Sample Questions: Conditional Probability¹

1. The table below shows percentages of passengers on the Titanic.

	Died	Lived
1st Class	9	15
2nd Class	13	9
3d Class	40	14

For a randomly chosen passenger, what is

- (a) The probability of living?
- (b) The probability of living
 - i. Given 1st class?
 - ii. Given 2nd class?
 - iii. Given 3d class?
- (c) The probability of being in first class given that the person died?

 $^{^{1}}$ STA256 Fall 2019. Copyright information is at the end of the last page.

2.	A jar contains two fair coins and one fair die. The coins have a "1" or one side and a "2" on the other side. Pick an object at random, roll o toss, and observe the number.	
	(a) What is $P(2 \cap C)$?	
	(b) What is $P(6 C)$?	
	(c) Make a tree diagram.	
	(d) List the outcomes with their probabilities.	

(e) What is P(C|2)?

3. Let $S = \bigcup_{k=1}^{\infty} A_k$, disjoint, with $P(A_k) > 0$ for all k. Using the formula sheet and the tabular format illustrated in lecture, prove $P(B) = \sum_{k=1}^{\infty} P(B|A_k)P(A_k)$.

4. Prove the following version of Bayes' Theorem. Let $S=\cup_{k=1}^{\infty}A_k$, disjoint, with $P(A_k)>0$ for all k. Then

$$P(A_j|B) = \frac{P(B|A_j)P(A_j)}{\sum_{k=1}^{\infty} P(B|A_k)P(A_k)}.$$

You may use anything from the formula sheet except Bayes' theorem itself.

5.	Two balls are drawn in succession from a jar containing three red balls and four white balls. What is the probability that the first ball was white given that the second ball was red? The answer is a number. Circle your answer.		

- 6. This is an important real-world application of Bayes' Theorem. Suppose only one person in a thousand has some rare disease. We have a screening test for the disease, and it's a good test.
 - 90% of those with the disease test positive.
 - 95% of those without the disease test negative.

Given a positive test, what is the probability that the person actually has the disease? The answer is a number. Circle your answer.

This assignment was prepared by Jerry Brunner, Department of Mathematical and Computational Sciences, University of Toronto. It is licensed under a Creative Commons Attribution - ShareAlike 3.0 Unported License. Use any part of it as you like and share the result freely. The LaTeX source code is available from the course website: