Name _____

Student Number _____

STA 256 f2019 LEC0101 Test 3

TUT0101	TUT0102	TUT0103	TUT0104	TUT0105
Mon. 3-4	Mon. 4-5	Mon. 5-6	Mon. 6-7	Wed. 4-5
DH 2080	DH 2080	IB 360	IB 240	IB360
Ali	Dashvin	Dashvin	Ali	Marie
TUT0106	TUT0107	TUT0108	TUT0109	TUT0110
Wed. 5-6	Fri. 9-10	Fri. 10-11	Fri. 10-11	Fri. 11-12
IB 360	IB 200	DH 2070	DV 3093	DH 2070
Marie	Crendall	Ali	Cendall	Ali
TUT0111	TUT0112	TUT0113	TUT0114	TUT0115
Fri. 11-12	Fri. 12-1	Fri. 4-5	Fri. 5-6	Fri. 6-7
DV 3093	DV 2070	DV 3093	IB 360	IB 360
Crendall	Crendall	Karan	Karan	Karan
TUT0116	TUT0117			
Wed. 11-12	Wed. 12-1			
DH 2070	IB 260			
Ana	Ana			

Tutorial Section (Circle One)

Question	Value	Score	
1	20		
2	15		
3	25		
4	20		
5	20		
Total = 100 Points			

1. Let the random variables X and Y have joint density

$$f_{X,Y}(x,y) = \begin{cases} 24 xy & \text{For } 0 \le x \le 1, \ 0 \le y \le 1 \text{ and } x + y \le 1 \\ 0 & \text{Otherwise} \end{cases}$$

(a) (3 points) Sketch the region of the x, y plane where the joint density is non-zero.

(b) (8 points) Find the marginal density $f_X(x)$. Show your work. Be sure to specify where the density is non-zero.

(c) (1 point) You know the marginal density $f_Y(y)$ by symmetry. Just write it down. Be sure to specify where the density is non-zero.

- (d) (2 points) Are X and Y independent? Answer Yes or No and briefly justify your answer.
- (e) (6 points) Give the conditional density $f_{_{Y\mid X}}(y|x).$ Be sure to specify where the density is non-zero.

2. (15 points) Let X and Y be independent, discrete random variables. Show that $E\{g(X)h(Y)\} = E\{g(X)\}E\{h(Y)\}$. Because X and Y are discrete, you will add rather than integrating to do this question. Be very clear about where you use independence. Draw an arrow pointing to where you use independence, and write "This is where I use independence."

- 3. Let X_1 and X_2 be independent normal random variables with $\mu = 0$ and $\sigma^2 = 1$. Let $Y_1 = X_1 X_2$ and $Y_2 = X_1 + X_2$.
 - (a) (10 points) Calculate the joint density of Y_1 and Y_2 . Show your work, and **circle your final answer**. The next part of this question will go better if you simplify your answer.

Continue Question 3 if necessary.

(b) (10 points) Find the marginal density of $Y_1 = X_1 - X_2$.

(c) (5 points) The distribution of Y_1 is one of the common distributions on the formula sheet. Identify it by name and give the value(s) of the parameter(s).

- 4. Let X have a binomial distribution with parameters n and θ .
 - (a) (12 points) Derive the moment-generating function of X. Show your work. **Circle your final answer**. You can check your answer on the formula sheet, but if you force your answer to come out "right" by making a convenient mistake, you will get a zero for this part.

(b) (8 points) Use the moment-generating function to find E(X). Show your work. Circle your answer. If your answer to part (a) does not agree with the formula sheet, use the formula sheet. 5. (20 points) Let X_1, X_2 and X_3 be independent random variables, where

 $X_1 \sim \text{Gamma} \ (\alpha = 1, \lambda = 1) \quad X_2 \sim \text{Gamma} \ (\alpha = 2, \lambda = 1) \quad X_3 \sim \text{Gamma} \ (\alpha = 3, \lambda = 1)$

Find the distribution of $Y = X_1 + X_2 + X_3$. Show your work. It is one of the common distributions on the formula sheet. Name the distribution and give the values of the parameters.