Foundations of Probability¹ (Sections 1.2 and 1.3 in the text) STA 256: Fall 2019

 $^{^1\}mathrm{This}$ slide show is an open-source document. See last slide for copyright information.

Informally, a probability is a number between zero and one indicating how likely an event is to occur.

- Sample space S is the set of all things that can happen.
- Elements $s \in S$ are called *outcomes*.
- Subsets $A \subseteq S$ are called *events*.

A probability measure is a function ${\cal P}$ from subsets of S to the real numbers, satisfying

- $0 \le P(A) \le 1$
- $P(\emptyset) = 0$
- **③** P(S) = 1
- If $A_1, A_2...$ are disjoint subsets of S, $P(\bigcup_{k=1}^{\infty} A_k) = \sum_{k=1}^{\infty} P(A_k).$

Sell 500 lottery tickets, pick the winning number.

- $S = \{1, 2, \dots, 500\}$
- $P(\{2\}) = 1/500$
- P(Even Number) = 1/2

"Basic Properties" are really axioms (Kolmogorov, 1933) The properties are a little redundant

Basic Properties

- $0 \le P(A) \le 1$
- $P(\emptyset) = 0$
- **3** P(S) = 1
- If $A_1, A_2...$ are disjoint subsets of $S, P(\bigcup_{k=1}^{\infty} A_k) = \sum_{k=1}^{\infty} P(A_k).$

Axioms

- $P(A) \ge 0$ for any $A \subseteq S$
- P(S) = 1
- If A₁, A₂... are disjoint subsets of S,
 P (∪_{k=1}[∞]A_k) = ∑_{k=1}[∞] P(A_k)

- $P(\emptyset) = 0.$
- If A_1, \ldots, A_n are disjoint, $P(\bigcup_{k=1}^n A_k) = \sum_{k=1}^n P(A_k)$ (finite additivity).
- Then it's smooth sailing.
- In this course, we will start with the 4 properties, and assume that Property 4 (additivity) applies to either finite or infinite collections of sets.

- $P(A^c) = 1 P(A)$
- If $A \subseteq B$ then $P(A) \leq P(B)$
- $P(A \cup B) = P(A) + P(B) P(A \cap B)$ (Inclusion-exclusion principle)

Some Not-So-Elementary Theorems

- Law of total Probability: Let A_1, A_2, \ldots form a partition of the sample space S, and let B be any event. Then $P(B) = \sum_{k=1}^{\infty} (A_k \cap B).$
- Sub-additivity: Let A_1, A_2, \ldots be a collection of events, not necessarily disjoint. Then $P(\cup_{k=1}^{\infty} A_k) \leq \sum_{k=1}^{\infty} P(A_k)$
- Continuity 1: Let $A_1 \subseteq A_2 \subseteq A_3 \subseteq \ldots$ and let $A = \bigcup_{k=1}^{\infty} A_k$. Then $\lim_{k \to \infty} P(A_k) = P(A)$.
- Continuity 2: Let $A_1 \supseteq A_2 \supseteq A_3 \supseteq \ldots$ and let $A = \bigcap_{k=1}^{\infty} A_k$. Then $\lim_{k \to \infty} P(A_k) = P(A)$.

This slide show was prepared by Jerry Brunner, Department of Statistical Sciences, University of Toronto. It is licensed under a Creative Commons Attribution - ShareAlike 3.0 Unported License. Use any part of it as you like and share the result freely. The LATEX source code is available from the course website:

http://www.utstat.toronto.edu/~brunner/oldclass/256f19