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(Section 2.4 and parts of 2.5)
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1This slide show is an open-source document. See last slide for copyright
information.
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Formal Definitions

Our textbook makes a distinction between continuous
random variables and absolutely continuous random
variables.

All absolutely continuous random variables are continuous.

There are continuous random variables that are not
absolutely continuous.

But the examples are too advanced for us right now.

Book says (p. 53) “In fact, statisticians sometimes say that
X is continuous as shorthand for saying that X is
absolutely continuous.”

That is what we will do.
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Continuous Random Variables: The idea
Probability is area under a curve

Discrete random variables take on a finite or countably
infinite number of values.

Continuous random variables take on an uncountably
infinite number of values.

This implies that S is uncountable too, but we seldom talk
about it.

Probability is area under a curve — that is, area between a
curve and the x axis.
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The Probability Density Function

P (a < X < b) =

∫ b

a
f(x) dx

f(x), or fX (x), is called the density function of X. Properties
are

f(x) ≥ 0

f(x) is piecewise continuous.∫∞
−∞ f(x) dx = 1
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The probability of any individual value of X is zero

P (X = a) = 0

So
P (< X < b) = P (a ≤ X < b) = P (a < X ≤ b) = P (a ≤ X ≤ b).
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P (a < X < b) = F (b)− F (a)
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F ′(x) = f(x)

F (x) = P (X ≤ x)

=

∫ x

−∞
f(t) dt

d

dx
F (x) =

d

dx

∫ x

−∞
f(t) dt = f(x)

By the Fundamental Theorem of Calculus.
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The Fundamental Theorem of Calculus

F ′(x) = f(x) is true for values of x where F ′(x) exists and f(x)
is continuous. For example, let

f(x) =

{
1 for 0 ≤ x ≤ 1
0 Otherwise

F (x) is not differentiable at x = 0 and x = 1.
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More comments

F (x) is not differentiable at x = 0 and x = 1.
These are also the points where f(x) is discontinuous.
The exact value of f(x) at those points cannot be
recovered from F (x).
These are events of probability zero.
They don’t really affect anything.
Recall that f(x) is assumed piecewise continuous.
The value of f(x) at a point of discontinuity is essentially
arbitrary. This causes no problems.
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f(x) is not a probability
g′(x) = limh→0

g(x+h)−g(x)
h

f(x) = lim
h→0

F (x+ h)− F (x)

h
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Another way to write f(x)
Instead of limh→0

F (x+h)−F (x)
h

f(x) = lim
h→0

F (x+ h
2 )− F (x− h

2 )

h

Limiting slope is the same if it exists.
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Interpretation

f(x) = lim
h→0

F (x+ h
2)− F (x− h

2)

h

F (x+ h
2)− F (x− h

2) = P (x− h
2 < X < x+ h

2)

So f(x) is roughly proportional to the
probability that X is in a tiny interval
surrounding x.
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Example

f(x) =

{
2x for 0 ≤ x ≤ 1
0 Otherwise

Common questions:

Prove it’s a density.

Find F (x).
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Prove it’s a density

f(x) =

{
2x for 0 ≤ x ≤ 1
0 Otherwise

Clearly f(x) ≥ 0.

It’s continuous except at x = 1.

Show
∫∞
−∞ f(x) dx = 1
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Show
∫∞
−∞ f(x) dx = 1

f(x) =

{
2x for 0 ≤ x ≤ 1
0 Otherwise

∫ ∞
−∞

f(x) dx =

∫ 0

−∞
f(x) dx+

∫ 1

0
f(x) dx+

∫ ∞
1

f(x) dx

=

∫ 0

−∞
0 dx+

∫ 1

0
f(x) dx+

∫ ∞
1

0 dx

= 0 +

∫ 1

0
2x dx+ 0

= 2
x2

2

∣∣∣∣ 10
= 12 − 02 = 1
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Find F (x) =
∫ x
−∞ f(t) dt

f(x) =

{
2x for 0 ≤ x ≤ 1
0 Otherwise

There are 3 cases.

If x < 0, F (x) =
∫ x
−∞ 0 dt = 0.

If 0 ≤ x ≤ 1,

F (x) =

∫ 0

−∞
0 dt+

∫ x

0
2t dt = x2.

If x > 1,

F (x) =

∫ 0

−∞
0 dt+

∫ 1

0
2t dt+

∫ x

1
0 dt

= 0 + 1 + 0

= 1
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Putting the pieces together

F (x) =


0 for x < 0

x2 for 0 ≤ x ≤ 1

1 for x > 1

The derivation does not need to be this detailed, but the final
result has to be complete. More examples will be given.

18 / 29



Continuous Random Variables Common Continuous Distributions

Common Continuous Distributions

Uniform

Exponential

Gamma

Normal

Beta
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The Uniform Distribution: X ∼ Uniform(L,R)
Parameters L < R

f(x) =

{
1

R−L for L ≤ x ≤ R
0 Otherwise
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The Exponential Distribution: X ∼ Exponential(λ)
Parameter λ > 0

f(x) =

{
λe−λx for x ≥ 0
0 for x < 0

0 1 2 3 4

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Exponential(λ) density with λ= 1

x

D
en
si
ty

21 / 29



Continuous Random Variables Common Continuous Distributions

The Gamma Distribution: X ∼ Gamma(α, λ)
Parameters α > 0 and λ > 0

f(x) =

{
λα

Γ(α)e
−λx xα−1 for x ≥ 0

0 for x < 0
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The gamma function is defined by Γ(α) =
∫∞

0
e−t tα−1 dt

Integration by parts shows Γ(α+ 1) = αΓ(α).
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The Normal Distribution: X ∼ N(µ, σ2)
Parameters µ ∈ R and σ > 0

f(x) =
1

σ
√

2π
e−

(x−µ)2

2σ2

=
1

σ
√

2π
exp−

{
(x− µ)2

2σ2

}
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The normal distribution is also called the Gaussian, or the “bell
curve.” if µ = 0 and σ = 1, we write X ∼ N(0,1) and call it the
standard normal.
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The Beta Distribution: X ∼ Beta(α, β)
Parameters α > 0 and β > 0

f(x) =

{
Γ(α+β)

Γ(α)Γ(β) x
α−1(1− x)β−1 for 0 ≤ x ≤ 1

0 Otherwise

Using Γ(n+ 1) = nΓ(n) and Γ(β) =
∫∞
0 e−t tβ−1 dt, note that a

beta distribution with α = β = 1 is Uniform(0,1).

The beta density can assume a variety of shapes, depending on
the parameters α and β.
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Beta density with α = 5 and β = 5
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Beta density with α = 8 and β = 2
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Beta density with α = 2 and β = 8
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Beta density with α = 1
2 and β = 1
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Copyright Information

This slide show was prepared by Jerry Brunner, Department of
Statistical Sciences, University of Toronto. It is licensed under a
Creative Commons Attribution - ShareAlike 3.0 Unported
License. Use any part of it as you like and share the result
freely. The LATEX source code is available from the course
website:

http://www.utstat.toronto.edu/∼brunner/oldclass/256f19
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