Transformations of Jointly Distributed Random Variables¹ STA 256: Fall 2019

¹This slide show is an open-source document. See last slide for copyright information.

Transformations of Jointly Distributed Random Variables

Let $Y = g(X_1, \ldots, X_n)$. What is the probability distribution of Y?

For example,

- X_1 is the number of jobs completed by employee 1.
- X_2 is the number of jobs completed by employee 2.
- You know the probability distributions of X_1 and X_2 .
- You would like to know the probability distribution of $Y = X_1 + X_2$.

Convolutions

p

Convolutions of discrete random variables

- Let X and Y be discrete random variables.
- The standard case is where they are independent.
- Want probability mass function of Z = X + Y.

$$\begin{aligned} z(z) &= P(Z = z) \\ &= P(X + Y = z) \\ &= \sum_{x} P(X + Y = z | X = x) P(X = x) \\ &= \sum_{x} P(x + Y = z | X = x) P(X = x) \\ &= \sum_{x} P(Y = z - x | X = x) P(X = x) \\ &= \sum_{x} P(Y = z - x) P(X = x) \text{ by independence} \\ &= \sum_{x} p_{X}(x) p_{Y}(z - x) \end{aligned}$$

4/19

Summarizing Convolutions of discrete random variables

Let X and Y be *independent* discrete random variables, and Z = X + Y.

$$p_{Z}(z) = \sum_{x} p_{X}(x) p_{Y}(z-x)$$

Two Important results Proved using the convolution formula

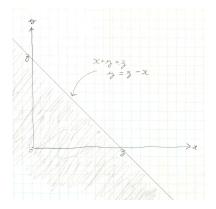
- Let $X \sim \text{Poisson}(\lambda_1)$ and $Y \sim \text{Poisson}(\lambda_2)$ be independent. Then $Z = X + Y \sim \text{Poisson}(\lambda_1 + \lambda_2)$.
- Let $X \sim \text{Binomial}(n_1, \theta)$ and $Y \sim \text{Binomial}(n_2, \theta)$ be independent. Then $Z = X + Y \sim \text{Binomial}(n_1 + n_2, \theta)$

Convolutions

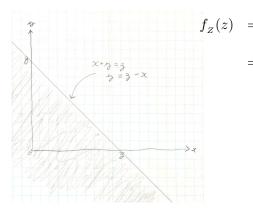
Convolutions of *continuous* random variables

- Let X and Y be continuous random variables.
- The standard case is where they are independent.
- Want probability density function of Z = X + Y.

$$\begin{array}{lcl} f_{z}(z) & = & \displaystyle \frac{d}{dz} P(Z \leq z) \\ & = & \displaystyle \frac{d}{dz} P(X+Y \leq z) \end{array}$$



Continuing ...



$$= \frac{d}{dz} P(X + Y \le z)$$

$$= \frac{d}{dz} \int_{-\infty}^{\infty} \int_{-\infty}^{z-x} f_{X,Y}(x,y) \, dy \, dx$$

$$t = y + x$$
 $y = t - x$ $dy = dt$

y	t = y + x
z - x	z
$-\infty$	$-\infty$

 $\int_{-\infty}^{z} f_{X,Y}(x,t-x) \, dt$

Still continuing, have

$$\begin{split} f_{Z}(z) &= \frac{d}{dz} \int_{-\infty}^{\infty} \int_{-\infty}^{z} f_{X,Y}(x,t-x) \, dt \, dx \\ &= \frac{d}{dz} \int_{-\infty}^{z} \int_{-\infty}^{\infty} f_{X,Y}(x,t-x) \, dx \, dt \\ &= \int_{-\infty}^{\infty} f_{X,Y}(x,z-x) \, dx \\ &= \int_{-\infty}^{\infty} f_{X}(x) f_{Y}(z-x) \, dx \quad \text{if } X \text{ and } Y \text{ are independent.} \end{split}$$

For continuous random variables:

$$f_Z(z) = \int_{-\infty}^{\infty} f_X(x) f_Y(z-x) \, dx$$

For discrete random variables:

$$p_Z(z) = \sum_x p_X(x) p_Y(z-x)$$

Of course you need to pay attention to the limits of integration or summation, because $f_X(x)f_Y(z-x)$ may be zero for some x.

Two Important results for continuous random variables Proved using the convolution formula

- Let X and Y be independent exponential random variables with parameter $\lambda > 0$. Then $Z = X + Y \sim \text{Gamma}(\alpha = 2, \lambda).$
- Let $X \sim \text{Normal}(\mu_1, \sigma_1^2)$ and $Y \sim \text{Normal}(\mu_2, \sigma_2^2)$ be independent. Then $Z = X + Y \sim \text{Normal}(\mu_1 + \mu_2, \sigma_1^2 + \sigma_2^2).$

The Jacobian Method

- X_1 and X_2 are continuous random variables.
- $Y_1 = g_1(X_1, X_2)$ and $Y_2 = g_2(X_1, X_2)$.
- Want $f_{Y_1,Y_2}(y_1,y_2)$

Solve for x_1 and x_2 , obtaining $x_1(y_1, y_2)$ and $x_2(y_1, y_2)$. Then

$$f_{\boldsymbol{Y}_1,\boldsymbol{Y}_2}(y_1,y_2) = f_{\boldsymbol{X}_1,\boldsymbol{X}_2}(\,\boldsymbol{x}_1(y_1,y_2),\boldsymbol{x}_2(y_1,y_2)\,) \cdot abs \left| \begin{array}{cc} \frac{\partial \boldsymbol{x}_1}{\partial y_1} & \frac{\partial \boldsymbol{x}_1}{\partial y_2} \\ \\ \frac{\partial \boldsymbol{x}_2}{\partial y_1} & \frac{\partial \boldsymbol{x}_2}{\partial y_2} \end{array} \right|$$

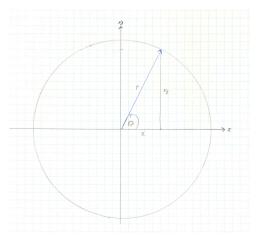
The determinant
$$\begin{vmatrix} a & b \\ c & d \end{vmatrix} = ad - bc.$$

More about the Jacobian method $Y_1 = g_1(X_1, X_2)$ and $Y_2 = g_2(X_1, X_2)$

- It follows directly from a change of variables formula in multi-variable integration. The proof is omitted.
- It must be possible to solve $y_1 = g_1(x_1, x_2)$ and $y_2 = g_2(x_1, x_2)$ for x_1 and x_2 .
- That is, the function $g: \mathbb{R}^2 \to \mathbb{R}^2$ must be one to one (injective).
- Frequently you are only interested in Y_1 , and $Y_2 = g_2(X_1, X_2)$ is chosen to make reverse solution easy.
- The partial derivatives must all be continuous, except possibly on a set of probability zero (they almost always are).
- It extends naturally to higher dimension.

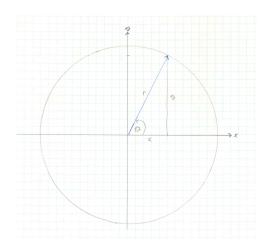
Change from rectangular to polar co-ordinates By the Jacobian method

A point on the plane may be represented as (x, y), or



An angle θ and a radius r.

Change of variables From rectangular to polar coordinates

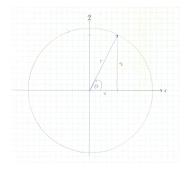


- $x = r \cos(\theta)$ $y = r \sin(\theta)$ $x^{2} + y^{2} = r^{2}$
- As x and y range from $-\infty$ to ∞ ,
- $\bullet~r$ goes from 0 to ∞
- And θ goes from 0 to 2π .

Integral $\int_0^\infty \int_0^\infty f_{x,y}(x,y) \, dx \, dy$

Change of variables:

$$x = r\cos(\theta)$$
$$y = r\sin(\theta)$$



$$\int_{0}^{\infty} \int_{0}^{\infty} f_{x,y}(x,y) \, dx \, dy$$
$$= \int_{0}^{\pi/2} \int_{0}^{\infty} f_{x,y}(r\cos\theta, r\sin\theta) \, abs \left| \begin{array}{c} \frac{\partial x}{\partial r} & \frac{\partial x}{\partial \theta} \\ \frac{\partial y}{\partial r} & \frac{\partial y}{\partial \theta} \end{array} \right| \, dr \, d\theta$$

Evaluate the determinant (with $x = r \cos(\theta)$ and $y = r \sin(\theta)$)

$$\frac{\partial x}{\partial r} \left| \begin{array}{c} \frac{\partial x}{\partial \theta} \\ \frac{\partial y}{\partial r} & \frac{\partial y}{\partial \theta} \end{array} \right| = \left| \begin{array}{c} \frac{\partial r \cos(\theta)}{\partial r} & \frac{\partial r \cos(\theta)}{\partial \theta} \\ \frac{\partial r \sin(\theta)}{\partial r} & \frac{\partial r \sin(\theta)}{\partial \theta} \end{array} \right|$$

$$= \left| \begin{array}{c} \cos(\theta) & -r \sin(\theta) \\ \sin(\theta) & r \cos(\theta) \end{array} \right|$$

$$= r \cos^2 \theta - -r \sin^2 \theta$$

$$= r (\sin^2 \theta + \cos^2 \theta)$$

$$= r$$

So the integral is

$$\int_0^\infty \int_0^\infty f_{x,y}(x,y) \, dx \, dy = \int_0^{\pi/2} \int_0^\infty f_{x,y}(r\cos\theta, r\sin\theta) \, r \, dr \, d\theta$$

- The standard formula for change from rectangular to polar co-ordinates is $dx dy = r dr d\theta$.
- It comes from a Jacobian.
- Other limits of integration are possible.
- f(x, y) does not have to be a density.

Copyright Information

This slide show was prepared by Jerry Brunner, Department of Statistical Sciences, University of Toronto. It is licensed under a Creative Commons Attribution - ShareAlike 3.0 Unported License. Use any part of it as you like and share the result freely. The LATEX source code is available from the course website:

http://www.utstat.toronto.edu/~brunner/oldclass/256f19