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1. Let the random variables X and Y have joint density

fX,Y (x, y) =

{
24xy For 0 ≤ x ≤ 1, 0 ≤ y ≤ 1 and x+ y ≤ 1
0 Otherwise

(a) (3 points) Sketch the region of the x, y plane where the joint density is non-zero.

(b) (8 points) Find the marginal density fX (x). Show your work. Be sure to specify
where the density is non-zero.

Continued on page 3
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(c) (1 point) You know the marginal density fY (y) by symmetry. Just write it down.
Be sure to specify where the density is non-zero.

(d) (2 points) Are X and Y independent? Answer Yes or No and briefly justify your
answer.

(e) (6 points) Give the conditional density f
Y |X (y|x). Be sure to specify where the

density is non-zero.

Continued on page 4



STA256H5F Page 4 of 9

2. (15 points) Let X and Y be independent, discrete random variables. Show that
E{g(X)h(Y )} = E{g(X)}E{h(Y )}. Because X and Y are discrete, you will add
rather than integrating to do this question. Be very clear about where you use inde-
pendence. Draw an arrow pointing to where you use independence, and write “This
is where I use independence.”

Continued on page 5
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3. Let X1 and X2 be independent normal random variables with µ = 0 and σ2 = 1. Let
Y1 = X1 −X2 and Y2 = X1 +X2.

(a) (10 points) Calculate the joint density of Y1 and Y2. Show your work, and circle
your final answer. The next part of this question will go better if you simplify
your answer.

Continued on page 6
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Continue Question 3 if necessary.

Continued on page 7
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(b) (10 points) Find the marginal density of Y1 = X1 −X2.

(c) (5 points) The distribution of Y1 is one of the common distributions on the
formula sheet. Identify it by name and give the value(s) of the parameter(s).

Continued on page 8
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4. Let X have a binomial distribution with parameters n and θ.

(a) (12 points) Derive the moment-generating function of X. Show your work. Cir-
cle your final answer. You can check your answer on the formula sheet, but if
you force your answer to come out “right” by making a convenient mistake, you
will get a zero for this part.

(b) (8 points) Use the moment-generating function to find E(X). Show your work.
Circle your answer. If your answer to part (a) does not agree with the formula
sheet, use the formula sheet.

Continued on page 9
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5. (20 points) Let X1, X2 and X3 be independent random variables, where

X1 ∼ Gamma (α = 1, λ = 1) X2 ∼ Gamma (α = 2, λ = 1) X3 ∼ Gamma (α = 3, λ = 1)

Find the distribution of Y = X1 +X2 +X3. Show your work. It is one of the common
distributions on the formula sheet. Name the distribution and give the values of the
parameters.

Total Marks = 100 points


