STA 260s20 Assignment Nine: Bayesian Statistics¹

The following homework problems are not to be handed in. They are preparation for the final exam. **Please try each question before looking at the solution**. Use the formula sheet.

- 1. Let X_1, \ldots, X_n be a random sample from a Poisson distribution with parameter $\lambda > 0$. The prior on λ is Gamma (α, β) . This makes the prior expected value $\frac{\alpha}{\beta}$.
 - (a) Give the posterior density of λ , including the constant that makes it integrate to one.
 - (b) Derive the posterior predictive distribution actually, the posterior predictive probability mass function. Do you recognize it?
- 2. Let X_1, \ldots, X_n be random sample from a binomial distribution with parameters 4 and θ , where θ is unknown. The prior distribution of θ is beta with parameters α and β .
 - (a) Find the posterior density of θ , including the constant that makes it integrate to one.
 - (b) For n = 20 observations and prior parameters $\alpha = \beta = 1$ (the uniform distribution), we obtain $\overline{x}_n = 2.3$.
 - i. What is the posterior mean? The answer is a number.
 - ii. What is the posterior mode? The answer is a number.
 - iii. We need to know if the coin is biased.
 - A. What is $P\left(\Theta = \frac{1}{2} | \mathbf{x}\right)$?
 - B. Using R, find $P\left(\Theta < \frac{1}{2} | \mathbf{x}\right)$ and $P\left(\Theta > \frac{1}{2} | \mathbf{x}\right)$. What do you conclude?
 - iv. Give a 95% posterior credible interval for Θ , with 2.5% in each tail.
 - v. How about a 95% prior credible interval? Is such a thing possible?
- 3. Let X_1, \ldots, X_n be a random sample from an exponential distribution with parameter λ . As in Question 1, let the prior distribution of λ be $\text{Gamma}(\alpha, \beta)$.
 - (a) Find the posterior distribution. Show your work. The answer is one of the distributions on the formula sheet. Name the distribution and give formulas for its parameters.
 - (b) Derive a formula for the posterior mode that is, the value of λ for which the posterior density is greatest.
 - (c) Imagine a universe in which there are true fixed parameter values, and suppose that the data really do come from an exponential distribution, with fixed true parameter λ_0 . If we use the posterior expected value to estimate λ_0 , is the estimator consistent? Answer Yes or No and show your work.
 - (d) What happens to the posterior variance as $n \to \infty$? Show your work.
 - (e) Is the posterior mode consistent? Answer Yes or No and show your work.

¹Copyright information is at the end of the last page.

- 4. Let X_1, \ldots, X_n be random sample from a normal distribution with mean μ and precision τ (the precision is one over the variance).
 - (a) Suppose that the parameter μ is known, while τ is unknown. The prior on τ is Gamma (α, β) . Give the posterior distribution of τ , including the parameters.
 - (b) Suppose that τ is known, while this time μ is unknown. The prior on μ is standard normal. Find the posterior distribution of μ .
- 5. Suppose the prior is a finite mixture of prior distributions. That is, the parameter θ has prior density

$$\pi(\theta) = \sum_{j=1}^{k} a_j \, \pi_j(\theta)$$

The constants a_1, \ldots, a_j are called *mixing weights*; they are non-negative and they add up to one.

Show that the posterior distribution is a mixture of the posterior distributions corresponding to $\pi_1(\theta), \ldots, \pi_k(\theta)$. What are the mixing weights of the posterior?

This result can be useful if your model has a conjugate prior family, because you can represent virtually any prior opinion by a mixture of conjugate priors. For example, a bimodal prior might be just a mixture of two normals with different expected values. Thus, you can have essentially any prior you wish, and also the convenience of an exact posterior distribution.

http://www.utstat.toronto.edu/~brunner/oldclass/260s20

This assignment was prepared by Jerry Brunner, Department of Mathematical and Computational Sciences, University of Toronto. It is licensed under a Creative Commons Attribution - ShareAlike 3.0 Unported License. Use any part of it as you like and share the result freely. The LATEX source code is available from the course website: