Counting Methods for Computing Probabilities¹ (Section 1.4) STA 256: Fall 2019

¹This slide show is an open-source document. See last slide for copyright information.

If the sample space is finite and all outcomes of an experiment are equally likely,

$$P(A) = \frac{\text{Number of ways for } A \text{ to happen}}{\text{Total number of outcomes}}$$
$$= \frac{|A|}{|S|}$$

Need to count.

Roll a fair die. What is the probability of an odd number?

$$P(\text{Odd}) = P(\{1, 3, 5\})$$

= $\frac{3}{-}$

$$= \frac{1}{6}$$
$$= \frac{1}{2}$$

If there are k experiments and the first has n_1 outcomes, the second has n_2 outcomes, etc., then there are

 $n_1 \times n_2 \times \cdots \times n_k$

outcomes in all.

If there are nine horses in a race, in how many ways can they finish first, second and third?

 $9\times8\times7=504$

The number of *permutations* (ordered subsets) of n objects taken k at a time is

$$_{n}P_{k} = n \times (n-1) \times \dots \times (n-k+1)$$

= $\frac{n!}{(n-k)!}$

The number of *combinations* (unordered subsets) of n objects taken k at a time is

$$\binom{n}{k} = \frac{n!}{k! \left(n-k\right)!}$$

If a club has 30 members, how many ways are there to choose a committee of 5?

$$\begin{pmatrix} 30\\5 \end{pmatrix} = \frac{30!}{5!(30-5)!}$$

= 142,506

Choose an unordered subset of k items from n. Then place them in order. By the Multiplication Principle,

$${}_{n}P_{k} = \binom{n}{k} \times k!$$

$$\Rightarrow \quad \frac{n!}{(n-k)!} = \binom{n}{k} \times k!$$

$$\Rightarrow \quad \binom{n}{k} = \frac{n!}{k! (n-k)!}$$

Example

How many ways are there to deal a hand of 5 cards from a standard deck of 52 cards?

$$\begin{pmatrix} 52\\5 \end{pmatrix} = \frac{52!}{5!\,47!} \\ = 2,598,960$$

- If you could inspect one hand per second,
- It would take a little over 30 days to examine them all.
- Working 24/7.
- The point is that these counting arguments allow you to "count" objects that are so numerous you could not literally even look at them all.

Binomial Theorem Binomial coefficients appear in the Binomial Theorem

$$(a+b)^n = \sum_{k=0}^n \binom{n}{k} a^k b^{n-k}$$

The number of ways that n objects can be divided into ℓ subsets with k_i objects in set $i, i = 1, \ldots, \ell$ is

$$\binom{n}{n_1 \cdots k_\ell} = \frac{n!}{k_1! \cdots k_\ell!}$$

$$(x_1 + \dots + x_\ell)^n = \sum_{\mathbf{k}} \binom{n}{k_1 \cdots k_\ell} x_1^{k_1} \cdots x_\ell^{k_\ell}$$

where the sum is over all non-negative integers k_1, \ldots, k_ℓ such that $\sum_{j=1}^{\ell} k_j = n$.

This slide show was prepared by Jerry Brunner, Department of Statistical Sciences, University of Toronto. It is licensed under a Creative Commons Attribution - ShareAlike 3.0 Unported License. Use any part of it as you like and share the result freely. The LATEX source code is available from the course website:

http://www.utstat.toronto.edu/~brunner/oldclass/256f19