
Chapter 2

First set of tools: SAS running
under unix (including linux)

The SAS language is the same regardless of what hardware you use or what operating
system is running on the hardware. SAS programs are simple text files that can be trans-
ported from one machine to another with minimal difficulty. In this course, everything
will be illustrated with SAS running under the unix operating system, but it’s not a prob-
lem even if the next place you go only has PCs. The adjustment to SAS-PC should be
fast and fairly painless.

2.1 Unix

Unix is a line-oriented operating system. Well, there’s X-windows (a graphical shell that
runs on top of unix), but we won’t bother with it. Basically, you type a command, press
Enter, and unix does something for (or to) you. It may help to think of unix as DOS on
steroids, if you remember DOS. The table below has all the unix commands you will need
for this course. Throughout, fname stands for the name of a file.

26

A Minimal Set of unix Commands

exit Logs you off the system: ALWAYS log off before leaving!

passwd Lets you change your password. Recommended.

man command name Online help: explains command name, (like man sort).

ls Lists names of the files in your directory.

less fname Displays fname on screen, one page at a time. Spacebar for next page, q to
quit.

lpr fname Prints hard copy. That first character is a capital L. lpr stands for line
printer. These physical devices no longer exist in most installations.

rm fname Removes fname, erasing it forever.

cp fname1 fname2 Makes a copy of fname1. The new copy is named fname2.

mv fname1 fname2 Moves (renames) fname1

emacs fname Starts the emacs text editor, editing fname (can be new file).

R Gets you into the R implementation of the S environment.

sas fname Executes SAS commands in the file fname.sas, yielding fname.log and (if
no fatal errors) fname.lst.

ps Shows active processes

kill -9 # Kills process (job) number #. Sometimes you must do this when you can’t log
off because there are stopped jobs. Use ps to see the job numbers.

mail yourname@yourisp.com < fname Email a file to yourself. Very handy for get-
ting files to your home computer for printing.

curl URL > fname A URL is a Web address. This command is intended to help you
get a copy of the source code of Web pages. But when the web page contains just
a data file, as it sometimes does in this course, this is a great way to get a copy of
the data. Copy the URL from your browser, like this.
curl http://fisher.utstat.toronto.edu/~brunner/429f07/code_n_data/drp.dat > drp.dat

This really is a minimal set of commands. The unix operating system is extremely
powerful, and has an enormous number of commands. You can’t really see the power
from the minimal set above, but you can see the main drawback from the standpoint of
a new user. Commands tend to be terse, consisting of just a few keystrokes. They make
sense once you are familiar with them (like ls for listing the files in a directory, or rm for
remove), but they are hard to guess. The man command (short for manual) gives very

27

brunner
Cross-Out

accurate information, but you have to know the name of the command before you can
use man to find out about it.

Just for future reference, here are a few more commands that you may find useful, or
otherwise appealing.

A Few More unix Commands

mkdir dirname Makes a new sub-directory (like a folder) named dirname. You can
have sub-directories within sub-directories; it’s a good way to organize your work.

cp fname dirname Copies the file fname into the directory dirname.

cd dirname Short for Change Directory. Takes you to the sub-directory dirname.

cd .. Moves you up a directory level.

cd Moves you to your main directory from wherever you are.

ls > fname Sends the output of the ls command to the file fname instead of to the
screen.

cat fname Lists the whole file on your screen, not one page at a time. It goes by very
fast, but usually you can scroll back up to see the entire file, if it’s not too long.

cat fname1 fname2 > fname3 Concatenates fname1 and fname2 (sticks them to-
gether) and re-directs the output to fname3

grep ERROR cartoon1.log Searches for the string ERROR in the file cartoon1.log.
Echos each line containing the string. Silent if ERROR does not occur. Case
sensitive.

alias chk ”grep ERROR *.log ; grep WARN *.log” Makes a new command called
chk. It checks for the string ERROR and the string WARN in any log file.

cal Displays a calendar for this month

cal 1 3002 Displays a calendar for January 3002.

unset noclobber Are you tired of being asked if you really want to remove or overwrite
a file?

rm fname1 fname2 Remove both

rm -f fname Remove without asking for confirmation, this time only.

alias rm ”rm -f” rm now means rm -f.

rm -r dirname Remove the directory, and everything in it recursively.

R –vanilla < fname1 > fname2 Execute the S language commands in fname1, send-
ing output to fname2. Run in “plain vanilla” mode.

28

brunner
Cross-Out

Printing files at home This is a question that always comes up. Almost surely, the
printer connected to your printer at home is not directly connected to the university
network. If you want to do something like print your SAS output at home, you have to
transfer the file on the unix machine to the hard drive of your home computer, and print
it from there. One way is to use some kind of sftp (secure file transfer protocol) tool to
get the file in question onto your hard drive. If you are a Mac or linux user, sftp is built
in. For Windows users, the free utility WinSCP is recommended.

Depending on your email program, another method is to email yourself the file. This
is illustrated in the first set of unix commands. To repeat,

mail yourname@yourisp.com < fname .

This approach is not recommended if you use a web-based email program like Hotmail.
If you print your files from a word-processing program like MS Word, it is a good

idea to use a fixed-width font like Courier, and not the Times or Times Roman font.
Everything will be lined up better.

2.1.1 Editing text files with emacs

SAS programs are plain text files, and so are raw data files. You must type in your
programs, and occasionally type in or modify raw data files as well. It is best to do this
directly on the unix server, and the recommended tool is emacs, a free open-source text
editor. Emacs is the work of Richard Stallman, originator of the Free Software Foundation
and the gnu project. You can think of emacs as a vastly more powerful version of Notepad.

Emacs allows you to edit text in a full-screen environment, but it dates from the time
before full graphical user interfaces. Therefore, if you are connecting to the unix machine
using PuTTY or a terminal application, take your hand away from the mouse. You cannot
get to a location by clicking there, and you cannot do most of the things you ordinarily
do with your mouse.1

To get into emacs from the operating system, type emacs fname at the unix prompt
(fname stands for the name of a file). If fname is a previously existing file, it will be
brought into emacs and you will see it on the screen. If fname does not already exist,
it will be created. Whatever you type will be inserted to the left of the blinking cursor.
Pressing the DELETE or the BACKSPACE key will erase the character to the left of the
cursor. Move around with the arrow keys, not the mouse.

Emacs is largely controlled by sequences single keystroke commands. To let emacs

know that a sequence is meant to be a command and not something to be inserted into
the text, you must either hold down the CONTROL key and press the command key, or
strike the ESC (escape) key first and then press the command key. In the summary of
commands below, C- and then a letter means hold down the CONTROL key and press

1You can select text in the usual way, and if you are using PuTTY, selecting text copies it to a buffer
you can think of as the clipboard. But this is happening in PuTTY, a program running on your PC. Emacs,
a program running on the remote unix machine, knows nothing about it. And, pressing the right mouse
key pastes the contents of the buffer, but emacs thinks you’re just typing fast.

29

brunner
Note
WinSCP may be better. See the course computing page.

brunner
Note
Marked set by brunner

the letter. ESC- and then a letter means strike the ESC key and then press the letter.
Here is a very small set of useful commands:

A Minimal Set of emacs Commands

C-x C-s Save the file. Do this often as you type!

C-x C-c Exit emacs, saving the file. Really want to? Reply y for yes or n for no.

C-x C-w Save the file under a new name.

C-e Move cursor to end of line.

C-a Move cursor to beginning of line.

C-v Forward a screen.

ESC-v Backward a screen.

ESC-> Move to end of file.

ESC-< Move to beginning of file.

C-k Kill (delete) to end of line; contents are saved in the “kill” buffer.

C-@ Set “mark”. (Now move ”point” (cursor) to other boundary of text you want to
copy or cut.)

C-w Cuts text between point and mark, placing it in kill buffer.

ESC-w Copies text between point and mark, placing it in kill buffer.

C-y “Yank” (paste) contents of kill buffer. If several items have been deleted consecu-
tively, (like with many C-K’s) they’re all there.

C-x i Insert file at cursor. EMACS will ask for file name.

ESC-% Search and replace. y=yes, n=no, !=yes from here on with no prompt, ESC
terminates the search.

C-x u Undo the last command. Keep doing it to keep undoing.

C-x g Stop or cancel whatever is happening: Useful at times.

30

2.2 Introduction to SAS

SAS stands for “Statistical Analysis System.” Even though it runs on PCs as well as on
bigger computers, it is truly the last of the great old mainframe statistical packages. The
first beta release was in 1971, and the SAS Institute, Inc. was spun off from the University
of North Carolina in 1976, the year after Bill Gates dropped out of Harvard. This is a
serious pedigree, and it has both advantages and disadvantages.

The advantages are that the number of statistical procedures SAS can do is truly
staggering, and the most commonly used ones have been tested so many times by so
many people that their correctness and numerical efficiency are beyond any question. For
the purposes of this class, there are no bugs. The disadvantages of SAS are all related to
the fact that it was designed to run in a batch-oriented mainframe environment. So, for
example, the SAS Institute has tried hard to make SAS an “interactive” program, but
the interface still basically file and text oriented, not graphical.

2.2.1 The Four Main File Types

A typical SAS job will involve four main types of file.

• The Raw Data File: A file consisting of rows and columns of numbers; or maybe
some of the columns have letters (character data) instead of numbers. The rows
represent observations and the columns represent variables, as described at the
beginning of Section 1.1. In the first example we will consider below, the raw data
file is called drp.dat.

• The Program File: This is also sometimes called a “command file,” because it’s
usually not much of a program. It consists of commands that the SAS software
tries to follow. You create this file with a text editor like emacs. The command file
contains a reference to the raw data file (in the infile statement), so SAS knows
where to find the data. In the first example we will consider below, the command
file is called reading1.sas. SAS expects program files to have the extension .sas,
and you should always follow this convention.

• The Log File: This file is produced by every SAS run, whether it is successful of
unsuccessful. It contains a listing of the command file, as well any error messages or
warnings. The name of the log file is automatically generated by SAS; it combines
the first part of the command file’s name with the extension .log. So for example,
when SAS executes the commands in reading1.sas, it writes a log file named
reading1.log.

• The List File: The list file contains the output of the statistical procedures re-
quested by the command file. The list file has the extension .lst — so, for example,
running SAS on the command file reading1.sas will produce reading1.lst as well
as reading1.log. A successful SAS run will almost always produce a list file. The
absence of a list file indicates that there was at least one fatal error. The presence

31

of a list file does not mean there were no errors; it just means that SAS was able to
do some of what you asked it to do. Even if there are errors, the list file will usually
not contain any error messages; they will be in the log file.

2.2.2 Running SAS from the Command Line

There are several ways to run SAS. In this text, all the examples will be run from the
unix command line. In my view, this way is simplest and also the best way to start. Also,
it is by far the easiest way to use SAS from home, assuming that SAS is running on a
remote server and not your home computer.

The following illustrates a simple SAS run. The unix prompt is YesMaster >, indi-
cating that unix is waiting for a command. You unix prompt will probably be different.
Initially, there are no files in the directory. So when we type ls to list the files, we just
get the unix prompt again.

YesMaster > ls

YesMaster >

The first step is to get the raw data file. It’s a classic: the data that Student (William
Gossett) used to illustrate the t-test in the paper where he first reported it [9]. Navigate
to the data file with a Web browser, copy the address and click on the unix window
(PuTTY, for most students.) Then use the curl command to copy the data file to your
directory. In PuTTY, you’d type curl, then space, then press the right mouse key to
paste the Web address; it’s long, and wraps to the next line. Type another space, the
“greater than” sign (unix redirection, sending output somewhere), and then the name of
the file you want it to go to — in this case studentsleep.data. Finally, press the Enter
key. You see a cryptic report on the data transmission, and get the unix prompt again.
Then, ls shows that the file is there.

YesMaster > curl http://fisher.utstat.toronto.edu/~brunner/442f09/code_n_data/text/

studentsleep.data > studentsleep.data

% Total % Received % Xferd Average Speed Time Time Time Current

Dload Upload Total Spent Left Speed

100 314 100 314 0 0 15492 0 --:--:-- --:--:-- --:--:-- 0

YesMaster > ls

studentsleep.data

You always examine the raw data file before doing anything else. Look at it with the
less command – spacebar for another page, q for quit.

32

YesMaster > less studentsleep.data

Patient Drug 1 Drug 2

1 0.7 1.9

2 -1.6 0.8

3 -0.2 1.1

4 -1.2 0.1

5 -0.1 -0.1

6 3.4 4.4

7 3.7 5.5

8 0.8 1.6

9 0.0 4.6

10 2.0 3.4

YesMaster >

Actually, it’s so obvious that you should look at your data that it is seldom mentioned.
But experienced data analysts always do it — or else they assume everything is okay and
get a bitter lesson in something they already knew. This is so important that it gets the
formal status of a data analysis hint.

Data Analysis Hint 1 Always look at your raw data file. It the data file is big, do it
anyway. At least page through it a screen at a time, looking for anything strange. Check
the values of all the variables for a few cases. Do they make sense? If you have obtained
the data file from somewhere, along with a description of what’s in it, never believe that
the description you have been given is completely accurate.

The file studentsleep.data contains two variables for ten patients suffering from
insomnia. Notice the variable names on the first line. Some software (like R) can use this
information, but SAS cannot. Furthermore, if it tries to read the data and encounters
characters where it expects numbers, the results are unpleasant. One solution is to edit
the raw data file and get rid of the labels, but actually labels like this can be useful. We’ll
get SAS to skip the first line, and start reading data from line two.

Each variable is actually a difference, representing how much extra sleep a patient
got when taking a sleeping pill. Drug 1 is Dextro-hyoscyamine hydrobomide, while Drug
2 is Laevo-hyoscyamine hydrobomide. We want to know whether each drug is effective,
and also which drug is more effective. Following Gosset, we’ll use one-sample t-tests to
decide whether each drug is effective; since these one-sample t-tests are carried out on
differences, they are matched t-tests. We’ll also compute a match-t-test comparing Drug
1 and Drug 2. Notice that this is a within-subjects design.

To analyze the data with SAS, we need to create another plain text file containing a
SAS program. We’ll use emacs. At the unix prompt, type emacs sleep1.sas and Enter.
Please use the extension .sas for all SAS program files. The file does not exist yet, so
emacs creates a new empty file with that name, and presents you with a blank screen.

33

You type in the program, exit emacs, and type the ls command. Now you have two files.
Here is the process just described.

YesMaster > emacs sleep1.sas

YesMaster > ls

sleep1.sas studentsleep.data

To execute a SAS program called fname.sas, type sas fname at the unix prompt.
When we do this, we see that SAS has created two additional files: the log file and the
list file.

YesMaster > sas sleep1

YesMaster > ls

sleep1.log sleep1.lst sleep1.sas studentsleep.data

If there are no errors or the errors are not too serious, statistical output will appear
in the list file, in this case sleep1.lst. If there are warnings or error messages, they will
appear in the log file. So even if there is a list file, your next step is to take a look at
the log file with less or cat. If there are problems, use emacs to fix them by editing the
program file, the data file, or both. Repeat as needed.

The whole process will be faster and easier if you open two unix windows at once.
Arrange your desktop so you can see at least part of both screens at the same time (this
means fighting the MS Windows habit of filling your entire monitor with a single window).
Edit your program with emacs in one window, and have the unix prompt in the other
window. When your program looks good, save it, but don’t exit emacs. Click on the
other window, do sas fname, and less the log or list file. If there’s a problem, click on
the window with emacs running, modify the program, save again, and so on.

2.2.3 Structure of the Program File

A SAS program file is composed of units called data steps and proc steps. The typical
SAS program has one data step and at least one proc step, though other structures are
possible.

• Most SAS commands belong either in data step or in a proc step; they will generate
errors if they are used in the wrong kind of step.

• Some statements, like the title and options commands, exist outside of the data
and proc steps, but there are relatively few of these.

34

The Data Step The data step takes care of data acquisition and modification. It
almost always includes a reference to at least one raw data file, telling SAS where to
look for the data. It specifies variable names and labels, and provides instructions about
how to read the data; for example, the data might be read from fixed column locations.
Variables from the raw data file can be modified, and new variables can be created.

Each data step creates a SAS data set, a file consisting of the data (after modifica-
tions and additions), labels, and so on. Statistical procedures operate on SAS data sets,
so you must create a SAS data set before you can start computing any statistics.

A SAS data set is written in a binary format that is very convenient for SAS to
process, but is not readable by humans. In the old days, SAS data sets were always
written to temporary scratch files on the computer’s hard drive; these days, they may be
maintained in RAM if they are small enough. In any case, the default is that a SAS data
set disappears after the job has run. If the data step is executed again in a later run, the
SAS data set is re-created.

Actually, it is possible to save a SAS data set on disk for later use. We won’t do this
here, but it makes sense when the amount of processing in a data step is large relative
to the speed of the computer. As an extreme example, one of my colleagues uses SAS
to analyze data from Ontario hospital admissions; the data files have millions of cases.
Typically, it takes around 20 hours of CPU time on a very strong unix machine just to
read the data and create a SAS data set. The resulting file, hundreds of gigabytes in size,
is saved to disk, and then it takes just a few minutes to carry out each analysis. You
wouldn’t want to try this on a PC.

To repeat, SAS data steps and SAS data sets sound similar, but they are distinct
concepts. A SAS data step is part of a SAS program; it generates a SAS data set, which
is a file – usually a temporary file.

SAS data sets are not always created by SAS data steps. Some statistical procedures
can create SAS data sets, too. For example, proc standard can take an ordinary SAS
data set as input, and produce an output data set that has all the original variables,
and also some of the variables converted to z-scores (by subtracting off the mean and
dividing by the standard deviation). Proc reg (the main multiple regression procedure)
can produce a SAS data set containing residuals for plotting and use in further analysis;
there are many other examples.

The proc Step “Proc” is short for procedure. Most procedures are statistical proce-
dures; the most noticeable exception is proc format, which is used to provide labels for
the values of categorical variables. The proc step is where you specify a statistical pro-
cedure that you want to carry out. A statistical procedures in the proc step will take a
SAS data set as input, and write the results (summary statistics, values of test statistics,
p-values, and so on) to the list file. The typical SAS program includes one data step and
several proc steps, because it is common to produce a variety of data displays, descriptive
statistics and significance tests in a single run.

35

2.2.4 A First Example: sleep1.sas

Now we will look at sleep1.sas in some detail. This program is very simple; it has just
one data step and two proc steps.

/* sleep1.sas */

options linesize=79 noovp formdlim=’ ’;

title "t-tests on Student’s Sleep data";

data bedtime;

infile ’sleep1.data’ firstobs=2; /* Skip the header */

input patient xsleep1 xsleep2;

sleepdif = xsleep2-xsleep1; /* Create a new variable */

proc print;

var patient xsleep1 xsleep2 sleepdif;

proc means n mean stddev t probt;

var xsleep1 xsleep2 sleepdif;

Here are some detailed comments about sleep1.sas.

• The first line is a comment. Anything between a /* and */ is a comment, and
will be listed on the log file but otherwise ignored by SAS. Comments can appear
anywhere in a program. You are not required to use comments, but it’s a good idea.

The most common error associated with comments is to forget to end them with
*/. In the case of sleep1.sas, leaving off the */ (or typing /* again by mistake)
would cause the whole program to be treated as a comment. It would generate
no errors, and no output — because as far as SAS would be concerned, you never
requested any. A longer program would eventually exceed the default length of a
comment (it’s some large number of characters) and SAS would end the “comment”
for you. At exactly that point (probably in the middle of a command) SAS would
begin parsing the program. Almost certainly, the first thing it examined would be a
fragment of a legal command, and this would cause an error. The log file would say
that the command caused an error, and not much else. It would be very confusing,
because probably the command would be okay, and there would be no indication
that SAS was only looking at part of it.

• The next two lines (the options statement and the title statement) exist outside
the proc step and outside the data step. This is fairly rare.

• All SAS statements end with a semi-colon (;). SAS statements can extend for several
physical lines in the program file. Spacing, indentation, breaking up s statement

36

into several lines of text – these are all for the convenience of the human reader,
and are not part of the SAS syntax.

• By far the most common error in SAS programming is to forget the semi-colon.
When this happens, SAS tries to interpret the following statement as part of the
one you forgot to end. This often causes not one error, but a cascading sequence
of errors. The rule is, if you have an error and you do not immediately understand
what it is, look for a missing semi-colon. It will probably be before the portion of
the program that (according to SAS) caused the first error.

• Cascading errors are not caused just by the dreaded missing semi-colon. They are
common in SAS; for example, a runaway comment statement can easily cause a
chain reaction of errors (if the program is long enough for it to cause any error
messages at all). If you have a lot of errors in your log file, fix the first one and
re-run the job; and don’t waste time trying to figure out the others. Some or all of
them may well disappear.

• options linesize=79 noovp formdlim=’_’;

These options are highly recommended. The linesize=79 option is so highly rec-
ommended it’s almost obligatory. It causes SAS to write the output 79 columns
across, so it can be read on an ordinary terminal screen that’s 80 characters wide.
You specify an output width of 79 characters rather than 80, because SAS uses one
column for printer control characters, like page ejects (form feeds).

If you do not specify options linesize=79;, SAS will use its default of 132 char-
acters across, the width of sheet of paper from an obsolete line printer you probably
have never seen. Why would the SAS Institute hang on to this default, when
changing it to match ordinary letter paper would be so easy? It probably tells
you something about the computing environments of some of SAS’s large corporate
clients.

• The noovp option makes the log files more readable if you have errors. When SAS
finds an error in your program, it tries to underline the words that caused the
error. It does this by going back and overprinting the offending word with a series
of “underscores” (characters). On many printers this works, but when you try
to look at the log file on a terminal screen (one that is not controlled by the SAS
Display Manager), what often appears is a mess. The noovp option specifies no

overprinting. It causes the “underlining” to appear on a separate line under the
program line with the error. If you’re running SAS from the unix command line
and looking at your log files with the less command or the cat command, you will
probably find the noovp option to be helpful.

• The formdlim=’ ’ option specifies a “form delimiter” to replace most form feeds
(new physical pages) in the list file. This can save a lot of paper (and page printing
charges). You can use any string you want for a form delimiter. The blank space

37

(the one specified here) causes an extra blank line to be printed instead of going to
a new sheet of paper.

• title This is optional, but recommended. The material between the quotes will
appear at the top of each page. This can be a lifesaver when you are searching
through a stack of old printouts for something you did a year or two ago.

• data bedtime; This begins the data step, specifying that the name of the SAS
data set being created is “bedtime.” The names of data sets are arbitrary, but you
should make them informative. They must be eight characters or fewer, and begin
with letters.

• infile Specifies the name of the raw data file. The file name, enclosed in single
quotes, can be the full unix path to the file, like /dos/brunner/public/senic.raw.
If you just give the name of the raw data file, as in this example, SAS assumes that
the file is in the same directory as the command file.

• firstobs=2 Begin reading the data on line two, skipping the variable names. You
can skip any number of lines this way, so a data file could potentially begin with a
long description of how the data were collected.

• input Gives the names of the variables.

– Variable names must be eight characters or less, and should begin with a letter.
They will be used to request statistical procedures in the proc step. They
should be meaningful (related to what the variable is), and easy to remember.

– This is almost the simplest form of the input statement. It can be very pow-
erful; for example, you can read data from different locations and in different
orders, depending on the value of a variable you’ve just read, and so on. It can
get complicated, but if the data file has a simple structure, the input statement
can be simple too.

• sleepdif = xsleep2-xsleep1; Create a new variable, representing how much
more sleep the patient got with Drug 2, compared to Drug 1. This calculation
is performed for each case in the data file. Notice that the new variable sleepdif

does not appear in the input statement. When some variables are to be created
from others, it is a very good idea to do the computation within SAS. This makes
raw data files smaller and more manageable, and also makes it easier to correct or
re-define the computed variables.

• proc print; Now the first proc step begins. All we are doing is to list the data
to make sure we have computed sleepdif correctly. This is actually a good thing
to do whenever you compute a new variable. Of course you never (or very seldom)
make hard copy of the complete output of proc print, because it’s usually very
long. Once you’re confident the data are what you think, delete the proc print.

38

• var patient xsleep1 xsleep2 sleepdif; List the variables you want to print.
The word “var” is obligatory, and is among a fairly large number of names reserved
by the SAS system. If you tried to name one of your variables var, it wouldn’t let
you.

• proc means; This is the second proc step. Proc means is most often used to
produce simple summary statistics for quantitative variables. The words n mean

stddev t probt are optional, and specify that we want to see the following for
each variable specified: the sample size, mean, standard deviation, t-test for testing
whether the mean is different from zero, and the two-tailed p-value for the t-test.
These are the paired t-tests we want. With just proc means; and not the option,
we would get the default statistics: n, mean, standard deviation, minimum and
maximum. These last two statistics are very useful, because they can alert you to
outliers and errors in the data.

• var is obligatory. It is followed by a list of the variables for which you want to see
means and other statistics.

sleep1.log Log files are not very interesting when everything is okay, but here is an
example anyway. Notice that in addition to a variety of technical information (where the
files are, how long each step took, and so on), it contains a listing of the SAS program —
in this case, sleep1.sas. If there were syntax errors in the program, this is where the
error messages would appear. The less command lets you look at a file one page at a
time. Press the space bar for the next page, or q to quit.

YesMaster > less sleep1.log

1 The SAS System

08:47 Sunday, August 23, 3009

NOTE: Copyright (c) 2002-2003 by SAS Institute Inc., Cary, NC, USA.

NOTE: SAS (r) 9.1 (TS1M0)

Licensed to UNIVERSITY OF TORONTO/COMPUTING & COMMUNICATIONS, Site 0008987

001.

NOTE: This session is executing on the SunOS 5.10 platform.

You are running SAS 9. Some SAS 8 files will be automatically converted

by the V9 engine; others are incompatible. Please see

http://support.sas.com/rnd/migration/planning/platform/64bit.html

PROC MIGRATE will preserve current SAS file attributes and is

recommended for converting all your SAS libraries from any

SAS 8 release to SAS 9. For details and examples, please see

http://support.sas.com/rnd/migration/index.html

39

This message is contained in the SAS news file, and is presented upon

initialization. Edit the file "news" in the "misc/base" directory to

display site-specific news and information in the program log.

The command line option "-nonews" will prevent this display.

NOTE: SAS initialization used:

real time 0.86 seconds

cpu time 0.12 seconds

1 /* sleep1.sas */

2 options linesize=79 noovp formdlim=’ ’ nodate;

3 title "t-tests on Student’s Sleep data";

4

5 data bedtime;

6 infile ’studentsleep.data’ firstobs=2; /* Skip the header */

7 input patient xsleep1 xsleep2;

8 sleepdif = xsleep2-xsleep1; /* Create a new variable */

9

NOTE: The infile ’studentsleep.data’ is:

File Name=/u/brunner/442f09/show/studentsleep.data,

^L2 The SAS System

Owner Name=brunner,Group Name=UNKNOWN,

Access Permission=rw-r--r--,

File Size (bytes)=314

NOTE: 10 records were read from the infile ’studentsleep.data’.

The minimum record length was 27.

The maximum record length was 27.

NOTE: The data set WORK.BEDTIME has 10 observations and 4 variables.

NOTE: DATA statement used (Total process time):

real time 0.31 seconds

cpu time 0.02 seconds

10 proc print;

11 var patient xsleep1 xsleep2 sleepdif;

12

40

NOTE: There were 10 observations read from the data set WORK.BEDTIME.

NOTE: The PROCEDURE PRINT printed page 1.

NOTE: PROCEDURE PRINT used (Total process time):

real time 0.40 seconds

cpu time 0.05 seconds

13 proc means n mean stddev t probt;

14 var xsleep1 xsleep2 sleepdif;

15

NOTE: There were 10 observations read from the data set WORK.BEDTIME.

NOTE: The PROCEDURE MEANS printed page 2.

NOTE: PROCEDURE MEANS used (Total process time):

real time 0.20 seconds

cpu time 0.05 seconds

NOTE: SAS Institute Inc., SAS Campus Drive, Cary, NC USA 27513-2414

NOTE: The SAS System used:

real time 1.81 seconds

cpu time 0.25 seconds

sleep1.lst Here is the list file. Notice that the title specified in the title statement
appears at the top. Then we get statistical output — in this case, the listing of raw data
and table of means and t-tests.

YesMaster > less sleep1.lst

t-tests on Student’s Sleep data 1

Obs patient xsleep1 xsleep2 sleepdif

1 1 0.7 1.9 1.2

2 2 -1.6 0.8 2.4

3 3 -0.2 1.1 1.3

4 4 -1.2 0.1 1.3

5 5 -0.1 -0.1 0.0

6 6 3.4 4.4 1.0

7 7 3.7 5.5 1.8

8 8 0.8 1.6 0.8

9 9 0.0 4.6 4.6

10 10 2.0 3.4 1.4

41

t-tests on Student’s Sleep data 2

The MEANS Procedure

Variable N Mean Std Dev t Value Pr > |t|

xsleep1 10 0.7500000 1.7890097 1.33 0.2176

xsleep2 10 2.3300000 2.0022487 3.68 0.0051

sleepdif 10 1.5800000 1.2299955 4.06 0.0028

YesMaster >

YesMaster > mail jerry@cia.gov < sleep1.log

YesMaster > mail jerry@cia.gov < sleep1.lst

YesMaster > exit

The output is pretty self-explanatory, except the last bit. Once you finish running a SAS
job, your log and list files reside on a hard drive attached to unix machine, not your home
computer. If you are using a computer in a computer lab on campus, you can probably
print to a printer in the lab with the lpr command, like lpr sleep1.lst. lpr is short
for line printer; you have never seen one.

To print from home, it is easiest to email yourself a copy of the files you want to print.
At the unix prompt, type mail, then your email address, then a < sign, and then the
name of the file you want to mail. The less than sign is unix redirection. It says send the
file that way – that is, use the file as input to the mail command.

Now you’re ready to go. Here is an outline of the whole process.

• Get a copy of the data file with curl.

• Look at the data file with less or cat.

• Edit the data file with emacs if necessary.

• Create the program file by typing it into emacs. It is a good idea to copy-paste bits
of my code or your own code from earlier jobs, but of course you are not allowed to
look at your classmates’ work at all, much less copy it.

• Run SAS.

• Look at the log file. If there are errors or warnings, edit the program or the data
file and run SAS again. Repeat as necessary.

• When there are no more errors or warnings, look at the list file. Some mistakes
are apparent in the list file (statistical output), but do not cause error or warning
messages. If necessary, edit the program or the data file and run SAS again.

42

• When everything is okay, email the log and list files to yourself and print them. Or,
you can download and install WinSCP to transfer the files.

My suggestion is that when you’re still new to this, you go to a quiet place and write
out your SAS program on a piece of paper before sitting down at the computer, using
examples from lecture and this document as models.

2.2.5 SAS Example Two: The statclass data

These data come from a statistics class taught many years ago. Students took eight
quizzes, turned in nine computer assignments, and also took a midterm and final exam.
The data file also includes gender and ethnic background; these last two variables are just
guesses by the professor, and there is no way to tell how accurate they were. The data
file looks like this. There are 21 columns and 62 rows of data; columns are not aligned
and there are no column headers. Here are the first few lines.

YesMaster > less statclass1.data

1 2 9 1 7 8 4 3 5 2 6 10 10 10 5 0 0 0 0 55 43

0 2 10 10 5 9 10 8 6 8 10 10 8 9 9 9 9 10 10 66 79

1 2 10 10 5 10 10 10 9 8 10 10 10 10 10 10 9 10 10 94 67

1 2 10 10 8 9 10 7 10 9 10 10 10 9 10 10 9 10 10 81 65

0 1 10 1 0 0 8 6 5 2 10 9 0 0 10 6 0 5 0 54 .

1 1 10 6 7 9 8 8 5 7 10 9 10 9 5 6 4 8 10 57 52

0 1 0 0 9 9 10 5 2 2 8 7 7 10 10 6 3 7 10 49 .

0 1 10 9 5 8 9 8 5 6 8 7 5 6 10 6 5 9 9 77 64

0 1 10 8 6 8 9 5 3 6 9 9 6 9 10 6 5 7 10 65 42

1 1 10 5 6 7 10 4 6 0 10 9 10 9 10 6 7 8 10 73 .

0 1 9 0 4 6 10 5 3 3 10 8 10 5 10 10 9 9 10 71 37

...

Notice the periods at the ends of lines 5, 7 and 10. The period is the SAS missing
value code. These people did not show up for the final exam. They may have taken a
makeup exam, but if so their scores did not make it into this data file. When a case has
a missing value recorded for a variable, SAS automatically excludes that case from any
statistical calculation involving the variable. If a new variable is being created based on
the value of a variable with a missing value, the new variable will usually have a missing
value for that case too.

Here is the SAS program statmarks1.sas. It reads and labels the data, and then does
a variety of significance tests. They are all elementary except the last one, which illus-
trates testing for one set of independent variables controlling for another set in multiple
regression.

43

YesMaster > cat statmarks1.sas

/* statmarks1.sas */

options linesize=79 noovp formdlim=’_’;

title ’Grades from STA3000 at Roosevelt University: Fall, 1957’;

title2 ’Illustrate Elementary Tests’;

proc format; /* Used to label values of the categorical variables */

value sexfmt 0 = ’Male’ 1 = ’Female’;

value ethfmt 1 = ’Chinese’

2 = ’European’

3 = ’Other’ ;

data grades;

infile ’statclass1.data’;

input sex ethnic quiz1-quiz8 comp1-comp9 midterm final;

/* Drop lowest score for quiz & computer */

quizave = (sum(of quiz1-quiz8) - min(of quiz1-quiz8)) / 7;

compave = (sum(of comp1-comp9) - min(of comp1-comp9)) / 8;

label ethnic = ’Apparent ethnic background (ancestry)’

quizave = ’Quiz Average (drop lowest)’

compave = ’Computer Average (drop lowest)’;

mark = .3*quizave*10 + .1*compave*10 + .3*midterm + .3*final;

label mark = ’Final Mark’;

diff = quiz8-quiz1; /* To illustrate matched t-test */

label diff = ’Quiz 8 minus Quiz 1’;

mark2 = round(mark);

/* Bump up at grade boundaries */

if mark2=89 then mark2=90;

if mark2=79 then mark2=80;

if mark2=69 then mark2=70;

if mark2=59 then mark2=60;

/* Assign letter grade */

if mark2=. then grade=’Incomplete’;

else if mark2 ge 90 then grade = ’A’;

else if 80 le mark2 le 89 then grade=’B’;

else if 70 le mark2 le 79 then grade=’C’;

else if 60 le mark2 le 69 then grade=’D’;

else grade=’F’;

format sex sexfmt.; /* Associates sex & ethnic */

format ethnic ethfmt.; /* with formats defined above */

proc freq;

title3 ’Frequency distributions of the categorical variables’;

tables sex ethnic grade;

44

proc means;

title3 ’Means and SDs of quantitative variables’;

var quiz1 -- mark; /* single dash only works with numbered

lists, like quiz1-quiz8 */

proc ttest;

title3 ’Independent t-test’;

class sex;

var mark;

proc means n mean std t probt;

title3 ’Matched t-test: Quiz 1 versus 8’;

var quiz1 quiz8 diff;

proc glm;

title3 ’One-way anova’;

class ethnic;

model mark = ethnic;

means ethnic;

means ethnic / Tukey Bon Scheffe;

proc freq;

title3 ’Chi-squared Test of Independence’;

tables sex*ethnic sex*grade ethnic*grade / chisq;

proc freq; /* Added after seeing warning from chisq test above */

title3 ’Chi-squared Test of Independence: Version 2’;

tables sex*ethnic grade*(sex ethnic) / norow nopercent chisq expected;

proc corr;

title3 ’Correlation Matrix’;

var final midterm quizave compave;

proc plot;

title3 ’Scatterplot’;

plot final*midterm; /* Really should do all combinations */

proc reg;

title3 ’Simple regression’;

model final=midterm;

/* Predict final exam score from midterm, quiz & computer */

proc reg simple;

title3 ’Multiple Regression’;

model final = midterm quizave compave / ss1;

smalstuf: test quizave = 0, compave = 0;

45

Noteworthy features of this program include

• options: Already discussed in connection with sleep1.sas.

• title2: Subtitle

• proc format: This is a non-statistical procedure – a rarity in the SAS language.
It is the way SAS takes care of labelling categorical variables when the categories
are coded as numbers. proc format defines printing formats. For any variable
associated with the printing format named sexfmt, any time it would print the value
“0” (in a table or something) it instead prints the string “Male.” The associations
between variables and printing formats are accomplished in the format statement
at the end of the data step. The names of formats have a period at the end to
distinguish them from variable names. Of course formats must be defined before
they can be associated with variables. This is why proc format precedes the data
step.

• quiz1-quiz8: One may refer to a range of variables ending with consecutive num-
bers using a minus sign. In the input statement, a range can be defined (named)
this way. It saves typing and is easy to read.

• Creating new variables with assignment statements. The variables quizave, compave
and mark are not in the original data file. They are created here, and they are ap-
pended to the end of the SAS data set in oder of creation. Variables like this should
never be in the raw data file.

Data Analysis Hint 2 When variables are exact mathematical functions of other
variables, always create them in the data step rather than including them in the raw
data file. It saves data entry, and makes the data file smaller and easier to read. If
you want to try out a different definition of the variable, it’s easy to change a few
statements in the data step.

• sum(of quiz1-quiz8): Without the word “of,” the minus sign is ambiguous. In
the SAS language, sum(quiz1-quiz8) is the sum of a single number, the difference
between quiz1 and quiz8.

• format sex sexfmt.; Associates the variable sex with its printing format. In ques-
tionnaire studies where a large number of items have the same potential responses
(like a scale from 1 = Strongly Agree to 7=Strongly Disagree), it is common to
associate a long list of variables with a single printing format.

• quiz1 -- mark in the first proc means: A double dash refers to a list of variables
in the order of their creation in the data step. Single dashes are for numerical order,
while double dashes are for order of creation; it’s very handy.

• Title inside a procedure labels just that procedure.

46

• proc means n mean std t A matched t-test is just a single-variable t-test carried
out on differences, testing whether the mean difference is equal to zero.

• proc glm

– class Tells SAS that the IV ethnic is categorical.

– model Dependent variable(s) = independent variable(s)

– means ethnic: Mean of mark separately for each value of ethnic.

– means ethnic / Tukey Bon Scheffe: Post hoc tests (multiple comparisons,
probing, follow-ups). Used if the overall F -test is significant, to see which
means are different from which other means.

• chisq option on proc freq: Gives a large collection of chisquare tests. The first one
is the familiar Pearson chisquare test of independence (the one comparing observed
and expected frequencies).

• tables sex*ethnic / norow nopercent chisq expected; In this second version
of the crosstab produced proc freq, we suppress the row and total percentages, and
look at the expected frequencies because SAS warned us that some of them were
too small. SAS issues a warning if any expected frequency is below 5; this is the
old-fashioned rule of thumb. But it has been known for some time that Type I error
rates are affected mostly by expected frequencies smaller than one, not five — so I
wanted to take a look.

• proc corr After var, list the variables you want to see in a correlation matrix.

• proc plot; plot final*midterm; Scatterplot: First variable named goes on the
y axis.

• proc reg: model Dependent variable(s) = independent variable(s) again

• simple option on proc reg gives simple descriptive statistics. This last procedure
is an example of multiple regression, and we will return to it later once we have
more background.

47

statmarks1.lst

Grades from STA3000 at Roosevelt University: Fall, 1957 1

Illustrate Elementary Tests

Frequency distributions of the categorical variables

The FREQ Procedure

Cumulative Cumulative

sex Frequency Percent Frequency Percent

Male 39 62.90 39 62.90

Female 23 37.10 62 100.00

Apparent ethnic background (ancestry)

Cumulative Cumulative

ethnic Frequency Percent Frequency Percent

Chinese 41 66.13 41 66.13

European 15 24.19 56 90.32

Other 6 9.68 62 100.00

Cumulative Cumulative

grade Frequency Percent Frequency Percent

A 3 4.84 3 4.84

B 6 9.68 9 14.52

C 18 29.03 27 43.55

D 21 33.87 48 77.42

F 10 16.13 58 93.55

Incomplete 4 6.45 62 100.00

Grades from STA3000 at Roosevelt University: Fall, 1957 2

Illustrate Elementary Tests

Means and SDs of quantitative variables

The MEANS Procedure

Variable Label N Mean Std Dev

--

quiz1 62 9.0967742 2.2739413

quiz2 62 5.8870968 3.2294995

quiz3 62 6.0483871 2.3707744

quiz4 62 7.7258065 2.1590022

quiz5 62 9.0645161 1.4471109

quiz6 62 7.1612903 1.9264641

quiz7 62 5.7903226 2.1204477

quiz8 62 6.3064516 2.3787909

comp1 62 9.1451613 1.1430011

comp2 62 8.8225806 1.7604414

comp3 62 8.3387097 2.5020880

comp4 62 7.8548387 3.2180168

comp5 62 9.4354839 1.7237109

comp6 62 7.8548387 2.4350364

comp7 62 6.6451613 2.7526248

comp8 62 8.8225806 1.6745363

comp9 62 8.2419355 3.7050497

midterm 62 70.1935484 13.6235557

final 58 50.3103448 17.2496701

48

quizave Quiz Average (drop lowest) 62 7.6751152 1.1266917

compave Computer Average (drop lowest) 62 8.8346774 1.1204997

mark Final Mark 58 68.4830049 10.3902874

--

Variable Label Minimum Maximum

--

quiz1 0 10.0000000

quiz2 0 10.0000000

quiz3 0 10.0000000

quiz4 0 10.0000000

quiz5 4.0000000 10.0000000

quiz6 3.0000000 10.0000000

quiz7 0 10.0000000

quiz8 0 10.0000000

comp1 6.0000000 10.0000000

comp2 0 10.0000000

comp3 0 10.0000000

comp4 0 10.0000000

comp5 0 10.0000000

comp6 0 10.0000000

comp7 0 10.0000000

comp8 0 10.0000000

comp9 0 10.0000000

midterm 44.0000000 103.0000000

final 15.0000000 89.0000000

quizave Quiz Average (drop lowest) 4.5714286 9.7142857

compave Computer Average (drop lowest) 5.0000000 10.0000000

mark Final Mark 48.4821429 95.4571429

--

Grades from STA3000 at Roosevelt University: Fall, 1957 3

Illustrate Elementary Tests

Independent t-test

The TTEST Procedure

Statistics

Lower CL Upper CL Lower CL

Variable sex N Mean Mean Mean Std Dev Std Dev

mark Male 36 65.604 68.57 71.535 7.1093 8.7653

mark Female 22 62.647 68.341 74.036 9.8809 12.843

mark Diff (1-2) -5.454 0.2284 5.9108 8.8495 10.482

Statistics

Upper CL

Variable sex Std Dev Std Err Minimum Maximum

mark Male 11.434 1.4609 54.057 89.932

mark Female 18.354 2.7382 48.482 95.457

mark Diff (1-2) 12.859 2.8366

T-Tests

Variable Method Variances DF t Value Pr > |t|

mark Pooled Equal 56 0.08 0.9361

mark Satterthwaite Unequal 33.1 0.07 0.9418

49

Equality of Variances

Variable Method Num DF Den DF F Value Pr > F

mark Folded F 21 35 2.15 0.0443

Grades from STA3000 at Roosevelt University: Fall, 1957 4

Illustrate Elementary Tests

Matched t-test: Quiz 1 versus 8

The MEANS Procedure

Variable Label N Mean Std Dev t Value

quiz1 62 9.0967742 2.2739413 31.50

quiz8 62 6.3064516 2.3787909 20.87

diff Quiz 8 minus Quiz 1 62 -2.7903226 3.1578011 -6.96

Variable Label Pr > |t|

quiz1 <.0001

quiz8 <.0001

diff Quiz 8 minus Quiz 1 <.0001

Grades from STA3000 at Roosevelt University: Fall, 1957 5

Illustrate Elementary Tests

One-way anova

The GLM Procedure

Class Level Information

Class Levels Values

ethnic 3 Chinese European Other

Number of Observations Read 62

Number of Observations Used 58

Grades from STA3000 at Roosevelt University: Fall, 1957 6

Illustrate Elementary Tests

One-way anova

The GLM Procedure

Dependent Variable: mark Final Mark

Sum of

Source DF Squares Mean Square F Value Pr > F

Model 2 1238.960134 619.480067 6.93 0.0021

Error 55 4914.649951 89.357272

Corrected Total 57 6153.610084

50

R-Square Coeff Var Root MSE mark Mean

0.201339 13.80328 9.452898 68.48300

Source DF Type I SS Mean Square F Value Pr > F

ethnic 2 1238.960134 619.480067 6.93 0.0021

Source DF Type III SS Mean Square F Value Pr > F

ethnic 2 1238.960134 619.480067 6.93 0.0021

Grades from STA3000 at Roosevelt University: Fall, 1957 7

Illustrate Elementary Tests

One-way anova

The GLM Procedure

Level of -------------mark------------

ethnic N Mean Std Dev

Chinese 37 65.2688224 7.9262171

European 15 76.0142857 11.2351562

Other 6 69.4755952 13.3097753

Grades from STA3000 at Roosevelt University: Fall, 1957 8

Illustrate Elementary Tests

One-way anova

The GLM Procedure

Tukey’s Studentized Range (HSD) Test for mark

NOTE: This test controls the Type I experimentwise error rate.

Alpha 0.05

Error Degrees of Freedom 55

Error Mean Square 89.35727

Critical Value of Studentized Range 3.40649

Comparisons significant at the 0.05 level are indicated by ***.

Difference

ethnic Between Simultaneous 95%

Comparison Means Confidence Limits

European - Other 6.539 -4.460 17.538

European - Chinese 10.745 3.776 17.715 ***

Other - European -6.539 -17.538 4.460

Other - Chinese 4.207 -5.814 14.228

Chinese - European -10.745 -17.715 -3.776 ***

Chinese - Other -4.207 -14.228 5.814

51

Grades from STA3000 at Roosevelt University: Fall, 1957 9

Illustrate Elementary Tests

One-way anova

The GLM Procedure

Bonferroni (Dunn) t Tests for mark

NOTE: This test controls the Type I experimentwise error rate, but it

generally has a higher Type II error rate than Tukey’s for all pairwise

comparisons.

Alpha 0.05

Error Degrees of Freedom 55

Error Mean Square 89.35727

Critical Value of t 2.46941

Comparisons significant at the 0.05 level are indicated by ***.

Difference

ethnic Between Simultaneous 95%

Comparison Means Confidence Limits

European - Other 6.539 -4.737 17.814

European - Chinese 10.745 3.600 17.891 ***

Other - European -6.539 -17.814 4.737

Other - Chinese 4.207 -6.067 14.480

Chinese - European -10.745 -17.891 -3.600 ***

Chinese - Other -4.207 -14.480 6.067

Grades from STA3000 at Roosevelt University: Fall, 1957 10

Illustrate Elementary Tests

One-way anova

The GLM Procedure

Scheffe’s Test for mark

NOTE: This test controls the Type I experimentwise error rate, but it

generally has a higher Type II error rate than Tukey’s for all pairwise

comparisons.

Alpha 0.05

Error Degrees of Freedom 55

Error Mean Square 89.35727

Critical Value of F 3.16499

Comparisons significant at the 0.05 level are indicated by ***.

Difference

ethnic Between Simultaneous 95%

Comparison Means Confidence Limits

European - Other 6.539 -4.950 18.027

European - Chinese 10.745 3.466 18.025 ***

Other - European -6.539 -18.027 4.950

52

Other - Chinese 4.207 -6.260 14.674

Chinese - European -10.745 -18.025 -3.466 ***

Chinese - Other -4.207 -14.674 6.260

Grades from STA3000 at Roosevelt University: Fall, 1957 11

Illustrate Elementary Tests

Chi-squared Test of Independence

The FREQ Procedure

Table of sex by ethnic

sex ethnic(Apparent ethnic background (ancestry))

Frequency|

Percent |

Row Pct |

Col Pct |Chinese |European|Other | Total

---------+--------+--------+--------+

Male | 27 | 7 | 5 | 39

| 43.55 | 11.29 | 8.06 | 62.90

| 69.23 | 17.95 | 12.82 |

| 65.85 | 46.67 | 83.33 |

---------+--------+--------+--------+

Female | 14 | 8 | 1 | 23

| 22.58 | 12.90 | 1.61 | 37.10

| 60.87 | 34.78 | 4.35 |

| 34.15 | 53.33 | 16.67 |

---------+--------+--------+--------+

Total 41 15 6 62

66.13 24.19 9.68 100.00

Statistics for Table of sex by ethnic

Statistic DF Value Prob

--

Chi-Square 2 2.9208 0.2321

Likelihood Ratio Chi-Square 2 2.9956 0.2236

Mantel-Haenszel Chi-Square 1 0.0000 0.9949

Phi Coefficient 0.2170

Contingency Coefficient 0.2121

Cramer’s V 0.2170

WARNING: 33% of the cells have expected counts less

than 5. Chi-Square may not be a valid test.

Sample Size = 62

53

Grades from STA3000 at Roosevelt University: Fall, 1957 12

Illustrate Elementary Tests

Chi-squared Test of Independence

The FREQ Procedure

Table of sex by grade

sex grade

Frequency|

Percent |

Row Pct |

Col Pct |A |B |C |D |F |Incomple| Total

| | | | | |te |

---------+--------+--------+--------+--------+--------+--------+

Male | 1 | 3 | 13 | 14 | 5 | 3 | 39

| 1.61 | 4.84 | 20.97 | 22.58 | 8.06 | 4.84 | 62.90

| 2.56 | 7.69 | 33.33 | 35.90 | 12.82 | 7.69 |

| 33.33 | 50.00 | 72.22 | 66.67 | 50.00 | 75.00 |

---------+--------+--------+--------+--------+--------+--------+

Female | 2 | 3 | 5 | 7 | 5 | 1 | 23

| 3.23 | 4.84 | 8.06 | 11.29 | 8.06 | 1.61 | 37.10

| 8.70 | 13.04 | 21.74 | 30.43 | 21.74 | 4.35 |

| 66.67 | 50.00 | 27.78 | 33.33 | 50.00 | 25.00 |

---------+--------+--------+--------+--------+--------+--------+

Total 3 6 18 21 10 4 62

4.84 9.68 29.03 33.87 16.13 6.45 100.00

Statistics for Table of sex by grade

Statistic DF Value Prob

--

Chi-Square 5 3.3139 0.6517

Likelihood Ratio Chi-Square 5 3.2717 0.6582

Mantel-Haenszel Chi-Square 1 0.2342 0.6284

Phi Coefficient 0.2312

Contingency Coefficient 0.2253

Cramer’s V 0.2312

WARNING: 58% of the cells have expected counts less

than 5. Chi-Square may not be a valid test.

Sample Size = 62

54

Grades from STA3000 at Roosevelt University: Fall, 1957 13

Illustrate Elementary Tests

Chi-squared Test of Independence

The FREQ Procedure

Table of ethnic by grade

ethnic(Apparent ethnic background (ancestry)) grade

Frequency|

Percent |

Row Pct |

Col Pct |A |B |C |D |F |Incomple| Total

| | | | | |te |

---------+--------+--------+--------+--------+--------+--------+

Chinese | 0 | 2 | 11 | 17 | 7 | 4 | 41

| 0.00 | 3.23 | 17.74 | 27.42 | 11.29 | 6.45 | 66.13

| 0.00 | 4.88 | 26.83 | 41.46 | 17.07 | 9.76 |

| 0.00 | 33.33 | 61.11 | 80.95 | 70.00 | 100.00 |

---------+--------+--------+--------+--------+--------+--------+

European | 2 | 4 | 5 | 3 | 1 | 0 | 15

| 3.23 | 6.45 | 8.06 | 4.84 | 1.61 | 0.00 | 24.19

| 13.33 | 26.67 | 33.33 | 20.00 | 6.67 | 0.00 |

| 66.67 | 66.67 | 27.78 | 14.29 | 10.00 | 0.00 |

---------+--------+--------+--------+--------+--------+--------+

Other | 1 | 0 | 2 | 1 | 2 | 0 | 6

| 1.61 | 0.00 | 3.23 | 1.61 | 3.23 | 0.00 | 9.68

| 16.67 | 0.00 | 33.33 | 16.67 | 33.33 | 0.00 |

| 33.33 | 0.00 | 11.11 | 4.76 | 20.00 | 0.00 |

---------+--------+--------+--------+--------+--------+--------+

Total 3 6 18 21 10 4 62

4.84 9.68 29.03 33.87 16.13 6.45 100.00

Statistics for Table of ethnic by grade

Statistic DF Value Prob

--

Chi-Square 10 18.2676 0.0506

Likelihood Ratio Chi-Square 10 19.6338 0.0329

Mantel-Haenszel Chi-Square 1 5.6222 0.0177

Phi Coefficient 0.5428

Contingency Coefficient 0.4771

Cramer’s V 0.3838

WARNING: 78% of the cells have expected counts less

than 5. Chi-Square may not be a valid test.

Sample Size = 62

55

Grades from STA3000 at Roosevelt University: Fall, 1957 14

Illustrate Elementary Tests

Chi-squared Test of Independence: Version 2

The FREQ Procedure

Table of sex by ethnic

sex ethnic(Apparent ethnic background (ancestry))

Frequency|

Expected |

Col Pct |Chinese |European|Other | Total

---------+--------+--------+--------+

Male | 27 | 7 | 5 | 39

| 25.79 | 9.4355 | 3.7742 |

| 65.85 | 46.67 | 83.33 |

---------+--------+--------+--------+

Female | 14 | 8 | 1 | 23

| 15.21 | 5.5645 | 2.2258 |

| 34.15 | 53.33 | 16.67 |

---------+--------+--------+--------+

Total 41 15 6 62

Statistics for Table of sex by ethnic

Statistic DF Value Prob

--

Chi-Square 2 2.9208 0.2321

Likelihood Ratio Chi-Square 2 2.9956 0.2236

Mantel-Haenszel Chi-Square 1 0.0000 0.9949

Phi Coefficient 0.2170

Contingency Coefficient 0.2121

Cramer’s V 0.2170

WARNING: 33% of the cells have expected counts less

than 5. Chi-Square may not be a valid test.

Sample Size = 62

56

Grades from STA3000 at Roosevelt University: Fall, 1957 15

Illustrate Elementary Tests

Chi-squared Test of Independence: Version 2

The FREQ Procedure

Table of grade by sex

grade sex

Frequency |

Expected |

Col Pct |Male |Female | Total

-----------+--------+--------+

A | 1 | 2 | 3

| 1.8871 | 1.1129 |

| 2.56 | 8.70 |

-----------+--------+--------+

B | 3 | 3 | 6

| 3.7742 | 2.2258 |

| 7.69 | 13.04 |

-----------+--------+--------+

C | 13 | 5 | 18

| 11.323 | 6.6774 |

| 33.33 | 21.74 |

-----------+--------+--------+

D | 14 | 7 | 21

| 13.21 | 7.7903 |

| 35.90 | 30.43 |

-----------+--------+--------+

F | 5 | 5 | 10

| 6.2903 | 3.7097 |

| 12.82 | 21.74 |

-----------+--------+--------+

Incomplete | 3 | 1 | 4

| 2.5161 | 1.4839 |

| 7.69 | 4.35 |

-----------+--------+--------+

Total 39 23 62

Statistics for Table of grade by sex

Statistic DF Value Prob

--

Chi-Square 5 3.3139 0.6517

Likelihood Ratio Chi-Square 5 3.2717 0.6582

Mantel-Haenszel Chi-Square 1 0.2342 0.6284

Phi Coefficient 0.2312

Contingency Coefficient 0.2253

Cramer’s V 0.2312

WARNING: 58% of the cells have expected counts less

than 5. Chi-Square may not be a valid test.

Sample Size = 62

57

Grades from STA3000 at Roosevelt University: Fall, 1957 16

Illustrate Elementary Tests

Chi-squared Test of Independence: Version 2

The FREQ Procedure

Table of grade by ethnic

grade ethnic(Apparent ethnic background (ancestry))

Frequency |

Expected |

Col Pct |Chinese |European|Other | Total

-----------+--------+--------+--------+

A | 0 | 2 | 1 | 3

| 1.9839 | 0.7258 | 0.2903 |

| 0.00 | 13.33 | 16.67 |

-----------+--------+--------+--------+

B | 2 | 4 | 0 | 6

| 3.9677 | 1.4516 | 0.5806 |

| 4.88 | 26.67 | 0.00 |

-----------+--------+--------+--------+

C | 11 | 5 | 2 | 18

| 11.903 | 4.3548 | 1.7419 |

| 26.83 | 33.33 | 33.33 |

-----------+--------+--------+--------+

D | 17 | 3 | 1 | 21

| 13.887 | 5.0806 | 2.0323 |

| 41.46 | 20.00 | 16.67 |

-----------+--------+--------+--------+

F | 7 | 1 | 2 | 10

| 6.6129 | 2.4194 | 0.9677 |

| 17.07 | 6.67 | 33.33 |

-----------+--------+--------+--------+

Incomplete | 4 | 0 | 0 | 4

| 2.6452 | 0.9677 | 0.3871 |

| 9.76 | 0.00 | 0.00 |

-----------+--------+--------+--------+

Total 41 15 6 62

Statistics for Table of grade by ethnic

Statistic DF Value Prob

--

Chi-Square 10 18.2676 0.0506

Likelihood Ratio Chi-Square 10 19.6338 0.0329

Mantel-Haenszel Chi-Square 1 5.6222 0.0177

Phi Coefficient 0.5428

Contingency Coefficient 0.4771

Cramer’s V 0.3838

WARNING: 78% of the cells have expected counts less

than 5. Chi-Square may not be a valid test.

Sample Size = 62

58

Grades from STA3000 at Roosevelt University: Fall, 1957 17

Illustrate Elementary Tests

Correlation Matrix

The CORR Procedure

4 Variables: final midterm quizave compave

Simple Statistics

Variable N Mean Std Dev Sum Minimum Maximum

final 58 50.31034 17.24967 2918 15.00000 89.00000

midterm 62 70.19355 13.62356 4352 44.00000 103.00000

quizave 62 7.67512 1.12669 475.85714 4.57143 9.71429

compave 62 8.83468 1.12050 547.75000 5.00000 10.00000

Simple Statistics

Variable Label

final

midterm

quizave Quiz Average (drop lowest)

compave Computer Average (drop lowest)

Pearson Correlation Coefficients

Prob > |r| under H0: Rho=0

Number of Observations

final midterm quizave compave

final 1.00000 0.47963 0.41871 0.06060

0.0001 0.0011 0.6513

58 58 58 58

midterm 0.47963 1.00000 0.59294 0.41277

0.0001 <.0001 0.0009

58 62 62 62

quizave 0.41871 0.59294 1.00000 0.52649

Quiz Average (drop lowest) 0.0011 <.0001 <.0001

58 62 62 62

compave 0.06060 0.41277 0.52649 1.00000

Computer Average (drop lowest) 0.6513 0.0009 <.0001

58 62 62 62

59

Grades from STA3000 at Roosevelt University: Fall, 1957 18

Illustrate Elementary Tests

Scatterplot

Plot of final*midterm. Legend: A = 1 obs, B = 2 obs, etc.

final |

|

90 + A

| A

|

|

|

80 + A A A

|

|

|

| A

70 + A A A

| A

| A A

| A A A

|

60 + A

| A AA

| A A

| A A B A A

| A A A A

50 + AA

| A

| A

| AA

| A C

40 + A A A A

| A A A

|

|

|

30 + A A A

| A

| A

| AA

| A

20 + A

|

| A

|

|

10 +

|

-+---------+---------+---------+---------+---------+---------+---------+-

40 50 60 70 80 90 100 110

midterm

NOTE: 4 obs had missing values.

60

Grades from STA3000 at Roosevelt University: Fall, 1957 19

Illustrate Elementary Tests

Simple regression

The REG Procedure

Model: MODEL1

Dependent Variable: final

Number of Observations Read 62

Number of Observations Used 58

Number of Observations with Missing Values 4

Analysis of Variance

Sum of Mean

Source DF Squares Square F Value Pr > F

Model 1 3901.64751 3901.64751 16.73 0.0001

Error 56 13059 233.19226

Corrected Total 57 16960

Root MSE 15.27063 R-Square 0.2300

Dependent Mean 50.31034 Adj R-Sq 0.2163

Coeff Var 30.35287

Parameter Estimates

Parameter Standard

Variable DF Estimate Error t Value Pr > |t|

Intercept 1 6.88931 10.80304 0.64 0.5263

midterm 1 0.61605 0.15061 4.09 0.0001

Grades from STA3000 at Roosevelt University: Fall, 1957 20

Illustrate Elementary Tests

Multiple Regression

The REG Procedure

Number of Observations Read 62

Number of Observations Used 58

Number of Observations with Missing Values 4

Descriptive Statistics

Uncorrected Standard

Variable Sum Mean SS Variance Deviation

Intercept 58.00000 1.00000 58.00000 0 0

midterm 4088.00000 70.48276 298414 180.35935 13.42979

quizave 451.57143 7.78571 3576.51020 1.06498 1.03198

compave 515.50000 8.88793 4641.50000 1.04862 1.02402

final 2918.00000 50.31034 163766 297.55112 17.24967

61

Descriptive Statistics

Variable Label

Intercept Intercept

midterm

quizave Quiz Average (drop lowest)

compave Computer Average (drop lowest)

final

Grades from STA3000 at Roosevelt University: Fall, 1957 21

Illustrate Elementary Tests

Multiple Regression

The REG Procedure

Model: MODEL1

Dependent Variable: final

Number of Observations Read 62

Number of Observations Used 58

Number of Observations with Missing Values 4

Analysis of Variance

Sum of Mean

Source DF Squares Square F Value Pr > F

Model 3 4995.04770 1665.01590 7.51 0.0003

Error 54 11965 221.58085

Corrected Total 57 16960

Root MSE 14.88559 R-Square 0.2945

Dependent Mean 50.31034 Adj R-Sq 0.2553

Coeff Var 29.58754

Parameter Estimates

Parameter Standard

Variable Label DF Estimate Error

Intercept Intercept 1 9.01839 19.02591

midterm 1 0.50057 0.18178

quizave Quiz Average (drop lowest) 1 4.80199 2.46469

compave Computer Average (drop lowest) 1 -3.53028 2.17562

Parameter Estimates

Variable Label DF t Value Pr > |t| Type I SS

Intercept Intercept 1 0.47 0.6374 146806

midterm 1 2.75 0.0080 3901.64751

quizave Quiz Average (drop lowest) 1 1.95 0.0566 509.97483

compave Computer Average (drop lowest) 1 -1.62 0.1105 583.42537

62

Grades from STA3000 at Roosevelt University: Fall, 1957 22

Illustrate Elementary Tests

Multiple Regression

The REG Procedure

Model: MODEL1

Test smalstuf Results for Dependent Variable final

Mean

Source DF Square F Value Pr > F

Numerator 2 546.70010 2.47 0.0943

Denominator 54 221.58085

Data in fixed columns When the data values have at least one space between them,
the variables are recorded in the same order for each case, and missing values are indicated
by periods, the default version of the input statement (list input) does the job perfectly.
It is a bonus that the variables need not always be separated by the same number of
spaces for each case. Also, there can be more than one line of data for each case, and in
fact there need not even be the same number of data lines for all the cases, just as long
as there are the same number of variables.

Another common situation is for the data to be lined up in fixed columns, with blanks
for missing values. Sometimes, especially when there are many variables, the data are
packed together, without spaces between values. For example, the Minnesota Multiphasic
Personality Inventory (MMPI) consists of over 300 questions, all to be answered True or
False. It would be quite natural to code 1=True and 0=False, and pack the data together.
There would still be quite a few data lines for each case.

Here is the beginning of the file statclass2.dat. It is the same as statclass1.dat,
except that the data are packed together. Most of the blanks occur because two columns
are reserved for the marks on quizzes and computer assignments, because 10 out of 10 is
possible. Three columns are reserved for the midterm and final scores, because 100% is
possible. For all variables, missing values are represented by blanks. That is, if the field
occupied by a variable is completely blank, it’s a missing value.

YesMaster > less statclass2.dat

12 9 1 7 8 4 3 5 2 6101010 5 0 0 0 0 55 43

021010 5 910 8 6 81010 8 9 9 9 91010 66 79

121010 5101010 9 8101010101010 91010 94 67

121010 8 910 710 9101010 91010 91010 81 65

0110 1 0 0 8 6 5 210 9 0 010 6 0 5 0 54

1110 6 7 9 8 8 5 710 910 9 5 6 4 810 57 52

01 0 0 9 910 5 2 2 8 7 71010 6 3 710 49

0110 9 5 8 9 8 5 6 8 7 5 610 6 5 9 9 77 64

0110 8 6 8 9 5 3 6 9 9 6 910 6 5 710 65 42

1110 5 6 710 4 6 010 910 910 6 7 810 73

01 9 0 4 610 5 3 310 810 51010 9 910 71 37

63

...

Now we will take a look at statread.sas. It contains just the proc format and the
data step; There are no statistical procedures. This file will be read by programs that
invoke statistical procedures, as you will see.

/* statread.sas

Read the statclass data in fixed format, define and label variables. Use

with %include ’statread.sas’; */

options linesize=79 noovp formdlim=’_’;

title ’Grades from STA3000 at Roosevelt University: Fall, 1957’;

proc format; /* Used to label values of the categorical variables */

value sexfmt 0 = ’Male’ 1 = ’Female’;

value ethfmt 1 = ’Chinese’

2 = ’European’

3 = ’Other’ ;

data grades;

infile ’statclass2.data’ missover;

input (sex ethnic) (1.)

(quiz1-quiz8 comp1-comp9) (2.)

(midterm final) (3.);

/* Drop lowest score for quiz & computer */

quizave = (sum(of quiz1-quiz8) - min(of quiz1-quiz8)) / 7;

compave = (sum(of comp1-comp9) - min(of comp1-comp9)) / 8;

label ethnic = ’Apparent ethnic background (ancestry)’

quizave = ’Quiz Average (drop lowest)’

compave = ’Computer Average (drop lowest)’;

mark = .3*quizave*10 + .1*compave*10 + .3*midterm + .3*final;

label mark = ’Final Mark’;

diff = quiz8-quiz1; /* To illustrate matched t-test */

label diff = ’Quiz 8 minus Quiz 1’;

mark2 = round(mark);

/* Bump up at grade boundaries */

if mark2=89 then mark2=90;

if mark2=79 then mark2=80;

if mark2=69 then mark2=70;

if mark2=59 then mark2=60;

/* Assign letter grade */

if mark2=. then grade=’Incomplete’;

else if mark2 ge 90 then grade = ’A’;

else if 80 le mark2 le 89 then grade=’B’;

64

else if 70 le mark2 le 79 then grade=’C’;

else if 60 le mark2 le 69 then grade=’D’;

else grade=’F’;

format sex sexfmt.; /* Associates sex & ethnic */

format ethnic ethfmt.; /* with formats defined above */

/***/

The data step in statread.sas differs from the one in statmarks1.sas in only two
respects. First, the missover option on the infile statement causes blanks to be read as
missing values even if they occur at the end of a line and the line just ends rather than
being filled in with space characters. That is, such lines are shorter than the others in the
file, and when SAS over-reads the end of the line, it sets all the variables it would have
read to missing. This is what we want, so you should always use the missover option
when missing values are represented by blanks.

The other difference between this data step and the one in statmarks1.sas is in the
input statement. Here, we are using formatted input. sex and ethnic each occupy 1
column. quiz1-quiz8 and comp1-comp9 each occupy 2 columns. midterm and final

each occupy 3 columns. You can supply a list of formats for each list of variables in
parentheses, but if the number of formats is less than the number of variables, they are
re-used. That’s what’s happening in the present case. It is also possible to specify the
exact column location in which each variable resides. The input statement is very rich
and powerful.

The program statread.sas reads and defines the data, but it requests no statisti-
cal output; statdescribe.sas pulls in statread.sas using a %include statement, and
produces basic descriptive statistics. Significance tests would be produced by other short
programs.

Keeping the data definition in a separate file and using %include (the only part of the
powerful SAS macro language presented here) is often a good strategy, because most data
analysis projects involve a substantial number of statistical procedures. It is common to
have maybe twenty program files that carry out various analyses. You could have the
data step at the beginning of each program, but in many cases the data step is long.
And, what happens when (inevitably) you want to make a change in the data step and
re-run your analyses? You find yourself making the same change in twenty files. Probably
you will forget to change some of them, and the result is a big mess. If you keep your
data definition in just one place, you only have to edit it once, and a lot of problems are
avoided.

65

/* statdescribe.sas */

%include ’statread.sas’;

title2 ’Basic Descriptive Statistics’;

proc freq;

title3 ’Frequency distributions of the categorical variables’;

tables sex ethnic grade;

proc means n mean std;

title3 ’Means and SDs of quantitative variables’;

var quiz1 -- mark2; /* single dash only works with numbered

lists, like quiz1-quiz8 */

proc univariate normal; /* the normal option gives a test for normality */

title3 ’Detailed look at mark and bumped mark (mark2)’;

var mark mark2;

2.2.6 SAS Reference Materials

This course is trying to teach you SAS by example, without full explanation, and certainly
without discussion of all the options. If you need more detail, the SAS Institute provides
online documentation at http://v8doc.sas.com/sashtml. Most of the standard statis-
tical procedures you are likely to use are under “SAS/STAT.” For information about the
data step (for example, reading a complex data set), choose “Base SAS Software” and
then either “SAS Language Reference: Concepts” or “SAS Language Reference: Dictio-
nary.” The SAS Institute also publishes hard copy manuals, but most students will prefer
the online version.

Note that this is reference material. The SAS Institute also publishes a variety of
manual-like books that are intended to be more instructional, most of them geared to
specific statistical topics (like The SAS system for multiple regression and The SAS system
for linear models). These are more readable than the reference manuals, though it helps
to have a real textbook on the topic to fill in the gaps.

A better place to start learning about SAS is a wonderful book by Cody and Smith
[1] entitled Applied statistics and the SAS programming language. They do a really good
job of presenting and documenting the language of the data step, and and they also cover
a set of statistical procedures ranging from elementary to moderately advanced. If you
had to own just one SAS book, this would be it.

If you consult any SAS book or manual, you’ll need to translate and filter out some
details. Here is the main case. Many of the examples you see in Cody and Smith’s book
and elsewhere will not have separate files for the raw data and the program. They include
the raw data in the program file in the data step, after a datalines or cards statement.
Here is an example from page 3 of [1].

66

data test;

input subject 1-2 gender $ 4 exam1 6-8 exam2 10-12 hwgrade $ 14;

datalines;

10 M 80 84 A

7 M 85 89 A

4 F 90 86 B

20 M 82 85 B

25 F 94 94 A

14 F 88 84 C

;

proc means data=test;

run;

Having the raw data and the SAS code together in one display is so attractive for
small datasets that most textbook writers cannot resist it. But think how unpleasant it
would be if you had 10,000 lines of data. The way we would do this example is to have
the data file (named, say, example1.dat) in a separate file. The data file would look like
this.

10 M 80 84 A

7 M 85 89 A

4 F 90 86 B

20 M 82 85 B

25 F 94 94 A

14 F 88 84 C

and the program file would look like this.

data test;

infile ’example1.dat’; /* Read data from example1.dat */

input subject 1-2 gender $ 4 Exam1 6-8 exam2 10-12 hwgrade $ 14;

proc means data=test;

Using this as an example, you should be able to translate any textbook example into
the program-file data-file format used in this course.

67

Bibliography

[1] Cody, R. P. and Smith, J. K. (1991). Applied statistics and the SAS program-
ming language. (4th Edition) Upper Saddle River, New Jersey: Prentice-Hall.

[2] Cook, T. D. and Campbell, D. T. (1979). Quasi-experimentation : design and
analysis issues for field settings. New York: Rand McNally.

[3] Fisher, R. A. (1925) Statistical methods for research workers. London: Oliver
and Boyd.

[4] Moore, D. S. and McCabe, G. P. (1993). Introduction to the practice of statis-
tics. New York: W. H. Freeman.

[5] Neter, J., Kutner, M. H., Nachhtscheim, C. J. and Wasserman, W. (1996)
Applied linear statistical models. (4th Edition) Toronto: Irwin.

[6] Roethlisberger, F. J. (1941). Management and morale. Cambridge, Mass.: Har-
vard University Press.

[7] Rosenthal, R. (1966). Experimenter effects in behavioral research. New York:
Appleton-Century-Croft.

[8] Rosenthal, R. and Jacobson, L. (1968). Pygmalion in the classroom: teacher
expectation and pupils’ intellectual development. New York: Holt, Rinehart
and Winston.

[9] Student (1908). “The probable error of a mean,” Biometrika 6, 1-25.

68

