see exactly where in

the parameter space they equal zero.

theta = SigmaOfTheta(Sigma)

d1 = denominator(sol[beta11])

Simplify(d1(theta))

evaluate

(φ2
12 − φ11φ22)β22

See how nice that was? The denominator is just −|Φx|β22. Since Φx is positive definite,
the denominator will be zero if and only if β22 = 0.

What if beta22=0?

Sigma(beta22=0)

evaluate
ω1 + φ11 φ11 φ12 β11φ11 + β12φ12 β11φ11 + β12φ12 0

φ11 ω2 + φ11 φ12 β11φ11 + β12φ12 β11φ11 + β12φ12 0
φ12 φ12 ω3 + φ22 β11φ12 + β12φ22 β11φ12 + β12φ22 0

β11φ11 + β12φ12 β11φ11 + β12φ12 β11φ12 + β12φ22 β2
11φ11 + 2β11β12φ12 + β2

12φ22 + ω4 + ψ1 β2
11φ11 + 2β11β12φ12 + β2

12φ22 + ψ1 0
β11φ11 + β12φ12 β11φ11 + β12φ12 β11φ12 + β12φ22 β2

11φ11 + 2β11β12φ12 + β2
12φ22 + ψ1 β2

11φ11 + 2β11β12φ12 + β2
12φ22 + ω5 + ψ1 0

0 0 0 0 0 ω6 + ψ2


The answer got cut off and there is no scrollbar in this document, but you can see that
the only useable equations involving β11 are variations of

σ42 = β11φ11 + β12φ12 (B.7)

σ43 = β11φ12 + β12φ22

The parameters φ11 and φ12 are immediately identifiable, but φ22 is inaccessible when
β22 = 0. This means that solving two linear equations in two unknowns won’t work. The
parameter of interest, β11, can only be recovered if φ12 = 0 as well as β22 = 0.

The conclusion is that β11 is identifiable provided that β22 6= 0 or β22 = φ12 = 0.

Study the identifiability of beta12

d2 = denominator(sol[beta12]); Simplify(d2(theta))

evaluate

(φ2
12 − φ11φ22)β22φ12

It looks like we need both β22 and φ12 non-zero. Earlier, we calculated the covariance
matrix Σ with φ12 = 0 but not β22. In that case,

β12 =
σ46

σ36

=
β12β22φ22

β22φ22

.

262 APPENDIX B. SYMBOLIC MATHEMATICS WITH SAGE

If β22 but not φ12 = 0, we are back to the two linear equations (B.7). We can’t solve the
two equations for β11 and β12 because φ22 isn’t identifiable. However, we can recover β12

if β11 = 0. Okay, so far we have established that β12 is identifiable if

• β22 6= 0, or

• β22 = 0 and φ12 6= 0 and β11 = 0.

Now let’s see what happens if both β22 and φ12 equal zero.

If both beta22 and phi12 equal zero,

Sigma(beta22=0,phi12=0)

evaluate
ω1 + φ11 φ11 0 β11φ11 β11φ11 0

φ11 ω2 + φ11 0 β11φ11 β11φ11 0
0 0 ω3 + φ22 β12φ22 β12φ22 0

β11φ11 β11φ11 β12φ22 β2
11φ11 + β2

12φ22 + ω4 + ψ1 β2
11φ11 + β2

12φ22 + ψ1 0
β11φ11 β11φ11 β12φ22 β2

11φ11 + β2
12φ22 + ψ1 β2

11φ11 + β2
12φ22 + ω5 + ψ1 0

0 0 0 0 0 ω6 + ψ2


The sign of β12 can be identified but not the value, because φ22 can’t be recovered.

We now have a detailed picture of the identifiability of the key parameters β11, β12

and β22, a picture that would be just too much work to obtain without a symbolic math
program like Sage. If at this point you are wishing that you didn’t know so much about
the identifiability of the βij, think again. For example, it would be natural to try testing
H0 : β11 = β12 = β22 = 0 with a likeihood ratio test, but this would be a disaster because
the parameters are not identifiable under the null hypothesis.

Next, we will obtain explicit formulas for the model-induced equality constraints on
the variances and covariances of the observable data, by substituting solutions for the pa-
rameters into the equations that were set aside. Results without an = sign are polynomials
implicitly set to zero.

for item in aside: factor(item(sol))

evaluate

B.2. THE SEM PACKAGE 263

σ14 − σ15

σ13 − σ23

σ14 − σ24

σ14 − σ25

σ16 − σ26

σ34 − σ35

σ16σ34
σ13

= σ56

σ16σ34
σ13

= σ46

If the last two polynomials are multiplied through by σ13, we get

σ16σ34 = σ13σ56 = σ13σ56,

which is a nice way to express the constraints because the statement remains true when the
denominator σ13 = φ12 equals zero. This claim is verified by evaluating the σij quantities
at the model parameters, as follows.

Are constraints still true when sigma13=0?

equal3 = [sigma16*sigma34, sigma13*sigma56, sigma13*sigma46]

for item in equal3: show(item(theta))

evaluate

(β11φ12 + β12φ22)β22φ12

(β11φ12 + β12φ22)β22φ12

(β11φ12 + β12φ22)β22φ12

The equality constraints we have worked so hard to obtain can be quite valuable in data
analysis. If the model is re-parameterized by making ψ2 + ω6 a single parameter, we
have 21 covariance structure equations in 13 unknown parameters. The likelihood ratio
chi-squared test for goodness of fit will have 21− 13 = 8 degrees of freedom, and the null
hypothesis is that exactly those eight equality constraints hold. If the model does not fit,
the constraints can be tested individually to track down why the model does not fit, and
suggest how it might be fixed up.

Groebner Basis While there is no doubt that Sage can make life easier by reducing
the computational burden of studying a model, it’s still too bad that so much thinking
is required. In particular, in order to prove identifiability by obtaining explicit solutions
for the parameters, you need to figure out which equations are redundant so you can give
solve a system that has a general solution. To do this, you almost have to solve the

264 APPENDIX B. SYMBOLIC MATHEMATICS WITH SAGE

equations by hand, or at least look at them carefully and decide how you would proceed
if you were going to do it by hand.

An alternative that sometimes works (but not always) is to apply Groebner basis
methods. If you subtract the σij from both sides of the covariance structure equations,
you get a set of multivariate polynomials, and the roots of those polynomials are the
solutions of the equations. A Groebner basis is a set of polynomials having the same
roots as the input set, but they are typically much easier to solve. See the documentation
for the GroebnerBasis function on page 275 for more details.

Input to the GroebnerBasis function is a list of polynomials and a list of variables.
The polynomials correspond to the covariance structure equations, and are produced as
an option by the SetupEqns function. The “variables” are the model parameters and the
σij quantities. Ordering of the list of variables is very important. The σij come last. The
model parameters go before the σij quantities, usually in reverse order of how interesting
or important they are.

If the σij quantities are last in the input list of variables and there are equality con-
straints among them, the first set of polynomials in the Groebner basis will involve only
σijs. Setting these to zero gives you the equality constraints. Then come the model
parameters. If the first parameter (the last you mentioned in the list of variables) is
identifiable it will appear by itself, accompanied only by covariances. If fortune smiles,
the next polynomial will involve two model parameters, and so on.

The Groebner basis algorithm simplifies the input by multiplying polynomials together
and then adding multiples of polynomials to other polynomials. Depending on the size
and structure of the problem, the number of polynomials can become very large before
finally reducing to a small set with a nice simple form. As a mathematical certainty,
the target (a Groebner basis) exits and algorithm terminates at the right answer, but in
practice this may not happen during your lifetime. As I said, Groebner basis does not
always work, but when it works it is beautiful. In the following, we will just hand the
whole system of Example B.1.2 to the GroebnerBasis function, warts and all.

Notice how the list of parameters is reversed, so that the βij come last and therefore
the solutions for those parameters will emerge first. The σij quantities are reversed as
well. This makes the output of the GroebnerBasis function easier to compare with earlier
work. I may as well explain why, because it sheds light on how Groebner basis works in
practice, as well as features of some other functions in the sem package.

The GroebnerBasis function requires σij quantities as input, and I do not want to type
in the names of the 21 unique elements. Parameters(SymmetricMatrix(6,’sigma’))

does the trick. When I examine a covariance matrix, my preference is to look at the upper
triangle, scanning from left to right. For this reason, the SymmetricMatrix function,
which produces a matrix containing only unique elements, puts copies of the upper triangle
into the lower triangle. So, for example, row 4 column 2 contains σ24. In this example, the
Parameters function detects that the matrix is symmetric, and returns the main diagonal
and the upper triangle, from left to right and top to bottom.

When I was deciding which equations to set aside, I followed my usual practice of
looking at the upper triangle left to right an top to bottom. If I discovered an equation
that was redundant with the earlier ones, I selected it for deletion. When I did this I was

B.2. THE SEM PACKAGE 265

just trying to be systematic and not thinking about Groebner basis, but it was fortunate.
Groebner basis works from the end of the list of input variables (parameters and σij
quantities). When a variable appears in the list of output polynomials for the first time,
it will tend to appear with variables closer to the end of the list.

With the σij reversed as well as at the end, the list of variables looks like . . . σ13, σ12, σ11].
This means, for example, that if σ14 = σ15, other polynomials in the output (and the cor-
responding solutions for the model parameters) will be in terms of σ14 rather than σ15.
That’s exactly the way I did it. It is only because of this happy coincidence that we have a
prayer of checking that the Groebner basis results are consistent with what we did before
without doing a lot of work.

param2 = copy(param) # Work with a copy to avoid changing the original.

param2.reverse() # Reversed order of interest

sigmaij = Parameters(SymmetricMatrix(6,’sigma’))

sigmaij.reverse() # Reverse the sigma_ij too

param2.extend(sigmaij) # Put sigma_ij values at the end

polynoms = SetupEqns(Sigma,poly=True) # Covariance structure polynomials

Throw the whole thing at GroebnerBasis.

basis1 = GroebnerBasis(polynoms,param2)

evaluate

Defining tT1, tT2, tT3, tT4, tT5, tT6, tT7, tT8, tT9, tT10, tT11, tT12,

tT13, tT14, tT15, tT16, tT17, tT18, tT19, tT20, tT21, tT22, tT23, tT24,

tT25, tT26, tT27, tT28, tT29, tT30, tT31, tT32, tT33, tT34, tT35

To my surprise, it finished almost immediately. Take a look.

for item in basis1: show(item)

evaluate

266 APPENDIX B. SYMBOLIC MATHEMATICS WITH SAGE

−σ14 + σ15

−σ13 + σ23

−σ14 + σ24

−σ14 + σ25

−σ16 + σ26

−σ34 + σ35

−σ16σ34 + σ13σ46

−σ46 + σ56

−β11σ13σ16 + β11σ12σ36 + σ16σ34 − σ14σ36

β11σ12 + β12σ13 − σ14

β12σ16σ34 + β11σ12σ46 − σ14σ46

β11σ16 + β12σ36 − σ46

β22σ13 − σ16

β22σ34 − σ46

β11β22σ12 − β22σ14 + β12σ16

φ11 − σ12

φ12 − σ13

φ22σ16 − σ13σ36

−σ34σ36 + φ22σ46

β11φ22σ12 − β11σ
2
13 − φ22σ14 + σ13σ34

β12φ22 + β11σ13 − σ34

β22φ22 − σ36

β11σ14 + β12σ34 + ψ1 − σ45

ω1 − σ11 + σ12

ω2 + σ12 − σ22

ω3 + φ22 − σ33

ω4 − σ44 + σ45

ω5 + σ45 − σ55

β22σ36 + ω6 + ψ2 − σ66

These polynomials have the same roots as the input set. There are more polynomials
than in the input set, but not hundreds — something that can easily happen. The first
eight polynomials in the Groebner basis involve only σij quantities. Comparing them to
the constraints we obtained earlier (see page 263), we see that they are exactly the same,
except just a little better. The first six constraints are even in the same order. For the
last two, the Groebner basis is better because σ16σ34

σ13
= σ56 and σ16σ34

σ13
= σ46 do imply

σ46 = σ56. A simple equality between covariances is preferable to a product set equal to
another product.

The next polynomial involves β11, which appears first because it is the last parameter
on the input list. Setting it equal to zero and solving yields the solution on page 258.
Next comes not one but three polynomials involving β11 and β12. If the solution for β11 in
terms of σij is substituted into the first polynomial yields the solution for β12 on page 258.
The other two yield alternative solutions for β12; these solutions are also correct. Setting
any two of them equal yields a complicated equality constraint on the σij — a constraint

B.2. THE SEM PACKAGE 267

that causes solve to think the whole system has no general solution. There is nothing
new though, because these constraints are implied by the constraints located earlier.

The next two polynomials involve β22 and σij quantities. Setting the first one equal to
zero yields the solution for β22 on page 258. Setting the second one equal to zero yields
the “superior” solution on page 259.

This is the way it goes. There may be multiple ways of solving for a particular
parameter in terms of σij quantities and parameters that have come before. Because of the
way the variables are ordered in this example, the first polynomial involving a particular
parameter always corresponds to one of the solutions given on page 258. When more
than one way of solving for a parameter is indicated by the Gorebner basis, sometimes
one of them is preferable because it’s simpler or applies in more of the parameter space;
sometimes not. Almost always, the polynomials are simple enough that one can verify
the existence of a solution by inspection without actually calculating it.

The last polynomial in the set is β22σ36 +ω6 +ψ2−σ66. This is the first time either ψ2

or ω6 appears, and the fact that they appear together tells you they are not identifiable.
They come last not because they are non-identifiable, but because one of them, ω6, is first
in the list of variables. The way they appear together as a sum reflects the way they are
non-identifiable.

When Groebner basis works, it is hard to exaggerate how excellent it is. Equality
constraints involving the σij quantities appear immediately without all the hard work,
and identifiability or lack of identifiability can usually be verified by inspection. It is
really wonderful that the equality constraints implied by models whose parameters are
non-identifiable can be so easy to obtain, because it makes these models testable (falsifi-
able) without finding a way to re-parameterize them in a way that preserves the equality
constraints.

But as I have mentioned several times, the Groebner basis approach does not always
work. When it fails, it usually fails by not finishing. I have had most trouble with
unrestricted factor analysis, and multi-stage models of the a influences b influences c
variety — the kind for which identifiablity would be established by the Acyclic Rule. It
seems likely that this case could be resolved by ordering the variables better.

B.2.2 Function Documentation

To use the sem functions, you must load them once per session.

sem = ’http://www.utstat.toronto.edu/~brunner/openSEM/sage/sem.sage’

load(sem)

load(’~/sem.sage’) # To load a local version in your home directory

evaluate

After the package is loaded, Contents() will display a list of the available functions. For
help on a particular function, type the function name followed by a question mark, like
“PathVar?”

268 APPENDIX B. SYMBOLIC MATHEMATICS WITH SAGE

1. Matrix Creation

1a) DiagonalMatrix(size,symbol=’psi’)

1b) GeneralMatrix(nrows,ncols,symbol)

1c) IdentityMatrix(size)

1d) SymmetricMatrix(size,symbol,corr=False)

1e) ZeroMatrix(nrows,ncols)

2. Covariance Matrix Calculation

2a) EqsVar(beta,gamma,Phi,oblist,simple=True)

2b) FactorAnalysisVar(Lambda,Phi,Omega)

2c) NoGammaVar(Beta,Psi)

2d) PathVar(Phi,Beta,Gamma,Psi,simple=True)

2e) RegressionVar(Phi,Gamma,Psi,simple=True)

3. Manipulation

3a) GroebnerBasis(polynomials,variables)

3b) LSTarget(M,x,y)

3c) Parameters(M)

3d) SigmaOfTheta(M,symbol=’sigma’)

3e) Simplify(x)

4. Utility

4a) BetaCheck(Beta)

4b) Contents()

4c) CovCheck(Psi)

4d) MultCheck(Beta,Psi)

4e) Pad(M)

For each function, explanation is followed by the function definition (without the docu-
mentation string).

1. Matrix Creation

(a) DiagonalMatrix(size,symbol=’psi’,double=False)

This function creates a diagonal symbolic matrix (size by size) with Greek-letter
symbols (default ψ), and single subscripts. Double subscripts are optional. The
arguments of the function are

B.2. THE SEM PACKAGE 269

• size: Number of rows, equal to number of columns

• symbol: A string containing the root. It is usually a Greek letter, but does
not have to be. Notice the single quotes in the examples below.

• double: Should diagonal elements be doubly subscripted? Default is no,
use single subscripts.

Examples:

DiagonalMatrix(4) # Will have psi1 to psi4 on main diagonal

DiagonalMatrix(4,double=True) # Will have psi11 to psi44 on main diagonal

DiagonalMatrix(2,’phi’)

DiagonalMatrix(2,’phi’,True)

DiagonalMatrix(size=2,symbol=’phi’)

DiagonalMatrix(3,’omega’)

evaluate ω1 0 0
0 ω2 0
0 0 ω3


Here is the function definition without the documentation string.

def DiagonalMatrix(size,symbol=’psi’,double=False):

M = identity_matrix(SR,size) # SR stands for Symbolic Ring

for i in interval(1,size):

subscr = str(i)

if double: subscr = subscr+str(i)

M[i-1,i-1] = var(symbol+subscr)

return M

(b) GeneralMatrix(nrows,ncols,symbol)

This function returns a general symbolic matrix containing symbols with spec-
ified root, usually a Greek letter. In each cell of the matrix are the root symbol
and subscript(s). The argumments are

• nrows: Number of rows

• ncols: Number of columns

• symbol: A string containing the root. It is usually a Greek letter, but does
not have to be. Notice the single quotes in the examples below.

Because it is difficult (impossible?) to get good doubly subscripted variables
with the two subscripts separated by a comma, there is potential ambiguity
when either nrows or ncols gets into double figures. What is γ111? Is it
γ1,11 or γ11,1? For this reason, if either the number of rows or the number of
columns exceeds 9, the contents of the matrix returned by this function are
singly subscripted.

270 APPENDIX B. SYMBOLIC MATHEMATICS WITH SAGE

Examples:

GeneralMatrix(6,2,’lambda’)

GeneralMatrix(11,3,’L’)

GeneralMatrix(3,4,’gamma’)

GeneralMatrix(nrows=3,ncols=4,symbol=’gamma’)

Gamma = GeneralMatrix(nrows=3,ncols=5,symbol=’gamma’)

Gamma

evaluate γ11 γ12 γ13 γ14 γ15

γ21 γ22 γ23 γ24 γ25

γ31 γ32 γ33 γ34 γ35


Here is the function definition without the documentation string.

def GeneralMatrix(nrows,ncols,symbol):

M = matrix(SR,nrows,ncols) # SR is the Symbolic Ring

if nrows < 10 and ncols < 10:

for i in interval(1,nrows):

for j in interval(1,ncols):

M[i-1,j-1] = var(symbol+str(i)+str(j))

else:

index=1

for i in interval(1,nrows):

for j in interval(1,ncols):

M[i-1,j-1] = var(symbol+str(index))

index = index+1

return M

(c) IdentityMatrix(size)

This function returns a symbolic identity matrix of specified size. It’s the same
as identity_matrix(SR,size).

Example: IdentityMatrix(3)

Here is the function definition without the documentation string.

def IdentityMatrix(size):

M = identity_matrix(SR,size) # SR is the Symbolic Ring

return M

(d) SymmetricMatrix(size,symbol,corr=False)

This function returns a square symmetric matrix of the symbolic type, con-
taining symbols with a specified root, usually a Greek letter. In each cell of the

B.2. THE SEM PACKAGE 271

matrix is the root symbol with subscript(s). The matrix contains only unique
elements; the lower triangle contains symbols from the upper triangle, so that
the element in row 5 and column 2 is something like σ25.

The arguments of the function are

• size: Number of rows, equal to number of columns

• symbol: A string containing the root. It is usually a Greek letter, but does
not have to be. Notice the single quotes in the examples below.

• corr: A logical variable (True or False) specifying whether it’s a correlation
matrix. If True, there are ones on the main diagonal. This argument is
optional, with a default of False.

Examples:

SymmetricMatrix(6,’phi’)

SymmetricMatrix(11,’psi’)

SymmetricMatrix(4,’rho’,True)

SymmetricMatrix(size=4,symbol=’rho’,corr=True)

Because it is difficult or maybe even impossible with Sage to get good doubly
subscripted variables with the two subscripts separated by a comma, there
is potential ambiguity when either nrows or ncols gets into double figures.
What is σ111? Is it σ1,11 or σ11,1? For this reason, if either the number of
rows or the number of columns exceeds 9, the contents of the matrix returned
by this function are singly subscripted. In this case the diagonal elements are
numbered last, which is usually what you want once you get used to it.

Phi = SymmetricMatrix(5,’phi’); Phi

evaluate
φ11 φ12 φ13 φ14 φ15

φ12 φ22 φ23 φ24 φ25

φ13 φ23 φ33 φ34 φ35

φ14 φ24 φ34 φ44 φ45

φ15 φ25 φ35 φ45 φ55


Here is the function definition without the documentation string.

def SymmetricMatrix(size,symbol,corr=False):

M = identity_matrix(SR,size) # SR is the Symbolic Ring

if size < 10:

for i in interval(1,size):

for j in interval(i+1,size):

M[i-1,j-1] = var(symbol+str(i)+str(j))

M[j-1,i-1] = M[i-1,j-1]

272 APPENDIX B. SYMBOLIC MATHEMATICS WITH SAGE

if not corr:

for i in interval(1,size):

M[i-1,i-1] = var(symbol+str(i)+str(i))

else:

index=1

for i in interval(1,size):

for j in interval(i+1,size):

M[i-1,j-1] = var(symbol+str(index))

M[j-1,i-1] = M[i-1,j-1]

index = index+1

if not corr:

for i in interval(1,size):

M[i-1,i-1] = var(symbol+str(index))

index = index+1

return M

(e) ZeroMatrix(nrows,ncols)

This function returns a symbolic matrix with specified number of rows and
nummber of columns, full of zeros. It’s the same as the sage function matrix(SR,size).
The ZeroMatrix function is particularly useful for setting up parameter ma-
trices that consist mostly of zeros.

Example: ZeroMatrix(4,4)

Here is the function definition without the documentation string.

def ZeroMatrix(nrowz,ncolz):

M = matrix(SR,nrowz,ncolz) # SR is the Symbolic Ring

return M

2. Covariance Matrix Calculation

(a) EqsVar(beta,gamma,Phi,oblist,simple=True)

The EqsVar function is alphabetically first in the category of covariance matrix
calculation, but it is among the less frequently used. It calculates the covari-
ance matrix of an obvservable data vector for the EQS model of Bentler and
Weeks (1980). The EQS model makes no distinction between error terms and
other exogenous variables, and there is no notational difference between latent
and observable variables. Instead, the covariance matrix of all variables in the
model is calculated, and then the rows end columns corresponding to the ob-
servable variables are selected to form Σ , the common covariance matrix of
the n observable data vectors.

The model equations are

ηi = βηi + γξi,

with cov(ξi) = Φ.

B.2. THE SEM PACKAGE 273

The exogenous variables (including error terms) are in the vector ξi, which is
spelled “xi” and pronounced more or less like the letter “c.” The endogenous
variables are in ηi, which is spelled “eta” and pronounced like “I can’t believea
I atea the whole thing.” Because ξi includes error terms as well as ordinary
exogenous variables, the EqsVar function is useful for calculating the covariance
matrix for pathological but disturbingly realistic models in which exogenous
variables are correlated with error terms, or measurement errors are correlated
with errors in the latent variable model. Other functions in the sem package
are based on standard models which do not admit this possibility.

In the EqsVar function, V = cov

(
ηi
ξi

)
is first calculated, and then the

covariance matrix Σ is formed by selecting rows and columns corresponding to
the observable variables.

The indices of the observable variables are given in the function argument
oblist. The indices start with one, not zero. Following EQS conventions, the
endogenous variables come first in the list of variables (ηi, ξi).

The arguments of the function are

• beta: A square matrix containing the coefficients from each element of eta
to each other element. Number of rows equals number of columns equals
number of exogenous variables, including error terms. Diagonal elements
of Beta should be zeros.

• gamma: A matrix of regression coefficients linking each exogenous (ξ) vari-
able to each endogenous (η) variable. There is one row for each eta variable
and one column for each ξ variable. Thus, the number of rows in gamma

must equal the number of rows (and columns) in beta, and the number of
columns in gamma must equal the number of rows (and columns) in Phi.

• Phi: The variance-covariance matrix of the exogenous variables ηi.

• oblist: List of indices of observable variables. First index is one, not
zero. May be in any order. Following EQS conventions, the endogenous
variables come first in the list of variables (ηi, ξi). So the variable with
index one is the first endogenous variable.

• simple: Should the covariance matrix be simplified? Simplification con-
sists of expanding and then factoring all the elements of Σ. This is time
consuming, but usually worth it. The default for this optional argument
is True.

Example: EqsVar(beeta,gammma,fee,pickout)

The following more detailed example is an extension of Example 0.6.1 on
page 30, which was about the connection between income and credit card debt
among real estate agents. In the path diagram of Figure B.3, X is reported
income (Tx measured with error), Y is reported credit card debt (Ty measured
with error), and W is local average selling price of a resale home (real estate
agents typically get a percentage of the the selling price). Because of numerous

274 APPENDIX B. SYMBOLIC MATHEMATICS WITH SAGE

omitted variables, the error terms are all correlated with one another.

Figure B.3: Massively correlated error terms

X Y

ε
3

βc

ε
4

β
1

W

β
3

Tx

ε
1

β
2

Ty
β
3

β
4

ε
2

ε
1

In the notation of the EQS model,

ξi =


εi,1
ε2,1
εi,3
εi,4
Wi

 and ηi =


Txi
Tyi
Xi

Yi



In EsqVar, eta = beta eta + gamma xi, with cov(xi) = Phi

eta’ = (Tx,Ty,X,Y) and xi’ = (epsilon1,epsilon2,epsilon3,epsilon4,W)

B = ZeroMatrix(4,4) # beta

B[1,0] = var(’beta3’) ; B[2,0] = var(’beta2’) ; B[3,1] = var(’beta4’)

G[0,0] = 1; G[0,4] = var(’beta1’); G[1,1] = 1; G[2,3] = 1; G[3,2] = 1

P = SymmetricMatrix(5,’psi’); P[4,4]=var(’phi’) # This is the Phi matrix

No correlations between W and the errors

for j in interval(0,3):

P[j,4] = 0

P[4,j] = 0

P

B.2. THE SEM PACKAGE 275

evaluate
ψ11 ψ12 ψ13 ψ14 0
ψ12 ψ22 ψ23 ψ24 0
ψ13 ψ23 ψ33 ψ34 0
ψ14 ψ24 ψ34 ψ44 0

0 0 0 0 φ



pickout = 9,3,4 # Indices of observable variables, order eta, xi

Sigma = EqsVar(B,G,P,pickout); Sigma

evaluate φ β1β2φ β1β3β4φ
β1β2φ β2

1β
2
2φ+ β2

2ψ11 + 2 β2ψ14 + ψ44 β2
1β2β3β4φ+ β2β3β4ψ11 + β2β4ψ12 + β3β4ψ14 + β2ψ13 + β4ψ24 + ψ34

β1β3β4φ β2
1β2β3β4φ+ β2β3β4ψ11 + β2β4ψ12 + β3β4ψ14 + β2ψ13 + β4ψ24 + ψ34 β2

1β
2
3β

2
4φ+ β2

3β
2
4ψ11 + 2 β3β

2
4ψ12 + 2 β3β4ψ13 + β2

4ψ22 + 2 β4ψ23 + ψ33


(b) FactorAnalysisVar(Lambda,Phi,Omega)

(c) NoGammaVar(Beta,Psi)

(d) PathVar(Phi,Beta,Gamma,Psi,simple=True)

(e) RegressionVar(Phi,Gamma,Psi,simple=True)

3. Manipulation

(a) GroebnerBasis(polynomials,variables)

(b) LSTarget(M,x,y)

(c) Parameters(M)

(d) SigmaOfTheta(M,symbol=’sigma’)

(e) Simplify(x)

4. Utility

(a) BetaCheck(Beta)

(b) Contents()

(c) CovCheck(Psi)

(d) MultCheck(Beta,Psi)

(e) Pad(M)

Indices of arrays and vectors in Sage start with zero, which can be a minor
irritant to those of us who are used to counting on our fingers. This function
returns a “padded” version of a matrix by inserting a row zero and a column

276 APPENDIX B. SYMBOLIC MATHEMATICS WITH SAGE

zero consisting entirely of zeros. This makes it more convenient to refer to
elements of the matrix.

Here is the function definition without the documentation string.

def Pad(M):

"""

Pad by making first row and first col all zeros, so it is

Argument: A matrix that needs padding

Result: A padded matrix, with one additional row and one additional

column.

Example

SIGMA = Pad(Sigma)

"""

nrowz = M.nrows(); nrowz = nrowz+1 # Strange work-around

ncolz = M.ncols(); ncolz = ncolz+1

padM = matrix(SR,nrowz,ncolz)

for i in interval(1,M.nrows()):

for j in interval(1,M.ncols()):

padM[i,j] = M[i-1,j-1]

return padM

Phi = SymmetricMatrix(5,’phi’)

PadPhi = Pad(Phi); PadPhi

evaluate
0 0 0 0 0 0
0 φ11 φ12 φ13 φ14 φ15

0 φ12 φ22 φ23 φ24 φ25

0 φ13 φ23 φ33 φ34 φ35

0 φ14 φ24 φ34 φ44 φ45

0 φ15 φ25 φ35 φ45 φ55


Here is the function definition without the documentation string.

B.3. USING SAGE ON YOUR COMPUTER 277

B.3 Using Sage on your Computer

Sage has a browser interface, which means you interact with it through an ordinary Web
browser11. This means that the actual Sage software can reside either on your computer
or a remote server. In practice, there are three possibilities:

1. You may use Sage free of charge on computers maintained by the Sage development
group. To do it this way, go to http://sagenb.com, set up a free account, and
start using Sage. This is the easiest way to get started, but be aware that many
people may be trying to use the service at the same time. My experience is that
performance is sometimes quick and pleasant (for example, during the summer),
and sometimes very slow. So this is an excellent way to give Sage a try and it’s very
handy for occasional use, but depending on it to do homework assignments is a bit
risky.

2. You can connect to Sage on a server at your university or organization, provided
that someone has gone to the trouble to set it up. If you can use Sage this way, you
are fortunate, and you only have some minor font issues to take care of. These are
discussed below.

3. You can download and install Sage on your own computer. You still use a Web
browser, but the Web server is your own machine, and it serves only you. It’s pretty
straightforward, but the details depend on your operating system. Some of these
details may change, because the Sage developers are constantly working (without
payment) to improve the package. They also are responding to the actions of various
companies like Apple, Google and Microsoft.

Mac OS and Linux There are two steps. First, go to http://www.sagemath.org,
download the software, and install it as usual. As of March 2013, there was almost12

nothing out of the ordinary for Mac OS, and this appeared to be the case for linux as
well.

The second step is probably needed if you do not already have LATEX installed, which
will be the case for many students. Even if you do have LATEX installed, the follow-
ing is very helpful if you plan to use Sage on the servers at http://sagenb.com, even
occasionally. Go to

http://www.math.union.edu/ dpvc/jsMath/download/jsMath-fonts.html,

download the jsMath fonts, and install them. You should only download one set of fonts.
To install, Mac users can open the System folder, open the library sub-folder, and then
drag the fonts to the Fonts sub-sub folder. You may need to click “Authenticate” and
type your password. A re-start will be required before the new fonts are available.

11The Sage website says Mozilla Firefox and Google Chrome are recommended, and if you are a
Windows user, you should believe it. In a Mac environment, I have had no trouble with Safari.

12Under Mac OS, the “App” version of the software is recommended. It works like any other Mac
application. The first time you start it, you might have to wait

http://sagenb.com
http://www.sagemath.org
http://sagenb.com
http://www.math.union.edu/~dpvc/jsMath/download/jsMath-fonts.html

278 APPENDIX B. SYMBOLIC MATHEMATICS WITH SAGE

Microsoft Windows As mentioned earlier, Sage incorporates a number of other open
source math programs, and makes them work together using a common interface. This
marvelous feat, which is accomplished mostly with Python scripts, depends heavily on
features that are part of the linux and unix operating systems, but are missing from
Microsoft Windows. This makes it difficult or perhaps actually impossible to construct a
native version of Sage for Windows. The current (and possibly final) solution is to run
Sage in a virtual machine – a set of software instructions that act like a separate computer
within Windows. The virtual machine uses the linux operating system, and has Sage

preinstalled. The http://www.sagemath.org website calls it the “Sage appliance.”

The software that allows the virtual machine to function under Windows is Oracle
Corporation’s free open-source VirtualBox, and you need to install that first. Start at
http://wiki.sagemath.org/SageApplianceInstallation, and follow the directons. You will
see that the first step is to download VirtualBox.

Then, go to http://wiki.sagemath.org/SageAppliance, and follow the directions
there. It is highly recommended that you set up a folder for sharing files between Windows
and the Sage appliance, because a good way of printing your Sage output depends on it.
Follow all the directions, including the part about resetting the virtual machine.

Now you are ready to use Sage and see your output on screen. Printing under Windows
is a separate issue, but it’s easy once you know how.

Printing Under Windows The virtual machine provided by VirtualBox is incomplete
by design; it lacks USB support13. So, most printers don’t work easily. I know of four
ways to print, and I have gotten the first three to work. The fourth way is speculation
only and I don’t intend to try it. The methods are ordered in terms of my personal
preference.

1. In the Sage appliance, click on the printer icon or press the right mouse button
and choose Print from the resulting menu. The default will be to Save as PDF.
To choose the location to save the file, click on File System, then media, then the
name of the shared folder14. Click Save. In Windows, go to the shared folder and
print the pdf file15. An advantage of this method is that you don’t need to install
any fonts, because the jsMath fonts are already installed in the linux system of the
Sage Applicance.

2. For this method, you do need to install the jsMath fonts under Windows. Go to

13Presumably this is a strategic decision by Oracle Corporation. As of this writing, USB support
is available from Oracle as a separate free add-on. It’s free to individual users for their personal use,
meaning nobody can legally re-sell a virtual machine that includes it without paying Oracle a royalty.
Sagemath would give it away and not sell it, but the developers strongly prefer to keep Sage fully free
under the GNU public license.

14You set up the shared folder when you installed the Sage applicance.
15When working with Sage in a Windows environment, it may be helpful to keep the shared folder open

in Windows Explorer. As soon as you save the file you want to print, you will see it appear in Windows
Explorer.

http://www.sagemath.org
http://wiki.sagemath.org/SageApplianceInstallation
 http://wiki.sagemath.org/SageAppliance

B.3. USING SAGE ON YOUR COMPUTER 279

http://www.math.union.edu/ dpvc/jsMath/download/jsMath-fonts.html,

download the jsMath fonts, and install them; A darkness level of 25 is good. To
install under Windows 7, I needed to double-click on each font individually and
click install. More experienced Windows users may be able to install the fonts some
other way. A re-start is required.

Now once the jsMath fonts are installed, note that you can reach the Sage runnning
in your virtual machine from Windows. Minimize the browser in the virtual machine,
and open Firefox or Chrome under Windows. Go to https://localhost:8000.
Now you can do whatever calculations you wish and print as usual. When you are
done, you need to close the browser in the Sage appliance as well as Windows, and
sent the shutdown signal before closing Virtualbox.

3. When you choose Print from within the Sage appliance, the default is Save as PDF.
But because the Web browser in the Sage appliance is Google Chrome, Google Cloud
Print is also an option. You can connect your printer to Google Cloud Print provided
that Google Chrome is installed under Windows, and you have a Google (gmail)
account. Using Chrome, go to http://www.google.com/cloudprint/learn and locate
the instructions to set up your printer. If the printer is physically connected to
the computer (not wireless), it’s called a “classic” printer. Once your printer is
connected, you can print to it from the Sage appliance through Google’s servers,
provided you are connected to the Internet and signed in to your Google account
under Windows at the time. There is no need to install any fonts; they are already
installed on the virtual linux machine.

4. Finally, in principle one should be able to install the appropriate printer driver (if
one exists) in the virtual linux machine and print directly from the Sage appliance.
Under Windows, you can access the linux command line using the free open source
PuTTy SSH client, which can be obtained from www.putty.org. Once the Sage

appliance is running, connect using Host Name localhost through port 2222. The
user name is sage and the password is also sage. There may be better ways to
reach the linux shell, but this works. You can ignore all the warnings.

A package containing USB support for VirtualBox is available at https://www.virtualbox.org.
Once it’s installed, you can start looking for a linux driver for your printer. This
printing method is appropriate only for those with linux experience who feel like
playing around.

http://www.math.union.edu/~dpvc/jsMath/download/jsMath-fonts.html
https://localhost:8000
http://www.google.com/cloudprint/learn
www.putty.org
https://www.virtualbox.org

	Symbolic Mathematics with Sage
	Introduction to Sage
	The sem Package
	Introduction and Examples
	Function Documentation

	Using Sage on your Computer

