Sample Questions: Continuous Random Variables

STA256 Fall 2019. Copyright information is at the end of the last page.

- 1. The continuous random variable X has density $f(x) = \begin{cases} \frac{c}{x^{\alpha+1}} & \text{for } x \geq 1 \\ 0 & \text{for } x < 1 \end{cases}$ where $\alpha > 0$.
 - (a) Find the constant c

(b) Find the cumulative distribution function F(x).

(c) The median of this distribution is that point m for which $P(X \le m) = \frac{1}{2}$. What is the median? The answer is a function of α .

2. Let
$$F(x) = \begin{cases} 0 & \text{for } x < 0 \\ x^{\theta} & \text{for } 0 \le x \le 1 \\ 1 & \text{for } x > 1 \end{cases}$$

(a) If $\theta = 3$, what is $P(\frac{1}{2} < X \le 4)$? The answer is a number.

(b) Find f(x).

- 3. The Uniform(L,R) distribution has density $f(x) = \begin{cases} \frac{1}{R-L} & \text{for } L \leq x \leq R \\ 0 & \text{Otherwise} \end{cases}$
 - (a) Give the cumulative distribution function.

(b) Graph the cumulative distribution function.

- 4. The Exponential(λ) distribution has density $f(x)=\left\{ egin{array}{ll} \lambda e^{-\lambda x} & \mbox{for } x\geq 0 \\ 0 & \mbox{for } x<0 \end{array} \right.$
 - (a) Show $\int_{-\infty}^{\infty} f(x) dx = 1$

(b) Find F(x)

5. The Gamma
$$(\alpha, \lambda)$$
 distribution has density $f(x) = \begin{cases} \frac{\lambda^{\alpha}}{\Gamma(\alpha)} e^{-\lambda x} x^{\alpha - 1} & \text{for } x \geq 0 \\ 0 & \text{for } x < 0 \end{cases}$
Show $\int_{-\infty}^{\infty} f(x) \, dx = 1$.

- 6. The Normal (μ, σ) distribution has density $f(x) = \frac{1}{\sigma \sqrt{2\pi}} \exp\left\{-\frac{(x-\mu)^2}{2\sigma^2}\right\}$
 - (a) Show that f(x) is symmetric about μ , meaning $f(\mu + x) = f(\mu x)$.

(b) Let $X \sim N(\mu, \sigma)$ and $Z = \frac{X - \mu}{\sigma}$. Find the density of Z.

7. Let $Z \sim N(0,1)$ (standard normal), so that $f_x(z) = \frac{1}{\sqrt{2\pi}}e^{-\frac{z^2}{2}}$. If x>0, show $F_z(-x)=1-F_z(x)$.

- 8. Let $X \sim N(\mu = 50, \sigma = 10)$.
 - (a) Find P(X < 60). The answer is a number.

(b) Find P(X > 30). The answer is a number.

(c) Find P(30 < X < 55).

9. Let $Z\sim N(0,1)$ (standard normal), so that $f_Z(z)=\frac{1}{\sigma\sqrt{2\pi}}e^{-\frac{z^2}{2}}$. Show $\int_{-\infty}^{\infty}f_Z(z)=1.$ Hint: Let $t=\frac{z^2}{2}.$ You may use $\Gamma(\frac{1}{2})=\sqrt{\pi}.$

- 10. The beta density with parameters α and β is $f(x) = \begin{cases} \frac{\Gamma(\alpha+\beta)}{\Gamma(\alpha)\Gamma(\beta)} x^{\alpha-1} (1-x)^{\beta-1} & \text{for } 0 \leq x \leq 1 \\ 0 & \text{Otherwise} \end{cases}$ Let $X \sim \text{Beta}(\alpha,\beta)$ with $\beta=1$.
 - (a) Write the density of X for $0 \le x \le 1$. Simplify. You will prove $\Gamma(\alpha + 1) = \alpha \Gamma(\alpha)$ in homework.

(b) For what values of y is $f_y(y) > 0$? Show your work.

(c) Derive $f_y(y)$. Don't forget to specify where the density is greater than zero.

- 11. Let $Z \sim N(0,1)$ and $Y = Z^2$.
 - (a) For what values of y is $f_y(y) > 0$?
 - (b) Show that Y has a gamma distribution and give the parameters. You may use the fact that $\Gamma\left(\frac{1}{2}\right) = \sqrt{\pi}$, without proof.

- 12. In this problem, the random variable X is transformed by its own distribution function. Let the continuous random vabriale X have distribution function $F_x(x)$, and let $Y = F_x(X)$.
 - (a) For what values of y is $f_y(y) > 0$? Hint: as x ranges from $-\infty$ to ∞ , $F_x(x)$ ranges from ____ to ___.
 - (b) Find $f_y(y)$.

This assignment was prepared by Jerry Brunner, Department of Mathematical and Computational Sciences, University of Toronto. It is licensed under a Creative Commons Attribution - ShareAlike 3.0 Unported License. Use any part of it as you like and share the result freely. The Lagrange code is available from the course website: