Expected Value, Variance and Covariance (Sections 3.1-3.3)¹ STA 256: Fall 2019

 $^{^{1}\}mathrm{This}$ slide show is an open-source document. See last slide for copyright information.

Overview

Expected Value

2 Variance

3 Covariance

Definition for Discrete Random Variables

The expected value of a discrete random variable is

$$E(X) = \sum_{x} x \, p_X(x)$$

- Provided $\sum_{x} |x| p_{X}(x) < \infty$. If the sum diverges, the expected value does not exist.
- Existence is only an issue for infinite sums (and integrals over infinite intervals).

Expected value is an average

- Imagine a very large jar full of balls. This is the population.
- The balls are numbered x_1, \ldots, x_N . These are measurements carried out on members of the population.
- Suppose for now that all the numbers are different.
- A ball is selected at random; all balls are equally likely to be chosen.
- Let X be the number on the ball selected.
- $P(X = x_i) = \frac{1}{N}$.

$$\begin{split} E(X) &= \sum_{x} x \, p_X(x) \\ &= \sum_{i=1}^{N} x_i \frac{1}{N} \\ &= \frac{\sum_{i=1}^{N} x_i}{N} \end{split}$$

For the jar full of numbered balls, $E(X) = \frac{\sum_{i=1}^{N} x_i}{N}$

- This is the common average, or arithmetic mean.
- Suppose there are ties.
- Unique values are v_i , for i = 1, ..., n.
- Say n_1 balls have value v_1 , and n_2 balls have value v_2 , and ... n_n balls have value v_n .
- Note $n_1 + \cdots + n_n = N$, and $P(X = v_j) = \frac{n_j}{N}$.

$$E(X) = \frac{\sum_{i=1}^{N} x_i}{N}$$

$$= \sum_{j=1}^{n} n_j v_j \frac{1}{N}$$

$$= \sum_{j=1}^{n} v_j \frac{n_j}{N}$$

$$= \sum_{j=1}^{n} v_j P(X = v_j)$$

Compare
$$E(X) = \sum_{j=1}^{n} v_j P(X = v_j)$$
 and $\sum_{x} x p_x(x)$

- Expected value is a generalization of the idea of an average, or mean.
- Specifically a *population* mean.
- It is often just called the "mean."

Gambling Interpretation

- Play a game for money.
- Could be a casino game, or a business game like placing a bid on a job.
- Let X be the return that is, profit.
- Could be negative.
- Play the game over and over (independently).
- The long term average return is E(X).
- This follows from the Law of Large Numbers, a theorem that will be proved later.

Fair Game

Definition: A "fair" game is one with expected value equal to zero.

Rational Behaviour

- Maximize expected return (it does not have to be money)
- At least, don't play any games with a negative expected value.

Example

- Place a \$20 bet, roll a fair die.
- If it's a 6, you get your \$20 back and an additional \$100.
- If it's not a 6, you lose your \$20.
- Is this a fair game?

$$E(X) = (-20)\frac{5}{6} + (100)\frac{1}{6}$$
$$= \frac{1}{6}(-100 + 100)$$
$$= 0$$

Yes.

Definition for Continuous Random Variables

The expected value of a continuous random variable is

$$E(X) = \int_{-\infty}^{\infty} x f_X(x) dx$$

• Provided $\int_{-\infty}^{\infty} |x| f_X(x) dx < \infty$. If the integral diverges, the expected value does not exist.

The expected value is the physical balance point.

Sometimes the expected value does not exist Need $\int_{-\infty}^{\infty} |x| f_X(x) dx < \infty$

For the Cauchy distribution, $f(x) = \frac{1}{\pi(1+x^2)}$.

$$E(|X|) = \int_{-\infty}^{\infty} |x| \frac{1}{\pi(1+x^2)} dx$$

$$= 2 \int_{0}^{\infty} \frac{x}{\pi(1+x^2)} dx$$

$$u = 1 + x^2, du = 2x dx$$

$$= \frac{1}{\pi} \int_{1}^{\infty} \frac{1}{u} du$$

$$= \frac{1}{\pi} \ln u \Big|_{1}^{\infty}$$

$$= \infty - 0 = \infty$$

So to speak. When we say an integral "equals" infinity, we just mean it is unbounded above.

Existence of expected values

- If it is not mentioned in a general problem, existence of expected values is assumed.
- Sometimes, the answer to a specific problem is "Oops! The expected value dies not exist."
- You never need to show existence unless you are explicitly asked to do so.
- If you do need to deal with existence, Fubini's Theorem can help with multiple sums or integrals.
 - Part One says that if the integrand is positive, the answer is the same when you switch order of integration, even when the answer is " ∞ ."
 - Part Two says that if the integral converges absolutely, you can switch order of integration. For us, absolute convergence just means that the expected value exists.

The change of variables formula for expected value Theorems 3.1.1 and 3.2.1

Let X be a random variable and Y = g(X). There are two ways to get E(Y).

 \bullet Derive the distribution of Y and compute

$$E(Y) = \int_{-\infty}^{\infty} y \, f_Y(y) \, dy$$

$$E(g(X)) = \int_{-\infty}^{\infty} g(x) f_X(x) dx$$

Big theorem: These two expressions are equal.

The change of variables formula is very general Including but not limited to

$$E(g(X)) = \int_{-\infty}^{\infty} g(x) f_X(x) dx$$

$$E(g(\mathbf{X})) = \int_{-\infty}^{\infty} \cdots \int_{-\infty}^{\infty} g(x_1, \dots, x_p) f_{\mathbf{X}}(x_1, \dots, x_p) dx_1 \dots dx_p$$

$$E(g(X)) = \sum_{x} g(x)p_{X}(x)$$

$$E(g(\mathbf{X})) = \sum_{x_1} \cdots \sum_{x_p} g(x_1, \dots, x_p) p_{\mathbf{X}}(x_1, \dots, x_p)$$

Example: Let Y = aX. Find E(Y).

$$\begin{split} E(aX) &=& \sum_x ax \, p_{\scriptscriptstyle X}(x) \\ &=& a \sum_x x \, p_{\scriptscriptstyle X}(x) \\ &=& a \, E(X) \end{split}$$

So E(aX) = aE(X).

Show that the expected value of a constant is the constant.

$$E(a) = \sum_{x} a p_{X}(x)$$

$$= a \sum_{x} p_{X}(x)$$

$$= a \cdot 1$$

$$= a$$

So E(a) = a.

$$E(X+Y) = E(X) + E(Y)$$

$$\begin{split} E(X+Y) &= \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} (x+y) \, f_{X,Y}(x,y) \, dx \, dy \\ &= \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} x \, f_{X,Y}(x,y) \, dx \, dy + \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} y \, f_{X,Y}(x,y) \, dx \, dy \\ &= E(X) + E(Y) \end{split}$$

Putting it together

$$E(a + bX + cY) = a + bE(X) + cE(Y)$$

And in fact,

$$E\left(\sum_{i=1}^{n} a_i X_i\right) = \sum_{i=1}^{n} a_i E(X_i)$$

You can move the expected value sign through summation signs and constants. Expected value is a linear transformation.

$$E\left(\sum_{i=1}^{n} X_i\right) = \sum_{i=1}^{n} E(X_i)$$
, but in general

$$E(g(X)) \neq g(E(X))$$

Unless g(x) is a linear function. So for example,

$$E(\ln(X)) \neq \ln(E(X))$$

$$E(\frac{1}{X}) \neq \frac{1}{E(X)}$$

$$E(X^k) \neq (E(X))^k$$

That is, the statements are not true in general. They might be true for some distributions.

Variance of a random variable X

Let $E(X) = \mu$ (The Greek letter "mu").

$$Var(X) = E\left((X - \mu)^2\right)$$

- The average (squared) difference from the average.
- It's a measure of how spread out the distribution is.
- Another measure of spread is the standard deviation, the square root of the variance.

Variance rules

$$Var(a + bX) = b^2 Var(X)$$

$$Var(X) = E(X^2) - [E(X)]^2$$

Conditional Expectation The idea

Consider jointly distributed random variables X and Y.

- For each possible value of X, there is a conditional distribution of Y.
- Each conditional distribution has an expected value (sub-population mean).
- If you could estimate E(Y|X=x), it would be a good way to predict Y from X.
- Estimation comes later (in STA260).

Definition of Conditional Expectation

If X and Y are discrete, the conditional expected value of Y given X is

$$E(Y|X=x) = \sum_{y} y \, p_{\scriptscriptstyle Y|X}(y|x)$$

If X and Y are continuous,

$$E(Y|X=x) = \int_{-\infty}^{\infty} y \, f_{Y|X}(y|x) \, dy$$

Double Expectation: E(Y) = E[E(Y|X)]Theorem A on page 149

To make sense of this, note

- While $E(Y|X=x) = \int_{-\infty}^{\infty} y \, f_{Y|X}(y|x) \, dy$ is a real-valued function of x,
- E(Y|X) is a random variable, a function of the random variable X.
- $E(Y|X) = g(X) = \int_{-\infty}^{\infty} y f_{Y|X}(y|X) dy$.
- So that in E[E(Y|X)] = E[g(X)], the outer expected value is with respect to the probability distribution of X.

$$\begin{split} E[E(Y|X)] &= E[g(X)] \\ &= \int_{-\infty}^{\infty} g(x) \, f_X(x) \, dx \\ &= \int_{-\infty}^{\infty} \left(\int_{-\infty}^{\infty} y \, f_{Y|X}(y|x) \, dy \right) \, f_X(x) \, dx \end{split}$$

Proof of the double expectation formula E(Y) = E[E(Y|X)]

$$\begin{split} E[E(Y|X)] &= \int_{-\infty}^{\infty} \left(\int_{-\infty}^{\infty} y \, f_{Y|X}(y|x) \, dy \right) \, f_X(x) \, dx \\ &= \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} y \, \frac{f_{X,Y}(x,y)}{f_X(x)} \, dy \, f_X(x) \, dx \\ &= \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} y \, f_{X,Y}(x,y) \, dy \, dx \\ &= E(Y) \end{split}$$

Definition of Covariance

Let X and Y be jointly distributed random variables with $E(X) = \mu_x$ and $E(Y) = \mu_y$. The *covariance* between X and Y is

$$Cov(X,Y) = E[(X - \mu_X)(Y - \mu_Y)]$$

- If values of X that are above average tend to go with values of Y that are above average (and below average X tends to go with below average Y), the covariance will be positive.
- If above average values of X tend to go with values of Y that are below average, the covariance will be negative.
- Covariance means they vary together.
- You could think of $Var(X) = E[(X \mu_X)^2]$ as Cov(X, X).

Properties of Covariance

Cov(X,Y) = E(XY) - E(X)E(Y)

If
$$X$$
 and Y are independent, $Cov(X,Y)=0$
If $Cov(X,Y)=0$, it does not follow that X and Y are independent.

$$Cov(a+X,b+Y)=Cov(X,Y)$$

$$Cov(aX,bY)=abCov(X,Y)$$

$$Cov(X,Y+Z)=Cov(X,Y)+Cov(X,Z)$$

$$Var(aX+bY)=a^2Var(X)+b^2Var(Y)+2abCov(X,Y)$$
If X_1,\ldots,X_n are ind. $Var(\sum_{i=1}^n X_i)=\sum_{i=1}^n Var(X_i)$

Correlation

$$Corr(X,Y) = \rho = \frac{Cov(X,Y)}{\sqrt{Var(X)\,Var(Y)}}$$

- $-1 \le \rho \le 1$
- Scale free: Corr(aX, bY) = Corr(X, Y)

Copyright Information

This slide show was prepared by Jerry Brunner, Department of Statistical Sciences, University of Toronto. It is licensed under a Creative Commons Attribution - ShareAlike 3.0 Unported License. Use any part of it as you like and share the result freely. The LATEX source code is available from the course website:

http://www.utstat.toronto.edu/~brunner/oldclass/256f19