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Law of Large Numbers Central Limit Theorem

Infinite Sequence of random variables

T1, T2, . . .

We are interested in what happens to Tn as n→∞.

Why even think about this?

For fun.

And because Tn could be a sequence of statistics, numbers
computed from sample data.

For example, Tn = Xn = 1
n

∑n
i=1Xi.

n is the sample size.

n→∞ is an approximation of what happens for large
samples.

Good things should happen when estimates are based on
more information.
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Law of Large Numbers Central Limit Theorem

Convergence

Convergence of Tn as n→∞ is not an ordinary limit,
because probability is involved.

There are several different types of convergence.

We will work with convergence in probability and
convergence in distribution.
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Law of Large Numbers Central Limit Theorem

Convergence in Probability to a random variable

Definition: The sequence of random variables X1, X2, . . . is said
to converge in probability to the random variable Y if for all
ε > 0, lim

n→∞
P{|Xn − Y | ≥ ε} = 0, and we write Xn

p→ Y .

|Xn − Y | < ε ⇔ −ε < Xn − Y < ε

⇔ Y − ε < Xn < Y + ε
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Law of Large Numbers Central Limit Theorem

Convergence in Probability to a constant
More immediate applications in statistics: We will focus on this.

Definition: The sequence of random variables T1, T2, . . . is said
to converge in probability to the constant c if for all ε > 0,

lim
n→∞

P{|Tn − c| ≥ ε} = 0

and we write Tn
p→ c.

|Tn − c| < ε ⇔ −ε < Tn − c < ε

⇔ c− ε < Tn < c+ ε

c
( )

c− ε c+ ε
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Law of Large Numbers Central Limit Theorem

Example: Tn ∼ U(− 1
n ,

1
n)

Convergence in probability means limn→∞ P{|Tn − c| ≥ ε} = 0

c
( )

c− ε c+ ε

T1 is uniform on (−1, 1). Height of the density is 1
2 .

T2 is uniform on (−1
2 ,

1
2). Height of the density is 1.

T3 is uniform on (−1
3 ,

1
3). Height of the density is 3

2 .

Eventually, 1
n < ε and P{|Tn − 0| ≥ ε} = 0, forever.

Eventually means for all n > 1
ε .
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Law of Large Numbers Central Limit Theorem

Example: X1, . . . , Xn are independent U(0, θ)
Convergence in probability means limn→∞ P{|Tn − c| ≥ ε} = 0

For 0 < x < θ,

FXi
(x) =

∫ x
0

1
θ dt = x

θ .
Yn = maxi(Xi).
FYn

(y) =
(y
θ

)n
θ

( )
θ − ε θ + ε

P{|Yn − θ| ≥ ε} = FYn
(θ − ε)

=

(
θ − ε
θ

)n
→ 0 because

θ − ε
θ

< 1.

So the observed maximum data value goes in probability to θ,
the theoretical maximum data value.
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Law of Large Numbers Central Limit Theorem

Markov’s inequality: Theorem 3.6.1
A stepping stone

Let Y be a random variable with P (Y ≥ 0) = 1. Then for any
a > 0, E(Y ) ≥ aP (Y ≥ a).

Proof (for continuous random variables):

E(Y ) =

∫ ∞
0

yf(y) dy

=

∫ a

0

yf(y) dy +

∫ ∞
a

yf(y) dy

≥
∫ ∞
a

yf(y) dy

≥
∫ ∞
a

af(y) dy

= a

∫ ∞
a

f(y) dy

= aP (Y ≥ a) �
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Law of Large Numbers Central Limit Theorem

The Variance Rule
Not in the text, I believe

Let T1, T2, . . . be a sequence of random variables, and let c
be a constant. If

lim
n→∞

E(Xn) = c and

lim
n→∞

V ar(Xn) = 0

Then Tn
p→ c.

10 / 28



Law of Large Numbers Central Limit Theorem

Proof of the Variance Rule
Using Markov’s inequality: E(Y ) ≥ aP (Y ≥ a)

Seek to show ∀ε > 0, lim
n→∞

P{|Tn − c| ≥ ε} = 0. Denote E(Tn) by µn.

In Markov’s inequality, let Y = (Tn − c)2, and a = ε2.

E[(Tn − c)2] ≥ ε2P{(Tn − c)2 ≥ ε2}
= ε2P{|Tn − c| ≥ ε}, so

0 ≤ P{|Tn − c| ≥ ε} ≤
1

ε2
E[(Tn − c)2]

=
1

ε2
E[(Tn − µn + µn − c)2]

=
1

ε2
E[(Tn − µn)2 + 2(Tn − µn)(µn − c) + (µn − c)2]

=
1

ε2
(
E(Tn − µn)2 + 2(µn − c)E(Tn − µn) + E(µn − c)2

)
=

1

ε2
(
E(Tn − µn)2 + 2(µn − c)(E(Tn)− µn) + (µn − c)2

)
=

1

ε2
(
E(Tn − µn)2 + 0 + (µn − c)2

)
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Law of Large Numbers Central Limit Theorem

Continuing the proof

Have

0 ≤ P{|Tn − c| ≥ ε}

≤ 1

ε2
(
E(Tn − µn)2 + (µn − c)2

)
=

1

ε2
(
V ar(Tn) + (µn − c)2

)
, so that

0 ≤ lim
n→∞

P{|Tn − c| ≥ ε}

≤ lim
n→∞

1

ε2
(
V ar(Tn) + (µn − c)2

)
=

1

ε2

(
lim
n→∞

V ar(Tn) + lim
n→∞

(µn − c)2
)

=
1

ε2

(
lim
n→∞

V ar(Tn) +
(

lim
n→∞

µn − lim
n→∞

c
)2)

=
1

ε2
(
0 + (c− c)2

)
= 0

Squeeze. �
12 / 28



Law of Large Numbers Central Limit Theorem

The Law of Large Numbers
That is, the “Weak” Law of Large Numbers

Theorem: Let X1, . . . , Xn be independent random variables

with expected value µ and variance σ2. Then the sample mean

Xn =
1

n

n∑
i=1

Xi
p→ µ.

Proof: E(Xn) = µ and V ar(Xn) = σ2

n .
As n→∞, E(Xn)→ µ and V ar(Xn)→ 0.

So by the Variance Rule, Xn
p→ µ. �

The implications are huge.
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Law of Large Numbers Central Limit Theorem

Probability is long-run relative frequency
Sometimes offered as a definition of probability!

This follows from the Law of Large Numbers.
Repeat some process over and over a lot of times, and count how
many times the event A occurs. Independently for i = 1, . . . , n,

Let Xi(s) = 1 if s ∈ A, and Xi(s) = 0 if s /∈ A.

So Xi is an indicator for the event A.

Xi is Bernoulli, with P (Xi = 1) = θ = P (A).

E(Xi) =
∑1

x=0 x p(x) = 0 · (1− θ) + 1 · θ = θ.

Xn is the proportion of times the event occurs in n
independent trials.

The proportion of successes converges in probability to
P (A).

θ
( )

θ − ε θ + ε
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Law of Large Numbers Central Limit Theorem

More comments

Law of Large Numbers is the basis of using simulation to
estimate probabilities.

Have things like 1
n

∑n
i=1X

2
i

p→ E(X2)

In fact, 1
n

∑n
i=1 g(Xi)

p→ E[g(X)]

Convergence in probability also applies to vectors of
random variables, like (Xn, Yn)

p→ (c1, c2).
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Law of Large Numbers Central Limit Theorem

Theorem
Continuous Mapping Theorem for convergence in probability

Let g(x) be a function that is continuous at x = c. If Tn
p→ c,

then g(Tn)
p→ g(c).

Examples:

A Geometric distribution has expected value 1−θ
θ .

g(Xn) = 1/(1 +Xn) converges in probability to

1

1 + E(Xi)
=

1

1 + 1−θ
θ

= θ

A Uniform(0, θ) distribution has expected value θ/2. So

2Xn
p→ 2E(Xi) = 2 θ2 = θ
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Law of Large Numbers Central Limit Theorem

Background
For the proof of the continuous mapping theorem

Tn
p→ c means that for all ε > 0,

lim
n→∞

P{|Tn − c| ≥ ε} = 0

⇔ lim
n→∞

P{|Tn − c| < ε} = 1

c
( )

c− ε c+ ε

g(x) continuous at c means that for all ε > 0, there exists
δ > 0 such that if |x− c| < δ, then |g(x)− g(c)| < ε.
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Law of Large Numbers Central Limit Theorem

Proof of the Continuous Mapping Theorem
For convergence in probability

Have Tn
p→ c and g(x) continuous at c. Seek to show that for all ε > 0,

limn→∞ P{|g(Tn)− g(c)| < ε} = 1. Let ε > 0 be given.
g(x) continuous at c means there exists δ > 0 such that for s ∈ S, if
|Xn(s)− c| < δ, then |g(Xn(s))− g(c)| < ε. That is,

If s0 ∈ {s : |Xn(s)− c| < δ}, then s0 ∈ {s : |g(Xn(s))− g(c)| < ε}.
This is the definition of containment:

{s : |Xn(s)− c| < δ} ⊆ {s : |g(Xn(s))− g(c)| < ε}
⇒ P (|Xn − c| < δ) ≤ P (|g(Xn)− g(c)| < ε) ≤ 1

⇒ lim
n→∞

P (|Xn − c| < δ) ≤ lim
n→∞

P (|g(Xn)− g(c)| < ε) ≤ 1

=

1

Squeeze � 18 / 28



Law of Large Numbers Central Limit Theorem

Convergence in distribution
Another mode of convergence

Definition: Let the random variables X1, X2 . . . have cumulative
distribution functions FX1

(x), FX2
(x) . . ., and let the random

variable X have cumulative distribution function FX (x). The
(sequence of) random variable(s) Xn is said to converge in
distribution to X if

lim
n→∞

F
Xn
(x) = F

X
(x)

at every point where FX (x) is continuous, and we write

Xn
d→ X.
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Law of Large Numbers Central Limit Theorem

Example: Convergence to a Bernoulli with p = 1
2

limn→∞ FXn
(x) = FX (x) at all continuity points of FX (x)

pXn
(x) =


1/2 for x = 1

n
1/2 for x = 1 + 1

n
0 Otherwise

n = 1
0 1 2

••

n = 2
0 1 2

••

n = 3
0 1 2

••

For x < 0, limn→∞ FXn
(x) = 0

For 0 < x < 1, limn→∞ FXn
(x) = 1

2
For x > 1, limn→∞ FXn

(x) = 1
What happens at x = 0 and x = 1 does not matter.
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Law of Large Numbers Central Limit Theorem

Convergence to a constant

Consider a “degenerate” random variable X with P (X = c) = 1.

c

( )

c− ε c+ ε
Suppose Xn converges in probability to c.

Then for any x > c, F
Xn

(x)→ 1 for ε small enough.

And for any x < c, F
Xn

(x)→ 0 for ε small enough.

So Xn converges in distribution to c.

Suppose Xn converges in distribution to c, so that F
Xn

(x)→ 1 for all
x > c and F

Xn
(x)→ 0 for all x < c. Let ε > 0 be given.

P{|Xn − c| < ε} = P{c− ε < Xn < c+ ε}
= F

Xn
(c+ ε)− F

Xn
(c− ε) so

lim
n→∞

P{|Xn − c| < ε} = lim
n→∞

F
Xn

(c+ ε)− lim
n→∞

F
Xn

(c− ε)

= 1− 0 = 1

And Xn converges in probability to c. 21 / 28



Law of Large Numbers Central Limit Theorem

Comment

Convergence in probability might seem redundant, because
it’s just convergence in distribution to a constant.

But that’s only true when the convergence is to a constant.

Convergence in probability to a non-degenerate random
variable implies convergence in distribution.

But convergence in distribution does not imply convergence
in probability when the convergence is to a non-degenerate
variable.
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Law of Large Numbers Central Limit Theorem

Big Theorem about convergence in distribution
Theorem 4.4.2 in the text

Let the random variables X1, X2 . . . have cumulative
distribution functions FX1

(x), FX2
(x) . . . and

moment-generating functions MX1
(t),MX2

(t) . . ..
Let the random variable X have cumulative distribution
function FX (x) and moment-generating function MX (t).
If

lim
n→∞

MXn
(t) = MX (t)

for all t in an open interval containing t = 0, then Xn converges
in distribution to X.

The idea is that convergence of moment-generating functions
implies convergence of distribution functions. This makes sense
because moment-generating functions and distribution functions
are one-to-one.
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Law of Large Numbers Central Limit Theorem

Example: Poisson approximation to the binomial
We did this before with probability mass functions and it was a challenge.

Let Xn be a binomial (n, pn) random variable with pn = λ
n , so

that n→∞ and p→ 0 in such a way that the value of n pn = λ
remains fixed. Find the limiting distribution of Xn.

Recalling that the MGF of a Poisson is eλ(e
t−1) and(

1 + x
n

)n → ex,

MXn
(t) = (θet + 1− θ)n

=

(
λ

n
et + 1− λ

n

)n
=

(
1 +

λ(et − 1)

n

)n
→ eλ(e

t−1)

MGF of Poisson(λ).
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Law of Large Numbers Central Limit Theorem

The Central Limit Theorem
Proved using limiting moment-generating functions

Let X1, . . . , Xn be independent random variables from a
distribution with expected value µ and variance σ2. Then

Zn =

√
n(Xn − µ)

σ

d→ Z ∼ N(0, 1)

In practice, Zn is often treated as standard normal for n > 25,
although the n required for an accurate approximation really
depends on the distribution.
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Law of Large Numbers Central Limit Theorem

Sometimes we say the distribution of the sample mean
is approximately normal, or “asymptotically” normal.

This is justified by the Central Limit Theorem.

But it does not mean that Xn converges in distribution to
a normal random variable.

The Law of Large Numbers says that Xn converges in
probability to a constant, µ.

So Xn converges to µ in distribution as well.

That is, Xn converges in distribution to a degenerate
random variable with all its probability at µ.
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Law of Large Numbers Central Limit Theorem

Why would we say that for large n, the sample mean is
approximately N(µ, σ

2

n )?

Have Zn =
√
n(Xn−µ)

σ converging to Z ∼ N(0, 1).

Pr{Xn ≤ x} = Pr

{√
n(Xn − µ)

σ
≤
√
n(x− µ)

σ

}
= Pr

{
Zn ≤

√
n(x− µ)

σ

}
≈ Φ

(√
n(x− µ)

σ

)

Suppose Y is exactly N(µ, σ
2

n ):

Pr{Y ≤ x} = Pr

{√
n(Y − µ)

σ
≤ x− µ
σ/
√
n

}
= Pr

{
Zn ≤

√
n(x− µ)

σ

}
= Φ

(√
n(x− µ)

σ

)
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Law of Large Numbers Central Limit Theorem

Copyright Information

This slide show was prepared by Jerry Brunner, Department of
Statistical Sciences, University of Toronto. It is licensed under a
Creative Commons Attribution - ShareAlike 3.0 Unported
License. Use any part of it as you like and share the result
freely. The LATEX source code is available from the course
website:

http://www.utstat.toronto.edu/∼brunner/oldclass/256f19
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