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Preface 

Any method of fitting equations to data may be called regression. Such 
equations are valuable for at least two purposes: making predictions and 
judging the strength of relationships. Because they provide a way of em­
pirically identifying how a variable is affected by other variables, regression 
methods have become essential in a wide range of fields, including the social 
sciences, engineering, medical research and business. 

Of the various methods of performing regression, least squares is the 
most widely used. In fact, linear least squares regression is by far the most 
widely used of any statistical technique. Although nonlinear least squares 
is covered in an appendix, this book is mainly about linear least squares 
applied to fit a single equation (as opposed to a system of equations). 

The writing of this book started in 1982. Since then, various drafts have 
been used at the University of Toronto for teaching a semester-long course 
to juniors, seniors and graduate students in a number of fields, including 
statistics, pharmacology, engineering, economics, forestry and the behav­
ioral sciences. Parts of the book have also been used in a quarter-long course 
given to Master's and Ph.D. students in public administration, urban plan­
ning and engineering at the University of Illinois at Chicago (UIC). This 
experience and the comments and criticisms from students helped forge the 
final version. 

The book offers an up-to-date account of the theory and methods of 
regression analysis. We believe our treatment of theory to be the most 
complete of any book at this level. The methods provide a comprehensive 
toolbox for the practicing regressionist. The examples, most of them drawn 
from 'real life' , illustrate the difficulties commonly encountered in the prac­
tice of regression, while the solutions underscore the subjective judgments 
the practitioner must make. Each chapter ends with a large number of exer­
cises that supplement and reinforce the discussions in the text and provide 
valuable practical experience. When the reader has mastered the contents 
of this book, he or she will have gained both a firm foundation in the the­
ory of regression and the experience necessary to competently practice this 
valuable craft. 

A first course in mathematical statistics, the ability to use statistical 
computer packages and familiarity with calculus and linear algebra are 
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prerequisites for the study of this book. Additional statistical courses and 
a good knowledge of matrices would be helpful. 

This book has twelve chapters. The Gauss-Markov Conditions are as­
sumed to hold in the discussion of the first four chapters; the next five 
chapters present methods to alleviate the effects of violations of these con­
ditions. The final three chapters discuss the somewhat related topics of 
multicollinearity, variable search and biased estimation. Relevant matrix 
and distribution theory is surveyed in the first two appendices at the end 
of the book, which are intended as a convenient reference. The last appendix 
covers nonlinear regression. 

Chapters and sections that some readers might find more demanding are 
identified with an asterisk or are placed in appendices to chapters. A reader 
can navigate around these without losing much continuity. In fact, a reader 
who is primarily interested in applications may wish to omit many of the 
other proofs and derivations. Difficult exercises have also been marked with 
asterisks. 

Since the exercises and examples use over 50 data sets, a disk containing 
most of them is provided with the book. The READ.ME file in the disk 
gives further information on its contents. 

This book would have been much more difficult, if not impossible, to 
write without the help of our colleagues and students. We are especially 
grateful to Professor Siim Soot, who examined parts of the book and was 
an all-round friend; George Yanos of the Computer Center at VIC, whose 
instant E-mail responses to numerous cries for help considerably shortened 
the time to do the numerical examples (including those that were ulti­
mately not used); Dr. Chris Johnson, who was a research associate of one 
of the authors during the time he learnt most about the practical art of 
regression; Professor Michael Dacey, who provided several data sets and 
whose encouragement was most valuable; and to Professor V. K. Srivas­
tava whose comments on a draft of the book were most useful. We also 
learnt a lot from earlier books on the subject, particularly the first editions 
of Draper and Smith (1966) and Daniel and Wood (1971), and we owe a 
debt of gratitude to their authors. 

Numerous present and former students of both authors contributed their 
time in editing and proof-reading, checking the derivations, inputting data, 
drawing diagrams and finding data-sets. Soji Abass, Dr. Martin Bilodeau, 
Robert Drozd, Andrea Fraser, Dr. Sucharita Ghosh, Robert Gray, Neleema 
Grover, Albert Hoang, M.R. Khavanin, Supin Li, Dr. Claire McKnight, 
Cresar Singh, Yanhong Wu, Dr. Y. K. Yau, Seongsun Yun and Zhang Ting­
wei constitute but a partial list of their names. We would like to single out 
for particular mention Marguerite Ennis and Piyushimita Thakuriah for 
their invaluable help in completing the manuscript. Linda Chambers JEXed 
an earlier draft of the manuscript, Barry Grau was most helpful identifying 
computer programs, some of which are referred to in the text, Marilyn 
Engwall did the paste-up on previous drafts, Ray Brod drew one of the 
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figures and Bobbie Albrecht designed the cover. We would like to express 
our gratitude to all of them. A particular thanks is due to Dr. Colleen Sen 
who painstakingly edited and proofread draft after draft. 

We also appreciate the patience of our colleagues at UIC and the Uni­
versity of Toronto during the writing of this book. The editors at Springer­
Verlag, particularly Susan Gordon, were most supportive. We would like 
to gratefully acknowledge the support of the Natural Sciences and Engi­
neering Research Council of Canada and the National Science Foundation 
of the U.S. during the time this book was in preparation. The help of the 
Computer Center at UIC which made computer time freely available was 
indispensable. 

Preface to the Fourth Printing 

We have taken advantage of this as well as previous reprintings to correct 
several typographic errors. In addition, two exercises have been changed. 
One because it required too much effort and another because we were able 
to replace it with problems we found more interesting. 

In order to keep the price of the book reasonable, the data disk has is 
no longer included. Its contents have been placed at web sites from which 
they may be downloaded. The URLs are http://VIWW.springer-ny . com 
andhttp://VIWW.uic.edu/-ashish/regression.html. 
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CHAPTER 1 

Introduction 

1.1 Relationships 

Perception of relationships is the cornerstone of civilization. By under­
standing how certain phenomena depend on others we learn to predict the 
consequences of our actions and to manipulate our environment. Most rela­
tionships we know of are based on empirical observations. Although some 
relationships are postulated on theoretical grounds, usually the theories 
themselves were originally obtained from empirical observations. And even 
these relationships often need to be empirically tested. 

Some relationships are relatively easy to discover or verify. This is par­
ticularly true when chance plays little or no role in them. But when chance 
does play a role, the task of discovering relationships often requires fairly 
careful analysis of data. This book is devoted to the study of the analysis of 
data aimed at discovering how one or more variables (called independent 
variables, predictor variables or regressors) affect other variables (called 
dependent variables or response variables). 

Such analysis is called regression. This nomenclature is somewhat un­
fortunate since it has little to do with going backwards, as the word re­
gression implies. The name comes from an early (1885) application by Sir 
Francis Galton, which dealt with the relationship of heights of parents and 
heights of offsprings. He showed that unusually tall parents ('taller than 
mediocrity', as he put it) had children who were shorter than themselves, 
and parents who were 'shorter than mediocrity' had children taller than 
themselves. This led to his theory of 'regression toward mediocrity' and 
eventually led to its use with other studies involving relationships. This 
choice of word is doubly unfortunate, since it might tend to date regression 
from Galton's work. Actually, regression is much older than that. Eigh­
teenth century French mathematicians (particularly Laplace) and others 
(particularly Boscovich, in 1757) were clearly doing what we would call 
regression (Stigler, 1975, 1984) and if one is willing to claim two-sample 
testing as a sub case of regression (as we do in Chapter 4), its history goes 
back to Biblical times. 
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1.2 Determining Relationships: A Specific 
Problem 

Example 1.1 
We know that the more cars there are on a road the slower the speed of 
traffic flow becomes. A fairly precise understanding of this is important 
to the transportation planner since reducing travel time is frequently the 
main purpose behind increasing transportation facilities. Exhibit 1.1 shows 
data on density in vehicles per mile and the corresponding speed in miles 
per hour. 

Density Speed (Speed) 1/2 Density Speed (Speed)1/2 

20.4 38.8 6.229 29.5 31.8 5.639 
27.4 31.5 5.612 30.8 31.6 5.621 

106.2 10.6 3.256 26.5 34.0 5.831 
80.4 16.1 4.012 35.7 28.9 5.376 

141.3 7.7 2.775 30.0 28.8 5.367 
130.9 8.3 2.881 106.2 10.5 3.240 
121.7 8.5 2.915 97.0 12.3 3.507 
106.5 11.1 3.332 90.1 13.2 3.633 
130.5 8.6 2.933 106.7 11.4 3.376 
101.1 11.1 3.332 99.3 11.2 3.347 
123.9 9.8 3.130 107.2 10.3 3.209 
144.2 7.8 2.793 109.1 11.4 3.376 

EXHIBIT 1.1: Data on Density of Vehicles and Average Speed 
SOURCE: Huber (1957). Reproduced with permission from Transportation Re­
search Board, National Research Council, Washington, D.C. 

Since congestion affects speed (and not the other way around) we are 
interested in determining the effect of density on speed. For reasons that 
need not concern us at the moment (but will be discussed in Chapter 6), 
we shall set the dependent variable as the square root of speed. Exhibit 1.2 
shows a plot (or a scatter plot as it is sometimes called) with the indepen­
dent variable (density) on the horizontal axis and the dependent variable 
(square root of speed) on the vertical axis - as is usual. 

Exhibit 1.3 is the same as Exhibit 1.2 except that now a line has been 
fitted by eye to the data. If desired the equation of the line can be obtained 
using straightforward analytic geometry methods; e.g., pick any two points 
(x(1), y(1») and (x(2), y(2») on the line and substitute these values in 

_ (1) _ y(1) - y(2) _ (1) 
Y Y - x(1) _ x(2) (x x ). 
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EXHIBIT 1.2: Plot of Square Root of Speed Against Density 

In this case we get 

_ 3 6 = 3.6 - 5.5 ( - 100) 
Y . 100-30 x or Y = 6.3 - .027x, 

using the points (100,3.6) and (30,5.5). 

(1.1) 

• 
The first question that comes to mind at this stage is: How well does our 

line fit the observed points? One way to assess this is to compute for each 
value Xi of our independent variable the value Yi of the dependent variable 
as predicted by our line. Then we can compare this predicted value Yi with 
the corresponding observed value Yi. This is usually done by computing the 
residuals 

(1.2) 

Example 1.1 ctd. 
For the first value Xl of X, Yl = 6.3 - .027(20.4) = 5.7492 and el = 
6.229 - 5.749 = .48. Exhibit 1.4 displays a plot of the residuals ei against 
the Xi'S. While Exhibit 1.3 shows that the residuals are fairly small relative 
to the original Yi'S, indicating a fairly good fit, Exhibit 1.4 shows that we 
can do better ,since there is a slight pattern in the points (the points in 
the middle are lower than those at either end), which we should be able to 
account for. 
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EXHIBIT 1.3: Plot of Square Root of Speed Against Density with Regression 
Line Drawn 

One way to do this is to use, in addition to Xi, a term involving x;. Here 
we obtained the equation 

Yi = 7 - 0.05Xi + 0.00015x~ , (1.3) 

using a least squares procedure that we shall describe shortly. We could 
have tried to fit a parabola to our original data points and found its equa­
tion by using three points on the curve, but least squares is simpler. Ex­
hibit 1.5 shows a plot of the residuals against the predicted values (some­
times called 'predicteds') for (1.3), while Exhibit 1.6 gives a plot of the 
residuals against Xi. Since they do not show any obvious pattern, they in­
dicate that there is perhaps little more we can do and, indeed, we may have 
done quite well already. Therefore, we choose 

(speed)1/2 = 7 - 0.05 density + 0.00015 density2 

as our final equation. 
Traffic flow is defined as speed x density. If we express this flow in terms 

of density alone, using the regression equation given above, and plot it we 
will find a curve that is increasing for low values of density and decreasing 
for higher values. The maximum value of flow is an estimate of the capacity 
of the road. It is interesting to note that this capacity is reached for a fairly 
low density. • 
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EXHIBIT 1.4: Plot of Residuals Against Density 

1.3 The Model 

When we set out in the last section to fit a straight line, we had implicitly 
hypothesized that the data had an underlying linear pattern, i.e., one of 
the form 

(1.4) 

However, we also knew that our observations would not fit this pattern 
exactly (this book is not intended for situations where the fit is exact!). 
Thus we hypothesized that we had a relationship of the form 

(1.5) 

where i = 1,2, ... ,n and n is the number of data points. Equation (1.5) is 
called a regression model and since we have only one independent variable, 
it is called a simple regression model. Later we found that we could do 
better with the model 

or, equivalently, 
Yi = 130 + f3I x il + f32 X i2 + Ei, 

where XiI = Xi and Xi2 = x; and i = 1, ... , n. 
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EXHIBIT 1.5: Plot of Residuals Against Predicted Speed (Density2 Included in 
Model) 

In general, models of the form 

Yi = (30 + (31 x il + (32 X i2 + ... + (3kXik + fi where i = 1, ... ,n, (1.6) 

with k > 1 independent variables, are called multiple regression models. 
The (3j'S are called parameters and the fi'S errors. The. values of neither 
the (3j'S nor the fi'S can ever be known. However, they can be estimated 
as we did in the last section (the f/S by the e/s). 

In a simple regression model the (30 and (31 have simple interpretations. 
When x = 0 in the equation (1.4), Y = f30. The term f30 is frequently called 
the intercept. For every unit increase in x, Y increases by f31, which is often 
referred to as the slope. 

It is important to note that in our regression model the Xij'S are simply 
numbers ~ not random variables. Therefore, it is pointless to talk of the 
distribution of the Xij'S. The fi'S are random variables as are the Yi'S, since 
they depend on the fi'S. The Yi'S are called observations, XiI, ... ,Xik are 
said to constitute the design point corresponding to Yi (or, simply, the ith 
design point), and together Yi, XiI, ... , xik constitute a case or a data point. 

We often say that y/s are observations of the dependent variable Y and 
for i = 1, ... , n, Xij'S are the values of the independent variable Xj. How­
ever, we very rarely treat Y as a single random variable, and X j is not a 
random variable at all. Moreover, more often than not, Xj'S are related to 
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EXHIBIT 1.6: Plot of Residuals Against Density (Density2 Included in Model) 

each other. This makes the terms 'independent variable' and 'dependent 
variable' rather unfortunate terminological choices, but at this stage they 
are too entrenched in our vocabulary to change. 

In Section 1.2 we fitted an expression involving xT to the data. This is 
obviously non-linear in Xi. But we were doing linear regression and for our 
purposes, linearity means linearity in the parameters {3o,/31 , ... ,{3k; i.e., for 
linear regression (1.6) needs to be a linear function of the {3j's. 

1.4 Least Squares 

Obviously the smaller the residuals the better the fit. Of all possible values 
of the {3j'S, the least squares (LS) estimates are those that minimize 

n n 

S = LET = L(Yi - {3o - {31 x i1 - {32Xi2 - ... - {3k Xik)2, (1.7) 
i=l i=l 

which in the case of simple regression becomes 
n 

S = L(Yi - {3o - {31 Xid2. (1.8) 
i=l 

If the reader is at all confused by us acting as if the {3j's in (1.5) and (1.6) 
are fixed but unknown numbers, and then talking about all possible values 
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of the /3j'S, he or she has every reason to be. The fact is that the /3j'S 
have two meanings: one being a generic point in a space of possible values, 
and the other a specific point in this space, which may be called the 'true 
value.' It is conventional to be sloppy and mix up this dual role of the /3j's 
in linear least squares (although in nonlinear least squares the distinction is 
usually made explicit - see Appendix C, p. 298). But this should cause no 
confusion, and besides, we only consider /3j'S in their 'true value' meaning 
except when we derive least squares estimates. 

Since the partial derivatives of (1.8) with respect to /30 and /31 are 

n 

as / a/3o -22)Yi - /30 - /31 x id (1.9) 
i=l 

n 

and as / a/31 -22)Yi - /30 - /31 Xid Xil, (1.10) 
i=l 

we obtain the least squares estimates bo and b1 of /30 and /31 by setting 
(1. 9) and (1.10) equal to zero and replacing /30 and /31 by bo and b1 . Thus 
from (1.9) 

n n 

L Yi - nbo - b1 LXiI = 0 
i=l i=l 

d tt ' - -1 ",n d - -1 ",n t an se mg Y = n L...i=l Yi an Xl = n L...i=l XiI, we ge 

bo = y - bIi:1' (1.11) 

From (1.10) it follows that 

n n 

L Yi Xi1 - nbOx 1 - b1 L X71 = 0, 
i=l i=l 

which, when we use (1.11) to substitute for bo, yields 

n n 

LYiXi1 - nX1 (y - b1xd - b1 L X71 = O. (1.12) 
i=l i=l 

Therefore, 
n n 

(1.13) 
i=l i=l 

The alternative expression 

n n 

(1.14) 
i=l i=l 
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is sometimes useful. The equivalence of (1.14) and (1.13) is proved in Ap­
pendix 1A.I 

These derivations would have been shortened somewhat if we rewrote 
(1.5) as 

(1.15) 

This model is called a centered model or, more specifically, the centered 
version of (1. 5). If "(0 = f30 + f31 X I, then there is a one-to-one correspondence 
between (f30, f3d and ("(0, f3d and the value of either pair determines the 
other. Minimizing 

n 

L[Yi - "(0 - f31 (XiI - xdl 2 

i=l 

with respect to "(0 and f31 and noting that L~=l (XiI - xd = 0 we see that 
the least squares estimate of "(0 is fj and that of f31 is still (1.14). If desired, 
we may estimate bo from bl and the estimate fj of "(0. The expression we 
would use for this purpose would be the same as (1.11). 

Computer packages exist for carrying out the computations of bo and bl , 
and one would frequently depend on them. Application of these formulae 
to the simple regression example in Section 1.2 yields 

bo = 6.3797, and b1 = -0.02777. ( 1.16) 

In terms of the bo's and bl's, the predicted values iii are 

(1.17) 

and the residuals ei are 

(1.18) 

It may be noted in passing that least squares residuals for the model (1.5) 
have the property 

n n n 

Lei = L(Yi - fj) - b1 L(Xil - x) = o. (1.19) 
i=l i=l i=l 

The method of least squares was apparently first published by the French 
mathematician Legendre in 1805. However, Carl Friedrich Gauss, who pub­
lished it in 1809, claimed that he had been using the procedure since 1795, 
leading to one of the more famous disputes in the history of science. The 
reader who is interested in pursuing this dispute further may wish to con­
sult Plackett (1972) and Stigler (1981). 

IThis is an appendix to this chapter which is at the end of it. Appendices to individual 
chapters have the chapter number in front of the' A', while the appendix at the end of 
the book and sections in it start with letters. 
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1.5 Another Example and a Special Case 

Example 1.2 
Consider the data of Exhibit 1. 7 on the population of zones and the number 
of telephones (household mains). We wish to see how population size affects 
the number of telephones. (Models connecting these two variables have been 
used to estimate population in small areas for non-census years.) 

-# of Residents 4041 
# of Household Mains 1332 

2200 30148 60324 65468 30988 
690 11476 18368 22044 10686 

EXHIBIT 1.7: Data on Population and Household Mains 
SOURCE: Prof. Edwin Thomas, Department of Geography, University of Illinois 
at Chicago. 
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EXHIBIT 1.8: Plot of Square Root of Household Mains Against Square Root of 
Residents 

Again for reasons that we shall have to defer for the moment, we prefer 
to take square roots of both variables and set 

Yi = (number of telephones) 1/2, XiI = (population size) 1/2. 
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A plot is shown in Exhibit 1.8. It appears to indicate a linear relationship 
with the line passing through the point (0, 0), which is perfectly reasonable 
since if there were no people in an area, there would usually be no household 
phones! Thus we would postulate a model of the form 

(1.20) 

i.e., the constant or intercept term {3o would be missing. • 
Model (1.20) can be handled using least squares quite easily. Now we 

would minimize 
n 

S = ~)Yi - {31Xil)2 (1.21) 
i=l 

with respect to {31. Then, from equating to zero the derivative 

n 

dSjd{31 = -2 ~)Yi - {31Xil)Xil, 
i=l 

we get the least squares estimate b1 of {31 to be 

n n 

b1 = LYixiljLx~l. (1.22) 
i=l i=l 

Since there is no {3o, the residuals are 

but here 'E~=l ei is not usually zero. For the data in Exhibit 1.7, b1 turns 
out to be 0.578. 

1.6 When Is Least Squares a Good Method? The 
Gauss-Markov Conditions 

Perfectly reasonable questions to ask at this stage are: How good a proce­
dure is least squares and does it always estimate the {3j'S well? We shall 
have to defer a better answer to this question until Chapter 2, but for 
the moment we can say that least squares gives good predictions if certain 
conditions (called Gauss-Markov conditions) are met. In order to show the 
need for these conditions let us consider situations where good estimates 
would be difficult to get. 

Exhibit 1.9a illustrates a case where a straight line is inappropriate and 
as a result we are not likely to get good predictions. In order to exclude 
such situations (i.e., force us to use models that are appropriate), we make 
the condition that 

(1.23) 
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o ··0 

~ ...... 

(a) (b) 

EXHIBIT 1.9: Violations of Some Gauss-Markov Conditions 

I-H 

(a) (b) 

EXHIBIT 1.10: Examples of Influential Points 

This implies that the expectation E(Yi) of Yi actually is 130 + f31xil in the 
simple regression case or 130 + f31Xil + ... + f3kxik in the multiple regression 
case. As we shall see in Chapter 11, (1.23) can also be violated if necessary 
independent variables are left out of the model. 

Another type of problem we shall need to guard against is shown by 
Exhibit 1.9b. Here assume that the true model is given by the dotted line 
and (1.23) holds, but the variance, var (fi) of fi' increases with Xi. The few 
points far from the dotted line can cause the least squares line, as shown 
by a continuous line in Exhibit 1.9b, to be quite bad (for much the same 
reasons as described in the next paragraph). This type of situation, often 
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called heteroscedasticity, is prevented by imposing the condition 

var (€i) = E(€i - E(€i))2 = E(€n = 0"2 (1.24) 

(Le., E(€n is a constant) for all i. 
Sometimes only a single point or a small number of points may violate 

(1.23) and/or (1.24). In Exhibit 1. lOa, if the point 'I' had been absent, 
the regression line would have gone more or less through the remaining 
four points. However, with the presence of 'I' the regression line is as 
shown. Many procedures would be affected by such a point but least squares 
estimates are particularly affected. That is because the spacing between 
squares of equispaced numbers increases with the size of the numbers (e.g., 
102-92 = 19 while 22_12 = 3). Points such as 'I' are called outliers because 
they are far removed from the regression line and, because they have a 
large effect, they are also called influential points. They deserve significant 
attention because frequently they represent a violation of (1.23). And when 
they do, they do not belong in the analysis and, as we have already seen, 
can hurt our analysis. 

An even more potentially deadly situation is shown by Exhibit 1.lOb. For 
much the same reason as before, the point 'I' can alter the entire direction 
of the line and, what is worse, 'I' would not even have a large residual to 
draw attention to itself. Such a point is an influential point but is not an 
outlier. Chapter 8 will be devoted to outliers and influential observations. 

Yet another type of problem is perhaps best illustrated by an extreme 
example. If we had only two observations we could draw a straight line 
fitting them perfectly, but normally we would be reluctant to make a pre­
diction based on them alone. Suppose we made 20 copies of each of the 
data points. We now have 40 'observations', but are certainly no better off. 
This is because our observations are related (to say the least!). We therefore 
require our observations to be uncorrelated: 

(1.25) 

Conditions (1.23) , (1.24) and (1.25) are called the Gauss-Markov condi­
tions and it is gratifying to note that they assure that an appropriate pre­
diction made by a least squares fitted equation is good. 'Goodness' will be 
defined in Chapter 2, where a proof of the fact will also be given. Through­
out the book, the Gauss-Markov conditions will be used as a benchmark. 
When they hold, least squares estimates are good and when they do not, 
we shall need to make appropriate changes which would cause approximate 
compliance with the conditions. 

1.7 A Measure of Fit for Simple Regression 

As already noted, when we have a good fit the residuals are small. Thus we 
can measure the quality of fit by the sum of squares of residuals L:~=l e~. 
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However, this quantity is dependent on the units in which y/s are measured. 
Thus, when /30 =I- 0, a good measure of fit is 

n n 

R2 = 1- LeU~)Yi _ y)2. (1.26) 
i=l i=l 

This number lies between 0 and 1 (as will be shown in Section 2.8, p. 39) 
and the closer it is to 1 the better the fit. 

When /30 = 0 as in Section 1.5 a measure of fit is 

n n 

R2 = 1- LeULY;' (1.27) 
i=l i=l 

Since L:~=l Y; is usually much larger than L:~=l (Yi - y)2, this definition of 
R2 is quite different from that in (1.26). Therefore, models with /30 cannot 
be compared with those without /30 on the basis of R2. 

Example 1.3 
Running a regression of violent crimes (VIOL) against population (POP) 
using the data of Exhibit 1.11, we get the regression equation 

VIOL = 433.6 + .00011 POP [R2 = .486]. 

However, if New York is deleted, we get a substantial decline in R2; 

VIOL = 447.9 + .000085 POP [R2 = .087]. 

This example serves to reminds us that R2 depends not only on L:~=l er, 
as we would wish, but also on L:~=l (Yi - y)2, and an increase in the value of 
the latter can increase R2. The plot of Exhibit 1.12 illustrates the situation 
and shows a picture somewhat reminiscent of Exhibit 1. lOb. • 

1.8 Mean and Variance of bo and b1 Under 
Gauss-Markov Conditions 

Since bo and bl depend on the Yi'S, which are random variables, bo and bl 

are random variables. Their means and variances are given by 

2 [ -1 xi ] E[bo] = /30, var [bo] = a n + L:n ( . _ - )2 
i=l Xtl Xl 

n 

E[b l ] = /31, var[b l ] = a2/L(Xil - xd2 . 

i=l 

(1.28) 
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Violent Property 
Metro. Area Crimes Crimes Population 

Allentown, PA 161.1 3162.5 636.7 
Bakersfield, CA 776.6 7701.3 403.1 
Boston, MA 648.2 5647.2 2763.4 
Charleston, SC 851.7 5587.7 430.3 
Corpus Christi, TX 611.5 6115.1 326.2 
Elmira, NY 176.0 4693.5 97.7 
Fort Lauderdale, FL 732.1 8044.4 1014.0 
Greely, CO 434.9 5868.9 123.4 
Jackson, MI 642.5 5402.4 151.5 
La Crosse, WI 88.3 6261.3 91.1 
Lexington, KY 338.2 4879.6 318.1 
Madison, WI 177.4 659.2 323.5 
Monroe, LA 472.6 3929.2 139.2 
Norfolk, VA 500.9 5175.9 806.7 
Peoria,IL 676.3 5146.1 365.9 
Pueblo, CO 840.5 5709.1 126.0 
Sacramento, CA 724.7 8087.4 1014.0 
San Jose, CA 416.1 6280.4 1295.1 
South Bend, IN 354.8 5328.8 280.8 
Texarkana, TX 402.7 4225.2 127.0 
Washington, DC 693.0 5895.4 3060.2 
Youngstown, OH 356.4 3524.3 531.4 
New York, NY 1469.9 6308.4 9119.7 

EXHIBIT 1.11: Data on Violent and Property Crimes in 22 Metropolitan Areas 
SOURCE: Dacey (1983, Ch. 3). 

In the case where f30 = 0, we have 

n 

E{b1) = f31 and var{b1) = a2/Lx~1. (1.29) 
i=l 

These formulre can be seen as special cases of Theorem 2.2 (p. 36) of Chap­
ter 2, or can be proved directly as in the appendix to this chapter. 

Since the expected value E{bo) of the estimate bo is f3o, bo is called an 
unbiased estimator of f3o; similarly, b1 is an unbiased estimator of f31. This 
is obviously pleasant. 

In order to use the variances of bo and b1 we encounter a slight problem. 
They depend on a 2 , which is not known. However {as will be shown in 
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EXHIBIT 1.12: Plot of Violent Crimes Against Population 

Chapter 2), an unbiased estimator of 0'2 is 

n 

8 2 = (n - 2)-1 Le~ 
i=1 

(1.30) 

and if we replace 0'2 by 8 2 in (1.28) and (1.29) we get estimates of var (bo) 
and var (bd. Square roots of these estimates are called standard errors and 
will be denoted by s.e.(bo) and s.e.(b1). Thus 

n 

s.e.(bo) = 8[n-1 + xU L(Xi1 - X1)2j1/2 (1.31) 
i=1 

and 
n 

s.e.(b1) = 8/[L(Xi1 - X1)2j1/2 (1.32) 
i=1 

when f30 =I- 0; and when f30 = 0, 

n n 

s.e.(b1) = 8/[Lx~1j1/2 where 82 = (n -1)-lLer (1.33) 
i=l i=l 

These quantities are routinely provided by computer packages. 
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1.9 Confidence Intervals and Tests 

Assume that the Gauss-Markov conditions (1.23), (1.24) and (1.25) hold, 
and let us now make the additional assumption that the Ei'S are normally 
distributed. Then the Ei'S are independently distributed as normal with 
mean 0 and variance (J'2. We shall denote this fact as Ei rv N(O, (J'2), i.e., 'rv' 

will stand for 'has the distribution'. It follows that Yi rv N(/3o + /31Xil, (J'2). 

Then, the bj's, being linear combinations of Yi 's, are also normal with means 
and variances as given in the last section. It may be shown that 

(1.34) 

for the simple regression case with /30 =f. 0, where tn -2 is the Student's t dis­
tribution with n-2 degrees offreedom (Section B.5, p. 292, of Appendix B; 
a table is given on p. 320). From (1.34) we may obtain a (1-a) x 100 percent 
confidence interval (CJ.) for /3j as 

(1.35) 

where j = 0 or 1 and tn - 2 ,0l/2 denotes the upper a/2 point of the t distri­
bution with n - 2 degrees of freedom. 

Example 1.2 ctd. 
Consider now the data on telephones from Section 1.5 and let us consider 
the model with /30 =f. 0 (we shall test the hypothesis H: /30 = 0 shortly). 
Exhibit 1.13 shows a portion of a typical output from a regression package. 
As we can see, 

bo = 1.30, b1 = .571, 

and 
s.e.(bo) = 4.28, s.e.(b1) = .024. 

Since t4,0.05 = 2.1318, the 90 per cent confidence intervals for /30 and /31 
are respectively 

(-7.8241,10.4241) (1.36) 

and 
(.5198, .6221). (1.37) 

Since 0 is included in (1.36) we cannot reject the hypothesis Ho: /30 = 0, 
but we can reject, say, Ho: /31 = .7. Exhibit 1.14 shows an output for when 
the intercept term is missing. Now, using the fact t5,.05 = 2.0151, the C.l. 
for /31 is seen to be (.5583, .5973). 

The test for /3j = 0 is called for so often that most packages routinely 
carry it out. The values of 

t(bo) = bo/s.e.(bo) = 0.3037 and t(b1 ) = bI/s.e.(b1 ) = 23.955 
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Variable bj s.e.(bj ) t(bj ) P[ltl > It(bj ) Il 

Intercept 1.301 4.280 0.3037 0.7763 
[Mainsl l / 2 0.571 0.024 23.955 0.0001 

8=4.714 R2 = .9931 

EXHIBIT 1.13: Computer Output for Telephone Data 

Variable bj s.e.(bj ) t(bj ) P[ltl> It(bj)ll 

[Mainsl l /2 0.578 0.0097 59.556 0.0001 

8 = 4.264 R2 = .9986 

EXHIBIT 1.14: Computer Output for Telephone Data When 130 Is Missing 

are also given in Exhibit 1.13. The probability that the value of a t dis­
tributed random variable would be numerically larger than It(bo)1 = 0.3037 
is .7763 and that of getting a t-value larger than It(bI)1 = 23.955 is .0001. 
Thus we can reject H : f3l = 0 at 5, 1 or even .1 per cent but cannot reject 
H : f30 = 0 at any reasonable level of significance. • 

1.10 Predictions 

One of the principal purposes of regression is to make predictions. Suppose 
XOI is a value of the independent variable Xl for which we need to predict 
the dependent variable y. Obviously, such a prediction would be 

(1.38) 

Thus, using the output of Exhibit 1.13, if we wish to forecast the number 
of telephones for an area with 10000 people, we would have Yo = 1.301 + 
.571(100) = 58.4 and the forecasted number of phones would be its square, 
which is 3411. 

Since, as shown in Section 1.8, E(bo) = f30 and E(bl ) = f3l, we have 

(1.39) 

It has been shown in Appendix 1A (and may also be shown as a special 
case of the formuloo in Section 3.8.1, p. 71) that 

n 

var (Yo) = a2 [n- l + (XOl - Xl)2;2:(Xil - xl?l· 
i=l 

(1.40) 

It might be noted in passing that var (yo) obviously increases with (XOI -
xI)2, that is, var (Yo) gets larger the farther XOI is from Xl. 
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Let Yo be the observation, corresponding to X01, that we would have got 
were we able to. Such a Yo is called a future observation. Since we would 
be forecasting Yo with Yo we would be interested in the difference 

Yo - Yo· (1.41) 

In order to obtain the mean and variance of (1.41), we need to assume that 
Yo is given by the same model as the observations on which the regression 
equation is built, i.e., 

Yo = !30 + !31xOl + EO 

where E(EO) = 0, E{E~) = 0"2, and E(EOEi) = 0 for i = 1, ... , n. Then, of 
course, 

and hence from (1.39) 
E(yo - Yo) = o. (1.42) 

The variance of (1.41) is 

var (yO - Yo) = var (yo) + var (Yo) 
n 

= 0"2[1 + n-1 + (XOl - Xl)2 / ~)Xi1 - Xt}2]. 
(1.43) 

i=l 

Obviously, since 0"2 is not known, in practical applications we would 
normally replace 0"2 by 8 2 in both (1.40) and (1.43). Using 8 2 = 22.22 in 
Example 1.2, the standard error of Yo corresponding to a place with 10000 
people turns out to be 2.39 and that of a future observation works out to 
5.28. 

If one is confused about the distinction between predicted value and 
future observation, one may wish to consider that the predicted value Yo is 
a point on the estimated regression line and its variance only reflects the 
fact that bo and b1 are random variables. On the other hand, there is no 
reason to believe that a future observation will necessarily be on the true 
line y = !30 + !31xl or on the fitted line. Indeed, Yo - !30 - !31xOl has the 
variance 0"2. Thus the variance of Yo - Yo would be due to a combination 
of both effects. 
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Appendix to Chapter 1 

lA SOME DERIVATIONS 

PROOF OF (1.14): Since L~=l {Yi - Y)XI = Xl L~l (Yi - y) = 0, 

n n 

L)Yi - Y){Xil - xd = L{YiXil - YXil) - Xl L{Yi - y) 
i=l i=l 

n n n (1.44) 

= L YiXil - Y L Xil = L YiXil - nYXI' 
i=l i=l i=l 

and 
n n n 

L{Xil - XI)2 = LX~1 - 2XI LXiI + nx~ 
i=l i=l i=l 

n n (1.45) 

'" 2 2 -2 + -2 '" 2 -2 = ~Xil - nXI nXI = ~Xil - nXI· 
i=l i=l 

Hence, the coefficient (1.13) may also be written as 

n n 

bl = L{Yi - Y)(Xil - xd/ L{Xil - xd2 , 

i=l i=l 

as stated on p. 8. o 

PROOF OF (1.28): Since L~=I{Xil - xd = 0 and 

n n n n 

L{Yi - Y)(Xil - Xl) = LYi{Xil - xd - Y L{Xil - Xl) = LYi{Xil - Xl), 
i=l i=l i=l i=l 

it follows from (1.14) that 

and 

n n n 

bl = LYi{Xil - XI)/ L{Xil - XI)2 = L CiYi, 
i=l i=l 

n 

LCi = 0, 
i=l 

n n n n 

i=l 

LCiXil = LCiXil - Xl LCi = LCi{Xil - xd = 1 
i=l i=l i=l i=l 

n n 

LC~ = [L{Xil - XI)2]-I. 
i=l i=l 

(1.46) 
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Hence, using standard results on means and variances of linear combina­
tions of random variables (a summary of these is presented in the appendix 
to the book - see Section B.1.1, p. 284), we get 

n n n 

E(b1) = L Ci E(Yi) = L cd30 + /31 L CiXil 
i=l i=l i=l (1.47) n 

= /30 L Ci + /31 = /31 
i=l 

n n n 

var (b1) = L c;var (Yi) = a2 L C; = a2/ L(Xil - X1)2. (1.48) 
i=l i=l i=l 

Similarly, since 

n n 

E(y) = n-1 L E(Yi) = n-1 L(/3o + /31 Xi1) = /30 + /31 X1, 
i=l i=l 

it follows that 

Now, from (1.46) we can write 

n n n 

bo = n-1 LYi - Xl L CiYi = L(n-1 - X1 Ci)Yi. (1.50) 
i=l i=l i=l 

Hence, 
n 

var (bo) = L[n- 1 - X1Ci]2var (Yi) 
i=l 

n 

= a2 L[n-2 - 2n-1x1Ci + xic;] (1.51) 
i=l 

This completes the proof. o 

PROOF OF (1.29): In the case where /30 = 0, we have from (1.22) 

n n n n n n 

b1 = L YiXid L X;l = /31 L x;d L X;l + L EiXil / L X;l 
i=l i=l i=l i=l i=l i=l (1.52) n n 

= /31 + L EiXidLX;l' 
i=l i=l 
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Hence, 
n n n 

var (bd = (72 L x~d(L X~1)2 = (72/ L X~l (1.53) 
i=l i=l i=l 

o 

PROOF OF (1.40): Substituting the expression (1.11) for bo in (1.38) and 
using (1.46) we get 

n 

flo = y - b1Xl + b1xOl = Y + b1(XOl - xd = L(n-1 + (XOl - Xl)Ci)Yi. 
i=l 

Therefore, 

n 

var (flo) = (72 L(n-1 + (xOl - XdCi)2 
i=l 

n 

= (72 L[n-2 + 2n-l(xOl - Xl)Ci + (XOl - xd2c~] 
i=l 

n 

= (72[n- 1 + (XOl - xd2 / L(Xil - xd2 ] 

i=l 

on substituting for Ci from (1.46) and noting that L~=l Ci = o. 0 
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Problems 

Exercise 1.1: Show that for the estimator bl in (1.22), E[blJ = f3l. 

Exercise 1.2: Prove (1.53). 

Exercise 1.3: Let ei be the residuals defined in (1.18). Find var (ei). 

Exercise 1.4: Let Yi be as defined as in (1.17). Find E(Yi) and var (Yi). 

Exercise 1.5: Suppose in the model Yi = f30+f31Xil +Ei, where i = 1, ... , n, 
E(Ei) = 0, E(E~) = 0'2 and, for i =I- j, E(EiEj) = 0, the measurements Xil 
were in inches and we would like to write the model in centimeters, say, 
Zil. If one inch is equal to c centimeters (c known), write the above model 
as Yi = f30 + f3i Zil + Ei· Can you obtain the estimates of f30 and f3i from 
those of f30 and f3l? Show that the value of R2 remains the same for both 
models. 

Exercise 1.6: Suppose Yl, ... , Yn are independently distributed and Yi = 
/-L + Ei for i = 1, ... , n. Find the least squares estimate of /-L if E( Ei) = ° 
and var (Ei) = 0'2. Give the variance of this estimate. 

Exercise 1.7: Let (Yl,Xt}, ... ,(Yn,xn ) and (wt,xt}, ... ,(wn,xn ) be two 
sets of independent observations where Xt, ... ,Xn are fixed constants. Sup­
pose we fit the model Yi = al + f3xi + Ei to the first data set and the model 
Wi = a2 + f3Xi + TJi to the second set. In each case i = 1, ... , n, and assume 
that all Ei'S and TJi'S are independently distributed with zero means and 
common variance 0'2. Find the least squares estimates of al, a2 and f3. 

Exercise 1.8: For i = 1, ... , n, let Yi = f30 + f31Xil + Ei be the straight 
line regression model in which Xil'S are such that L~=l Xil = 0, and Ei'S 
are independently distributed with mean zero and variance 0'2. What are 
the least squares estimators of f30 and f3l? Find the mean and variance of 
these estimators. 

Exercise 1.9: Stevens (1956) asked a number of subjects to compare notes 
of various deci bel levels against a standard (80 decibels) and to assign them 
a loudness rating with the standard note being a 10. The data from this 
experiment are summarized in Exhibit 1.15. Run a regression using log Y 
as a dependent variable and x as the independent variable. 

Stimulus (x) 
Median Response (y) 
log(y) 

30 50 60 70 75 80 85 90 95 100 
0.2 1.0 3.0 5.0 8.5 10.0 14.0 20.0 29.0 43.0 
-.70 .00 .48 .70 .93 1.00 1.15 1.30 1.46 1.63 

EXHIBIT 1.15: Data from Stevens' Experiment 
SOURCE: Dacey (1983, Ch.1) from Stevens (1956). Reproduced with permission 
from University of Illinois Press. 
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Exercise 1.10: Using the data shown in Exhibit 1.16, obtain an equation 
expressing stock prices as a function of earnings. At a 5 per cent level of 
significance, test the hypothesis that stock prices are unrelated to earnings, 
against the alternative that they are related. 

1972 Earnings Price (in $'s) 
Company per Share (in $'s) in May, 1973 

CROWN ZELLERBACH 1.83 28 
GREAT NORTHERN NEKOOSA 3.35 45 
HAMMERMILL PAPER 0.64 12 
INTERNATIONAL PAPER 2.30 35 
KIMBERLY-CLARK 2.39 45 
MEAD 1.08 14 
ST. REGIS PAPER 2.92 39 
SCOTT PAPER 1.11 12 
UNION CAMP 2.57 43 
WESTVACO 1.22 23 

EXHIBIT 1.16: Earnings and Prices of Selected Paper Company Stocks 
SOURCE: Dacey (1983, Ch. 1) from Moody's Stock Survey, June 4,1973, p. 610. 

Exercise 1.11: Exhibit 1.17 gives data on population density (pd) and 
vehicle thefts (vtt) per thousand residents in 18 Chicago districts (D). 
District 1 represents downtown Chicago. Run a regression with vtt as the 
dependent variable and pd as the independent variable. Plot the residuals 
against pd. Do you notice an outlier? If so, can you explain why it is so? 
If appropriate, delete any outliers and re-estimate the model. 

Now test the hypothesis that the slope is zero against the alternative 
that it is different from zero. Use 5 per cent as the level of significance. 

D pd vtt D pd vtt 

1 3235 132.8 14 22919 13.3 
2 24182 14.9 15 24534 15.1 
3 20993 16.7 18 24987 16.2 
6 15401 20.0 19 21675 12.5 
7 19749 14.2 20 22315 11.8 

10 19487 13.5 21 18402 19.6 
11 19581 16.5 23 33445 10.5 
12 14077 22.2 24 27345 10.1 
13 18137 15.8 25 15358 19.0 

EXHIBIT 1.17: Data on Population Density and Vehicle Thefts 
SOURCE: Mark Buslik, Chicago Police Department. 
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Exercise 1.12: Exhibit 1.18 gives data on the number of marriages (rna) 
that occurred between residents of each of 8 annular zones and residents of 
Simsbury, Connecticut, for the period 1930-39. The number of residents of 
each zone is given as pop and the midpoint of distance between Simsbury 
and the band is given as d (e.g., the first annular zone represents a band 5-7 
miles from Simsbury with a midpoint of 6). Run a regression of log [rna/pop] 
against d. Write a sentence explaining your findings to a non-technical 
audience. 

d pop rna d pop rna 

6 3464 26 14 15207 7 
8 4892 12 16 175458 49 

10 2583 4 18 95179 18 
12 39411 12 20 62076 7 

EXHIBIT 1.18: Data on Simsbury Marriages 
SOURCE: Dacey (1983, Ch. 4) from Ellsworth (1948). 

Price P B Price P B Price P B Price P B 
10.25 112 p 24.50 146 c 24.75 158 c 30.50 276 c 
14.25 260 p 19.75 212 c 16.50 322 p 22.75 264 c 
29.25 250 c 30.25 292 c 12.50 188 P 17.75 378 p 
17.50 382 p 16.25 340 p 16.75 240 P 29.50 251 c 
12.00 175 p 29.00 252 c 17.50 425 p 27.50 202 c 

EXHIBIT 1.19: Data on Book Prices, Pages and Type of Binding 

Exercise 1.13: The data set given in Exhibit 1.19 was compiled by one 
of the authors from the Spring, 1988, catalogue of American Government 
books put out by a certain publisher. It lists prices, number of pages (P) and 
the binding (B; p stands for paperback and c for cloth). Fit a straight line 
to the paperback data, using price as the dependent variable and number of 
pages as the independent variable. What do the parameters say about the 
pricing policy of the publisher? Repeat the same exercise for cloth-bound 
books. Estimate the price of a paperback book of 100 pages and a 400-page 
cloth-bound book. Also estimate the prices of 250-page books with the two 
types of binding. In each case give the 95 per cent confidence interval within 
which the price of such a book when produced will lie. 

Exercise 1.14: The data set in Exhibit 1.20 was given to us by Dr. T.N.K. 
Raju, Department of Neonatology, University of Illinois at Chicago. Regress 
each of the infant mortality rates (IMR) against the Physical Quality of 
Life Index (PQLI - which is an indicator of average wealth). In each case 
try taking logs of 
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Comb- Rural Rural Urban Urban 
PQLI ined Male Female Male Female 

State Score IMR IMR IMR IMR IMR 

UTTARPRAD. 17 167 159 187 110 111 
MADHYA PRAD. 28 135 148 134 88 83 
ORISSA 24 133 131 142 78 81 
RAJASTHAN 29 129 135 142 55 77 
GUJARAT 36 118 120 135 92 84 
ANDHRA PRAD. 33 112 138 101 79 46 
HARYANA 55 109 107 128 57 60 
ASSAM 35 118 133 106 87 85 
PUNJAB 62 103 115 108 58 73 
TAMILNADU 43 103 125 115 67 59 
KARNATAKA 52 75 92 70 51 59 
MAHARASHTRA 60 75 95 72 50 62 
KERALA 92 39 42 42 22 30 

EXHIBIT 1.20: Data on Physical Quality of Life Index (PQLI) Scores and Infant 
Mortality Rates (IMR) for Selected Indian States 

1. the independent variable only, 

2. the dependent variable only, and 

3. both independent and dependent variables. 

Using suitable plots, visually judge which of 1, 2 or 3 above or the un­
transformed case gives the best fit. 

L D L D L D 

1000 125 9000 920 9400 2750 
2000 225 9250 1040 9375 3200 
3000 325 9175 1320 9450 3750 
4000 425 9150 1500 9500 4500 
5000 525 9150 1600 9600 5000 
6000 625 9000 1840 9700 6500 
7000 725 9250 2160 9900 8000 
8000 880 9125 2480 9900 9500 

EXHIBIT 1.21: Data on Loads (L) and Deformation (D) of a Bar 

Exercise 1.15: Exhibit 1.21 gives data on loads, in pounds, and corre­
sponding deformation, in inches, of a mild steel bar (of length 8 ins. and 
average diameter .564 ins). The data were provided by M.R. Khavanin, 
Department of Mechanical Engineering, University of Illinois at Chicago. 
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1. Run a regression of the log of D against the log of L. Obtain a plot 
of the residuals against the predicted values. What does the plot tell 
you about the relationship between the two quantities? 

2. Although, presumably, deformation depends on load, and not the 
other way around, run a regression of the log of L against the log 
of D. Plot residuals against the predicted and independent variables 
and take whatever action you think is warranted to get a good fit. 

Do you have a physical explanation for what you observed in doing this 
exercise? 



CHAPTER 2 

Multiple Regression 

2.1 Introduction 

Formulae for multiple regression are much more compact in matrix nota­
tion. Therefore, we shall start off in the next section applying such notation 
first to simple regression, which we considered in Chapter 1, and then to 
multiple regression. After that we shall derive formulae for least squares 
estimates and present properties of these estimates. These properties will 
be derived under the Gauss-Markov conditions which were presented in 
Chapter 1 and are essentially restated in Section 2.5. 

2.2 Regression Model in Matrix Notation 

We begin this section by writing the familiar straight line case of Chapter 1 
in matrix notation. Recall that the regression model then was: 

YI = (30 + (3IXll + EI 

Now if we set 

then it is easy to verify that (2.1) may be written as 

y=X(3+E. 

(2.1) 

(2.3) 

Now let us consider the case of more than one independent variable. 
Suppose we have k independent variables Xl,"" xk; then the regression 
model is 

(2.4) 
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Letting 

x = ( 1:: ~:1:1:: :':':':: :~~k ) and f3 = ( f3~ ) , (2.5) 

1 Xn1 ... Xnk 

the model (2.4), called the multiple regression model, may also be written 
in the form (2.3). 

The matrix X is called a design matrix. As in simple regression, the 
f30 term in (2.4) is often called the constant term or the intercept. Note 
that the first column of X, i.e., the column of l's, corresponds to it. If for 
some reason we do not want to keep f30 in the model, we would delete this 
column. As mentioned in the last chapter, the last k elements in the ith 
row of X constitute the ith design point of the model and an observation 
Yi together with its corresponding design point constitute the ith case or 
data point. 

GPA (max=4) 3.95 3.84 3.68 3.59 3.57 3.49 3.47 3.40 3.08 
Verbal SAT (SATV) 74 76 66 76 76 66 71 71 57 
Math. SAT (SATM) 79 71 75 74 70 67 73 79 76 

EXHIBIT 2.1: Data on Grade Point Average and SAT Scores. 
SOURCE: Dacey (1983). 

Example 2.1 
For the data presented in Exhibit 2.1, we may write a multiple regression 
model to predict GPA on the basis of SATV and SATM as 

Y1 = 3.95 = f30 + f31(74) + f32(79) + 101 
Y2 = 3.84 = f30 + f31(76) + f32(71) + 102 

.............................. 

yg = 3.08 = f30 + f31(57) + f32(76) + 109. 
The values of y and X would be: 

3.95 1 74 79 
3.84 1 76 71 
3.68 1 66 75 
3.59 1 76 74 

Y= 3.57 andX= 1 76 70 
3.49 1 66 67 
3.47 1 71 73 
3.40 1 71 79 
3.08 1 57 76 

• 
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2.3 Least Squares Estimates 

We obtain the least squares estimate of {3 in the multiple regression model 
by minimizing 

n 

S = L(Yi - f30 - f31Xli··· - f3k x ik)2 = (y - X(3)'(y - X(3) 
i=l 

= y'y - {3' X'y - y' X{3 + (3' X' X{3 

= y'y - 2{3'(X'y) + {3'(X'X){3, 

(2.6) 

since y'X{3, being a scalar, equals (3'(X'Y). In order to minimize (2.6), 
we could differentiate it with respect to each f3j and set the derivative 
equal to zero. Or, equivalently, we can do it more compactly using matrix 
differentiation (see Appendix 2A): 

8S/8{3 = -2X'y + 2X'X{3. (2.7) 

Setting (2.7) equal to zero and replacing {3 by b, we see that the least 
squares estimate b of {3 is given by 

(X'X)b = X'y. (2.8) 

That this indeed gives a minimum will be shown at the end of this section. 
If X' X is non-singular, (2.8) has a unique solution: 

b = (X' X)-l X'y. (2.9) 

When (X' X) is singular (2.8) can still be solved by using generalized in­
verses (defined in Appendix A, Section A.12, p. 278). We get from Corol­
lary A.l: 

b = (X' X)- X'y = X-yo (2.10) 

While this estimate is not unique, it follows from Corollary A.l(iii) that 
X(X' X)- X' is unique, and consequently, Xb is unique. It is a simple 
matter to see that if f30 is absent and the column of 1 's deleted from X, 
(2.8), (2.9) and (2.10) continue to hold. 

As for the simple regression case, we define residuals ei by 

e = y - ii, (2.11) 

where 

(2.12) 
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and H = X(X'X)-lX'. Let M = 1 - H. Then 

MX = (1 - H)X = X - X(X'X)-lX'X = X - X = O. 

Using M and (2.3) we can express e in terms of y or E as follows: 

e=y-Hy=My 

=MX(3+ME=ME. 
(2.13) 

Theorem 2.1 The residuals are orthogonal to the predicted values as well 
as the design matrix X in the model y = X (3 + E. 

PROOF: Since 
X'e = X'ME = OE = 0, 

the null vector, it follows that 

fie = b'X'e = 0, 

which proves the theorem. 

(2.14) 

(2.15) 

D 

It follows from Theorem 2.1 that if (30 is in the model, and consequently 
the first column of X is 1 = (1, ... ,1)', then I:~=l ei = 1'e = O. 

To conclude this section we now show that the minimum of S = (y -
X(3)'(y - X(3) is indeed attained at b = (3. Note that, from Theorem 2.1, 

(b - (3)' X'(y - Xb) = (y - Xb)' X(b - (3) = e' X(b - (3) = o. (2.16) 

Hence, 
S= (y-Xb+Xb-X(3)'(y-Xb+Xb-X(3) 

= (y - Xb)'(y - Xb) + (b - (3)'(X' X)(b - (3). 

Both expressions in the last line are quadratic forms and hence positive, and 
the first of these does not depend on (3. Therefore, S attains its minimum 
at b = (3. 

2.4 Examples 

Example 2.2 
Several computer packages are available for computing b. From Exhibit 2.3, 
which illustrates the result of applying such a program to the data of Ex­
hibit 2.2 (not all the variables shown in Exhibit 2.2 have been used), we 
get the regression equation (with somewhat greater rounding than in Ex­
hibit 2.3) 

PRICE = 18.48 + .018 FLR + 4.03 RMS - 7.75 BDR 

+ 2.20BTH + 1.37 GAR + .257LOT + 7.09FP + 10.96ST. 
(2.17) 
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Price BDR FLR FP RMS ST LOT TAX BTH 

53 2 967 0 5 0 39 652 1.5 
55 2 815 1 5 0 33 1000 1.0 
56 3 900 0 5 1 35 897 1.5 
58 3 1007 0 6 1 24 964 1.5 
64 3 1100 1 7 0 50 1099 1.5 
44 4 897 0 7 0 25 960 2.0 
49 5 1400 0 8 0 30 678 1.0 
70 3 2261 0 6 0 29 2700 1.0 
72 4 1290 0 8 1 33 800 1.5 
82 4 2104 0 9 0 40 1038 2.5 
85 8 2240 1 12 1 50 1200 3.0 
45 2 641 0 5 0 25 860 1.0 
47 3 862 0 6 0 25 600 1.0 
49 4 1043 0 7 0 30 676 1.5 
56 4 1325 0 8 0 50 1287 1.5 
60 2 782 0 5 1 25 834 1.0 
62 3 1126 0 7 1 30 734 2.0 
64 4 1226 0 8 0 37 551 2.0 
66 2 929 1 5 0 30 1355 1.0 
35 4 1137 0 7 0 25 561 1.5 
38 3 743 0 6 0 25 489 1.0 
43 3 596 0 5 0 50 752 1.0 
46 2 803 0 5 0 27 774 1.0 
46 2 696 0 4 0 30 440 2.0 
50 2 691 0 6 0 30 549 1.0 
65 3 1023 0 7 1 30 900 2.0 

PRICE = Selling price of house in thousands of dollars 
BDR = Number of bedrooms 

CON GAR CDN 

1 0.0 0 
1 2.0 1 
1 1.0 0 
0 2.0 0 
1 1.5 0 
0 1.0 0 
0 1.0 1 
0 2.0 0 
1 1.5 0 
1 1.0 1 
0 2.0 0 
0 0.0 0 
1 0.0 0 
0 0.0 0 
0 0.0 0 
0 0.0 0 
1 0.0 1 
0 2.0 0 
1 1.0 0 
0 0.0 0 
1 0.0 0 
0 0.0 0 
1 0.0 1 
1 1.0 0 
0 2.0 1 
1 1.0 0 

FLR = Floor space in sq.ft. (computed from dimensions of each room 

FP 
RMS 
ST 
LOT 
TAX 
BTH 
CON 
GAR 
CDN 
Ll 
L2 

and then augmented by 10%) 
= Number of fireplaces 
= Number of rooms 
= Storm windows (1 if present, 0 if absent) 
= Front footage of lot in feet 
= Annual taxes 
= Number of bathrooms 
= Construction (0 if frame, 1 if brick) 
= Garage size (0 = no garage, 1= one-car garage, etc.) 
= Condition (1='needs work', 0 otherwise) 
= Location (Ll=1 if property is in zone A, Ll=O otherwise) 
= Location (L2=1 if property is in zone B, L2=0 otherwise) 

EXHIBIT 2.2: Data on House Prices 
SOURCE: Ms. Terry Tasch of Long-Kogan Realty, Chicago. 

Ll L2 

1 0 
1 0 
1 0 
1 0 
1 0 
1 0 
1 0 
1 0 
1 0 
1 0 
1 0 
0 1 
0 1 
0 1 
0 1 
0 1 
0 1 
0 1 
0 1 
0 0 
0 0 
0 0 
0 0 
0 0 
0 0 
1 0 
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From this equation we can estimate the selling price of a house with 1000 
square feet of floor area, 8 rooms, 4 bedrooms, 2 baths, storm windows, 
no fireplaces, 40 foot frontage and a 1 car garage to be about $65,000, as 
follows: 

18.48 + .018(1000) + 4.03(8) - 7.75(4) + 2.2(2)+ 

1.37(1) + .257(40) + 7.09(0) + 10.96(1) = 64.73. 
(2.18) 

We can also see that, according to (2.17), adding a space for an additional 
car in a garage would raise the price by about $1370, every square foot 
increase in floor area would increase the price by about $18, etc. In each case 
the assumption is that each of the above mentioned changes is marginal, 
i.e., nothing else changes. Another way of putting this is to say that the 
effect of adding an extra garage space is $1370, other things being equal, 
i.e., for two houses which are otherwise identical (in terms of the other 
variables in the model) but with one having space for an extra car in the 
garage, the price difference would be estimated to be about $1370. 

If the reader is disturbed by the negative sign associated with BDR, 
he/she should note that the estimated loss of price occurs if we increase the 
number of bedrooms without increasing the number of rooms or floor area. 
If we also increased the number of rooms by one and added a bathroom and 
some floor area to account for these additions, then the estimate of price 
would go up. In a situation where there are several related variables, signs 
which at first glance would appear counter-intuitive are not uncommon. 
Here (as in many other of these cases) further thought shows that the sign 
may be plausible. In addition, the reader should bear in mind that these 
estimates are random variables, and even more importantly, that we may 
not have considered important variables and may in other ways have fallen 
far short of perfection. It is also too true that a perfect model is seldom 
possible! 

We draw the reader's attention to the variable ST which takes only two 
values, 0 and 1, and as such is called a dichotomous variable. Such vari­
ables, which are frequently used to indicate the presence or absence of an 
attribute, are also called dummy variables or indicator variables and fall 
in the general category of qualitative variables. The interpretation of the 
coefficients of such variables is about the same as for any other coefficient. 
We shall consider indicator variables further in Chapter 4. Suffice it to say 
for the moment that, that other features being equal, the presence of storm 
windows seems to enhance prices by a whopping ten thousand dollars! _ 

Example 2.3 (Continuation of Example 1.1, Page 2) 
As another example consider the data of Section 1.2 on speed of vehicles 
on a road and density of vehicles. In that section we fitted an equation of 
the form 

(Speed)1/2 = f30 + f31(density) + f32(density)2 + E. (2.19) 
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Variable bj s.e. (bj ) t(bj ) P[ltl > It(bj)ll 

Intercept 18.48 5.310 3.48 .0029 
FLR 0.018 .0032 5.46 .0001 
RMS 4.026 1.637 2.46 .0249 
BDR -7.752 1.872 -4.14 .0007 
BTH 2.205 2.646 .833 .4163 
GAR 1.372 1.453 .944 .3584 
LOT 0.257 0.137 1.88 .0775 
FP 7.091 3.190 2.23 .0401 
ST 10.96 2.323 4.72 .0002 

R2 = .9027 R~ = .8568 s = 4.780 
EXHIBIT 2.3: Result of Applying a Least Squares Package Program on House 
Price Data 

Here all we needed to do was to create a second independent variable each 
value of which is the square of each density. • 

Example 2.4 
Let us return to the data of Exhibit 2.1, p. 29. On applying the least squares 
one gets 

GPA = 1.22 + 0.029 SATV + 0.00044 SATM. 

This would seem to indicate that SAT mathematics scores have very little 
effect on GPA. But we must not forget that when judging the effect of 
one variable we must bear in mind what other variables are already in the 
model. With SATM alone we get 

GPA = 3.55 + .0001 SATM. 

Thus, at least for these students, SAT mathematics scores are not very 
good predictors of GPA. • 

Users of some computer packages will notice that nowadays they provide, 
in addition to the estimates we have mentioned, a statistic called standard­
ized coefficients or betas. These are the regression coefficients bj divided by 
the sample standard deviation of the dependent variable values and multi­
plied by the sample standard deviation of the corresponding independent 
variable values. This obviously renders the coefficients unit free. No further 
mention will be made in this book of standardized coefficients. 
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2.5 Gauss-Markov Conditions 

In order for estimates of (3 to have some desirable statistical properties, we 
need the following assumptions, called Gauss-Markov (G-M) conditions, 
which have already been introduced in Chapter 1: 

E(fi) 0 

E(E~) = a 2 

o when i =I- j, 

(2.20) 

(2.21) 

(2.22) 

for all i, j = 1, ... ,n. We can also write these conditions in matrix notation 
as 

E(e) = 0, E(ee') = a 2 I. (2.23) 

Note that 0 is the vector of zeros. We shall use these conditions repeatedly 
in the sequel. 

Note that G-M conditions imply that 

E(y) = X{3 (2.24) 

and 
cov(y) = E[(y - X(3)(y - X(3),] = E(ee') = a2 I. (2.25) 

It also follows that (see (2.13)) 

E[ee'] = ME[ee']M = a2 M (2.26) 

since M is idempotent. Therefore, 

var (ei) = a2mii = a 2[1 - hii ] (2.27) 

where mij and hij are the ijth elements of M and H respectively. Because 
a variance is non-negative and a covariance matrix is at least positive semi­
definite, it follows that hii ~ 1 and M is at least positive semi-definite. 

2.6 Mean and Variance of Estimates Under G-M 
Conditions 

Because of (2.24) 

E(b) = E[(X' X)-l X'y] = (X' X)-l X' X{3 = (3. (2.28) 

As discussed in Section B.l.1, p. 284, if for any parameter e, its estimate t 
has the property that E(t) = e, then t is an unbiased estimator of e. Thus 
under G-M conditions, b is an unbiased estimator of {3. Note that we only 
used the first of the G-M conditions to prove this. Therefore violation of 
conditions (2.21) and (2.22) will not lead to bias. 
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Theorem 2.2 Under the first G-M condition (2.20), the least squares esti­
mator b is an unbiased estimator of (3. Further, under the G-M conditions 
(2.20}-(2.22), 

PROOF: We have already established unbiasedness. Let A = (X'X)-lX', 
then b = Ay and we get, from (2.25), 

cov(b) = Acov(y)A' = a 2 AIA' = a 2 AA' 

= a 2 (X'X)-lX'X(X'X)-1 = a 2 (X'X)-1, 
(2.29) 

which completes the proof. o 

Corollary 2.1 If tr[(X'X)-lj ---> 0 as n ---> 00, then the estimator b is a 
consistent estimator of f3. 

The proof follows from the fact that when (X'X)-l ---> 0, cov(b) ---> 0 
as n ---> 00. See Appendix 2A at the end of this chapter for a definition of 
consistency. 

From (2.13), E(e) = E(ME) = O. Therefore, it follows from (2.27) that 

(2.30) 

Writing the ith equation in (2.4) as 

Yi = x:f3 + tOi, 

where x: = (1, XiI, ... ,Xik), the predicted value of Yi can be defined as 

Consequently the predicted value of y is 

y = Xb. 

From Theorem 2.2 we get, on using the results on the covariance of a 
random vector (Section B.2, Page 286), 

and 
cov(y) = X cov(b)X' = a 2 X(X' X)-l X' = a 2 H. 

Obviously the first of the two results follows from the second. It also follows 
that hii ?: 0 and that H is at least positive semi-definite. 
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2.7 Estimation of (J2 

To use several of the formulre of the last section, we need (J"2, which is 
usually not known and needs to be estimated. This can be done using the 
residuals ei' Because M = (mij) is a symmetric idempotent matrix, 

n n n 

Le; = e'e = e'M'Me = e'Me = LmiiE; + L mijEiEj. (2.31 ) 
i=l i=l i,j=l 

i::;lj 

The quantity L~=l e; is often called the residual sum of squares and is 
denoted as RSS. It follows from (2,31) that 

n n n 

E(L e;) = L mii E(E7) + L mij E(EiEj) 

i=l i=l 

n 

i,j=l 
i#j 

= (J"2 L mii = (J"2 trM = (n - k -1)(J"2 

i=l 

when an intercept is present and there are k independent variables, since 
then trM = trln - trH = n - k - 1 - see (A.lO) on p. 278. Therefore, if 
we let 

n 

8 2 = L e7! (n - k - 1) (2.32) 
i=l 

we see that 8 2 is an unbiased estimate of (J"2, When an intercept term is 
absent and there are k independent variables 

n 

8 2 = Le7!(n - k) (2.33) 
i=l 

is an unbiased estimator of (J"2. The divisor n - k in the last formula and 
n - k - 1 in (2.32) are the degrees of freedom. 

Also, as shown in Appendix 2A, 8 2 ----> (J"2 in probability as n ----> 00; 

that is, 8 2 is a consistent estimator of a 2 . Thus, when (J"2 is not known, a 
consistent and unbiased estimator of cov(b) is given by 

(2.34) 

The matrix 
(2.35) 

is an estimate of the correlation matrix of b. Matrices (2.34) and (2.35) are 
available from typical least squares computer packages. We can summarize 
the above results in the following theorem: 
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Theorem 2.3 Under G-M conditions, S2 is an unbiased and consistent 
estimator of (72, and s2(X' X)-l is a consistent and unbiased estimator of 
cov(b). 

The residuals and the residual sum of squares playa very important role 
in regression analysis. As we have just seen, the residual sum of squares 
when divided by n - k - 1 gives an unbiased estimator of (72. In fact, 
under the assumption of normality of observations this is the best unbi­
ased estimator in the sense that it has uniformly minimum variance among 
all unbiased estimators which are quadratic functions of the y/s (i.e., es­
timators of the form y' Ay, where A is a symmetric matrix; note that 
S2 = y'My/[n - k - 1]). This result holds for even more general distri­
butions (see Rao, 1952, and Hsu, 1938). 

As we shall see later in the book, residuals are used to detect the presence 
of outliers and influential points, check for normality of the data, detect 
the adequacy of the model, etc. In short, they are used to determine if 
it is reasonable to assume that the Gauss-Markov conditions are being 
met. Residuals can, obviously, be used to determine the quality of fit of 
the regression equation. In the next section we give such a measure of fit. 
But first, we present the following theorem, which shows the connection 
between the residual sum of squares, total sum of squares E~l YI and the 
predicted sum of squares E~l Yr. 
Theorem 2.4 Let jj = n- 1 E~=l Yi. Then, 

PROOF: Since, from Theorem 2.1, fie = E~=l eiYi = 0, 

n n 

LY? = L(Yi - Yi + Yi)2 
i=l i=l 

n n n 

i=l i=l i=l 
n n n n n 

i=l i=l i=l i=l i=l 

The second part of the theorem is obvious. o 

Corollary 2.2 If there is an intercept in the model, that is, if there is a 
constant term (30 in the model, then 

n n n 

i=l i=l i=l 
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PROOF: Since there is a constant term in the model, we have, from Theo­
rem 2.1, 1'e = e'1 = L:~=1 ei = O. Hence, L:~=1 Yi = L:~=1 fh. Therefore, 
in this case the mean of the observations is the same as the mean of the 
predicted values. Hence, from Theorem 2.4 

which proves the corollary. o 

2.8 Measures of Fit 

The measure of fit R2, introduced in Section 1. 7, p. 13, and given by (1.26) 
when there is an intercept term and by (1.27) when there is no intercept, 
is also appropriate for multiple regression. Its square root is the sample 
correlation between y/s and [Ii'S, i.e., in the case of a regression model 
with an intercept, 

n n n 

(2.36) 
i=1 i=1 i=1 

since, as we seen in the proof of Corollary 2.2, n~1 L:~=1 Yi = n~1 L:~=1 Yi. 
To see that the square of (2.36) is indeed (1.26), notice that because, by 

(2.15), L:~=1 eiYi = 0, 

n n 

i=1 i=1 
n n 

i=1 i=1 
n n n n 

i=1 i=1 i=1 i=1 

Therefore, 
n n 

i=1 i=1 

and, because of Corollary 2.2, we get 

R2 = 1 _ L:~=1 (Yi - Yi)2 
",n ( -)2 . 
6i=1 Yi - Y 

(2.37) 

From (2.37), on using Corollary 2.2 again, it follows that R2 lies between 
o and 1, and, because R is nonnegative, 0 ::; R ::; 1. It is shown in Appendix 
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2A.3 at the end of this chapter that R2 is the sample multiple correlation 
between the dependent variable Y and the independent variables Xl, •.. , Xk 

in the sense given in Section B.7 (Page 295) of Appendix B. 
Some analysts prefer to use an adjusted R2 denoted by R; and given by 

R~ adjusts for the sample size, since it is often felt that small sample sizes 
tend to unduly inflate R2. However, R~ can take negative values. 

Alternatively, 82 can also be used as a measure of fit, smaller values of 
82 indicating a good fit. A rough practical use of 82 stems from the fact 
that when the number of observations n is large, 48 is the approximate 
width of the 95 per cent confidence interval for a future observation. When 
we are primarily interested in prediction, this provides an excellent indica­
tion of the quality of fit. For example, in the house price example, if the 
regression model were to be used to estimate the selling price of a house 
not in the sample, we could be off by as much as ±$9500 at a 95 per cent 
level. Sometimes alternative estimates of a are available (see Chapter 6). 
Then, 8 provides an excellent means of discovering how close our fit is to a 
theoretical ideal. In most cases one needs to consider both R2 (or R~) and 
82 in order to assess the quality of fit. 

When the regression equation does not have an intercept, that is, when 
130 = 0, we define the square of the sample correlation between Yi'S and iNs 
as 

(2.38) 

Since 
n 

LYiYi = y'y = y'Xb = y'X(X'X)-lX'y 
i=l 

n 

= y'X(X'X)-l(X'X)(X'X)-lX'y = b'X'Xb = y'y = LY; 
i=l 

and, from Theorem 2.4, 

n n n n n 

LY; = L e; + LY; = L(Yi - Yi)2 + LY;, 
i=l i=l i=l i=l i=l 

(2.38) becomes 

Note that here too 0 ::; R ::; 1 and 0 ::; R2 ::; 1. 
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2.9 The Gauss-Markov Theorem 

In most applications of regression we are interested in estimates of some 
linear function L{3 or t {3 of {3, where £ is a vector and L is a matrix. 
Estimates of this type include the predicteds [Ii, the estimate Yo of a future 
observation, iJ and even b itself. We first consider below £' {3; the more 
general vector function is considered subsequently. 

Although there may be several possible estimators, we shall confine our­
selves to linear estimators ~ i.e., an estimator which is a linear function of 
Yl, . .. ,Yn, say e'y. We also require that these linear functions be unbiased 
estimators of £' {3 and assume that such linear unbiased estimators for £' {3 
exist; t {3 is then called estimable. 

In the following theorem we show that among all linear unbiased esti­
mators, the least squares estimator £'b = £'(X'X)-lX'y, which is also a 
linear function of Yl, ... ,Yn and which in (2.28) has already been shown 
to be unbiased, has the smallest variance. That is, var (£'b) ::; var (e'y) 
for all e such that E( e' y) = £' {3. Such an estimator is called a best linear 
unbiased estimator (BLUE). 

Theorem 2.5 (Gauss-Markov) Let b = (X' X)-l X'y and y = X{3 + E. 

Then under G-M conditions, the estimator £'b of the estimable function 
£'{3 is BLUE. 

PROOF: Let e'y be another linear unbiased estimator of (estimable) £'{3. 
Since e' y is an unbiased estimator of £' {3, t (3 = E( e' y) = e' X {3 for all {3 
and hence we have 

e'X = t. 
Now, 

var (e'y) = e' cov(y)e = e' (0'2 I)e = O'2e' e, 

and 

var (£'b) = £' cov(b)£ = O'2£'(X' X)-l£ = O'2e' X(X' X)-l X' e, 

from (2.29) and (2.39). Therefore 

var (e'y) - var (tb) = O'2 [e' e - e' X(X' X)-l X' e] 

= O'2 e'[I - X(X' X)-l X']e 2 0, 

(2.39) 

since 1- X(X'X)-lX' = M is positive semi-definite (see end of Sec­
tion 2.5). This proves the theorem. 0 

A slight generalization of the Gauss-Markov theorem is the following: 

Theorem 2.6 Under G-M conditions, the estimator Lb of the estimable 
function L{3 is BL UE in the sense that 

cov(Cy) - cov(Lb) 
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is positive semi-definite, where L is an arbitrary matrix and Cy is another 
unbiased linear estimator of Lf3. 

This theorem implies that if we wish to estimate several (possibly) related 
linear functions of the (3/s, we cannot do better (in a BLUE sense) than 
use least squares estimates. 

PROOF: As in the proof of the Gauss-Markov theorem, the unbiasedness 
of Cy yields Lf3 = CE(y) = CXf3 for all f3, whence L = CX, and since 
cov( Cy) = a 2CC' and 

cov(Lb) = a 2 L(X'X)-lL' = a 2CX(X'X)-lX'C', 

it follows that 

cov(Cy) - cov(Lb) = a 2 C[1 - X(X'X)-lX'jC', 

which is positive semi-definite, since, as shown at the end of Section 2.5, 
the matrix [1 - X(X'X)-lX'j = M is at least positive semi-definite. 0 

If, in addition to the Gauss-Markov conditions, we make the further 
assumption that Yi'S are normally distributed, then it may be shown that 
i'b has minimum variance in the entire class of unbiased estimators, and 
that S2 has minimum variance among all unbiased estimators of a 2 (see 
Rao, 1973, p. 319). 

2.10 The Centered Model 

Let Xj = n- 1 2:~=1 Xij and Zij = Xij - Xj for all i = 1, ... , nand j = 
1, ... , k. Further, let Z be the matrix (Zij) of the Zi/S and set 10 = 
(30 + (31 X1 + ... + (3k xk and f3(0) = ((31, ... , (3k)'. Using this notation, the 
regression model (2.3) can be written as 

y = 101 + Zf3(o) + 10 = (1 Z) ( f3~~) ) + 10. (2.40) 

The model (2.40) is called a centered model or, more specifically, the cen­
tered version of (2.3). The two models (2.3) and (2.40) are equivalent. From 
10 and f3(0) we can get f3 of (2.3) and vice versa. Viewing least squares es­
timation as a problem in minimization, we see that this correspondence 
extends to the estimates as well. In particular, the estimate b(o) of f3(0) 
consists exactly of the last k components of the estimate b of f3 of (2.3). 

Since, obviously, 2:~=1 Zij = 0 for all j, it follows that l' Z = 0' and 
Z'1 = o. Hence, applying (2.9) to the model (2.40), we see that the least 
squares estimates 1'0 of 10 and bo of f3(0) are given by 

( b~~) ) = (: Z~~) -1 ( ~ ) y = ( 
0' 

(Z' Z)-l ) ( Zn,Y ). 
y 
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Thus 
io =y 

and b(o) = (Z' Z)-l Z'y = (Z' Z)-l Z'(y - 1y) 
(2.41) 

since, as noted before, Z'1 = o. Clearly, bo = Y - blXI - ... - bkXk = 
Y - (Xl"'" xk)b(o). The covariance matrix of the least squares estimates 
'Yo and b(o) is 

'Yo 2 n 0 ( A) ( ,)-1 
cov b(o) = a 0 Z'Z 

Thus io and b(o) are uncorrelated, which implies that they would be in­
dependent when they are normal. This makes the centered model very 
convenient to use in tests involving the regression parameters (f3I,' .. ,f3k), 
as we shall see in the next chapter. 

In fact, often it is even more convenient to center the Yi'S as well and 
obtain the least squares estimates from the model 

(2.42) 

where e = n-1 L:~=1 fi and i = 1, ... , n. Although, since the covariance 
matrix of (f1 - e, ... ,fn - e) is 1-n-111', the fi - e's are not uncorrelated, 
it turns out that in this case proceeding as if the (fi - e) 's were uncorrelated 
and applying the least squares formula (2.9) yields estimates that are BLUE 
(see Exercise 7.2, p. 146). 

It is easily verified that the residual sum of squares for this estimate is 

which simplifies to 

y'[I - n-111' - Z(Z' Z)-1 Z'ly 

= [y'y - ny21- y'Z(Z'Z)-IZ'y. 
(2.43) 

From (2.31) and (2.13) it follows that the residual sum of squares for the 
uncentered model is 

y'My = y'y - y' X(X' X)-l X'y. 

Since the residual sum of squares given by the two methods must be the 
same, we get 

(2.44) 

Hence 
y'My = (y'y - ny2) - y' Z(Z' Z)-l Z'y. (2.45) 

The first term in the last line of (2.43) is called the corrected total sum of 
squares and the second term is called the sum of squares due to f31, ... , f3k' 
It is also sometimes called the sum of squares due to regression or the model 
sum of squares. The second term on the right side of (2.44) may be called 
the sum of squares due to the intercept or the sum of squares due to f30. 
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2.11 Centering and Scaling 

0= D(os)f3(O) and Z(s) = ZD(o;r 

It is easily verified that the model (2.40) is equivalent to 

which is called a centered and scaled model or the centered and scaled 
version of (2.3). It might be mentioned that if instead we had replaced Z 
and Zij'S uniformly by X and Xij'S, we would have obtained simply a scaled 
model. Notice that the diagonal elements of R = Z(s)Z(s) = D(o;)Z' ZD(o~) 
are ones and the off-diagonal elements are the sample correlation coeffi­
cients (Section B.1.3, p. 285) between columns of X. Consequently Z(s)Z(s) 
is sometimes called the correlation matrix of the independent variables. 

The least squares estimate of /0 in the centered and scaled model is y 
and that of 0 is 

d = [Z(s)Z(s)J- 1 Z(s)Y. 

As in the last section it may be shown that d remains unchanged if we 
center the y/s as well, and we could obtain estimates that are BLUE from 
the model 

(2.46) 

where Y(O) = Y-1Y and €(O) = €-1(, by applying least squares and treating 
the components f(O)i 's of €(O) as if they were independently distributed. The 
covariance matrix of d is 

and, as in Section 2.10, 'Yo and dare uncorrelated. 

2.12 *Constrained Least Squares 

In this section we consider the case of computing least squares estimates 
when they are subject to a linear equality constraint of the form 

Cf3-d=O (2.47) 

where C is an m x (k + 1) matrix of rank m with m < (k + 1). For inequality 
constraints, see Judge and Takayama (1966). 
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We still minimize 8 = (y - X (3)' (y - X (3) but now we do it under the con­
straint (2.47). Therefore, using the Lagrange multiplier A = P'l, ... , Am)' 
and differentiating with respect to A and (3, we have 

:A [8 + A'(d - C(3)] = d - C{3 (2.48) 

and 

:(3 [8 + A'(d - C(3)] = 2(X' X){3 - 2X'y - C'A. (2.49) 

Replacing {3 and A by j3 and .x in (2.48) and (2.49) and equating the 
resulting expressions to zero we get (assuming X' X to be non-singular) 
cj3 = d and 

j3 = (X'X)-l[X'y + ~C'.x] = b+ ~(X'X)-lC'.x. (2.50) 
2 2 

It follows that 

d = cj3 = Cb+ ~C(X'X)-lC'.x 2 . (2.51) 

Substituting the solution for .x from (2.51) into (2.50), we get 

j3 = b + (X' X)-lC'[C(X' X)-lC'r l (d - Cb). (2.52) 
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Appendix to Chapter 2 

2A.l MATRIX DIFFERENTIATION 

Let 8 = ((h, ... ,th)' and let f(8) be a real-valued function of k variables 
(h, ... ,th. Then, the partial derivatives of f(8) with respect to 8 are 

(2.53) 

Lemma 2.1 Let c = (Cl, ... , Ck)', 13 = (f3l, ... , f3k)' and f(f3) = c'f3. Then 

of(f3) 
fii3 = c. 

PROOF: Since f(f3) = c'f3 = 2:7=1 cif3i we find that of(f3)/Of3i = Ci' 
Hence 

o 

Lemma 2.2 Let A = (aij) = (al, ... ,ak) be a k x k symmetric matrix 
where a~ = (ail, ... , aik), the i th row of the matrix A. Let 13 = (f3l, ... , f3k)' 
and f(f3) = 13' Af3. Then 

O~~) = 2Af3. 

PROOF: Since 
k k 

13' Af3 = L aiif3; + 2 L aij f3if3j, 
i=l i<j 

we get 

Hence 

O(~;f3) = 2 ~ = 2 :1 13 = 2Af3. (
a'f3 ) ( a' ) 

a~f3 a~ 
o 
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2A.2 CONSISTENCY OF 82 

Obviously, it is most desirable that, as the sample size n gets large, an 
estimate t of a parameter 0 be close to O. A sequence Zl, Z2, ... of random 
variables is said to converge in probability to a constant c if for every to > 0, 

P(lzn - cl > to) - 0 as n - 00. 

In the sequel we shall denote this fact as Zn .!: c, or where the context 

makes the meaning obvious, as Z .!: c. 

The estimate t is said to be a consistent estimator of 0 if t .!: 0, i.e., if 
for every to > 0, 

P[lt - 01 > to] - 0, 

as the sample size goes to infinity. Typically, consistency is established by 
using Chebyshev's inequality (see Rao, 1973, p.95) or by using Markov's 
inequality: 

EIXlr 
P[lXI ~ a] :S --r -, for r ~ l. 

a 

We shall use the latter to show the consistency of 82 • From (2.32) and (2.13) 
(M and H are defined just below equation (2.12)), 

8 2 = (n - k - 1)-1e'e = (n - k -1)-1 e'[1 - H]e. 

Because e' He is a scalar, its trace is itself. Therefore, we get, on using 
Property 3 of Section A.6, p. 271, 

E(e'He) = E[tr(e'He)] 

= E[ tr(Hee')] = tr[HE(ee')] = a 2 tr(H) = a 2 (k + 1) 

(see Example A.ll, p. 277). Hence, we get from Markov's inequality 

P[ -1 'H ] E(e' He) a2 (k + 1) 0 
n e e>'TJ:S = -

n'TJ n'TJ 

as n - 00. From the law of large numbers n-1e'e _ a2 in probability. 
Hence, since n(n - k - 1)-1 _ 1, 8 2 - a2 in probability. 

A random vector t is said to be a consistent estimator of 9 if x .!: 9, i.e., 
if for every 8 > 0, 

P[(x - 9)'(x - 9) > 8]- o. 

2A.3 R2 AS SAMPLE MULTIPLE CORRELATION 

We may write (2.37) in matrix notation as 
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It, therefore, follows from (2.45) that 

R2 = y'Z(Z'Z)-IZ'y/[y'y - ny2] 

which is the sample correlation between y and Xl, •.. , Xk as defined in 
Section B.7 (p. 295). 
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Problems 

Exercise 2.1: Show that var (ei) = 0"2 - var (Yi)' 

Exercise 2.2: Suppose y = X/3 + e, where E(e) = 0, cov(e) = 0"2 In, 
the matrix X of dimension n x k has rank k ::; n, and /3 is a k-vector 
of regression parameters. Suppose, further, that we wish to predict the 
'(n+ l)st observation' Yn+l at x~+1 = (Xn+1,l"",Xn+1,k); i.e., Yn+l = 
X~+l/3 + En+l where En+l has the same distribution as the other E/S and 
is independent of them. The predictor based on the least squares estimate 
of /3 is given by Yn+l = x~+1 b, where b = (X' X)-l X'y. 

1. Show that Yn+1 is a linear function of Yl, ... ,Yn such that E(Yn+l -
Yn+1) = O. 

2. Suppose 'Un+1 = a'y is another predictor of Yn+1 such that E(Yn+1 -
Yn+d = O. Show that a must satisfy a' X = X~+l' 

3. Find var (i)n+d and var (Yn+l). 

4. Show that var (i)n+1) ::; var (Yn+I). 

Exercise 2.3: Let Yi = x~/3 + Ei with i = 1, ... , n be a regression model 
where E(Ei) = 0, var (Ei) = 0"2 and COV(Ei' Ej) = 0 when i =I- j. Suppose 
ei = Yi - Yi, where Yi = x~b and b is the least squares estimator of /3. Let 
X' = (Xb'" ,xn). Show that the variance of ei is [1- x~(X'X)-lXi]0"2. 

Exercise 2.4: In the model of Exercise 2.3, show that the Yi is a linear 
unbiased estimator of x~/3 (that is, Yi is a linear function of Yl, ... ,Yn and 
E(Yi) = x~/3). What is the variance of Yi? Does there exist any other linear 
unbiased estimator of x~/3 with a smaller variance than the estimator Yi? 

Exercise 2.5: Explain what would happen to the estimate bj of (3j and to 
its standard error if we express the jth independent variable Xj in meters 
instead of millimeters. 

What would happen to bj and var (bj ) in a model which includes an 
intercept term if we replaced all the values of Xlj, ... ,Xnj of Xj by numbers 
which were nearly constants? 
[Hint: For the first portion of the problem multiply X by a diagonal 
matrix containing .001 in the (j, j)th position and 1 's in other diagonal 
positions. For the second portion center the model.] 

Exercise 2.6: Consider the models y = X /3 + e and y* = X* /3 + e* where 
E(e) = 0, cov(e) = 0"21, y* = ry, X* = rx, e* = re and r is a known 
n x n orthogonal matrix. Show that: 

1. E(e*) = 0, cov(e*) = 0"2 I 
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2. b = b* and 8*2 = 8 2 , where band b* are the least squares estimates 
of f3 and 8 2 and 8*2 are the estimates of cr2 obtained from the two 
models. 

Exercise 2.7: Let 
Yij = x~f3 + Eij 

for i = 1, ... , q and j = 1, ... , n, where Eij'S are independently and iden­
tically distributed as N(O, cr2 ), f3 is a k-vector and xi's are k-vectors of 
constants. Find the least squares estimates of f3. Using the residual sum of 
squares, give an unbiased estimate of cr2 . 

Exercise 2.8: Show that the residual sum of squares e' e = y' y-b' X' Xb = 

y'y - b'X'y = y'y - b'X'Y. 

Exercise 2.9: Consider a house with 1200 square foot floor area, 6 rooms, 
3 bedrooms, 2 baths and a 40 foot lot but no garage, fireplace or storm 
windows. Estimate its selling price using Exhibit 2.3. Estimate the increase 
in price if a garage were added. How about a fireplace and storm windows? 

If the owner decides to add on a 300 square foot extension which adds a 
bedroom and a bathroom, how much would that add to its price? Now can 
you shed more light on the negative sign on the coefficient of bedrooms? 

Assume that the cases given in Exhibit 2.2 were actually randomly drawn 
from a much larger data set. If the regression were run on the larger data 
set, would you expect 8 to increase, decrease or stay about the same? Give 
reasons. Did you make any assumptions about the model? 

Exercise 2.10: Obtain the least squares estimate of f3 in the model y = 
X f3 + € from the following information: 

3.08651 -.0365176 -.0397747 -.051785 

) (X' X) -, ~ ( -0.03652 .0013832 -.0000994 .000332 
-0.03977 -.0000994 .0018121 -.000102 
-0.05179 .0003319 -.0001022 .002013 

and 

X'y= ( 
660.1) 

13878.9 
17274.5 . 
15706.1 

If an unbiased estimate of the variance of the components Yi of y is 50.5, 
what are unbiased estimates of the variances of the components of the least 
squares estimate you have obtained? 

Exercise 2.11: Suppose that you need to fit the model Yi = /30 + /31Xil + 
/32Xi2 + Ei, where E(Ei) = 0, E(EiEj) = 0 for i -=I j and E(E;) = cr2 , to the 
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following data: 

Y Xl X2 Y Xl X2 

-43.6 27 34 5.9 40 30 
3.3 33 30 -4.5 15 17 

-12.4 27 33 22.7 26 12 
7.6 24 11 -14.4 22 21 

11.4 31 16 -28.3 23 27 

It turns out that 

( 
1.97015 -.056231 

(X' X)-l = -0.05623 .002886 
-0.01572 -.000914 

-.0157213 ) 
-.0009141 

.0017411 

and 

( 
-52.3) 

X'y = -1076.3 , 
-2220.2 

where X and y have their usual meanings. 

1. Find the least squares estimator of {3 = (!30,!3l, !32)' and its covariance 
matrix. 

2. Compute the estimate 82 of a 2 . 

3. Find the predicted value Yl and its variance. 

4. What is the estimated variance of el, the residual corresponding to 
the first case? 

Exercise 2.12: The variables in Exhibit 2.4 are: cars per person (AO), 
population in millions (POP), population density (DEN), per capita income 
in U.S. dollars (GDP), gasoline price in U.S. cents per liter (PR), tonnes 
of gasoline consumed per car per year (CON) and thousands of passenger­
kilometers per person of bus and rail use (TR). Obtain a linear model 
expressing AO in terms of the other variables. 

Quite obviously, bus and rail use (TR) is affected by car ownership. Does 
this cause a bias in the model you have just estimated? Does this cause a 
violation of any of the Gauss-Markov conditions? 

Exercise 2.13: Strips of photographic film were identically exposed (same 
camera, lens, lens aperture, exposure time and subject, which was a grey 
card) and then developed for different times in different identical developers 
at different temperatures. The light transmission (y) through each strip 
was then measured and the values are shown in Exhibit 2.5. The units for 
y are unimportant for the present, but as a point of interest, it might be 
mentioned that an increase of 30 units implies a halving of the light passing 
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Country AO POP DEN GDP PR CON TR 

AUSTRIA .27 7.5 89 7.7 49 1.1 2.6 
BELGIUM .30 9.8 323 9.8 59 1.0 1.6 
CANADA .42 23.5 2 8.7 17 2.8 .1 
DENMARK .28 5.1 119 11.0 56 1.2 1.9 
FINLAND .24 4.8 16 7.1 49 1.2 2.2 
FRANCE .33 53.3 97 8.8 61 1.0 1.5 
GERMANY .35 61.3 247 10.4 49 1.1 1.7 
GREECE .08 9.4 71 3.4 56 1.7 .7 
ICELAND .34 .2 2 9.8 57 1.2 2.0 
IRELAND .20 3.2 46 3.8 40 1.5 .3 
ITALY .30 56.7 188 4.6 61 .6 1.8 
JAPAN .18 114.9 309 8.5 49 1.2 3.5 
LUXEMBURG .43 .4 138 9.8 44 1.6 .8 
NETHERLANDS .30 13.9 412 9.4 56 1.0 1.5 
NEW ZEALAND .40 3.1 12 5.9 34 1.3 .2 
NORWAY .28 4.1 13 9.8 61 1.0 1.7 
PORTUGAL .10 9.8 107 1.8 68 .7 .9 
SPAIN .18 36.8 73 4.0 44 .8 1.3 
SWEDEN .34 8.3 18 10.6 42 1.3 1.7 
SWITZERLAND .32 6.3 153 13.3 56 1.3 2.0 
TURKEY .014 42.7 55 1.2 36 3.3 .1 
U.K. .27 55.8 229 5.5 35 1.2 1.6 
U.S.A. .53 218.2 23 9.7 17 2.7 .3 
YUGOSLAVIA .09 22.0 86 2.1 40 1.1 2.1 

EXHIBIT 2.4: International Car Ownership Data 
SOURCE: OECD (1982). Reproduced with permission of the OECD. All data 
are for 1978. 

Time 
4 6.5 9 

60 43 68 97 
Temp. 68 73 101 130 

76 94 127 155 

EXHIBIT 2.5: Values of y for different combinations of development times (in 
minutes) and temperatures (degrees Fahrenheit) 

through. Without using a computer, fit a model expressing y as a linear 
function of development time and developer temperature. 
[Hint: Center the model. Incidentally, if a wider range of times or temper­
ature were taken, the relationship would not have been linear.] 

Exercise 2.14: Exhibit 2.6 gives data on actual voltage Va and the cor­
responding value Vc of voltage computed from the measured power output 
(using light output from electronic flash ). A definition of efficiency (E) is 
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the ratio VelVa. Obtain a model which expresses E as a quadratic polyno­
mial in Va (Le., a model in Va and V;). Examine the residuals. Is the fit 
satisfactory? 

Va 354 321 291 264 240 219 200 183 167 153 
lie 354 315 281 250 223 199 177 158 150 125 

EXHIBIT 2.6: Voltage Data 
SOURCE: Armin Lehning, Speedotron Corporation. 

Exercise 2.15: Exhibit 2.7, obtained from KRIHS (1985), gives data on 
the number of cars per person (AO), per capita GNP (GNP), average car 
price (CP) and gasoline price after taxes (OP) in South Korea from 1974 
to 1983. GNP and car prices are in 1000 Korean wons, while gasoline prices 
are in wons per liter. Let D before a variable name denote first differences, 
e.g., DAOt = AOt+1 - AOt where AOt is the value of AO in the tth year. 
Use DAO as the dependent variable and estimate parameters of models 
which have: 

1. GNP, CP and OP as the independent variables, 

2. DGNP, DCP and DOP as the independent variables, 

3. DGNP, DCP and OP as independent variables, and 

4. DGNP, CP and OP as independent variables. 

Examine the models you get along with their R2. Which of the models 
makes the best intuitive sense? 
[Hint: It seems intuitively reasonable that rapid increases in auto owner­
ship rates would depend on increases in income, rather than income itself. 
The high R2 for Model 1 is possibly due to the fact that DAO is, more or 
less, increasing over t, and GNP is monotonically increasing.] 

Exercise 2.16: Using the data of Exercise 1.12, run a regression of log[ma] 
against log [pop] and d. Explain why the value of R2 is so different from 
that obtained in Exercise 1.12. Do you feel the fit is worse now? 

Exercise 2.17: Redo Exercise 1.11, p. 24, using an additional independent 
variable which is 1 for the first district but zero otherwise. Plot residuals 
and compare with the corresponding plot from Exercise 1.11. 

Exercise 2.18: Exhibit 2.8 gives data on per capita output in Chinese 
yuan, number (SI) of workers in the factory, land area (SP) of the factory 
in square meters per worker, and investment (I) in yuans per worker for 17 
factories in Shanghai. 

1. Using least squares, fit a model expressing output in terms of the 
other variables. 
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Year AO GNP CP OP 

1974 .0022 183 2322 189 
1975 .0024 238 2729 206 
1976 .0027 319 3069 206 
1977 .0035 408 2763 190 
1978 .0050 540 2414 199 
1979 .0064 676 2440 233 
1980 .0065 785 2430 630 
1981 .0069 944 2631 740 
1982 .0078 1036 3155 740 
1983 .0095 1171 3200 660 

EXHIBIT 2.7: Korean Auto Ownership Data 

Output SI SP I Output SI SP I 

12090 56 840 10.54 18800 919 2750 14.74 
11360 133 2040 11.11 28340 1081 3870 29.19 
12930 256 2410 10.73 30750 1181 4240 21.21 
12590 382 2760 14.29 29660 1217 2840 12.45 
16680 408 2520 11.19 20030 1388 3420 17.33 
23090 572 2950 14.03 17420 1489 3200 24.40 
16390 646 2480 18.76 11960 1508 3060 28.26 
16180 772 2270 13.53 15700 1754 2910 19.52 
17940 805 4040 16.71 

EXHIBIT 2.8: Data on Per Capita Output of Workers in Shanghai 

2. In , ldition to the variables in part 1 use SI2 and SP times I and 
obtain another model. 

3. Using the model of part 2, find the values of SP, SI and I that maxi­
mize per capita output. 

This problem was suggested to one of the authors by Prof. Zhang Tingwei 
of Tongji University, Shanghai, who also provided the data. 

Exercise 2.19: Exhibit 2.9 gives information on capital, labor and value 
added for each of three economic sectors: Food and kindred products (20), 
electrical and electronic machinery, equipment and supplies (36) and trans­
portation equipment (37). The data were supplied by Dr. Philip Israelovich 
of the Federal Reserve Bank, who also suggested the exercise. For each sec­
tor: 

1. Consider the model 
TT _ aKf31Lf32'1'l 
Vt - t t 'It, 

where the subscript t indicates year, \It is value added, K t is cap­
ital, Lt is labor and 1Jt is an error term, with E[log(1Jt)] = 0 and 
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Capital Labor Real Value Added 

Yr '20' '36' '37' '20' '36' '37' '20' '36' '37' 

72 243462 291610 1209188 708014 881231 1259142 6496.966713.75 11150.0 
73 252402 314728 1330372 699470960917 1371795 5587.347551.68 12853.6 
74 246243 278746 1157371 697628 899144 1263084 5521.32 6776.40 10450.8 
75 263639 264050 1070860 674830 739485 1118226 5890.64 5554.89 9318.3 
76 276938 286152 1233475 685836 791485 1274345 6548.576589.6712097.7 
77 290910 286584 1355769 678440 832818 1369877 6744.80 7232.56 12844.8 
78 295616 280025 1351667 667951 851178 1451595 6694.197417.01 13309.9 
79 301929 279806 1326248 675147 848950 1328683 6541.68 7425.69 13402.3 
80 307346 258823 1089545 658027 779393 1077207 6587.33 6410.91 8571.0 
81 302224 264913 1111942 627551 757462 1056231 6746.776263.26 8739.7 
82 288805 247491 988165 609204664834 947502 7278.30 5718.46 8140.0 
83 291094246028 1069651 604601 664249 1057159 7514.78 5936.93 10958.4 
84 285601 256971 1191677 601688 717273 1169442 7539.93 6659.30 10838.9 
85 292026 248237 1246536 584288 678155 1195255 8332.65 6632.67 10030.5 
86 294777 261943 1281262 571454 670927 1171664 8506.37 6651.02 10836.5 

EXHIBIT 2.9: Data on Capital, Labor and Value Added for Three Sectors 

var [log('T]t)] a constant. Assuming that the errors are independent, 
and taking logs of both sides of the above model, estimate {31 and {32. 

2. The model given in 1 above is said to be of the Cobb-Douglas form. 
It is easier to interpret if {31 + {32 = 1. Estimate {31 and {32 under this 
constraint. 

3. Sometimes the model 

Vt = Q'''l Kfl Lf2 'T]t 

is considered where -l is assumed to account for technological devel­
opment. Estimate {31 and {32 for this model. 

4. Estimate {31 and {32 in the model in 3, under the constraint {31 +{32 = 1. 

Exercise 2.20: The data set given in Exhibit 2.10 and in Exhibit 2.11 
was compiled by Prof. Siim Soot, Department of Geography, University of 
Illinois at Chicago, from Statistical Abstract of the United States, 1981, 
U.S. Bureau of the Census, Washington, D.C. The variables are (the data 
are for 1980 except as noted): 

POP Total population (1000's) 
UR Per mil (per 10-3) of population living in urban areas 
MV Per mil who moved between 1965 and 1970 
BL Number of blacks (1000's) 
SP Number of Spanish speaking (1000's) 
AI Number of Native Americans (100's) 
IN Number of inmates of all institutions (correctional, 

mental, TB, etc.) in 1970 (1000's) 
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PR Number of inmates of correctional institutions in 1970 (100's) 
MH Homes and schools for the mentally handicapped (100's) 
B Births per 1000 
HT Death rate from heart disease per 100,000 residents 
S Suicide rate, 1978, per 100,000 
DI Death rate from diabetes, 1978, per 100,000 
MA Marriage rate, per 10,000 
D Divorce rate per 10,000 
DR Physicians per 100,000 
DN Dentists per 100,000 
HS Per mil high school grads 
CR Crime rate per 100,000 population 
M Murder rate per 100,000 population 
PI Prison rate (Federal and State) per 100,000 residents 
RP % voting for Republican candidate in presidential election 
VT % voting for presidential candidate among voting age population 
PH Telephones per 100 (1979) 
INC Per capita income expressed in 1972 dollars 
PL Per mil of population below poverty level 

and the cases represent each of the states of the United States. 

1. Run a regression with M as the dependent variable. Among the in­
dependent variables include MA, D, PL, S, B, HT, UR, CR and HS. 
Explain the results you get. Some of the independent variables in­
cluded may have little effect on M or may be essentially measuring 
the same phenomenon. If you detect any such variables, delete it and 
rerun the model. On the other hand, if you think that some important 
variable has been left out, add it to the model. Write a short report 
(to a non-technical audience) explaining the relationships you have 
found. Discuss the pro's and con's of including POP as an additional 
variable in this model. 

2. Now try M as the dependent variable against INC, PL, VT and UR. 
Compare the results with those from part 1 above. Can you offer any 
explanations for what you observe? 

3. We know that doctors like to locate in cities. It is also likely that they 
would tend to locate disproportionately in high income areas and 
possibly where there would be more business for them (e.g., where 
B and HT are high). Set up an appropriate model with DR as the 
dependent variable. Run a regression and write a report. 

4. Choosing your own independent variables, run a regression with MA 
as the dependent variable. If you included D as one of the predictors, 
you would find it to be quite an important one. Can you explain why? 
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5. Run a regression with S as the dependent variable and UR, D, CR, 
PL, POP and MV as independent variables. Add and subtract vari­
ables as you think fit. Write a short report on the final model you 
get. 

6. Try any other models that you think might yield interesting results. 
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State POP UR MV BL SP AI IN PR MH B HT S DI 

ME 1125 475 417 3 5 41 11 7 10 149 358 139 160 
NH 921 522 450 4 6 14 9 5 10 145 306 150 170 
VT 512 338 451 1 3 10 5 4 6 152 341 148 136 
MA 5237 838 409 221 141 77 77 55 82 122 357 89 164 
RI 948 870 426 28 20 29 11 5 10 128 402 115 224 
CT 3107 788 425 217 124 45 34 36 45 124 321 103 143 
NY 17757 846 404 2402 1659 387 218 236 223 134 396 96 177 
NJ 7364 890 424 925 492 84 60 88 70 132 377 72 183 
PA 11867 693 363 1048 154 95 124 127 146 135 414 119 211 
OH 10797 733 452 1077 120 122 107 142 89 156 356 126 183 
IN 5491 642 462 415 87 78 51 82 71 162 334 119 203 
IL 11419 830 460 1675 636 163 119 122 106 164 379 100 153 
MI 9259 707 447 1199 162 400 86 129 122 157 321 123 169 
WI 4706 642 422 183 63 295 58 47 68 155 349 124 158 
MN 4077 668 432 53 32 350 50 32 51 161 307 102 119 
IA 2914 586 429 42 26 55 37 23 25 161 380 118 157 
MO 4917 681 479 514 52 123 48 68 37 157 380 122 168 
ND 654 488 436 3 4 202 9 3 13 179 313 98 153 
SD 690 464 429 2 4 451 11 5 11 189 354 117 148 
NE 1570 627 461 48 28 92 22 17 31 167 348 92 134 
KS 2363 667 489 126 63 154 31 48 15 165 345 108 165 
DE 596 707 460 96 10 13 5 7 2 153 334 146 252 
MD 4216 803 485 958 65 80 39 89 48 140 308 109 162 
VA 5346 660 497 1008 80 93 46 113 37 148 295 141 121 
WV 1950 362 396 65 13 16 14 23 1 159 431 140 208 
NC 5874 480 462 1316 57 646 48 108 52 150 313 117 144 
SC 3119 541 453 948 33 58 23 51 11 173 295 113 154 
GA 5464 623 514 1465 61 76 46 144 19 172 301 136 130 
FL 9739 843 559 1342 858 193 61 162 59 137 410 177 174 
KY 3661 508 464 259 27 36 27 56 13 167 379 125 173 
TN 4591 604 474 726 34 51 34 67 29 156 324 126 121 
AL 3891 600 455 996 33 76 31 57 25 166 304 105 170 
MS 2520 473 446 887 25 62 16 26 12 189 320 96 167 
AR 2285 516 494 373 18 94 20 21 10 167 364 105 172 
LA 4203 683 442 1237 99 121 32 77 34 197 317 118 186 
OK 3026 673 523 205 57 1695 37 60 24 170 364 135 151 
TX 14228 796 525 1710 2986 401 116 216 132 190 267 127 127 
MT 787 529 496 2 10 373 8 6 10 179 279 155 145 
ID 945 540 513 3 37 105 6 6 5 221 241 134 116 
WY 471 628 519 3 24 71 4 3 0 217 233 176 139 
CO 2890 806 571 102 339 181 22 30 45 170 229 178 105 
NM 1299 722 503 24 476 1048 6 15 8 206 168 171 140 
AZ 2718 838 587 75 441 1529 11 33 12 191 265 193 120 
UT 1461 844 461 9 60 193 7 9 1 301 198 128 128 
NV 799 853 638 51 54 133 3 12 0 176 246 248 99 
WA 4130 736 550 106 120 608 38 59 46 164 284 142 129 
OR 2632 679 553 37 66 273 24 26 22 165 296 155 119 
CA 23669 913 565 1819 4544 2013 214 499 137 167 278 163 107 
AK 400 645 731 14 9 640 1 3 1 224 76 148 27 
HI 965 865 541 17 71 28 4 4 8 192 156 118 127 

EXHIBIT 2.10: Demographic Data for the 50 States of the U.S. 
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State MA D DR DN HS CR M PI RP VT PH INC PL 

ME 109 56 146 45 678 4368 28 61 456 648 54 4430 120 
NH 102 59 159 53 703 4680 25 35 577 578 58 5105 79 
VT 105 46 211 58 697 4988 22 67 444 583 52 4372 135 
MA 78 30 258 71 723 6079 41 56 419 593 58 5660 71 
RI 79 39 206 56 617 5933 44 65 372 590 57 5281 87 
CT 82 45 242 73 703 5882 47 68 482 612 64 6552 67 
NY 81 37 261 74 662 6912 127 123 467 480 54 5736 94 
NJ 75 32 184 66 664 6401 69 76 520 551 66 6107 81 
PA 80 34 183 55 648 3736 68 68 496 520 62 5273 97 
OH 93 55 157 49 677 5431 81 125 515 554 56 5289 94 
IN 110 77 126 43 670 4930 89 114 560 577 57 4995 81 
IL 97 46 182 54 661 5275 106 94 496 578 66 5881 105 
MI 97 48 154 53 686 6676 102 163 490 598 60 5562 91 
WI 84 36 151 58 703 4799 29 85 479 677 55 5225 77 
MN 91 37 185 62 724 4799 26 49 425 704 57 5436 83 
IA 96 39 122 50 723 4747 22 86 513 629 59 5232 79 
MO 109 57 158 48 641 5433 III 112 512 589 58 5021 120 
ND 92 32 126 47 676 2964 12 28 642 651 63 4891 106 
SD 130 39 102 43 689 3243 7 88 605 674 56 4362 131 
NE 89 40 145 61 743 4305 44 89 655 568 61 5234 96 
KS 105 54 150 46 731 5379 69 106 579 570 61 5580 80 
DE 75 53 160 46 695 6777 69 183 472 549 64 5779 82 
MD 111 41 257 59 693 6630 95 183 442 502 62 5846 77 
VA 113 45 170 49 642 4620 86 161 530 480 53 5250 105 
WV 94 53 133 39 533 2552 71 64 452 528 44 4360 151 
NC 80 49 150 38 553 4640 106 244 493 439 53 4371 147 
SC 182 47 134 36 571 5439 114 238 494 407 50 4061 172 
GA 134 65 144 42 587 5604 138 219 409 417 55 4512 180 
FL 117 79 188 50 648 8402 145 208 555 496 59 5028 144 
KY 96 45 134 42 533 3434 88 99 491 500 48 4255 177 
TN 135 68 158 48 549 4498 108 153 487 489 53 4315 158 
AL 129 70 124 35 555 4934 132 149 488 490 50 4186 164 
MS 112 56 106 32 523 3417 145 132 494 521 47 3677 261 
AR 119 93 119 33 562 3811 92 128 481 516 47 4062 185 
LA 103 38 149 40 583 5454 157 211 512 537 52 4727 193 
OK 154 79 128 42 656 5053 100 151 605 528 57 5095 138 
TX 129 69 152 42 645 6143 169 210 553 456 55 5336 152 
MT 104 65 127 57 725 5024 40 94 568 652 56 4769 115 
ID 148 71 108 55 715 4782 31 87 665 685 54 4502 103 
WY 144 78 107 49 753 4986 62 113 626 542 56 6089 87 
CO 118 60 199 61 781 7333 69 96 551 568 57 5603 91 
NM 131 80 147 41 657 5979 131 106 549 514 46 4384 193 
AZ 121 82 187 49 725 8171 103 160 606 452 53 4915 138 
UT 122 56 164 64 802 5881 38 64 728 655 53 4274 85 
NV 1474 168 138 49 757 8854 200 230 625 413 63 5999 88 
WA 120 69 178 68 763 6915 51 106 497 580 56 5762 85 
OR 87 70 177 69 755 6687 51 120 483 616 55 5208 89 
CA 88 61 226 63 740 7833 145 98 527 495 61 6114 104 
AK 123 86 118 56 796 6210 97 143 543 583 36 7141 67 
HI 128 55 203 68 730 7482 87 65 425 436 47 5645 79 

EXHIBIT 2.11: Demographic Data for the 50 States of the U.S.ctd. 
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Tests and Confidence Regions 

3.1 Introduction 

Consider the example of house prices that we saw in the last chapter. It is 
reasonable to ask one or more of the following questions: 

(a) Is the selling price affected by the number of rooms in a house, given 
that the other independent variables (e.g., floor area, lot size) remain 
the same? 

(b) Suppose the realtor says that adding a garage will add $5000 to the 
selling price of the house. Can this be true? 

(c) Do lot size and floor area affect the price equally? 

(d) Does either lot size or floor area have any effect on prices? 

( e) Can it be true that storm windows add $6000 and a garage adds $4000 
to the price of a house? 

For some data sets we may even be interested in seeing whether all the 
independent variables together have any effect on the response variable. 
In the first part of this chapter we consider such testing problems. In the 
second part of the chapter we shall study the related issue of determining 
confidence intervals and regions. In the last section we return to testing. 

3.2 Linear Hypothesis 

To formulate the above questions as formal tests let us recall the regression 
model we used in the last chapter: 

(3.1) 

where i indexes the cases and Xil, ... , Xi8 are as in Example 2.2 of Sec­
tion 2.4, p. 31. The variable X2 was the number of rooms and if it had no 
effect on the selling price, /32 would be zero. Thus, corresponding to (a) 
above, our hypothesis would be 

H:/32=0 (3.2) 

which we would test against the alternative A : /32 =f. O. In other situations 
we might have chosen as alternative /32 > 0 (or, for that matter, /32 < 0). 
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For (b) we would test 

H : /3s = 5 versus A : /3s i- 5. (3.3) 

For (c) we have 

H : /31 - /36 = ° versus A : /31 - /36 i- 0. (3.4) 

For (d) the hypothesis would be H:/31 = 0, /36 = ° and for (e) it would be 
H:/3s = 4, /3s = 6. If we were interested in testing whether all the indepen­
dent variables have any effect on the selling price, our hypothesis would 
be 

H : /31 = 0, /32 = 0, ... , /3s = ° 
considered simultaneously, i.e., 

H: /3(0) = 0 (3.5) 

and we would test it against A : /3(0) i- 0, where /3(0) = (/31,' .. , /3s)'. We 
may have been also interested in whether some of the factors, say the last 
three, simultaneously affect the dependent variable. Then we would test 
the hypothesis 

All these hypotheses, namely (3.2) through (3.6), are special cases of the 
general linear hypothesis 

H:C/3-,=O. (3.7) 

For example, if we choose 

C = (0,0,1,0,0,0,0,0,0) and , = 0, (3.8) 

we get (3.2). Similarly (3.3), (3.4), (3.5) and (3.6) correspond respectively 
to 

C = (0,0,0,0,0,1,0,0,0) and ,= 5, (3.9) 

C= (0,1,0,0,0,0,-1,0,0) and , = 0, (3.10) 

C = (0 Is) and ,=0 (3.11) 

C = (0 h) and ,=0. (3.12) 

In the last two equations, C is a partitioned matrix consisting of the null 
matrix ° and the r dimensional identity matrix I r . 

Under the assumption that E/S are identically and independently dis­
tributed as N(O, a 2 ) (in the sequel we shall abbreviate this statement to 
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'fi iid N(O, (72)'), the hypothesis H : C{3 = '"1, where C is an m x (k + 1) 
matrix of rank m with m < (k + 1), is rejected if 

(3.13) 

where Fm,n-k-l,cx is the upper 100 x 0: per cent point of the F distribution 
with (m, n - k -1) degrees offreedom (Section B.5, p. 292, of Appendix B; 
tables are given on pp. 322 et seq.), and, as before, 

b = (X'X)-l X'y, and 8 2 = (n-k-1)-ly'[I -X(X' X)-l X']y. (3.14) 

Many statistical packages include this test which is shown in the next sec­
tion to be a likelihood ratio test. The distribution of the left side of (3.13) 
is derived in Section 3.4. 

3.3 *Likelihood Ratio Test 

Assume that the Gauss-Markov conditions hold and the Yi'S are normally 
distributed. That is, the fi'S are independent and identically distributed 
as N(O, (}2), i.e., fi iid N(O, (72). Then the probability density function of 
Yl,"" Yn is given by 

(3.15) 

The same probability density function, when considered as a function of {3 
and (72, given the observations Yl, ... , Yn, is called the likelihood function 
and is denoted by 'c({3, (72Iy). The maximum likelihood estimates of {3 and 
(72 are obtained by maximizing 'c({3, (72IY) with respect to {3 and (72. Since 
log[z] is an increasing function of z, the same maximum likelihood estimates 
can be found by maximizing the logarithm of 'c. 

Since maximizing (3.15) with respect to {3 is equivalent to minimizing 
(y - X(3)'(y - X(3), the maximum likelihood estimate of {3 is the same 
as the least squares estimate; i.e., it is b = (X'X)-lX'y. The maximum 
likelihood estimate of (72, obtained by equating to zero the derivative of the 
log of the likelihood function with respect to (72 after substituting b for {3, 
is (see Exercise 3.5) 

!(y - Xb)'(y - Xb) = !e'e. 
n n 

(3.16) 

To obtain the maximum likelihood estimate of {3 under the constraint 
C{3 = '"1, we need to maximize (3.15) subject to C{3 = T This is equivalent 
to minimizing (y - X(3)'(y - X(3) subject to C{3 - '"1 = o. Thus, the 
maximum likelihood estimate /3 H of {3 under the hypothesis H is the same 
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as the constrained least squares estimate obtained in Section 2.12, p. 44, 
i.e., 

i3H = b + (X' X)-lC'[C(X' X)-lC'j-l(Cb - -y). 

The maximum likelihood estimate of a 2 is given by 

(3.17) 

Since 

and 

(y - Xb)'X(X'X)-lC'[C(X'X)-lC't1(Cb --y) 

= y'(I - X(X'X)-l X'jX(X'X)-lC'[C(X'X)-lC'j-l(Cb - -y) = 0, 

we get 

nah = (y - Xb)'(y - Xb) + (Cb - -y)'[C(X' X)-lC't1(Cb - -y). (3.18) 

The likelihood ratio test statistic for testing the hypothesis H : C(3--y = 
o versus A : C (3 - -y i:- 0 is given by 

A = maxA £((3, a 2 1Y) 
maxH £((3, a 2 1Y) 

where maxA £(,8, a 2 1Y) and maxH £(,8, a 2 1Y) are the maximum values of 
the likelihood function under the alternative A and the hypothesis H re­
spectively. These maximum values are obtained by substituting the maxi­
mum likelihood estimates of ,8 and a 2 under the two hypotheses into the 
respective likelihood function. Making these substitutions, we get 

Thus, 

max £(,8, a21Y) = (27ra~)-n/2 exp[-n/2]' 
A 

max£(,8,a2Iy) = (27rah)-n/2exp[-n/2j. 
H 

A = (~r) n/2 

= ((y - Xb)'(y - Xb) + (Cb - -y)'[C(X' X)-lC'j-l(Cb _ -y)) n/2 
(y - Xb)'(y - Xb) 

( (Cb - -y)'[C(X' X)-lC'j-l(Cb _ -y)) n/2 
= 1 + -'----....:....:,-:(y'----'-X~b ):-"-, (-:-y-_--'X=b::-7)'----.:....:.. 

and the hypothesis H is rejected for large values of A, or equivalently for 
large values of (3.13). 
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This test has the following important and pleasant property. Let 

Then 8 = 0 if and only if C j3 - '"Y = O. It can be shown (using the results in 
the next section) that this likelihood ratio test is uniformly most powerful 
for testing the hypothesis 8 = 0 versus 8 > 0; that is, no other test has a 
larger probability of rejecting the hypothesis when it is not true. 

3.4 *Distribution of Test Statistic 

In this section we show that under the assumption that the Ei'S are iid 
N(O, a 2 ), (3.13) has the F distribution. The proof consists of showing that 
the numerator and denominator are each a 2 times averaged chi-square vari­
ables and are independent (see Section B.5, p. 292). 

Since b = (X' X)-l X'y is a linear function of Yl,"" Yn' it follows from 
(2.29) that b rv N k +1(j3,a2 (X'X)-1). Hence, for an m x (k + 1) matrix C 
and a vector '"Y, 

(see Theorem B.3, p. 288) and, therefore, under H : Cj3 - '"Y = 0, 

[C(X'X)-lC'r l / 2 (Cb - '"Y) rv Nm(o, a 2 I). 

It follows that 

(3.19) 

where X;' denotes a chi-square distribution with m degrees of freedom. 
Now consider the denominator. By (2.13), e = Mt:., which is a linear 

function of El, ... , En. Hence, e rv Nn(o, a 2 M). We have seen in Section 2.3 
that M is symmetric and idempotent with rank n - k - 1. Thus, from 
Example B.6, p. 291, 

Under the hypothesis H : C j3 = '"Y, 

Cb - '"Y = Cb - Cj3 = C(X'X)-l[X'y - X'Xj3] 

= C(X'X)-lX'[y - Xj3] = C(X'X)-lX't:.. 

Thus, if P = X(X'X)-lC'[C(X' X)-lC,]-lC(X'X)-l X', we get from 
(3.19), Q = t:.' Pt:.. But since X'M = 0, we have PM = O. Hence, from 
Theorem B.6, given on Page 292, Q and e' e are independently distributed 
and under H (see Section B.5, Page 292) 

n-k-1 Q 
-----,- rv Fm n-k-l' 

m ee ' 
(3.20) 
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Similarly, it can be shown that under the alternative hypothesis A: C{j­
, =I- 0, the expression (n - k -1)m-1Q/e' e has a noncentral F distribution 
with (m, n - k - 1) degrees of freedom and noncentrality parameter 

Therefore, the power of the test can be calculated for specified values of 
82 , m, and n - k - 1. Tabulated values of non-central F distributions are 
available from statistical tables (see, for example, Tiku, 1975). 

3.5 Two Special Cases 

The test for the hypothesis (j(D) = ({Jl, ... ,(Jk)' = 0 against the alternative 
(j(D) =I- 0 is called for so often that several packages carry it out routinely. 
Obviously, this hypothesis implies that our model is of little value. In order 
to test it, we could have used (3.13) with C = (0, h), but it is more 
convenient to consider the centered model (2.40). The likelihood ratio test 
would reject the hypothesis for large values of 

The denominator is clearly the residual sum of squares (sometimes called 
the error sum of squares) divided by n - k - 1. Using (2.41), the numerator 
can be seen to be 

which is k- 1 times the sum of squares due to (j(D) - see (2.43). Since, 
obviously, 

it follows from (2.43) and Theorem B.6 of Appendix B that the error sum 
of squares and the sum of squares due to (j(D) are independent under nor­
mality. Therefore, (3.21) has an F distribution with k and n - k -1 degrees 
of freedom when € rv N (0, a 21) and (j(D) = o. 

Because of (2.43) the computation of the sums of squares is relatively 
easy. The corrected total sum of squares 2::~=1 (Yi - y)2 is easy to compute 
since, by (2.43), it is the sum of the error sum of squares and the sum of 
squares due to (j(D). The error sum of squares is just the sum of squares 
of the residuals. The sum of squares due to (j(D) can then be obtained 
by subtraction. This computational ease made tableaus such as that in 
Exhibit 3.1 useful computational devices in pre-computer days. However, 
even today, several package programs print such tableaus routinely, usually 
with an additional column. This column gives the minimum significance 
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Sum of Mean 
Source DF Squares Square F-value 

i3(0) k Ql = b(o)' Z' Zb(o) Qi = QI/k Qi/Q2 
Error n-k-1 Q2 = e'e Q2 = Q2/(n - k - 1) 

C. Total n-1 2:7=1 (Yi - y)2 

EXHIBIT 3.1: Tableau for Testing if All Coefficients Except the Intercept 
Are Zero's 

level at which the hypothesis could be rejected. This level is often referred 
to as a p-value. 

The test for each /3j being zero is also routinely carried out. Here m = 1 
and G(X'X)-IG' = GGG' reduces to gjj where G = (X'X)-1 = (gij). 
Since sg~f2 is the standard error of bj , (3.13) reduces to the square of 

(3.22) 

The expression (3.22), called the t-value of bj , has a t distribution with 
n - k - 1 degrees of freedom (Section B.5, p. 292). 

As for the F test just mentioned, the minimum level at which the hypoth­
esis /3j = 0 can be rejected is also printed. This level is called the p-value 
of bj . Notice that the probability is for a two-tailed test. If we are testing 
against a one-sided alternative (e.g., /31 > 0 or /31 < 0 instead of /31 =f. 0) 
we would halve the probability. If its p-value is less than 0:, we say bj is 
significant at level 0:. Words like 'quite significant', 'very significant', etc., 
essentially refer to the size of the p-value - obviously the smaller it is the 
more significant is the corresponding bj • 

3.6 Examples 

Example 3.1 (Continuation of Example 2.2, Page 31) 
Now let us return to some of the specific questions posed at the begin­
ning of this chapter. The test statistic (3.13) can usually be obtained from 
computer packages for most G and ,. As mentioned above, for the two 
cases where we wish to test if a particular /3j is zero and where we wish 
to test whether all the /3j's, except /30, are zeros, these tests are routinely 
carried out (without being asked for). The tests for individual /3j's being 
o have been carried out in Exhibit 2.3, p. 34. For example, the t-value 
corresponding to the hypothesis H : /31 = 0 is 5.461 and the p-value is 
.OOOL 

Computations to test H : i3(0) = 0 versus A : i3(0) =f. 0 are illustrated 
in Exhibit 3.2. We do not need to actually look at the tables since the 
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Sum of Mean 
Source DF Squares Square F-value p-value 

MODEL 8 3602.32 450.29 19.7 .0001 
ERROR 17 388.488 22.852 

C.TOTAL 25 3990.81 

EXHIBIT 3.2: Tableau for Testing if All Coefficients Except the Intercept Are 
Zero's for House Price Example 

probability of getting a value of F larger than the one obtained under H is 
also given. Here it is .0001, so that we can safely reject the hypothesis 

{31 = 0,{32 = 0, ... ,{3s = O. 

Hypoth. NUM/DEN DF F-Value p-value 

{35 = 5 142.5/22.85 1,17 6.235 .0231 
{36 - {31 = 0 69.60/22.85 1,17 3.046 .0990 

{32 = 0 138.2/22.85 1,17 6.049 .0249 
{35 = 5 & {3s = 5 132.18/22.85 2,17 5.784 .0121 

EXHIBIT 3.3: Some Tests of Hypotheses 

In other cases, the computation of (3.13) has to be asked for. Exhibit 3.3 
shows results for a number of tests on the model of Example 2.2. For each 
test the hypothesis H is given in the first column and the alternative is 
simply its negation. NUM and DEN are the numerator and denominator 
of (3.13); the other terms are obvious. • 

3.7 Comparison of Regression Equations 

Sometimes we are faced with the problem of testing if regression equations 
obtained from different data sets are the same against the alternative that 
they are different. Such problems typically arise when data on the same 
independent and dependent variables have been gathered for different time 
periods, different places or different groups of people. We illustrate below 
how such problems might be handled when there are two such equations; 
more than two equations can be handled in the same way. 

Let the two models be 

(3.23) 
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and 
(3.24) 

respectively, where Xl is n1 x p, X 2 is n2 x P and {31 and {32 are p­
dimensional vectors. Suppose we are willing to assume that the first r 
components of {31 and {32 are the same. There is no loss of generality here 
since we can permute the elements of {31 and {32 by permuting the columns 
of Xl and X 2. Write 

where (3(1) is r-dimensional and, obviously, {31 (2) and {32 (2) are of dimension 
(p - r). Partition Xl and X 2 in a corresponding way: 

Xl = (xi1) xi2»), X 2 = (X~l) X~2») 

where xi1) and X~l) have r columns each. Then (3.23) and (3.24) may be 
written as 

( 
(.1(1) ) 

Y1 = ( Xl (1) Xl (2») ;1(2) + £1 = Xl (1) (3(1) + Xl (2) {31 (2) + £1 

(3.25) 
and 

Define 

£ = ( :~ ) , 

( 
X(1) X(2) 0 

X - 1 1 
- X(1) 0 X(2) 

2 2 

Then it may readily be verified by multiplication that 

Y = X{3 + £ (3.27) 

is a combination of (3.25) and (3.26) Then, the hypothesis H : {31 (2) -

{32 (2) = ° is equivalent to H : C {3 = ° where 

C = (Op-r,r Ip-r -Ip-r): (p - r) x (2p - r), 

with the subscripts of the 0 and I denoting matrix dimension. Now the test 
can be carried out using (3.13). provided, of course, that £ ,...." N(o, (j2 I). 
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Example 3.2 
The data in Exhibits 3.4 and 3.5 show world record times in seconds for 
running different distances for men and women. Previous work has shown 
that a model of the form 

log( time) = {3o + (31 log( distance) (3.28) 

fits such data reasonably well. We would like to examine how the (3's com­
pare for men and women athletes. 

Dist. Time Dist. Time Dist. Time 
(m.) (sees.) (m.) (sees.) (m.) (sees.) 

100 9.9 1000 136.0 10000 1650.8 
200 19.8 1500 213.1 20000 3464.4 
400 43.8 2000 296.2 25000 4495.6 
800 103.7 3000 457.6 30000 5490.4 

5000 793.0 

EXHIBIT 3.4: Men's World Record Times for Running and Corresponding Dis­
tances 
SOURCE: Encyclopredia Britannica, 15th Edition, 1974, Micropredia, IX, p. 485. 
Reproduced with permission from Encyclopredia Britannica, Inc. 

Dist. Time Dist. Time Dist. Time 
(m.) (sees. ) (m.) (sees.) (m.) (sees.) 

60 7.2 200 22.1 800 117.0 
100 10.8 400 51.0 1500 241.4 

EXHIBIT 3.5: Women's World Record Times for Running and Corresponding 
Distances 
SOURCE: Encyclopredia Britannica, 15th Edition, 1974, Micropredia, IX, p. 487 
et seq. Reproduced with permission from Encyclopredia Britannica, Inc. 

Before embarking on the test it is perhaps interesting to examine each 
data set independently first. On running regressions for the two sets indi­
vidually we get 

log(time) -2.823 + 1.112Iog( dist.) 
(R2 = .9995,81 = .05), 

(.06) (.0078) 

and 

log(time) -2.696 + 1.112Iog( dist.) 
(R2 = .9968,82 = .087) 

(.183) (.0317) 
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for men and women respectively, where the parenthetic quantities under the 
coefficients are corresponding standard errors. Notice that the coefficients of 
log( distance) are surprisingly similar. (This phenomenon has been noticed 
before in both track and swimming ~ see Riegel, 1981.) Now let us test if 
(3's for men and women are the same. 

The design matrix X and the y vector that we need are 

log(9.9) 1 log(lOO) 0 0 
log(19.8) 1 log(200) 0 0 

y= log(5490.4) X= 1 log(30000) 0 0 
log(7.2) 0 0 1 log(60) 

log(241.4) 0 0 1 log(1500) 

Writing {31 = (,8lO , (311)' and {32 = ((320, (32d, we get as our vector of 
parameters (3 = ((3lO, (311, (320, (321)'. Our model is y = X{3 + € and least 
squares yields 

blO = -2.823(.0770) 

b11 = 1.112(.0097) 

b20 = -2.696(.1299) 

b21 = 1.112(.0224), 

where standard errors are given within parentheses, R2 = .9997 and s = 
.062. We wish to test if (3lO = (320 and (311 = (321; i.e., 

where 

H : C {3 = 0 versus A : C {3 -1= 0 

C = (1 0 -1 0) (1 1 ) o 1 0 -1 = 2, - 2 . 

This test yields an F -value of .5293, which is not even significant at a 40 
per cent level ~ therefore, we are unable to reject the hypotheses that 
(3lO = (320 and (311 = (321. 

Simply testing (3lO = (320 yields an F = .7130, which also makes it 
difficult to reject (3lO = (320' In testing (311 = (321 against (311 -1= (321 we get 
an F-value of .0001, which should come as no surprise and which, of course, 
is very strong evidence in favor of the hypothesis! 

Finally note that, although track times for men and women are usu­
ally different, here we could not reject their inequality (probably because 
of the small size of the data set for women, which resulted in large stan­
dard errors). This serves to demonstrate that if we are unable to reject a 
hypothesis it does not mean that it is true! • 
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3.8 Confidence Intervals and Regions 

Confidence intervals (C.I.) for individual {3j's can be obtained in a straight­
forward way from the distribution of (3~22). Some other confidence intervals 
and confidence regions that are often needed are presented in the sections 
below, the first two of which contain simple generalizations of the material 
of Section 1.10. 

3.8.1 C.l. FOR THE EXPECTATION OF A PREDICTED 

VALUE 

Let :Z:o = (xoo, XQl, . .. , XOk) represent a set of values of the independent 
variables, where Xoo = 1 if an intercept is present. Then the predicted 
value of Y at the point :Z:o is Yo = :z:ob. We can easily verify from (2.28) and 
(2.29) that under the Gauss-Markov conditions, 

E(yo) = :Z:0/3 

var (Yo) = :Z:o cov(b):z:o = a2 [:Z:o (X' X)-l:z:O]' 
(3.29) 

Hence, if Yl, ... ,Yn are normally distributed, 

and it follows that 
Yo - :Z:0/3 

S[:Z:o(X' X)-1:Z:0]1/2 

has a Student's t distribution with n - k - 1 degrees of freedom. Therefore, 
an (1- a) x 100 per cent C.1. for the mean predicted value :Z:0/3 is given by 

(3.30) 

where r = n - k - 1, and tr ,a/2 is the upper (1/2) a x 100 per cent point 
of the t distribution with r degrees of freedom. 

3.8.2 C.l. FOR A FUTURE OBSERVATION 

We have already seen future observations, in the simple regression case, in 
Section 1.10, p. 18. Here we examine the multiple regression case. Let Yo 
denote a future observation at the point :Z:o of the independent variables, 
i.e., Yo = :Z:0/3 + fO· Such a Yo is estimated by Yo = :z:ob. Typically, Yo 
is independent of the observations Yl, ... , Yn' Making this assumption, we 
can readily compute 

var (Yo - Yo) = var (Yo) + var (Yo) 
= a2 + a 2:z:0(X' X)-l:z:O = a2 [1 + :Z:o(X' X)-l:z:O] 

(3.31) 
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from (3.29). Since a 2 can be estimated by 8 2 and since under the Gauss­
Markov conditions, 

E{yo - Yo) = E{yo) - E{yo) = z~{J - z~{J = 0, 

it follows that 

s[1 + z~{X' X)-lzo)1/2 

has a t distribution with r = n - k - 1 degrees of freedom. Hence a (I -
a) x 100 per cent C.L for Yo is given by 

Yo ± tr,o:/2s[1 + z~{X' X)-lzoF/2. 

Example 3.3 (Continuation of Example 2.2, Page 31) 
A value of Yo corresponding to z~ = (I, 1000, ... ,1) has been computed in 
(2.18) on page 33. The variance of Yo and of Yo - Yo can be obtained from 
most (not all) packages, from which confidence intervals can be obtained. 
In SASI PROC REG (SAS, 1985b), approximate 95 per cent confidence 
intervals for Yo and Yo can be found, using the CLM and the CLI options, 
by appending the appropriate independent variable values to the data and 
declaring the dependent variable value as missing. For our example the 
intervals are approximately (59.1, 70.3) and (52.9, 76.5). • 

3.8.3 *CONFIDENCE REGION FOR REGRESSION 

PARAMETERS 

Sometimes we wish to consider simultaneously several !3j'S or several lin­
ear combinations of !3j's. In such cases, confidence regions can be found 
in a fairly straightforward way from (3.20) - assuming, of course, that 
the Gauss-Markov conditions hold and the f/S are normally distributed. 
Suppose we wish to find a confidence region for {J. Then setting C = I k+1 

in (3.20) and (3.19), and noting that S2 = {n - k -1)- l e'e, we get 

{k + 1)-IS-2{b - {J)'{X' X)(b - (J) rv Fk+I,n-k-l. 

Therefore, a (1- a) x 100 per cent confidence region for {J is an ellipsoidal 
region given by 

R = {{J : {b - {J)'{X' X){b - (J) ::; {k + l)s2 Fk+I,n-k-l,o:}' (3.32) 

The boundary for such a confidence region can be found by writing the 
equation corresponding to the inequality in (3.32) and solving it. Unfor­
tunately, such regions, unless they are two dimensional, are difficult to 

ISAS is a registered trademark of SAS Institute Inc., Cary, North Carolina 
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visualize. Consequently, it may be preferable on occasion to replace such a 
region by a less precise rectangular one using the Bonferroni inequality, as 
we discuss in the next section. 

3.8.4 *C.I. 's FOR LINEAR COMBINATIONS OF 

COEFFICIENTS 

In this section we present expressions for simultaneous (or joint) confidence 
intervals for f different linear combinations a~f3, ... , a~f3 of parameters 
f3 = (130, ... , 13k)'. We give below two different expressions. The first is 
usually better when the number f is small; the second when it is large. For 
each case we assume that the Gauss-Markov conditions hold and the fi'S 

are normally distributed. 
Using the Bonferroni inequality (see below) a simultaneous (1- a) x 100 

per cent C.L for a~f3, ... , a~f3 may be shown to be given by 

a~b±tr,a/(U)s[a~(X' X)-lai]1/2, 

where r = n - k - 1 and i = 1, ... ,f. (The Bonferroni inequality may be 
stated as follows: If E l , ... , Ek are k events, then 

l 

1- P{EI n··· n E l } S LP(Ef) 
i=l 

where Ef is the complement of Ei for i = 1, ... , f.) 
When f is large the rectangular confidence regions given above might 

become rather wide. Iff is such that tr,a/U 2: (k+1)1/2 F~~;,r,a (see (3.30)), 
it might be preferable to use the confidence region given by 

a~b±s(k + 1)1/2 pl/2 [a~(X' X)-la.]1/2 • k+l,r,a • •. 

In practice, unless f is quite small, it is desirable to compute both sets of 
intervals and then decide which is better. 



74 Chapter 3. Tests and Confidence Regions 

Problems 

Exercise 3.1: Consider the regression model 

Yi = {30 + {31 Xil + ... + {36 x i6 + Ei, where i = 1, ... , n 

and Ei'S are identically and independently distributed as N(O, (12). Define 
the matrix C and the vector 7, in the notation of Section 3.2, in order 
to test (against appropriate alternatives) each of the following hypotheses: 
(a) {31 = ... = {36 = 0, (b) {31 = 5{36, (c) {36 = 10, (d) {31 = {32, (e) {33 = 
{34 + {35. 

Exercise 3.2: Consider the two sets of cases 

and the two models 

for i = 1, ... , n, where Xi'S and Zi's are fixed constants and all 'f/i'S and 
Oi'S are independently distributed with zero means and common variance 
(12. By defining y, X, (3 and E appropriately, write the two equations given 
above as one regression model y = X(3 + E. 

Exercise 3.3: Consider two independent sets of observations. The first set 
of observations are taken on n subjects who were not given any medication 
and the model is assumed to be 

Yli = {30 + Eli, where i = 1, ... , n 

and Eil'S are iid N(O, (12). For the second set of observations, the ith obser­
vation was taken on a subject who received a dose Xi of a medication, and 
the model is assumed to be 

Y2i = {30 + {31 x i + E2i where i = 1, ... , n 

and E2i's are iid N(O, (12). 

1. Find the least squares estimates of {30 and {31 and their variances. 

2. Estimate (12. 

3. Write the test statistic for testing the hypothesis {31 = 0 against the 
alternative {31 > O. 

4. If the first set had nl independent observations and the second set 
had n2 ~ nl independent observations, what changes would you need 
to make? 
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Exercise 3.4: Suppose we need to compare the effects of two drugs each 
administered to n subjects. The model for the effect of the first drug is 

Y1i = /30 + /31 X li + Eli 

while for the second drug it is 

and in each case i = 1, ... , n and Xl = X2 = o. Assume that all observations 
are independent and that for each i both Eli and E2i are normally distributed 
with mean 0 and variance 0'2. 

1. Obtain the least squares estimator for {3 = (/30, /31, /32)' and its co­
variance matrix. 

2. Estimate 0'2. 

3. Write the test statistic for testing /31 = /32 against the alternative 
that /31 i- /32. 

Exercise 3.5: *For the likelihood function (3.15), find the maximum like­
lihood estimate of 0'2. 

Exercise 3.6: Consider the two models Y1 = X 1{31 +101 and Y2 = X 2{32+€2 

where the Xi'S are ni x P matrices. Suppose that €i rv N(o,O';I) where 
i = 1,2 and that 101 and 102 are independent. 

1. Assuming that the ai's are known, obtain a test for the hypothesis 
{31 = {32· 

2. * Assume that 0'1 = 0'2 but they are unknown. Derive a test for the 
hypothesis {31 = (32· 

Exercise 3.7: Let Y1 = X 1{31 + 101 and Y2 = X 2{32 + 102 where Y1 and 
Y2 are independently distributed, E(€l) = 0, COV(€l) = 0'2In1 , E(€2) = 0, 
COV(€2) = 0'2In2' and {31 and {32 are PI and P2 vectors respectively. Let 

( (3 (1) ) ( (3 (1) ) 
{31 = {3~ (2) and {32 = {3: (2) 

where {31 (1) and (32(1) are r-vectors (which makes {31 (2) a (PI - r)-vector 
and (32(2) a (P2 - r)-vector). Write the two models above as one regression 
model and give a procedure for testing H : {31 (1) = {32 (1). 

Exercise 3.8: Consider the model in Exercise 3.6 and assume that 0'1 = 
0'2 = a with a unknown (notice that the situation is akin to that in Sec­
tion 3.7 with r = 0). 
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1. Show that the test statistic for H : {31 = {32 obtained using (3.13) 
can be written as 

where 
(nl + n2 - 2p)s2 = y~MIYl + y~M2Y2' 

and for i = 1,2, 

2. Show that 

[(X~Xl)-1 + (X~X2)-I]-1 

= X~Xl(X'X)-IX~X2 = X~X2(X'X)-IX~Xl' 

where 

3. Let y = (yi,y~)', 13 = (X'X)-IX'y and, for i = 1,2, let iii = Xij3. 
Show that 

4. Prove that 

5. Prove that 

Exercise 3.9: 'Show that the numerator in part 1 of Exercise 3.8 is equal 
to each of the expressions in parts 1, 2 and 3 below. 

1. (131 - j3),(X{Xd(j31 - 13) + (132 - j3)'(X~X2)(j32 - 13) 
[Hint: Use the results in parts 2, 4 and 5 of Exercise 3.8.] 

2. y'My - yiM1Yl - y~M2Y2 where M = I n,+n2 - X(X' X)-1 X' 

[Hint: Use the results in part 1 above and part 3 of Exercise 3.8.] 

3. (Yl - Ih)'Xd(X{Xd- 1 + (X~X2)-I]X{(YI - ill) 

[Hint: Use the results in part 1 above and part 3 of Exercise 3.8.] 



Problems 77 

Exercise 3.10: Suppose a regression model Yi = f30 + f3lXil + f32xi2 + 
f33xi3 + Ei, where 1 = 1, ... ,10 and E/S are independent and identically 
distributed as N(O, a 2 ), is to be fitted to the following data: 

Here 

and 

Y 

60.5 
87.5 
48.2 
40.6 
42.7 

2.8204 
-.0284554 
-.0758535 
-.0264434 

Xl 

14 
10 
20 
12 
13 

X2 X3 Y 

25 28 66.3 
29 18 39.8 
22 16 83.8 
17 29 38.2 
17 12 15.0 

-.0284554 
.00256363 

.000971434 
-.00165374 

Xl X2 X3 

13 24 20 
33 24 30 
15 30 26 
12 15 14 
31 13 30 

-.0758535 
.000971434 

.00363832 
-.000876241 

, 8084 ( 
522.6) 

X Y = 12354.9 . 
11413.6 

-.0264434 ) 
-.00165374 

-.000876241 
.00331749 

1. At a 5 per cent level of significance, test the hypothesis that f31 

f32 = f33 = 0 against the alternative that f3j =I 0 for at least one j. 

2. Test the hypothesis that f32 = f33 against the alternative that f32 =I f33 

at a 5 per cent level. 

3. Find a 95 per cent joint confidence region for f3l and f32 - f33. 

Exercise 3.11: Exhibit 3.6 provides data on salaries (Y84, Y83) for 1984 
and 1983 for chairmen of the 50 largest corporations in the Chicago area. 
Data are also provided on their age (AGE), the number of shares they hold 
(SHARES) and the total revenues (REV) and the total income (INC) of 
the companies they head. Based on the data write a report on the factors 
that affect the raises given company chairmen. 

Exercise 3.12: Using (3.22) explain why significance levels of SI and SP 
increased so much when we went from the model of part 1 of Exercise 2.18 
to that of part 2. 

Exercise 3.13: (a) For the model given in part 1 of Problem 2.20, test 
each coefficient to see if it could be zero against the alternative that it is 
not zero, at a significance level of 5 percent. (All the numbers you will need 
are routinely provided by most packages.) Write a short note explaining 
why you think the variables that are significant are so. 
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Y84 Y83 SHARES REV INC AGE 

1481250 1425000 101037 38828 1454.8 65 
1239402 1455350 5713459 558.4 29.7 44 
1205181 1057707 18367 12595 479.0 60 
1012500 862500 134713 4233.6 108.3 66 
980000 871056 7896 8321.5 234.1 53 
921213 817687 48722 3104 402.6 56 
915600 1092570 78513 7000 188.0 47 
912500 833000 73120 1245.8 161.6 56 
863000 372645 57723 6661.8 490.8 57 
882347 736883 38436 3429.8 38.0 55 
890000 838462 8247 9758.7 455.8 57 
815000 698333 22135 2001.8 109.8 55 
748189 647988 50612 28998 2183.0 59 
740500 728663 2331816 4907.0 117.7 66 
706565 502400 22432 921.6 52.7 63 
698923 630000 113906 1468.1 94.2 54 
661958 660000 53162 1397.0 89.3 61 
654936 350004 23925 875.8 36.7 50 
620000 573500 205046 33915.6 206.1 62 
607083 483542 224632 4159.7 145.5 64 
606977 475176 25369 3344.1 134.8 46 
583437 507036 56713 2139.8 36.6 62 
567000 498960 379860 1314.8 142.5 53 
566446 488543 139200 1794.4 103.0 59 
559266 534004 60450 3738.8 141.0 57 
551516 454752 232466 2744.6 85.4 49 
551154 550000 63220 1041.9 66.4 58 
550000 550000 100112 5534.0 387.0 62 
545908 518177 25172 1814.5 134.0 50 
545000 457375 13200 1374.6 123.4 67 
540000 462000 92200 1070.8 41.7 65 
499991 469873 180035 3414.8 389.1 52 
495915 391035 1036286 1059.3 6.9 57 
490000 372500 33002 267.6 16.8 54 
489419 434008 1558377 348.6 4.5 65 
480000 274820 146407 1365.5 106.2 56 
475000 508333 40736 4802.0 55.0 66 
473216 300000 2000 1177.2 27.2 47 
465000 645000 72786 1800.4 29.1 50 
464577 425654 37650 571.6 17.8 64 
461250 350250 4826 1716.0 63.6 45 
459352 402735 96431 592.3 60.0 54 
455998 420422 72226 923.1 26.5 62 
451667 371400 107233 590.5 39.7 52 
450192 337533 1510150 437.8 13.8 58 
450010 267510 2516958 252.2 38.2 47 
450000 387500 3346 496.6 31.7 69 
434487 313500 307120 220.0 19.0 56 
432667 383333 26163 845.1 36.6 57 
430000 396000 4022460 1287.7 162.2 47 

EXHIBIT 3.6: Data on Corporations and Corporation Chairmen 
SOURCE: Reprinted with permission from the May 13, 1985, issue of Crain's 
Chicago Business. © 1985 by Crain's Communications, Inc. The data shown are 
a portion of the original table. 
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(b) We know that doctors tend to congregate in urban areas. For the model 
you constructed in part 3 of Problem 2.20 test the hypothesis that the 
coefficients of all variables other than UR are all zero against the alternative 
that they are not all zero. 
(c) For the model in part 4 of Problem 2.20, test if any variable in the 
model you constructed other than divorce rate affects marriage rate. 

Exercise 3.14: Moore (1975) reported the results of an experiment to 
construct a model for total oxygen demand in dairy wastes as a function of 
five laboratory measurements (Exhibit 3.7). Data were collected on sam­
ples kept in suspension in water in a laboratory for 220 days. Although 
all observations reported here were taken on the same sample over time, 
assume that they are independent. The measured variables are: 

y log( oxygen demand, mg oxygen per minute) 
Xl biological oxygen demand, mg/liter 
X2 total Kjeldahl nitrogen, mg/liter 
X3 total solids, mg/liter 
X4 total volatile solids, a component of X3, mg/liter 
X5 chemical oxygen demand, mg/liter 

1. Fit a multiple regression model using y as the dependent variable and 
all xi's as the independent variables. 

2. Now fit a regression model with only the independent variables X3 

and X5. How do the new parameters, the corresponding value of R2 
and the t-values compare with those obtained from the full model? 

Exercise 3.15: Using the data of Exhibit 1.19 test if the slopes of least 
squares lines expressing price in terms of number of pages for paperback 
and cloth-bound books are different. (We know the intercepts are different.) 
Examine the residuals from the model you used to carry out the test. Do 
you feel that any of the conditions required for the test have been violated? 
If so, which ones? 

Most of the data are for books published in 1988. However, two of the 
cloth-bound books were published in the 1970's, one of the paperbacks in 
1989 and another in 1984. Can you guess which ones? Delete these points 
and repeat the problem described in the last paragraph. 

If you were doing this problem for a client, what model(s) would you 
deliver? 

Exercise 3.16: The data in Exhibit 3.8 are for student volunteers who 
were given a map reading ability test (scores given in column marked sc) 
and then asked to find routes to given destinations on a transit route map. 
Their ability in doing this was scored (y). Test if the relationship between 
the two scores is the same for transit users as it is for non-users against the 
alternative that the relationships are different. 
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Day Xl X2 X3 X4 X5 Y 

0 1125 232 7160 85.9 8905 1.5563 
7 920 268 8804 86.5 7388 0.8976 

15 835 271 8108 85.2 5348 0.7482 
22 1000 237 6370 83.8 8056 0.7160 
29 1150 192 6441 82.1 6960 0.3130 
37 990 202 5154 79.2 5690 0.3617 
44 840 184 5896 81.2 6932 0.1139 
58 650 200 5336 80.6 5400 0.1139 
65 640 180 5041 78.4 3177 -0.2218 
72 583 165 5012 79.3 4461 -0.1549 
80 570 151 4825 78.7 3901 0.0000 
86 570 171 4391 78.0 5002 0.0000 
93 510 243 4320 72.3 4665 -0.0969 

100 555 147 3709 74.9 4642 -0.2218 
107 460 286 3969 74.4 4840 -0.3979 
122 275 198 3558 72.5 4479 -0.1549 
129 510 196 4361 57.7 4200 -0.2218 
151 165 210 3301 71.8 3410 -0.3979 
171 244 327 2964 72.5 3360 -0.5229 
220 79 334 2777 71.9 2599 -0.0458 

EXHIBIT 3.7: Data on Oxygen Demand in Dairy Wastes 
SOURCE: Moore (1975). Reproduced with permission of the author. 

Exercise 3.17: Consider the data given in Problem 3.14. Suppose the 
model is 

where i = 1, ... , nand € = (1'1"'" En)' '" N(o, (72 In). 

1. Test the hypothesis /32 = /34 = 0 at the 5 per cent level of significance. 

2. Find a 95 per cent C.l. for /31, 

3. Find a 95 per cent C.l. for /33 + 2/35' 

Exercise 3.18: It has been conjectured that aminophylline retards blood 
flow in the brain. But since blood flow depends also on cardiac output 
(Xl) and carbon dioxide level in the blood (X2), the following models were 
postulated: 

Without aminophylline: yY) = /3 + /31Xi1 (1) + /32Xi2(1) + fi(l) 

With aminophylline: Yi(2) = /30 + /31Xi1 (2) + /32Xi2(2) + fi(2) 

Using the data of Exhibit 3.9 test, at a 5% level, the hypothesis /3 = /30 

against the alternative that /3 > /30 assuming the observations are all in­
dependent. Actually the observations are not independent: Each row of 
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Non-users Users 
y sc y sc 

63 2 75 3 
62 3 70 3 
70 3 99 9 
98 9 80 2 
85 7 70 4 
89 8 70 7 
65 4 73 7 
71 4 65 4 
78 5 60 5 
65 3 70 4 

EXHIBIT 3.8: Map Reading Test Scores and Route Finding Scores 
SOURCE: Prof. Siim Soot, Department of Geography, University of Illinois at 
Chicago. 

No aminophylline With aminophylline 

Xl X2 Y Xl X2 Y 
265 32 9.2 252 35 19.1 
348 35 19.3 411 35 20.1 
244 43 16.9 229 36 08.1 
618 41 22.1 761 29 35.6 
434 44 15.6 541 40 22.1 
432 28 10.9 313 38 24.7 
790 48 16.7 873 52 21.0 
245 43 13.0 359 45 14.9 
348 36 20.9 433 32 18.3 

EXHIBIT 3.9: Blood Velocity Data 
SOURCE: Tonse Raju, M.D., Department of Neonatology, University of Illinois 
at Chicago. 

Exhibit 3.9 represents the same subject. Now how would you test the hy­
pothesis? 

Exercise 3.19: In rural India, is the relation between IMR and PQLl 
different for males and females? How about urban India? (Use the data in 
Exhibit 1.20.) 

Exercise 3.20: For a density of 100 vehicles per mile, what is the predicted 
speed (Example 1.1, p. 2)? Find a 95 per cent confidence interval for it and 
also one for the corresponding future observation. Use the model with both 
density and its square. 
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Exercise 3.21: Suppose a person has a house to sell in the area from which 
the data of Exhibit 2.2, p. 32, were gathered. The house has 750 square feet 
of space, 5 rooms, 2 bedrooms, 1.5 baths, storm windows, a I-car garage, 
1 fireplace and a 25 front-foot lot. What can you tell him about how much 
he could expect to get for the house? 

Exercise 3.22: In a study of infant mortality, a regression model was 
constructed using birth weight (which is a measure of prematurity, and a 
good indicator of the baby's likelihood of survival) as a dependent variable 
and several independent variables, including the age of the mother, whether 
the birth was out of wedlock, whether the mother smoked or took drugs 
during pregnancy, the amount of medical attention she had, her income, 
etc. The R2 was .11, but each independent variable was significant at a 1 
per cent level. An obstetrician has asked you to explain the significance of 
the study as it relates to his practice. What would you say to him? 

Exercise 3.23: For the house price example (Example 2.2, p. 31), ob­
tain a 95 per cent (elliptical) confidence region for the coefficients of RMS 
and BDR. Obtain the corresponding rectangular region using the Bonfer­
roni Inequality. Display both on the same graph paper and write a short 
paragraph comparing the two. 



CHAPTER 4 

Indicator Variables 

4.1 Introduction 

Indicator or dummy variables are variables that take only two values -
o and 1. Normally 1 represents the presence of some attribute and 0 its 
absence. We have already encountered such variables in Example 2.2, p. 31. 
They have a wide range of uses which will be discussed in this chapter. We 
shall mainly be concerned with using them as independent variables. In 
general, their use as dependent variables in least squares analysis is not 
recommended. Nonetheless, we shall consider the topic further in the final 
section of this chapter. 

4.2 A Simple Application 

To see the role dummy variables can play, consider the simplest case where 
we have a single independent variable, XiI, which is a dummy, i.e., the 
model 

where 

and 

Yi = (30 + (31Xil + fi i = 1, ... ,n 

when i = 1, ... ,nl 

when i = nl + 1, ... ,n, 

(4.1) 

f/S are iid N(O,a2 ), (4.2) 

i.e., f'S are independent and identically distributed as N(O, a2). Let 11-1 = (30 
and 11-2 = (30 + (31. Then (4.1) becomes 

i = 1, ... , nl 

i = nl + 1, ... , n. 
(4.3) 

This is the model for the familiar two-sample testing problem encountered 
in a first course in statistics, where we would use the two-sample t test 
to test H : 11-1 = 11-2 against, say, A : 11-1 -I=- 11-2. Using model (4.1), the 
equivalent test would consist of testing H : (31 = 0 against A : (31 -I=- 0 and 
this would give identical answers (see Problem 4.2). 

Notice that we have two means but only one indicator variable, the pa­
rameter of which is a difference of means. Suppose, instead, we used a 
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second indicator variable Xi2 which takes the value 1 for i = 1, ... , n1 and 
zero otherwise. Then the corresponding design matrix X would be 

o 

where 1n is a vector of length n consisting only of 1 'so Since the columns 2 
and 3 would sum up to column 1, we would get a singular matrix. While 
such a design matrix X can be used, X' X is not non-singular and param­
eter estimates b must be based on a generalized inverse (X' X) - of X' X. 
Therefore, b(= X'X)- X'y) is not unique but testing of H : /-t1 = /-t2 vs. 
A : /-t1 -f:. /-t2 is still possible. 

Year(t) '62 '63 '64 '65 '66 '67 '68 '69 '70 '71 
Deaths (Zt) per 108 4.9 5.1 5.2 5.1 5.3 5.1 4.9 4.7 4.2 4.2 

vehicle-miles 
DFRt=Zt - Zt-1 .2 .1 -.1 .2 -.2 -.2 -.2 -.5 .0 

EXHIBIT 4.1: Traffic Fatality Data for Illinois 
SOURCE: Illinois Department of Transportation (1972). 

Example 4.1 
Exhibit 4.1 presents some data on traffic deaths in Illinois. We wish to test 
if the annual increases (D FRt ) in deaths per 100 million vehicle miles before 
1966 are different from the rate after 1966, when there was an increase in 
awareness of traffic safety and many traffic safety regulations went into 
effect. The dependent variable is clearly DFRt and the values Xtl of the 
independent variable Xl are 

000011111. 

On applying a linear least squares package, we get Exhibit 4.2. 
Obviously, we wish to test H : (31 = a vs. A : (31 -f:. a and such a test is 

routinely carried out by most package programs. In this case, since there 
is only one independent variable, the t test shown in the upper part of 
Exhibit 4.2 and the F test shown in the lower part yield identical probabil­
ities. The reader might wish to verify that applying the usual two-sample 
t test also yields the same t-value. • 

4.3 Polychotomous Variables 

Indicator variables, since they take only two values, may be called dichoto­
mous variables. Variables taking a finite number of values - but more than 
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Variable bj s.e.(bj ) t(bj ) p-value 

Intercept .10 0.0819 1.220 .2618 
Xl -.32 0.1099 -2.911 .0226 

R2 = .5476 R~ = .4830 s = .1639 

Sum of Mean 
Source DF Squares Square F value p-value 

MODEL 1 .2276 .2276 8.473 .0226 
ERROR 7 .1880 .0269 

C.TOTAL 8 .4156 

EXHIBIT 4.2: Result of Applying a Least Squares Package Program to Illinois 
Traffic Data 

two - may be called polychotomous variables. An example of a polychoto­
mous variable is the variable 'ownership' which may take the three values, 
'public', 'private for-profit' and 'private not-for-profit' (see Example 4.2 be­
low). Another example is a response to a questionnaire with values 'strongly 
agree', 'agree', 'disagree', 'strongly disagree'. Such polychotomous variables 
are sometimes called factors and their values are called levels. 

While polychotomous variables are usually qualitative (as in the exam­
ples just mentioned), they are sometimes useful in the study of numerical 
variables. For example, in a study of the effect on birth weight of chil­
dren, the variable 'number of cigarettes consumed by the mother during 
pregnancy' may be coded into categories (e.g., 0, 1-15, > 15). Often ordi­
nal variables are treated as polychotomous variables although no order is 
assumed for the levels of such variables. 

Consider now a case where we have a single factor with p levels 1, ... ,p. 
For level 1, let there be nl observations YI, ... , Yn,; for level 2, let there be 
n2 - nl observations; and so on. Then we have the model: 

{ 

J.lI + ti, 

Yi = ~.2. ~ ~~' .. 
J.lP + ti, 

i = 1, ... , nl 

i = nl + 1, ... , n2 
( 4.4) 

and assume that (4.2) still holds. Notice that here we have NI = nl ob­
servations with mean J.lI~2 = n2 - nl observations with mean J.l2, ... , 
Np = np - np-l observations with mean J.lP" If we wished to see if our 
polychotomous variable affected the dependent variable at all, we would 
test 

H : J.lI = J.l2 = ... = J.lP 

against A : J.li :f:. J.lj for at least one pair i, j with i :f:. j. 
(4.5) 
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Let 
(30 = 111 and (3j = Ilj+! - 111 for j = 1,2, ... ,p - 1. (4.6) 

N ow define XiI, ... ,Xip-1 as follows: 

Xij = {~ if i = nj + 1, ... ,nj+! 

otherwise 

where j = 1, ... ,p - 1. Then (4.4) becomes 

(4.7) 

with i = 1, ... , n. This is a multiple regression model. Notice that the 
reparameterization (4.6) to convert (4.4) into a regression model format is 
far from unique. A slightly different one is illustrated in Example 4.2. 

Notice also that here too, as in Section 4.2, and for much the same reasons 
we have one fewer indicator variable than the number of means. If we had 
more than one factor, then for each factor we would usually need one less 
indicator variable than number of levels. Obviously, the hypothesis (4.5) is 
equivalent to the hypothesis (3j = 0 for j = 1, ... ,p - 1. 

Service Psychometric Scores (QUAL) 

Public 61.59,79.19,68.89,72.16,70.66,63.17, 
53.66, 68.69, 68.75, 60.52, 68.01, 73.06, 
55.93, 74.88, 62.55, 69.90, 66.61, 63.80, 
45.83, 64.48, 58.11, 73.24, 73.24, 69.94 

Private 76.77, 68.33, 72.29, 69.48, 59.26, 67.16, 
Non-profit 71.83, 64.63, 78.31, 61.48 

Private 71.77,82.92, 72.26, 71.75, 67.95, 71.90 

EXHIBIT 4.3: Measures of Quality for Agencies Delivering Transportation for 
the Elderly and Handicapped 
SOURCE: Slightly modified version of data supplied by Ms. Claire McKnight of 
the Department of Civil Engineering, City University of New York. 

Example 4.2 
Transportation services for the elderly and handicapped are provided by 
public, private not-for-profit and private for-profit agencies (although in 
each case, financial support is mainly through public funding). To see if 
the quality of the services provided under the three types of ownership 
was essentially the same, a scale measuring quality was constructed using 
psychometric methods from results of questionnaires administered to users 
of such services. Each of several services in the State of Illinois was scored 
using this scale. Exhibit 4.3 shows the score for each agency. 
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QUAL Xl X2 QUAL Xl X2 

61.59 0 0 58.11 0 0 
79.19 0 0 73.23 0 0 
68.89 0 0 73.12 0 0 
72.16 0 0 69.94 0 0 
70.66 0 0 76.77 1 0 
63.17 0 0 68.33 1 0 
53.70 0 0 72.29 1 0 
68.69 0 0 69.48 1 0 
68.75 0 0 59.26 1 0 
60.52 0 0 67.16 1 0 
68.01 0 0 71.89 1 0 
73.62 0 0 64.63 1 0 
55.93 0 0 78.31 1 0 
74.88 0 0 61.48 1 0 
62.58 0 0 71.77 1 1 
69.90 0 0 82.92 1 1 
66.61 0 0 72.26 1 1 
63.80 0 0 71.75 1 1 
45.83 0 0 67.95 1 1 
65.48 0 0 71.90 1 1 

EXHIBIT 4.4: Values of Xil'S and Xi2'S and Corresponding Values of QUAL 

The dependent variable QUAL and the independent variables Xl and X 2 

are shown in Exhibit 4.4. Notice that the definition of the independent vari­
ables is slightly different from that given by (4.6), although the latter would 
have worked about as well. Here it made sense to first distinguish between 
private and public and then between for-profit and not-for-profit. Portions 
of the output from a least squares package are shown in Exhibit 4.5. Since 
we wish to test the hypothesis that coefficients of Xl and X2 are both zero 
against the alternative that at least one is not equal to zero, the value of 
the appropriate statistic is the F-value 2.51, which shows that we can reject 
the hypothesis at a 10 per cent level but not at a 5 per cent level. We also 
see that the least squares estimate for the mean level of quality of public 
services (since this level corresponds to Xl = 0 and X2 = 0) is about 
66.18. For private non-profit systems the estimated mean quality index 
rises by about 2.78 and the quality index for for-profit organizations rises 
an additional 4.13. However, neither factor is significant at any reasonable 
level. 

Given the nature of the results obtained, one might be tempted to con­
jecture that if more privately run services were represented in the data set, 
stronger results might have been obtained. If this problem had been brought 
to us by a client, we would then have recommended that they increase the 
size of the data-set. While on the subject of making recommendations to 
clients, we would also suggest that the client look into the possibility of 
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finding other independent variables (e.g., was the driver a volunteer? Was 
the transportation service the main business of the provider? etc.), which 
by reducing s might help achieve significance. _ 

Sum of Mean 
Source DF Squares Square F value p-value 

MODEL 2 243.81 121.91 2.511 0.0950 
ERROR 37 1796.58 48.56 

C. TOTAL 39 2040.40 

Variable bj s.e.(bj ) t(bj ) p-value 

Intercept 66.18 1.422 46.5 0.0001 
Xl 2.78 2.623 1.060 0.2963 
X2 4.13 3.598 1.148 0.2583 

R2 = .1195 R~ = .0719 s = 6.968 
EXHIBIT 4.5: Analysis of Variance Table and Parameter Estimates for Quality 
Data 

4.4 Continuous and Indicator Variables 

Mixing continuous and dichotomous or polychotomous independent vari­
ables presents no particular problems. In the case of a polychotomous vari­
able, one simply converts it into a set of indicator variables and adds them 
to the variable list. 

Example 4.3 
The house-price data of Exhibit 2.2, p. 32, were collected from three neigh­
borhoods or zones; call them A, Band C. For these three levels we need to 
use two dummy variables. We chose 

L1 = {~ 

L2 = {~ 

if property is in zone A 

otherwise 
if property is in zone B 

otherwise. 

Obviously, if L1 = 0 and L2 = 0, the property is in C. Data for L1 and 
L2 are also presented in Exhibit 2.2. A portion of the output using these 
variables is given in Exhibit 4.6. As the output shows, if two identical houses 
were in zones A and C, the former would cost an estimated $2700 more 
and a property in zone B would cost $5700 more than an identical one in 
zone C. Notice that simply comparing the means of house values in two 
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Variable bj s.e.(bj ) t(bj ) p-value 

Intercept 16.964 4.985 3.403 0.0039 
FLR 0.017 .0032 5.241 0.0001 
RMS 3.140 1.583 1.984 0.0659 
BDR -6.702 1.807 -3.708 0.0021 
BTH 2.466 2.462 1.002 0.3323 
GAR 2.253 1.451 1.553 0.1412 
LOT 0.288 0.127 2.258 0.0393 
FP 5.612 3.059 1.835 0.0865 
ST 10.017 2.318 4.320 0.0006 
Ll 2.692 2.867 0.939 0.3626 
L2 5.692 2.689 2.117 0.0514 

R2 = .9258 R~ = .8764 s = 4.442 
EXHIBIT 4.6: Output for House Price Data When Ll and L2 Are Included 

areas would give us a comparison of house prices in the areas, not the price 
difference between identical houses. The two comparisons would be quite 
different if, say, on the average, houses in one of the two areas were much 
larger than in the other. For this reason, had we included only Ll and L2 
in the model, and no other variables, the meaning of the coefficients would 
be quite different. 

If we wished to test if location affects property values, we would test 
the hypothesis that the coefficients of Ll and L2 are both zero against the 
alternative that at least one of the coefficients is non-zero. The value of the 
F test statistic turns out to be 2.343 for which the p-value is .13. • 

4.5 Broken Line Regression 

Exhibit 4.9 illustrates a plot of points which would appear to require two 
lines rather than a single straight line. It is not particularly difficult to 
fit such a 'broken line' regression. Let us assume the break occurs at the 
known value x of the independent variable and define 

Then the model 

if Xil > x 
if Xil S; x. 

(4.8) 

suffices, as can be readily verified. Situations when x is treated as an un­
known can be handled using nonlinear regression (see Appendix C, partic­
ularly Example C.4, p. 313). 
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Obs Country LIFE INC Obs Country LIFE INC 

1 AUSTRALIA 7l.0 3426 52 CAMEROON 41.0 165 
2 AUSTRIA 70.4 3350 53 CONGO 41.0 281 
3 BELGIUM 70.6 3346 54 EGYPT 52.7 210 
4 CANADA 72.0 4751 55 EL SALVADOR 58.5 319 
5 DENMARK 73.3 5029 56 GHANA 37.1 217 
6 FINLAND 69.8 3312 57 HONDURAS 49.0 284 
7 FRANCE 72.3 3403 58 IVORY COAST 35.0 387 
8 WEST GERMANY 70.3 5040 59 JORDAN 52.3 334 
9 IRELAND 70.7 2009 60 SOUTH KOREA 61.9 344 

10 ITALY 70.6 2298 61 LIBERIA 44.9 197 
11 JAPAN 73.2 3292 62 MOROCCO 50.5 279 
12 NETHERLANDS 73.8 4103 63 PAPUA 46.8 477 
13 NEW ZEALAND 71.1 3723 64 PARAGUAY 59.4 347 
14 NORWAY 73.9 4102 65 PHILLIP PINES 51.1 230 
15 PORTUGAL 68.1 956 66 SYRIA 52.8 334 
16 SWEDEN 74.7 5596 67 THAILAND 56.1 210 
17 SWITZERLAND 72.1 2963 68 TURKEY 53.7 435 
18 BRITAIN 72.0 2503 69 SOUTH VIETNAM 50.0 130 
19 UNITED STATES 71.3 5523 70 AFGHANISTAN 37.5 83 
20 ALGERIA 50.7 430 71 BURMA 42.3 73 
21 ECUADOR 52.3 360 72 BURUNDI 36.7 68 
22 INDONESIA 47.5 110 73 CAMBODIA 43.7 123 
23 IRAN 50.0 1280 74 CENTRAL AFRICAN 34.5 122 
24 IRAQ 51.6 560 REPUBLIC 
25 LIBYA 52.1 3010 75 CHAD 32.0 70 
26 NIGERIA 36.9 180 76 DAHOMEY 37.3 81 
27 SAUDI ARABIA 42.3 1530 77 ETHIOPIA 38.5 79 
28 VENEZUELA 66.4 1240 78 GUINEA 27.0 79 
29 ARGENTINA 67.1 1191 79 HAITI 32.6 100 
30 BRAZIL 60.7 425 80 INDIA 41.2 93 
31 CHILE 63.2 590 81 KENYA 49.0 169 
32 COLOMBIA 45.1 426 82 LAOS 47.5 71 
33 COSTA RICA 63.3 725 83 MADAGASCAR 36.0 120 
34 DOMINICAN REP. 57.9 406 84 MALAWI 38.5 130 
35 GREECE 69.1 1760 85 MALI 37.2 50 
36 GUATEMALA 49.0 302 86 MAURITANIA 41.0 174 
37 ISRAEL 7l.4 2526 87 NEPAL 40.6 90 
38 JAMAICA 64.6 727 88 NIGER 41.0 70 
39 MALAYSIA 56.0 295 89 PAKISTAN 51.2 102 
40 MEXICO 61.4 684 90 RWANDA 41.0 61 
41 NICARAGUA 49.9 507 91 SIERRA LEONE 41.0 148 
42 PANAMA 59.2 754 92 SOMALIA 38.5 85 
43 PERU 54.0 334 93 SRI LANKA 65.8 162 
44 SINGAPORE 67.5 1268 94 SUDAN 47.6 125 
45 SPAIN 69.1 1256 95 TANZANIA 40.5 120 
46 TRINIDAD 64.2 732 96 TOGO 35.0 160 
47 TUNISIA 51.7 434 97 UGANDA 47.5 134 
48 URUGUAY 68.5 799 98 UPPER VOLTA 31.6 62 
49 YUGOSLAVIA 67.7 406 99 SOUTH YEMEN 42.3 96 
50 ZAMBIA 43.5 310 100 YEMEN 42.3 77 
51 BOLIVIA 49.7 193 101 ZAIRE 38.8 118 

EXHIBIT 4.7: Data on Per-Capita Income (in Dollars) and Life Expectancy 
SOURCE: Leinhardt and Wasserman (1979), from the New York Times (Septem­
ber, 28, 1975, p. E-3). Reproduced with the permission of the New York Times. 
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Example 4.4 
Usually poorer countries (i.e., those with lower per capita incomes) have 
lower life expectancies than richer countries. Exhibit 4.7 gives life expectan­
cies (LIFE) and per capita incomes (INC) in 1974 dollars for 101 countries 
in the early 70's. Exhibit 4.8 shows a plot which is difficult to read. Tak­
ing logarithms of income 'spreads out' the low income points and (see 
Exhibit 4.9) we discern a pattern that seems to consist of two separate 
lines: one for the poorer countries, where LIFE increases rapidly with LINC 
(= log (INC) ), and another for the richer countries, where the rate of growth 
of life expectancy with LINC is much smaller. Therefore, we fitted an equa­
tion of the form (4.8) with Oi = 1 if LINC > 7 and Oi = 0 otherwise, and 
obtained 

LIFE = -2.40 + 9.39 LINC 
(4.73) (.859) 

3.36 [oi(LINC - 7)) 
(2.42) 

(R2 = .752, s = 6.65) 

(4.9) 

where, as before, the parenthetic quantities are standard errors. The 7 was 
found by inspecting Exhibit 4.9. We shall return to this example in future 
chapters. • 

4.6 Indicators as Dependent Variables 

While it is not desirable to use dichotomous dependent variables in a linear 
least squares analysis (typically logit, probit or contingency table analysis 
is used for this purpose), if we are willing to aggregate our data, least 
squares analysis may still be used. The example below illustrates such a 
case. Another case is illustrated in Chapter 9. 

Example 4.5 
An interesting problem for political scientists is to determine how a partic­
ular group of people might have voted for a particular candidate. Typically 
such assessments are made using exit polls. However, with adequate data, 
regression procedures might be used to obtain estimates. 

Consider the data of Exhibit 4.10 in which the columns Garcia, Martinez 
and Yanez give the total votes for each of those candidates. (Note that votes 
for the three candidates may not add to the total turnout because of write­
in votes, spoilt ballots, etc.) Let PL be the probability that a Latino casts a 
valid vote for (say) Garcia and PN the probability that a non-Latino casts 
a valid vote for him. If LATVi and NONLVi are, respectively, the total 
Latino and non-Latino votes cast in each precinct i, the expected number 
of votes for Garcia is 

PL LATVi + PN NONLVi . 



4.6. Indicators as Dependent Variables 93 

Since we have the total vote count for Garcia, PL and PN can be readily 
estimated by least squares and we obtain 

GARCIA = .37 LATV + 
(.043) 

.64 NONLV 
(.052) 

(R2 = .979, s = 18.9). 

Therefore, we estimate that roughly 37 per cent of the Latinos voted for 
Garcia and about 64 per cent of the others voted for him. • 

Variables such as all those in Exhibit 4.10 will be called counted variables 
since they are obtained by counting. We might prefer to use as dependent 
variable the proportion of all voters who voted for Garcia. Such a variable 
will be called a proportion of counts. Both counted variables and propor­
tions of counts usually require special care, as we shall see in Chapters 6 
and 9. 
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Pro LATV NONLV TURNOUT GARCIA MARTINEZ YANEZ 

1 114 78 192 95 59 15 
2 143 100 243 120 74 41 
3 105 91 196 120 58 18 
4 176 97 273 138 71 26 
5 169 141 310 143 85 48 
6 190 110 300 158 97 29 
7 1 305 306 206 15 11 
8 190 132 322 128 125 43 
9 120 62 182 79 70 27 

10 186 224 410 169 158 49 
11 152 85 237 105 81 24 
12 164 89 253 124 60 29 
13 168 64 232 111 89 13 
14 75 157 232 143 27 25 
15 177 60 237 98 87 21 
16 140 121 261 128 92 40 
17 178 115 293 150 66 52 
18 157 85 242 108 78 31 
19 76 124 200 124 24 14 
20 120 59 179 73 70 11 
21 84 65 149 52 65 12 
22 119 92 211 123 55 15 
23 172 144 316 136 127 30 
24 87 59 146 118 21 7 
25 134 59 193 114 55 20 
26 137 60 197 83 67 39 
27 167 131 298 147 112 42 

EXHIBIT 4.10: Votes from Chicago's Twenty-Second Ward by Precinct (Pr.) 
SOURCE: Ray Flores, The Latino Institute, Chicago. 
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Problems 

Exercise 4.1: The number of buses y assigned to an urban bus route is 
usually based on the total number (x) of passengers carried by all buses 
during the rush hour at a point on the route called the peak load point. 
Providers of bus service claim that, for a predetermined level (L) of x, a 
certain fixed number (11-) of buses is assigned as long as x < L, and when 
x> L, y is a linear function y = a + bx of x, i.e., 

y- { 11-
a+bx 

when x < L 
when x 2: L 

(4.10) 

where 11- = a + bL. If L is known, write (4.10) in a form so that the other 
parameters can be estimated using linear least squares. The function (4.10) 
is called a transit supply function (see Sen and Johnson, 1977). 

Exercise 4.2: Let 111 and 81 be the sample mean and standard deviation 
of the first n1 of the y/s in the model (4.1) and let j12 and 82 be those of 
the last n2 = n - n1 of the Yi'S. Show that 

b1 112 - jil ---
s.e.(b1) .J[n18~ + n28~][nl1 + n;-ll/[n - 2] 

[Hint: The design matrix X corresponding to (4.1) is 

( 1nl 
1n2 1:2 ). 

Hence 

(X'X)-l = ( 
-1 

-1 ) b = (X' X)-l X'y = ( _ 1il _ ) n 1 
n~~~n2) , -1 -n1 Y2 - Y1 

and it follows that 

Therefore 

where y' = (yi, y~).] 

Exercise 4.3: Consider the model Yi = f30 + f31Xil + ... + f3ikxik + 8zi + Ei 

where i = 1, ... ,n and 

if i = 1 

otherwise, 
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and €i'S are independently and identically normally distributed with mean 
o and variance (72. 

1. Obtain explicitly the least squares estimate of o. 
2. Obtain a relationship between the residual sum of squares of the 

model given above and that of the same model with 0 = O. 

3. Obtain a test of hypothesis for 0 = 0 against the alternative 0 =I O. 

Exercise 4.4: An experiment was conducted to examine the effects of 
air pollution on interpersonal attraction. Twenty-four subjects were each 
placed with a stranger for a 15 minute period in a room which was either 
odor free or contaminated with ammonium sulfide. The stranger came from 
a culture which was similar or dissimilar to that of the subject. Thus, there 
were four possible environments for each subject: 

1. Culturally similar stranger, odor-free room; 

2. Culturally dissimilar stranger, odor-free room; 

3. Culturally similar stranger, room contaminated with ammonium sul­
fide; 

4. Culturally dissimilar stranger, room contaminated with ammonium 
sulfide. 

At the end of the encounter, each subject was asked to assess his degree of 
attraction towards the stranger on a Likert scale of 1-10 with 10 indicating 
strong attraction. The full data set is given in Srivastava and Carter (1983). 
A portion of the data set is reproduced below with the permission of the 
authors (the numbers are values of the Likert Index). 

Odor-free Room 
Contaminated Room 

Culturally 
Similar Stranger 

9, 10, 4, 7, 8, 9 
6, 9, 7, 8, 7, 3 

Culturally 
Dissimilar Stranger 

2, 2, 1, 6, 2, 2 
1, 3, 3, 2, 2, 3 

Set up a regression model to estimate the effects of cultural similarity 
and room odor on interpersonal attraction. Conduct appropriate tests and 
report your findings. 

Exercise 4.5: Using Exhibit 4.10, estimate the support for Yanez and 
Martinez among Latinos and others. 

Exercise 4.6: Data on the cost of repairing starters, ring gears or both 
starters and ring gears are presented in Exhibit 4.11. Define the variables 

if starter repaired 

otherwise, 
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Part Repair Cost in $'s 

Starter 37 127 118 75 66 59 499 420 526 141 126 142 137 
471 172 149 315 506 575 81 67 36 130 110 126 189 
27 88 67 13 432 148 94 432 108 648 81 108 150 79 
420 34 236 27 67 42 161 506 468 97 189 551 79 40 
420 220 126 261 192 202 101 180 58 61 72 49 189 73 
23630664 

Ring gear 425 474 276 229 256 431 252 1069 190 765 621 310 
604 540 81 641 432 252 431 310 256 236 276 609 472 
603 431 304 414 241 741 

Both 499 420 526 229 471 315 506 575 67431 190 765 621 
43254043264881 420310 236 276 506 468 609 472 
603 431 551 304 414 

EXHIBIT 4.11: Data on Cost of Repairing Starters, Ring Gears or Both Starters 
and Ring Gears in Diesel Engines 
SOURCE: M.R. Khavanin, Department of Mechanical Engineering, University of 
Illinois at Chicago. 

and 
if ring gear repaired 

otherwise. 

Obtain a regression model, with no intercept term, expressing cost in terms 
of XiI, Xi2 and the product XiIXi2. Give a physical interpretation of the 
parameter estimates. 

Exercise 4.7: Using the data set in Exhibit 1.20, construct a single model 
for infant mortality rate (IMR), using suitably defined indicator variables 
for rural-urban and male-female distinctions. 

Exercise 4.8: Exhibit 4.12 gives data on numbers of patient contacts 
for April 19-25, 1987, on screening (SC), diet class (DC), meal rounds 
(MR) and team rounds (TR) for 11 professional dietitians and 13 dietitian 
interns. The sum of the times taken for all of these activities is also given. 
Use a suitable model to estimate the average time taken for each activity 
by professional dietitians. Make a similar estimate for interns. Test if these 
average times are the same for the two groups. 

Note that dietitians perform several other activities which are not given 
in the tables. The data were made available to one of the authors by a 
student. 

Exercise 4.9: Exhibit 4.13 presents data on the sex, the attending physi­
cian (MD), severity of illness (Svty), total hospital charges (Chrg) and age 
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Professional Dietitians Dietitian Interns 
Time Be De MR TR Time Be De MR TR 

219 3 3 77 29 316 3 4 163 30 
264 3 3 95 27 251 2 1 141 16 
226 6 2 68 24 216 4 2 135 16 
242 6 5 80 25 303 13 3 135 16 
220 7 1 70 19 280 4 3 138 18 
229 3 1 66 30 285 6 2 141 22 
253 7 2 81 24 268 2 4 139 25 
233 3 2 86 27 269 2 3 152 18 
260 4 6 85 25 307 5 3 143 16 
235 8 2 72 21 204 5 0 135 17 
247 8 0 82 26 283 4 4 151 16 

233 3 2 126 25 
266 4 1 148 20 

EXHIBIT 4.12: Time Taken by Professional Dietitians and Interns for Four Pa­
tient Contact Activities 

for 49 patients, all of whom had an identical diagnosis. Estimate a model 
expressing the logarithm of charges against age and the other variables 
expressed as suitable indicator variables. Test the hypothesis that the at­
tending physician has no effect on the logarithm of hospital charges against 
the alternative that this factor has an effect. 
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Sex MD Svty Chrg Age Sex MD Svty Chrg Age 

M 730 2 8254 57 F 499 1 6042 61 
M 730 4 24655 93 F 499 1 11908 89 
M 730 1 1487 17 F 499 . 3 24121 86 
M 730 1 5420 61 M 499 3 15600 72 
M 730 2 18823 61 F 499 3 25561 92 
M 730 3 20280 61 F 499 1 2499 39 
F 730 1 4360 44 M 499 3 12423 69 
M 730 3 22382 90 M 499 3 21311 92 
M 730 3 22165 90 M 499 3 15969 60 
M 730 4 22632 70 F 499 3 16574 72 
F 730 4 22642 77 F 1021 3 24214 89 
F 730 2 14111 85 F 1021 4 28297 79 
M 730 2 9763 62 F 1021 4 64465 71 
F 730 2 13343 65 F 1021 3 17506 71 
M 730 1 4886 54 F 1021 4 27150 76 
F 730 3 22712 87 F 1021 2 13652 82 
M 730 2 7194 50 M 1021 1 4402 41 
F 730 3 24809 73 F 1021 1 4427 40 
M 730 1 9405 62 F 1021 3 22734 66 
M 499 1 9990 63 M 1021 2 8759 56 
M 499 3 24042 67 F 1021 4 29636 80 
F 499 4 17591 68 F 1021 1 15466 67 
F 499 2 10864 85 M 1021 2 18016 45 
M 499 2 3535 20 M 1021 1 7510 57 

F 1021 2 12953 65 

EXHIBIT 4.13: Data on Hospital Charges 
SOURCE: Dr. Joseph Feinglass, Northwestern Memorial Hospital, Chicago. 



CHAPTER 5 

The Normality Assumption 

5.1 Introduction 

In much of the work presented in the last four chapters we have assumed 
that the Gauss-Markov conditions were true. We have also sometimes made 
the additional assumption that the errors and, therefore, the dependent 
variables were normally distributed. In practice, these assumptions do not 
always hold; in fact, quite often, at least one of them will be violated. In 
this and the next four chapters we shall examine how to check whether 
each of the assumptions actually holds and what, if anything, we can do if 
it does not. This chapter is devoted to the normality assumption. 

In Section 5.2 we present three methods to check whether the errors Ei are 
approximately normal. One of the methods is graphical and the other two 
are formal tests. Graphical methods give a greater 'feel' for the data and, if 
the problem lies with a few of the observations, such methods help identify 
them. Formal tests require less 'judgment' on the part of the analyst, but 
even they cannot be considered totally objective in this context. 

When we accept a hypothesis, all we can say is that there was not enough 
evidence to reject it; we cannot say that the E'S are, in fact, normal. But 
we can possibly say that they are close enough to being normal so that our 
inferences under that assumption are valid. This introduces a subjective 
element. In general, sample sizes need to be fairly large for us to make that 
claim. On the other hand, with large enough sample sizes, normality could 
get rejected even when the distribution is nearly normal. Then we need to 
be somewhat loose in our interpretations. Similar discussions also apply to 
like tests in the following chapters. 

The methods we use to check for normality assume that no Gauss-Markov 
violations exist. In fact, in Chapter 9 (see Section 9.4.3, p. 204), we use 
methods, which were originally developed to change non-normal data to 
nearly normal data, in order to achieve compliance with Gauss-Markov con­
ditions. In the next few chapters which are devoted to the Gauss-Markov 
conditions, when we check for violations of one of these conditions, we as­
sume that the others hold. Thus outputs from the methods given in this 
and the following chapters need to be considered simultaneously rather 
than sequentially. Regression is an art and its practice is fraught with mis­
diagnoses and dead ends. Fortunately, with experience, diagnoses get better 
and the number of dead ends declines. 

In the experience of the authors, failure of G-M conditions affects tests for 
normality more than failure of normality affects the diagnoses of violations 
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of G-M conditions. In that sense, this chapter is inappropriately located. 
Notice that in the last two chapters it was really the normality of bj's 

rather than the Yi'S that was required. Since bj's are linear combinations 
of Yi'S, under certain conditions, we are able to invoke the central limit 
theorem to show that bj's are approximately normal even when Yi'S are 
not. These conditions are presented in Section 5.3. If even the bj's are not 
normal, we can get an approximate idea of their distribution and use it to 
make inferences. A method of doing this, called bootstrapping, is discussed 
in Section 5.4. Another method, called the transform-both-sides method 
(Carroll and Ruppert, 1988, Ch. 4), which applies Box-Cox transformations 
(see Section 9.4.3, p. 204) to both sides of a regression model, is not treated 
in this book. 

5.2 Checking for Normality 

For all methods presented below, the underlying assumptions are that the 
errors are identically distributed and that if the vector of errors e is non­
normal, the vector of residuals e = Me = (I - H)e will be too (by (2.3) 
and (2.13)). 

If H = (h 1 , •.• , h n )' and H = (hij ), then 

(5.1) 

Since H is an idempotent matrix, HH' = H, and h~hi = hii . Hence, 

(5.2) 

Therefore, from Chebyshev's inequality (p. 284), the second term of (5.1) 
goes to zero in probability. Thus, when hii's are small, ei's may be used in 
lieu of fi'S. However, as we shall see in the next section, if hii's are small, 
we might not need the normality of fi'S. 

5.2.1 PROBABILITY PLOTS 

Let Z(1) < ... < Z(n) be the ordered values of n independent and identically 
distributed N(0,1) random variables Zl, ... ,Zn; here due regard is given to 
the sign of an observation. Then the mean value of Z(i) can be approximated 
by 

E(Z(i)) ~ 'Yi = <I>-l[(i - 3/8)/(n + 1/4)] (5.3) 

(see, e.g., Blom, 1958), where <1>-1 is the inverse function (<I>(x) = a ~ x = 
<I>-l(a)) of the standard normal cdf 

1 1 2 jx 

<I>(x) = (27r)-' -<Xl e-,t dt. 
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If U(1) < ... < u(n) are ordered values of n independent and identically 
distributed (Le., iid) N(IL, a 2 ) random variables, then E([U(i) - ILl/a) ~ "Ii. 
Consequently, 

E[U(i)l ~ IL + a"li, 

and a plot of Uti) 's against "Ii would be taken to be approximately a straight 
line. We shall call such a plot a rankit plot, although it would be more pre­
cise to call it an approximate rankit plot, given the approximation in (5.3). 

In order to check if the residuals are approximately normally distributed, 
we would plot e(i) against "Ii = ~-l[(i - 3/8)/(n + 1/4)1 where e(i)'S are 
the ordered values of ei. Alternatively, and preferably, ordered values of the 
standardized residuals 

(5.4) 

i.e., the residuals divided by their standard errors (see (2.27)), could be 
plotted against "Ii'S. Rankit plots of the Studentized residuals l , to be dis­
cussed in Section 8.3, p. 156, could also be used. If the plot is approximately 
a straight line, the residuals would be taken to be approximately normally 
distributed, and, by the assumption discussed above, we would also con­
sider the lo'S to be approximately normal. (These plots have been discussed 
in detail in Madansky, 1988, Ch. 1) 

Rankit plots are available from several statistical packages, although, 
frequently, they are not available from the regression portion of the pack­
age (e.g., in SAS, 1985a, it is an option within PROC UNIVARIATE). 
Programs can be readily written to draw rankit plots and this is often 
preferable when plots provided by a package are too small and cluttered to 
be easily read. In the Linear Least Squares Curve Fitting Program that is 
a companion to Daniel and Wood (1980) such plots are routinely given. 

Example 5.1 
Exhibit 5.1 shows the rankit plot of the standardized residuals from a re­
gression of the log of charges against sex, age, severity of illness and attend­
ing physician, this last factor being expressed as two indicator variables. 
The data are those given in Exhibit 4.13, p. 99. The plot is fairly straight 
but not entirely so, indicating that the residuals are close to normal but 
are probably not normal. 

'Reading' such plots requires some experience. Daniel and Wood (1980, 
see especially pp. 33-43) have given a large number of rankit plots of ran­
dom normal data which the reader might wish to examine in order to 
develop a feel for them. • 

lThere is some confusion in the literature about names. What we have called stan­
dardized residuals is sometimes called Studentized; then what we have called Studentized 
residuals (and also RSTUDENT) is called R-STUDENT or RSTUDENT. 
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EXHIBIT 5.1: Rankit Plot of Standardized Residuals from Medical Charge Data 

Example 5.2 (Continuation of Example 4.4, Page 92) 
Exhibit 5.2 shows a rankit plot for the standardized residuals from the 
model (4.9). The plot does not show a straight line. We then removed 
the cases corresponding to the four smallest and the two largest residuals, 
reran the regression and constructed the plot shown in Exhibit 5.3. This 
one is much straighter, indicating that much of the apparent non-normality 
indicated in Exhibit 5.2 was due to the presence of outliers. 

However, given the very large number of data points, Exhibit 5.3 still 
indicates the possibility of slight non-normality. • 

While the computations for the rankit plot can be carried out on a com­
puter, they can also be done by hand quite easily on a special graph paper 
called normal probability paper. On such paper the axes have been scaled 
in such a way that plotting eCi) against 100 [i - 3/8]/(n + 1/4)] or some 
approximation of it (lOOi/n, 100(i - ~)/n and 100i/(n + 1) are commonly 
used) results in approximately a straight line if ei's are normal. Although, 
properly, such plots are called normal plots, the expression normal plots is 
sometimes used for what we have called rankit plots. 



104 Chapter 5. The Normality Assumption 

0 

2.5 
0 

000 
00 

e(S) 0.0 

oJ' 
00 

0 

-2.5 
0 

0 

0 

-2.5 0.0 2.5 , 
EXHIBIT 5.2: Rankit Plot of Standardized Residuals from Life Expectancy Data 

2.5 
0 0 

0 
0 

00 
oD' 

/ 

e(s) 0.0 
,/ 

/ 
cSP 

0 
0 

09 
0 

0 0000 

0 0 

-2.5 

-2.5 0.0 2.5 , 
EXHIBIT 5.3: Rankit Plot of Standardized Residuals from Life Expectancy Data 
after Deletion of Outliers 



5.2. Checking for Normality 105 

5.2.2 TESTS FOR NORMALITY 

Among several tests for normality, the Shapiro-Wilk (1965) test has become 
somewhat standard for small sample sizes (e.g., < 50) and is given in many 
statistical packages. The test can be described as follows. 

Let Ul, ... , Un be independently and identically distributed and assume 
that U(l) < ... < U(n) are their ordered values. Set 8 2 = (n - 1)-1 L(Ui -

U)2, where U = n-1 LUi. Then the Shapiro-Wilk test statistic is given by 

(5.5) 

where ai, ... , an depend on the expected values of the order statistics from 
a standard normal distribution and are tabulated in Shapiro and Wilk 
(1965), Madansky (1988) and elsewhere. The null hypothesis of normality 
is rejected if W ::; Wet, where Wet is a tabulated critical point. Tables of 
Wet are also given in Shapiro and Wilk (1965) and in Madansky (1988), 
although computer packages which provide this statistic provide the ai's 
as well as the p-values. The test statistic W takes values between 0 and 1, 
with values close to 1 indicating near-normality. The residuals ei replace 
the Ui'S in usual applications of the Shapiro-Wilk test to regression. An 
alternative to the Shapiro-Wilk statistic is the square of the correlation 
coefficient between u(i)'s and ')'i'S (see Shapiro and Francia, 1972), which 
was originally suggested as an approximation to the Shapiro-Wilk statistic. 

Another alternative to the Shapiro-Wilk test is Kolmogorov's test, the 
latter being used most frequently when n is large, since then (5.5) is dif­
ficult to compute. Kolmogorov's test is actually quite general and may be 
used to test if a set of observations U1, •.. , Un come from any specified dis­
tribution function FH(X). Let F(x)be the empirical distribution ofthe u/s, 
i.e., F(x) = ux/n, where Ux is the number of Ui'S that are not greater than 
x. Then Kolmogorov's statistic is 

D = sup IF(x) - FH(X)I, (5.6) 
x 

and the hypothesis that the Ui'S have the distribution given by FH is re­
jected for large values of D. In our case, of course, FH(X) is the distribution 
function of the normal distribution. The mean is the same as that of the 
residuals (which, of course, is zero if there is a constant term) and the vari­
ance is 82 • This test is also widely available in packages which also provide 
corresponding p-values. 

These tests are rather fully discussed in Madansky (1988, Ch. 1). 

Example 5.3 (Continuation of Example 5.1, Page 102) 
The value of W for the standardized residuals from the hospital charge data 
is .926 and the probability of getting a smaller value under the hypothesis 
of normality is less than .01. Therefore, it would appear that the residuals 
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are not normal. However, they are fairly close to being normal since W is 
so near 1. • 

Example 5.4 (Continuation of Example 5.2, Page 103) 
The value of D corresponding to Exhibit 5.2 is .105, which is significant at 
the 1 per cent level. For Exhibit 5.3 it is .077, which is not significant at a 
.15 level. • 

5.3 Invoking Large Sample Theory 

As mentioned in Section 5.1, if the number of cases is large, we might 
be able to test hypotheses or obtain confidence regions using the methods 
discussed in Chapter 3, even if Yi'S are not normal. The exact condition is 
given in the following theorem, due to Srivastava (1971), which is proved 
in Section 5.5. 

Theorem 5.1 Let b be the least squares estimate of (3 in the usual multiple 
regression model and assume that Gauss-Markov conditions hold. If, in 
addition, the observations are independent and 

(5.7) 

where hii are the diagonal elements of the matrix X(X' X)-l X', then 

s-2(Cb - C(3)'[C(X' X)-lC'r1(Cb - C(3) ---.. X~ as n ---.. 00, (5.8) 

where C is an r x (k + 1) matrix of rank r ~ (k.+ 1). 

However, we suggest using 

~2 (Cb - C(3),[C(X'X)-lC'r1(Cb - C(3) rv Frn- k - 1 (5.9) 
rs ' 

in place of (5.8) since it appears to yield a better approximation. Notice that 
the statistic given in (5.9) is the one on which all our tests and confidence 
regions are based (see Chapter 3). Thus, all these procedures may be used 
without change if the hii's are small. 

By (A.9) of Appendix A (Page 278), 

n 

L hii = trH = k + 1 (5.10) 
i=l 

if X is of dimension (k + 1) x n. Therefore, maxhii is small if njk is large 
and a few hii '8 are not much larger than the rest of them. In Section 8.2, 
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we shall see that Yi'S corresponding to relatively large values of hii tend 
to have larger weights in the computation of bj's. Therefore, the condition 
(5.7) is eminently reasonable in the context of the central limit theorem 
that is used to prove Theorem 5.1. Because hii's often identify unduly 
influential points, they are frequently available from packages. The matrix 
H is sometimes called the hat matrix and hii the leverage. 

It is difficult to specify a number such that if max hii falls below it we can 
safely carry out our tests. Apart from the fact that such a number would 
depend on how critical we wish to be, it would also depend on how non­
normal the distribution of fi'S is. However, as a very rough rule of thumb, 
max hii < .2 may be taken as small enough for most applications if the 
original distribution of f'S is not too 'horrible' (e.g., excessively long-tailed, 
or J-shaped). 

Example 5.5 (Continuation of Example 5.3, Page 105) 
For the regression model described in Example 5.1, maxhii = .266. Since, 
as we have already seen, the residuals, and therefore the errors, are near 
normal already, we feel that assuming normality would not lead to conclu­
sions which are too far wrong. • 

Example 5.6 (Continuation of Example 5.4, Page 106) 
Before deleting the outliers, the independent variables in the model (4.9) 
yielded max hii = .0985. In our judgment this is small enough that we could 
have carried out the usual F tests had normality been the only concern we 
had. After deleting the outliers, we get maxhii = .10. • 

5.4 *Bootstrapping 

When hii's are small and the sample size large, (5.8) and (5.9) would give 
reasonably good approximations. However, when the sample size is not too 
large (and hii's are small), an improvement in the above approximation 
can be made by a method called bootstrapping. This method, which is due 
to Efron (1979), is based on resampling from the observed data which are 
considered fixed. In our case, since fi'S are unknown, we resample from the 
ei's, which are considered fixed or population values. The exact steps, for 
cases when the model contains an intercept term, are described below. A 
theoretical justification is given in Freedman (1981). 

Step (i) Draw a random sample of size n with replacement from el, ... ,en. 
Denote its members as e(q)l' ... ,e(q)n and let e* = (e(q)l' ... ,e(q)n}'· 

Step (ii) Based on this sample calculate 

(e(q))' X(X' X)-lC'[C(X' X)-lC']-lC(X' X)-l X' e(q/ s(;) (5.11) 
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where 
*2 (n - 1)-1 ~( * -*)2 

S(q) = n n _ k _ 1 ~ e(q)i - e(q) , 
i=l 

d -* -l,\,n * an e(q) = n L....-i=l e(q)i' 

Step (iii) Repeat steps (i) and (ii) Q times, i.e., for q = 1,2, ... , Q. In 
most studies, the value of Q is set between 200 and 1000. From these 
iterations obtain an empirical distribution of (5.11). Obtain the nec­
essary significance points from this empirical distribution. 

For testing the hypothesis H : C 13 - d = 0, calculate the statistic 

and use the significance points obtained in Step (iii). 
If there is no intercept term (30 in the regression model, 2: ei may not be 

zero. Hence, we center these ei's and define 

ei = ei - e, for all i = 1, ... ,n. 

Then steps (i) to (iii) are carried out with e1,"" en replacing e1, ... , en. 

5.5 * Asymptotic Theory 

To prove Theorem 5.1, we need the central limit theorem. The following 
version, proved in Gnedenko and Kolmogorov (1954), is convenient. 

Theorem 5.2 Let Zl, ... ,Zn be independently and identically distributed 
with mean zero and variance a 2 . For i = 1, ... ,n let {ani} be a sequence 
of constants such that 

n 

max Ian· I --+ 0 and'"' a2n . --+ 1, as n --+ 00. 
l<i<n t ~ t 

- - i=l 

Then, as n --+ 00, 2:7=1 aniZi --+ N(O, a 2 ), i.e., 2:~1 aniZi converges 
to a random variable which has a normal distribution with mean 0 and 
variance a 2 . 

PROOF OF THEOREM 5.1: For the sake of convenience in presentation, we 
set C = I. The proof for the general case is similar. 

We first derive the asymptotic distribution of 

a-2 (b - f3)'(X' X)(b - 13) 
= a-2 [(X'X)-lX'y - f3]'[X'X][(X'X)-lX'y - 13] 
= a-2 [(X'X)-1(X'y - X'Xf3)]'[X'X][(X'X)-l(X'y - X'Xf3)] 

= a- 2E'X(X'X)-lX'E = a-2 E'HE. 
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Let L = (lijn) = (l~l), ... ,l~n) = (X'X)-!X'. Then H = L'L. and 
LL' = Ik+l' 

Consider the linear combination a'L€, where a' a = 1. Let b~) = a'l~). 
Then a'L€ = L~=l b~) Ei and 

Ib~)1 = la'l~)1 ~ (a'a)!(l~)'l~)! = (l~)'l~)!-+O 

h h D(i), D(i) ° M "n (b(i)2 w en maxl$i$n ii = maxl$i$n.£.n.£.n -+ . oreover, L..."i=l n 
a'LL'a = 1. Therefore, it follows from Theorem 5.2 that a'L€ -+ N(0,a2). 
Since a'L€ -+ N(O, a 2) for every vector a, it follows that (see Appendix B, 
just above Lemma B.I, p. 289) L€ -+ N(o, a 2 I). Hence, if maxl<i<n hii -+ 

0, as n -+ 00, then as n -+ 00 

Equivalently, since 8 2 -+ a 2 in probability, 

o 
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Problems 

Exercise 5.1: Consider the regression model 

Yt = /30 + /31 t + €t for t = 1, ... , n. 

(This model is called a linear trend model.) The design matrix X for this 
model is given by 

X'= ( ~ 1 
2 

... 1). 

... n 

Show that n-1(X' X) --+ 00 (Le., at least one element of X' X --+ (0) as 
n --+ 00 but that h ii --+ 0 as n --+ 00. 

Exercise 5.2: Would it be appropriate, as far as normality is concerned, 
to use the F test given in Chapter 3 to test hypotheses about {3 in the 
problem considered in Example 4.3, p. 88. 

Exercise 5.3: Examine the residuals and hii's from the model of Exer­
cise 4.4, p. 96. Discuss the appropriateness of the conclusions you reached 
when you did Exercise 4.4. 

Exercise 5.4: From the point of view of normality, comment on each of 
the tests you ran in Exercise 3.13, p. 77. 

Exercise 5.5: For the two regressions in Exercise 3.14, p. 79, can one 
assume normality of the errors? 

Exercise 5.6: Test for normality of observations in the data set used for 
Exercise 2.15, p. 53. 

Exercise 5.7: *Using a bootstrap sample size of 200, obtain the 90 per 
cent point of the distribution of the test statistic in Exercise 1.11, p. 24 
(after removing the outlier). Compare it with the one you obtained using 
a t distribution. 

Exercise 5.8: *Using bootstrapping, obtain the 90 per cent points of the 
distributions of the parameter estimates you obtained in part 1 of Exer­
cise 3.14, p. 79. Use a sample size of 500. 



CHAPTER 6 

Unequal Variances 

6.1 Introduction 

One of the great values of the Gauss-Markov theorem is that it provides 
conditions which, if they hold, assure us that least squares is a good pro­
cedure. These conditions can be checked and if we find that one or more 
of them are seriously violated, we can take action that will cause at least 
approximate compliance. This and the next few chapters will deal with 
various ways in which these G-M conditions can be violated and what we 
would then need to do. 

This chapter is devoted to the second G-M condition, which states that 
var (€i) = var (Yi) is a constant, (12. Violation of this condition is often called 
heterosceda.sticity, while compliance is referred to as homosceda.sticity. Re­
call that heteroscedasticity does not bias the least squares estimates of {3j'S, 
but it causes variances of parameter estimates to be large and can affect 
R2, 8 2 and tests substantially. The test of the general linear hypothesis 
(Chapter 2) is affected also because under heteroscedasticity, 8 2 (X' X)-l 
need no longer be an unbiased estimate of the covariance matrix of {3. 

6.2 Detecting Heteroscedasticity 

Very frequently, we can determine if heteroscedasticity is likely to be present 
from an understanding of the underlying situation and also (as we shall 
see in later sections) determine what corrective measures might be taken. 
For example, if the dependent variable is a counted variable, it is likely 
to have approximately a Poisson distribution (as in the case of telephone 
mains in Example 1.2, p. 10); then the variance (1~ of the ith observation is 
approximately E(Yi). If Yi = mdni is a proportion of counts mi and ni, its 
variance would probably be close to E(Yi)(l - E(Yi»/ni. When Yi is the 
mean ~:~ 1 Za / ni of homoscedastic variables Zl, ... ,zni' then (1~ <X ni 1 . 

Even where the distribution cannot be guessed, some idea of the variance 
can be. Consider house prices for an entire metropolitan area. It would ap­
pear less likely that a house worth $50,000 would sell for $100,000 than that 
a million dollar one would sell for $1,050,000. To continue this intuition­
based discussion, it appears to be more likely that the less expensive house 
would sell for $60,000 than the more expensive one for $1.2 million. Thus, 
the standard deviation of the selling price is not constant, nor does it vary 
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in proportion to the intrinsic value. Rather, it is something in between. 
At this stage the reader might wish to recall some of the random variables 

he/she might have encountered and see if their variances (or quantities 
proportional to them) can be guessed (the reader might be surprised at 
how often this is possible!). 

Another way of checking to see if heteroscedasticity is present is through 
plots. If 0"; = var (€i) varies with E(Yi), a plot of the residuals (which are 
estimates of €i'S) against the y/s (which are estimates of E(Yi)'s) might 
show the residuals ei to be more spread out for some values of Yi than 
for others. Standardized or Studentized residuals (see Section 8.3, p. 156) 
could also be used and might even be preferable (see Cook and Weisberg, 
1982). 

d. sp. d. sp. d. sp. d. sp. 

4 4 14 10 29 18 57 27 
2 5 17 10 34 18 78 27 
4 5 11 12 47 18 64 28 
8 5 19 12 30 19 84 28 
8 5 21 12 48 20 54 29 
7 7 15 13 39 21 68 29 
7 7 18 13 42 21 60 30 
8 8 27 13 55 21 67 30 
9 8 14 14 56 24 101 30 

11 8 16 14 33 25 77 31 
13 8 16 15 48 25 85 35 
5 9 14 16 56 25 107 35 
5 9 19 16 59 25 79 36 

13 9 34 16 39 26 138 39 
8 10 22 17 41 26 110 40 

29 17 134 40 

EXHIBIT 6.1: Data on Automobile Speed (sp.) and Distance Covered to Come 
to a Standstill After Braking (d.) 
SOURCE: Ezekiel and Fox (1959). Reproduced, with permission, from Ezekiel, 
M. and F.A. Fox, Methods of Correlation and Regression Analysis. © 1959 John 
Wiley & Sons, Inc. 

Example 6.1 
Exhibit 6.2 illustrates a plot of e/s against Yi after fitting an ordinary least 
squares model 

distance = /31 speed + /32 speed2 (6.1) 

to the data in Exhibit 6.1. The plot here would seem to indicate the ex­
istence of heteroscedasticity. (By contrast, Exhibit 6.6 seems to indicate 
virtually no heteroscedasticity.) 
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If there are enough data points, plots like Exhibit 6.2 can also give us 
an idea of how the variance of the y/s varies with the E(Yi)'s. Divide 
the range of the iii's into three portions, making a reasonable compromise 
between getting portions of roughly equal widths and getting roughly equal 
numbers of points in each portion. In the case of Exhibit 6.2, suitable break 
points might be 25 and 72. Let the medians of the iii's within each such 
partition be y(l), y(2) and y(3) and let the corresponding inter-quartile range 
of the ei's be Q(l), Q(2) and Q(3). A plot of the Q(k),s against the y(k),s 
can help identify a relationship between var (Yi) and E(Yi). In the case of 
Exhibit 6.2 such a plot is approximately a straight line, suggesting that 
the standard deviations of y/s are roughly proportional to E(Yi)'s and, 
therefore, var (Yi) oc [E(Yi)]2. The reader is requested to carry out these 
steps in Exercise 6.9. • 

EXHIBIT 6.2: Plot of Residuals against Predicted for Speed-Braking Distance 
Data 

Sometimes (li varies with one or more Xij'S. For example, if we were 
regressing total hospital charges against severity of illness, the attending 
physician and the sex and age of the patient (as in Exercise 4.9, p. 97), it is 
not unlikely that the variance of charges might vary with one or more of the 
independent variables. Some physicians might order essentially the same 
set of preliminary laboratory and other medical tests for all patients, while 
others might tailor the order to the individual case. As people get older 



114 Chapter 6. Unequal Variances 

they become more susceptible to a wider range of diseases. Consequently, 
whether certain medical tests are more likely to be ordered for older patients 
and whether they are ordered or not affect variability of charges. However, 
it should be emphasized that it is the variation in the variance of the 
dependent variable that is a violation of the second G-M condition. 

It is also possible that the variance of the Yi'S could vary with changes 
in variables not included in the model. For example, it is known that some 
respondents inflate their income when they are attracted to the interviewer. 
Then the variance of income would vary with the interviewer. Similarly, 
different laboratory equipment, different machines, etc., can affect variance. 

In such cases, it may be useful to examine plots of residuals against 
each independent variable and each variable that we expect affects the 
variance. Many careful analysts routinely obtain plots of ei against all the 
Xii'S and against Yi. However, none of these plots are entirely safe in that 
heteroscedasticity can be present and not be apparent from them. 

A number of other plots have also been suggested in the literature, in­
cluding plotting the absolute values, squares or logarithms of the absolute 
values of residuals or the Standardized residuals against predicted values, 
other variables and even {I - hii)S. One advantage cited is that some of 
these plots make identification of the nature of the heteroscedasticity (e.g., 
the relationship between var (Yi) and E{Yi)) easier. For example, since the 
log of the absolute values of residuals may be considered to be a proxy for 
the log of standard deviations of Yi'S, and log of the predicteds that for 
the log of the expectation of the Yi'S, the slope of a line fitting their plot 
would yield a when heteroscedasticity is described by var (Yi) ex [E{Yi)]2a. 
For further discussion of these and other methods, see Carroll and Ruppert 
(1988, p.29 et seq.) and Cook and Weisberg (1982). 

6.2.1 FORMAL TESTS 

A number of formal tests have also been proposed. A large number of 
them essentially test whether the variances (/2 of individual Ei'S are related 
to some other variable{s), e.g., the independent variables or functions of 
them. A fair number of these approaches attempt to relate leil's, e~'s or 
the rank of leil's to other variables. A review of several procedures is given 
in Judge et al. (1985, see especially pp. 446-454) and Madansky (1988, p. 
75 et seq.). One such test consists of testing for significance the correlation 
between the ranks of the absolute values of the residuals with the ranks of 
y/s or those of individual independent variable values (such a correlation 
between ranks is called the Spearman correlation). 

Another such test is that given by White (1980). It may be shown 
that under homoscedasticity, if each hii -+ 0, Sl = n-1s2X'X and S2 = 
n-1 L~=l e~xix~ are asymptotically equivalent, while the presence of het­
eroscedasticity can cause them to be quite different. Therefore, one can 
base a test on the comparison of Sl and S2. Such a test is available, for 
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example, in SAS. A relatively simple test statistic based on this principle 
(and also, incidentally, on the principle mentioned in the last paragraph) 
is nR~h)' where R~h) is the usual R2 from a regression of the e~'s against 
the independent variables Xij'S and all their square and product terms (in­
cluding a constant term even if one is not present in the original model and 
with any redundant variables eliminated). Under the hypothesis of no het­
eroscedasticity and provided the fourth moment of all the observations are 
the same, nR~h) has asymptotically a chi-square distribution with degrees 
of freedom equal to one less than the number of independent variables in 
the above mentioned regression. 

Like many other tests for violations of specific Gauss-Markov conditions, 
White's test is also sensitive to other violations. Therefore, one needs to 
examine plots or in other ways assure oneself that it is indeed heteroscedas­
ticity that is causing nR~h) to be high. 

It might be noted in passing that 82 , which is provided by SAS, can 
be used to estimate the covariance matrix of b when heteroscedasticity is 
present - see White (1980) and SAS (1985b). 

6.3 Variance Stabilizing Transformations 

When heteroscedasticity occurs we can take one of two types of actions to 
make the ai's approximately equal. One consists of transforming Yi appro­
priately when the variance of Yi depends on its mean; the other involves 
weighting the regression. We consider the former in this section; the latter 
will be examined in the next section. 

For any function f (y) of Y with continuous first derivative f' (y) and finite 
second derivative f"(y), we know from elementary calculus that 

where () lies between Yi and 1Ji, and 1Ji = E(Yi). Thus, when (Yi - 1Ji)2 is 
small, we have 

(6.3) 

Squaring and taking expectations of both sides of (6.3), we get approxi­
mately, 

(6.4) 

where a; (1Jd is the variance of the random variable Yi with mean 1Ji. 
Thus, in order to find a suitable transformation f of Yi which would make 
var (f(Yi)) approximately a constant, we need to solve the equation 

(6.5) 

where c is any constant. Such a transformation f is called a variance sta­
bilizing transformation. 
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As an example, consider the case where Yi is a counted variable. Then 
o} ( "Ii) ex: "1i and we need an f such that 

(6.6) 

Clearly, if we choose c = 1/2, then f("1i) = "1i/2 solves (6.6); and therefore 

in this case yi/2 is a variance stabilizing transformation. Suppose now we 
have Yi = mdni which is a proportion of counts and hence has a binomial 
distribution. Then var (Yi) = ni1"1i(1 - "1i), where "1i = E(Yi). Thus, we 
need to solve 

!'("1i) = cn;/2/("1i/2(1 - "1i)1/2). (6.7) 

Integrating both sides with respect to "1i, we get 

f() J f '()d 1/2 J d"1i 2 1/2. -1 r,;:;: "1i = "1i "1i = cni 1/2 = cni sm v"1i 
"1i (1 - "1i)1/2 

yielding n;/2 sin-1 vIfii as an appropriate transformation. As another ex­
ample, if (1i = "1i, then (6.5) yields f("1i) = log("1i). 

The Box-Cox transformations, which will be described in Section 9.4.3, 
p. 204, are often useful for alleviating heteroscedasticity when the distri­
bution of the dependent variable is not known. 

Example 6.2 (Continuation of Example 1.1, Page 2) 
In Example 1.1 we took the square root of the dependent variable. That 
was an attempt at a variance stabilizing transformation, since we expected 
that (1i and "1i were related although it was not immediately obvious what 
the relationship was. Exhibit 6.3 shows a plot of ei's against Yi'S when such 
a transformation was not made. The right hand mass of points is much 
more spread out (in terms of size of residuals) than the mass on the left. 
Exhibit 6.4, which is the same as Exhibit 1.5, shows the plot corresponding 
to the square root transformation. Now the two masses have more nearly 
equal spreads. Therefore, Exhibit 6.3 illustrates greater heteroscedasticity 
than does Exhibit 6.4. Exhibit 6.5 gives a similar plot, when log (speed) 
is the dependent variable. Now we seem to have slightly overdone it. The 
appropriate choice would appear to be between the square root transfor­
mation and the log transformation, or perhaps something in between. 

Note, however, that the comparisons made above are not entirely fair, 
since we are changing more than just the variance of the Yi'S. As men­
tioned below, this is one reason why variance stabilizing transformations 
are sometimes not very useful. • 

While variance stabilizing transformations are sometimes very useful -
particularly in simple regression - quite often they are not. As an example, 
consider house prices again. Since they are usually based on lot prices plus 
improvements, one would expect that Yi is a linear combination of at least 
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EXHIBIT 6.3: Residual vs. Predicted Plot for the Regression of Speed Against 
Density and Density2 
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EXHIBIT 6.5: Residual vs. Predicted Plot for the Regression of Logarithm of 
Speed Against Density and Density2 

some of the Xij'S. This simple relationship would be lost if we replaced Yi 

by, say, y'yi. In other cases, a transformation of Y which is not variance 
stabilizing may be desirable for other reasons (see Chapter 9). In some 
situations we may expect that ai is a function of one of the independent 
variables and it is this relationship we wish to exploit. Fortunately, in such 
cases, homoscedasticity may be achieved in another way, as we shall see in 
the next section. 

6.4 Weighting 

Suppose var (€i) = a~ = c~a2 where c~ are known constants. Then con­
stancy of variance can also be achieved by dividing both sides of each of 
the equations of the regression model, 

Yi = {30 + {31Xil + ... + {3k X ik + €i, i = 1, ... ,n, 
by Ci, i.e., by considering 

yi/Ci = {30/Ci + ... + {3kXik/Ci + €i/Ci, i = 1, ... , n. (6.8) 

Model (6.8) is clearly homoscedastic. Each Wi = (Ci)-2 is called a weight, 
the nomenclature coming from the fact that now we are minimizing a 
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weighted sum of squares, 

(6.9) 

Obviously, when the a/s (or a quantity proportional to them) are known, 
weights are not difficult to compute. 

The estimate of (3 obtained from the model (6.8), i.e., by minimizing 
(6.9), is called a weighted least squares (WLS) estimate of f3 and will be 
denoted by bw LS. When Ci = 1, i.e., when least squares is not 'weighted', we 
call it ordinary least squares (OLS) - which is what we have been doing 
until this point in the book. Nowadays, WLS estimates can be obtained 
from just about all statistical packages. 

Example 6.3 
Suppose for each value Xi of the independent variables, Wi observations Yili 
are taken. Assume that the model is Yi£i = x~(3 + Eifi where Ci = 1, ... ,Wi, 
i = 1, ... ,n and Eili'S meet the Gauss-Markov conditions. In particular, let 
var (EiR,) = (}"2. Write fii = L~'=1 Yif) Wi. Suppose that only these averages 
have been recorded, i.e., the individual observations Yil i are not available. 

Then, since E[ili] = x~(3, one might be tempted to use OLS in order to 
obtain an estimate of (3, i.e., to implicitly minimize L~=1 (Yi - x~(3)2. But 

Wi Wi 

var (Yi) = w;:2 L var (YilJ = w;:2 L var (EaJ = (}"2/Wi. 
£i=1 

Therefore, this approach would violate Gauss-Markov conditions and could 
lead to inferior estimates. Intuitively speaking also, the approach violates 
the principle of 'one observation - one vote.' 

Obviously, it would be preferable to minimize L~1 L~~1 (Yil i - x~(3)2. 
But since L~~1 [(Yi£i - Yi)] = 0, this equals 

n ~ n ~ 

L L (Yili - Yi + Yi - x~(3)2 = L L [(Yifi - Yi)2 + (Yi - x~(3)2] 
i=1 fi=1 i=1 fi=1 

n Wi n 

= L L (Yif i - Yi)2 + L Wi(Yi - X;(3)2. 
i=1 (i=1 i=1 

Since the first term in the last expression does not include (3, minimizing 
it is equivalent to minimizing 

n 

L Wi(Yi - X~(3)2. 
i=1 

Since var (Yi) = (}"2/Wi' we see from (6.9) that this yields the appropriate 
WLS estimate. 
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It should be pointed out that while the OLS estimate of (3 using all the 
observations is the same as the WLS estimate using the means fh's, the 
estimates of the error variances from the two models could be different. If 
all the observations were used in an OLS model, then an unbiased estimate 
of u 2 would be 

(t Wi - k - 1) -1 t ~ [(Yil; - fh)2 + (th - X~bWLS)2], 
t-1 t-1 £;-1 

(6.10) 

when (3 is a (k+ I)-vector. On the other hand, ifthe averages were used in 
a WLS procedure, an unbiased estimator of the error variance would be 

n 

(n - k _1)-1 L Wi(fh - X~bWLS)2, 
i=l 

as we shall see shortly. • 
In order to obtain expressions for various estimates, let us now describe 

weighting in matrix notation. Let 0 be a diagonal matrix with diagonal 
elements ci, ... , c;'. When we do weighted regression, the original model 
y = X(3+e, with E(e) = 0 and cov(e) = u 20, is transformed to the model 
yeO) = x(O) (3 + e(O), where y(O) = Cy, X(O) = CX and e(O) = Ce and C 
is a diagonal matrix with non-zero elements cl 1 , ... , C;;-l. Since COC' = I, 
it follows that cov( e(O)) = u 2 I. Hence, the variables with superscript (0) 
satisfy the Gauss-Markov conditions, and least squares analysis can be 
carried out using them. 

However, if we prefer to work with the original variables, we may write 
the estimate of (3 as (since CC' = C'C = 0-1 ) 

bWLS = (X(O)' X(O))-l X(O)'y(O) = (X'O-l X)-l X'O-l y . (6.11) 

Therefore, 

cov(bWLS ) = (X'O-l X)-l X'0-1(U20)0-1 X(X'O-l X)-l 

= u 2(X'0-1 X)-l. 

The residual vector is 

e(O) = yeO) _ yeo) = yeO) - X(O)bWLS = Cy - CXbWLS 

= C(y - XbWLS ) = C(y - YWLS), 

where YWLS = XbWLS . Hence, 

e~O) = (Yi - Yi,WLS)/Ci = y'Wi(Yi - Yi,WLS), 

where Yi,WLS is the ith component of YWLS' Thus, an unbiased estimate 
of u 2 is given by 

n n 

(n - k _1)-1 L(e~O))2 = (n - k - 1)-1 L Wi(Yi - Yi,WLS)2. 
i=l i=l 
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Braking Distance Against Speed 

Had we ignored the presence of heteroscedasticity, and obtained the OLS 
estimator bOLS = (X' X)-l X'y, then 

cov(bOLS ) = (X' X)-l X'(a2D)X(X' X)-l = a2(X' X)-l X'DX(X' X)-l. 

From the Gauss-Markov theorem, it follows that for a non-null vector a, 

var(a'bwLs) ~ var(a'boLs), 

where, of course, a'bWLS and a'bOLS are estimates of a'{3. Therefore, un­
der heteroscedasticity, appropriate weighting yields preferable estimates. 
Weighted least squares is a special case of generalized least squares consid­
ered in Chapter 7. 

Example 6.4 (Continuation of Example 6.1, Page 112) 
Exhibit 6.6 shows the residual versus predicted plot resulting from running 
a regression on the data of Exhibit 6.1 using speed-2 as weight. (This 
weight has also been suggested in Hald, 1960; it is equivalent to using 

distance/speed = (31 + (32 speed 

as the model.) The reader is invited to compare Exhibit 6.6 with Ex­
hibit 6.2. 
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The 'residuals' in Exhibit 6.6 are JWi[Yi - Yi,WLS] which, apart from 
being theoretically appropriate, are also the ones to plot if one wishes to 
check if homoscedasticity has been approximately achieved. • 

When running WLS, the user of regression packages needs to bear in 
mind the fact that usually packages will give Yi -Yi, W LS as residuals instead 
of Vwi(Yi-Yi,WLS), which we have seen are the appropriate ones. Moreover, 
some packages respond to a command to weight with integer-valued Wi'S by 
making each data point (Yi, Xi) into Wi copies of it. (If Wi'S are not integers, 
some packages will truncate the Wi'S to their integer values.) When Wi'S are 
integers this form of weighting yields the same estimates we would get had 
we done the weighting the usual way (by minimizing (6.9». The estimate 
of bWLs is the same and the covariance matrix of bWLS is O'2(X'WX)-1 
where W = diag (WI, ... ,wn ). However, we need to be careful regarding 
the estimate of 0'2. As we have already seen, an unbiased estimate of 0'2 
is L~=I Wi(Yi - Yi,WLS)2 j(n - k - 1), but if an OLS package program is 
used unaltered, it would compute the estimate of 0'2 to be L~I Wi(Yi -
Yi, W LS)2 j (L~=I Wi - k - 1), which would be wrong and will frequently be 
extremely small (See also Example 6.3 and Exercise 6.6). 

Example 6.5 (Continuation of Example 6.3, Page 119) 
The reason why 'brute force' application of OLS, after making copies of the 
data points, yields a poor estimate of 0'2 can be seen from the discussion 
of Example 6.3. The 'brute force' application is the same as the problem 
considered there, if we set Yil i = f); for Ci = 1, ... ,Wi and each i. But this 
makes the first term in (6.10) equal to zero and yields a (frequently severe) 
underestimate of 0'2. The fact is that we would be treating each set of Wi 
Yi's as independent observations, when they are not! • 

In Example 6.4, we weighted with a function of the independent vari­
able; we may also weight using the dependent variable. For the reader's 
convenience, Exhibit 6.7 presents a table of weights for various types of 
dependent variables and various transformations of them (weights for the 
transformations were computed from variances obtained by using (6.4». 
However, we should point out that in practice the theoretical distribution 
of the dependent variable is not the only cause of heteroscedasticity. The 
error term can be affected by variables left out. For example, consider the 
dependent variable average household size by state and assume that the 
data were obtained from the census. Although this is a mean of ni counted 
variables, the ni's are so large that the appropriate formula in Exhibit 6.7 
would give variances which would be nearly zeros. Therefore, if we en­
counter a non-zero s, it would imply that the reason for the variance is not 
just the theoretical distribution of average sample size. 

Weighting with functions w[ E(Yi)] of E(Yi) presents a problem since 
E(Yi) is not known. On occasion one might be able to use Yi as an estimate 
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Type of U ntransformed 
Variable Yi v'Yi 10g(Yi) 

Counts (Poisson) -1 Zi 1 (i.e., apply Zi 
ordinary least 

squares) 

Proportion of -1(1 )-1 nizi - Zi ni(l- Zi)-1 nizi(l - Z1)-1 
counts 
(of form Yi = m;jni) 

Homoscedastic 1 Zi z2 
t 

variable (obviously) 

Means of ni ni niZi niz; 
homoscedastic 
variables 

Mean of ni counted -1 ni zi ni nizi 
variables 

LEGEND AND NOTES: Zi = E(Yi). Columns for VYi and log(Yi) were computed 
using the approximate formula 

var(f(y)) = (var(y))(f'(z))2; 

where f' represents the derivative, and Z represents the mean of y. The entries 
in the table are the reciprocal of the variances. 

EXHIBIT 6.7: Suggested Weights 

of E(Yi) and weight with W[Yi]'S but this usually leads to bias. Frequently, 
a better approach is to obtain ordinary least squares estimates, compute 
i);'s, and then run a least squares procedure using as weights w[Y;]'s. 

Of course, this would usually give different, and presumably better, es­
timates of {3 and E(Yi)'S. One could then use the most recently obtained 
estimates of E(Yi)'S to compute weights and run a weighted least squares 
procedure again. These iterations can be continued until some convergence 
criterion is satisfied. This procedure is often called iteratively reweigh ted 
least squares. Computer programs for it are also available, although most 
common linear least squares packages do not include it. Since nonlinear 
least squares involves iterative procedures anyway, they can often be used 
to advantage to carry out such iterations (see Appendix C, especially Sec­
tion C.2.4, p. 305; also see SAS, 1985b, especially pp. 597-598; and Wilkin­
son, 1987, especially p. NONLIN-25). As discussed in Section C.2.4, when 
some nonlinear least squares programs are applied to weighted linear least 
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squares, the iterative steps are exactly the same as repeated applications 
of OLS as described earlier in this paragraph. One difficulty with all these 
procedures is that, on occasion, weights might turn out to be negative, in 
which case it is not always clear what needs to be done. 

Example 6.6 
The data shown in the left part of Exhibit 6.8 were collected in 1976 by 
Louise Stanten-Maston, a student of one of the authors, from 54 dial-a-ride 
systems in the U.S. and Canada. The variables were the number of riders 
(RDR) using the system, the number of vehicles (VH) in operation, hours 
of operation (HR), the fare (F) and the population (POP) and area (AR) of 
the place where the service was provided. In addition, there is a subjective 
rating called IND. Dial-a-ride services can vary in several ways. They can 
provide service from several points to several other points (many-many 
service) or connect several points to a few or one point (many-one); they 
can provide door to door service or to designated stops; they may require 
advance registration. Some of these features increase ridership while others 
may provide better quality. IND is a composite measure which is 1 when 
several ridership enhancing features were present and is 0 otherwise. 

The reason for collecting the data was to construct a travel demand 
model, i.e., a model that expresses number of riders in terms of other vari­
ables. Such models are used to forecast ridership when new systems are 
planned. For reasons that will be discussed in Chapter 9, it seems desirable 
to take logarithms of all variables except, obviously, IND. Set 

LRIDERS = log[RDR +~] LPOP = log [POP] LAREA = log[AR] 

LVEHS = log[VH] LFARES = log[F] LHOURS = log[HR] 

The reason behind the use of ~ in the definition of LRIDERS also will be 
discussed in Ch. 9 (see p. 185). Because logarithms were being taken, three 
of the fares were set at one cent; the services were actually free in those 
cases. 

Since the number of riders is a counted variable, its logarithm, which is 
the dependent variable, would call for weighting by E(RDR) (Exhibit 6.7). 
Exhibit 6.9 shows the parameter estimates obtained for the first few it­
erations (It.# 0 through It.# 3) and after 14 iterations (It.# 00) when 
some rather stringent convergence criteria were met. Computations for the 
first few iterations were made using a least squares program, simply us­
ing the predicteds from each step to compute weights for the next. In the 
multiple iterations case we used PROC NLIN in SAS, but the computa­
tions are essentially identical to those of repeating a linear least squares 
procedure several times (See Appendix C, Section C.2.4, p. 305). It.# 0 rep­
resents ordinary least squares. Weights used for each iteration are shown 
in Exhibit 6.8, with the column labeled w giving weights for the fourteenth 
iteration. 
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Obs pOP AR RDR HR VH F IND W(l) w(2) w(3) W 

1 100000 13.6 2718 18.5 22 .25 1 2050 2545 2624 2652 
2 8872 2.3 250 12.0 3 .35 0 149 133 132 132 
3 17338 4.3 350 12.0 2 .60 1 225 220 217 215 
4 26170 4.6 186 12.0 4 .50 0 216 201 198 196 
5 60000 17.0 600 12.0 14 .50 0 543 550 546 546 
6 40000 7.0 420 12.0 5 .50 1 493 529 531 531 
7 30850 3.9 249 12.0 2 .50 1 253 253 250 248 
8 25000 6.5 350 13.0 8 .25 0 335 323 322 322 
9 44000 10.9 925 24.0 19 .30 0 1019 1091 1100 1103 

10 24300 6.4 514 24.0 12 .60 0 750 783 791 794 
11 21455 2.6 117 8.0 4 .50 0 177 167 167 168 
12 47000 7.0 450 12.0 7 .50 0 351 345 342 342 
13 45000 7.0 275 12.0 5 .50 0 268 254 249 247 
14 23000 6.0 360 12.0 6 .25 1 478 510 515 518 
15 20476 3.8 307 11.0 4 .50 1 379 401 406 408 
16 20504 5.1 227 12.0 5 .50 0 240 225 222 222 
17 71901 15.8 208 12.0 4 .60 0 219 199 190 185 
18 70000 12.0 700 16.3 13 1.00 0 743 784 784 784 
19 30000 10.0 440 12.0 7 1.00 0 326 313 309 308 
20 26689 3.5 275 15.0 4 .01 1 310 309 308 305 
21 9790 4.6 201 15.5 3 .50 0 165 145 141 139 
22 19805 10.4 314 14.0 5 .50 1 436 450 447 444 
23 5321 4.7 95 15.0 2 .50 0 103 85 82 80 
24 56828 51.6 679 12.0 15 .60 1 896 982 973 969 
25 11995 5.1 224 12.0 4 .50 0 180 162 159 158 
26 10490 6.1 277 12.0 4 .50 1 319 322 321 323 
27 7883 4.1 67 10.0 2 .50 0 89 74 71 70 
28 3025 2.4 83 8.0 2 .50 0 69 57 56 56 
29 17074 7.5 245 12.0 4 .50 1 341 347 345 344 
30 7728 4.3 148 12.0 3 .50 0 135 117 114 114 
31 27137 14.2 266 12.0 6 .50 0 244 223 216 214 
32 12287 4.1 270 12.0 4 .50 1 355 368 371 374 
33 24090 568.0 56 10.5 3 .50 0 66 46 40 37 
34 9521 4.3 236 12.0 4 .50 1 333 341 345 347 
35 18404 408.0 251 12.0 5 .50 1 202 170 154 147 
36 7253 4.6 150 12.0 3 .50 0 131 113 III 110 
37 28500 10.0 370 10.0 5 .25 1 353 360 358 356 
38 35176 24.9 464 16.8 10 .50 0 430 410 398 392 
39 12988 5.2 260 12.0 5 .50 0 217 200 198 198 
40 9892 251.0 63 12.0 3 .50 0 68 48 43 40 
41 15136 15.7 341 14.5 6 .50 1 451 460 455 452 
42 26321 17.8 222 12.0 6 .50 0 233 210 203 200 
43 18000 10.0 200 10.0 3 .50 1 233 226 221 219 
44 9500 5.5 228 11.5 3 .25 1 228 220 218 218 
45 27600 9.0 900 12.0 4 .10 1 302 298 293 290 
46 24127 7.2 199 12.0 6 .60 0 275 260 257 256 
47 14000 4.0 600 20.0 6 .25 1 639 696 709 713 
48 53860 3.0 300 17.0 10 .01 0 434 433 436 436 
49 18000 28.0 310 14.5 9 .25 0 282 253 244 240 
50 29103 2.5 369 15.2 4 .20 1 484 525 534 536 
51 102711 9.5 400 16.0 11 .01 0 420 406 398 393 
52 25000 5.0 140 5.0 2 .35 1 127 121 119 118 
53 32000 5.0 3400 18.7 12 .35 1 1256 1498 1555 1580 
54 35000 7.0 200 4.0 4 .35 1 192 192 193 194 

EXHIBIT 6.8: Dial-a-Ride Data and Weights 
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One purpose for showing results from several iterations is to demonstrate 
that obtaining weights from a single OLS run is usually not good enough, 
but if a suitable iterative program is not available, running a few iterations 
of a weighted least squares program may not be too bad. The t values 
given show that running OLS when weighting is required could lead to 
different conclusions (this example was not specially selected to show this; 
in extreme examples very different conclusions can come from weighting). 
Notice that in neither case is the distribution of t(bj ) a t distribution. In the 
OLS case it is not a t distribution because the standard errors, computed 
as they are as the diagonal elements of s2(X' X)-l, are incorrect because 
of heteroscedasticity. In the case of weighted least squares, weighting by 
Yi,WLS'S which are functions of the observations gives rise to a more com­
plicated distribution than the t. However, use of t tables in the latter case is 
usually not too far wrong for moderate to large samples (see, for example, 
Carroll and Ruppert, 1988, p. 23 et seq.). 

As a practical matter, after suitable weights have been found, they can 
simply be appended to the data and used in future computations, e.g., 
variable search computations of Chapter 11. • 

It.#O It.#1 It.#2 It.#3 It.#oo 

Variable bj t(bj ) bj bj bj bj t(bj ) 

Intercept 0.911 0.920 0.358 0.364 0.396 0.415 0.278 
LPOP 0.213 2.320 0.248 0.246 0.244 0.243 1.845 
LA REA -0.179 -4.419 -0.232 -0.257 -0.266 -0.270 -3.356 
LVEHS 0.782 6.128 0.882 0.916 0.929 0.936 5.170 
LFARES 0.120 2.388 0.141 0.145 0.147 0.148 2.419 
LHOURS 0.633 3.324 0.666 0.660 0.651 0.647 2.343 
IND 0.636 7.136 0.765 0.787 0.793 0.796 7.631 

EXHIBIT 6.9: Coefficients and t-values for Selected Weighting Iterations for Dial­
a-Ride Data 

We have only considered the case where Ci'S were known functions of 
either the Xi/S or of E(Yi)'S. Weights can be constructed under less re­
strictive conditions. While a complete discussion of this subject is beyond 
the scope of this book, we discuss one particular case of common occurrence 
below and another in Section 7.3.1, p. 134. 

Suppose the variance of Yi'S is a step function of some other known 
variables. Then we could divide our observations into several subsets and 
the variance of y/s would be a constant for each subset. If each of these 
subsets contains enough observations, then variances can be estimated for 
each subset separately and used to compute weights. This estimation would 
be based on residuals from an OLS procedure. Either the sum of squares 
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of residuals in each subset divided by the number of cases in the subset 
could be used or the interquartile range for residuals in each subset, as a 
quantity proportional to the standard deviation, could be used. 

Alternatively, if the ratio of the number of observations to the number of 
independent variables is large enough, we could run least squares on each 
subset separately and use the estimates of the error variance from each 
to obtain weights. For a review on the performance of this procedure, see 
Judge et ai. (1985, p. 428 et seq.) 
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Problems 

Exercise 6.1: An analyst is conducting a study of factors affecting waiting 
times. He assumes that his dependent variable waiting time (Yi) has a 
negative exponential distribution for which E(Yi) = >'i and var (Yi) = >.~. 
Obtain a variance stabilizing transformation for Yi. 

Exercise 6.2: Show that if instead of weighting by c12 , • •• , C~2, we had 
weighted by ac12, . .. ,ac~2 where a is any positive number, then bWLS 
and its covariance matrix would be unaffected. 

Exercise 6.3: Discuss how you would estimate the variance of a future 
observation (Section 3.8.2, p. 71), in the case of weighted regression. 

Exercise 6.4: Consider the model Yi = {3Xi+f.i, where f.i'S are independent 
and distributed as N(O, 0'2X~). Find the weighted least squares estimator 
for {3 and its variance. Give reasons why you would not wish to use ordinary 
least squares in this case. 

Exercise 6.5: Suppose YI,' .. ,Yn are independently distributed and Yi = 
{3xi + f.i with Xi> 0, E(f.i) = 0, var(f.i) = 0'2Xi and i = 1, ... ,no Find the 
best unbiased estimator of {3 and its variance. 

Exercise 6.6: Consider the model Yi = x~{3 + f.i, where i = 1, ... , n, xi's 
are k+1-vectors, the f./s are independently distributed with means zero and 
variances W;10'2 and the Wi'S are known positive integers. Show that the 
weighted least squares estimate of {3 can be obtained using ordinary least 
squares in the following way: Construct a data set in which each of the cases 
(Yi, Xi) is repeated Wi times. Show that the ordinary least squares estimate 
of {3 obtained from this data set is (X'W X)-l X'Wy, and an unbiased 
estimate of 0'2 is L~=l Wi(Yi - Yi)2 j(n - k - 1), where X' = (Xl"'" Xn) 
and W = diag (WI, ... , wn ). (These estimates are therefore the same as the 
corresponding weighted least squares estimates using the Wi'S as weights.) 
[Hint: Let 1i = (1, ... ,1), be a vector of l's of dimension Wi. To obtain 
the OLS estimator, we are using the model Dy = DX{3 + De, where 

( ~:2'" ~l n 
D = :::::::::::::: : t; Wi X n.] 

o 0 1n 

Exercise 6.7: Consider Exercise 4.8. Assuming that the time taken for 
each contact of each type is independent of the others, would you expect 
heteroscedasticity to be present in the model you constructed to carry out 
the test? Draw various residual plots to check if your conjecture is true. 
Write a paragraph discussing your findings. 



Problems 129 

Exercise 6.8: Each case in Exhibit 6.10 represents a pair of zones in the 
city of Chicago. The variable x gives travel times which were computed from 
bus timetables augmented by walk times from zone centroids to bus-stops 
(assuming a walking speed of 3 m.p.h) and expected waiting times for the 
bus (which were set at half the headway, i.e., the time between successive 
buses). The variable y was the average of travel times as reported to the 
U.S. Census Bureau by n travelers. The data were selected by one of the 
authors from a larger data set compiled by Cresar Singh from Census tapes, 
timetables and maps. 

Plot y against x. What do you notice? In order to obtain a linear ex­
pression for perceived travel time in terms of computed travel times, what 
weights would you use? Carry out the appropriate regression exercise and 
plot suitable residuals. Ignoring the outlier{s), do you think you have ade­
quately taken care of heteroscedasticity? 

Obs # n x y Obs # n x y 

1 1 26 35.0 17 5 25 34.0 
2 1 40 57.0 18 4 29 32.5 
3 7 32 34.3 19 3 24 28.3 
4 3 36 38.3 20 6 34 40.8 
5 2 27 37.5 21 7 28 29.3 
6 4 39 36.3 22 5 21 26.0 
7 4 29 31.3 23 4 40 47.0 
8 3 22 35.0 24 2 35 40.0 
9 1 34 30.0 25 3 24 30.0 

10 1 25 30.0 26 2 35 45.0 
11 10 37 40.5 27 2 31 37.5 
12 2 36 47.5 28 9 21 25.0 
13 1 20 30.0 29 17 36 51.1 
14 2 26 40.0 30 2 36 42.5 
15 2 31 30.0 31 1 35 45.0 
16 3 22 26.7 32 3 24 25.0 

EXHIBIT 6.10: Data on Perceived (y) and Computed (x) Travel Times by Bus 

Exercise 6.9: Carry out the steps, discussed in Example 6.1, to graphically 
determine a relationship between var (Yi) and E(Yi). 

Exercise 6.10: For the OLS model used in Example 6.1, plot 

1. the absolute values of the residuals against predicted values, and 

2. the logarithm of the absolute values of the residuals against the log-
arithm of predicted values. 

In each case, devise and demonstrate the efficacy of a method for deter­
mining what the correct weights should be. 

Exercise 6.11: As noted in Chapter 1, a classical problem in regression 
is that of relating heights of sons to heights of fathers. Using the data of 
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Exhibit 6.11, obtain an appropriate relationship. Obviously, one needs to 
weight. If the number of sons for each height category were available, that 
variable would have provided the appropriate weights (why?). What would 
you do with the data given and why? 

Height of Father 62 63 64 65 66 67 68 69 70 71 72 73 
(nearest inch) 

Average Height 65.5 66.5 66.8 66.8 67.6 67.8 68.6 69.1 69.5 70.6 70.3 72.0 
of Sons (ins.) 

# of Fathers 2 6 12 19 27 26 26 26 20 15 8 5 

EXHIBIT 6.11: Heights of Fathers and Sons 
SOURCE: Dacey (1983, Ch. 1) from McNemar (1969, p. 130). Reproduced, with 
permission, from McNemar, Q., Psychological Statistics. © 1969 John Wiley & 
Sons, Inc. 

Exercise 6.12: Would you guess that heteroscedasticity would be a prob­
lem in the model of Exercise 4.6, p. 96? Examine the residuals and also 
carry out a test to see if your conjecture is correct. What action, if any, is 
required? 

Exercise 6.13: Do you think the least squares exercise of Example 4.5, 
p. 92, should have been weighted? If so, carry out the appropriate least 
squares exercise. In this case are the estimates very different? Comment. 

Exercise 6.14: Plot residuals against predicted values and each indepen­
dent variable for Model 2 of Exercise 2.15, p. 53. Would weighting help? If 
so, what weights would you apply? 

Now, instead of DAO, consider 10g[DAOj as the dependent variable (and 
the same independent variables as in Model 2 of Exercise 2.15). Does it 
now appear that weighting is called for? 

Compute the variance of a future observation for DAO, corresponding 
to GNP=1500, CP=3500 and OP=700, for each of the models: Modell 
of Exercise 2.15, Model 2 of Exercise 2.15 and the model with the logged 
dependent variable that you just constructed. Which has the best variance? 

Exercise 6.15: Construct appropriate residual plots and check if house 
prices (Example 4.3; the data are on p. 32) seem to be heteroscedastic. 
When such data are collected from a small area, as these data are, variance 
is usually small for houses of the predominant price range (because it is easy 
to get selling price information for 'comparables') and is larger for other 
houses. Check if this is the case here. If so, find appropriate weights and 
obtain weighted least squares estimates comparable to those in Exhibit 4.6, 
p. 89. Also run the tests we ran in Chapter 3. Compare the results and state 
any conclusions you come to. 

Exercise 6.16: Do you feel the variances of the raises given company 
chairmen (Exhibit 3.6, p. 78) are equal? If you feel they are not equal, 
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what transformation could be used to improve matters? Make appropriate 
plots and give your conclusions. 

Exercise 6.17: For the models in Exercise 2.20, p. 55, which ones call for 
weighting? Construct appropriate plots to verify your conjectures. When 
weighting is indicated carry out the appropriate weighted procedures. Ver­
ify, using residual plots, if heteroscedasticity has been rendered negligible. 
If not, choose better weights and repeat the exercises. 



CHAPTER 7 

*Correlated Errors 

7.1 Introduction 

Continuing with our examination of violations of Gauss-Markov conditions, 
in this chapter we examine the case where 

(7.1) 

could be non-diagonal; i.e., some E{EjEj)'s may be non-zero even when 
i =I- j. Cases of this kind do occur with some frequency. For example, ob­
servations of the same phenomena (e.g., per capita income) taken over time 
are often correlated (serial correlation), observations (e.g., of median rent) 
from points or zones in space that are close together are often more alike 
than observations taken from points further apart (spatial correlation), and 
observations from the same production run or using the same laboratory 
equipment often have more semblance than those from distinct runs. 

While a non-diagonal 0 does not bias the estimates (as we saw in Sec­
tion 2.6, p. 35), even fairly small non-diagonal elements can cause the vari­
ance of estimates to increase substantially. Consider the estimate.e'b of .e' f3 
(Section 2.9, p. 41). If y has covariance matrix a 20, then the variance of 
l'b is of the form a 2c'Oc with c' = l'{X'X)-l X'. This contains n{n - 1) 
terms involving non-diagonal elements of O. Therefore, even if each such el­
ement is small, their combined effect can be considerable. Even worse is the 
fact that, when we use ordinary least squares, computer packages typically 
compute estimates of variance under the assumption that G-M conditions 
hold, i.e., 0 = I. Therefore, unaccounted for non-diagonal elements can 
substantially affect any inferences we reach. 

Unfortunately, since there are n{n+ 1)/2 distinct elements in 0, it would 
be impossible to reliably estimate all of them on the basis of n obser­
vations. Consequently, general methods of handling the model (7.1) are 
not available. However, if there are known relationships involving very few 
parameters among the elements of 0, then estimation procedures become 
available. But each type of relationship usually requires a distinct approach 
and this leads to a vast number of cases. In this chapter we consider a few 
such cases which we think are of relatively common occurrence. A larger 
number of them are examined in more advanced (typically econometrics) 
texts, e.g., Judge et al. (1985). A fairly general treatment of the subject is 
Rao's theory of MIN QUE (minimum norm quadratic unbiased estimators; 
see Rao, 1970), which is beyond the scope of this book. 



7.2. Generalized Least Squares: Case When n Is Known 133 

Even when methods are available they are not always foolproof. For ex­
ample, sometimes we get negative estimates of variances. While for the 
cases we consider we have sometimes been able to suggest methods of cir­
cumventing this problem, in general, the ingenuity of the user is the only 
recourse. Therefore, it is usually preferable to collect data in such a way 
that errors can be considered uncorrelated. 

In the next two sections we examine fairly general O's. In subsequent 
sections the above mentioned special cases are considered. 

7.2 Generalized Least Squares: Case When n Is 
Known 

Consider the usual regression model 

y = X{3 + e, (7.2) 

where y is the response vector of n observations, X is an n x (k + 1) matrix 
of known constants and {3 is the (k + I)-vector of unknown regression 
parameters. But now assume that, while E(e) = 0, E(ee') is given by (7.1) 
with 0 a known symmetric, positive definite matrix of order n. In this 
section we show that under these conditions, a preferred estimate of (3 is 
the generalized least squares estimator 

(7.3) 

From Section A.13, p. 279, we know that we can write 0 as 0 = r Dr' = 
SS' where r is orthogonal, D is a diagonal matrix of positive diagonal 
elements and S = r Dl/2. Pre-multiplying both sides of equation (7.2) by 
S-I, we get 

S-ly = S-1 X{3 + S-le. 

Therefore, if we let y(O) = S-l y , X(O) = S-1 X and e(O) = S-l e, we get 
the model 

y(O) = X(O) (3 + e(O) , 

where E(e(O») = E(S-le) = 0, and 

cov(e(O») = cov(S-le) = S-1 cov(e)(S')-1 

= (]"2S-10(S-I)' = (]"2S-1(SS')(S')-1 = (]"2 I. 

(7.4) 

Thus, we see that the G-M conditions hold for model (7.4). Consequently, 
the BLUE estimator for (3 is the ordinary least squares estimator which is 

bCLS = (X(O)' X(O»)-l X(O)'y(O) 

= (X'(S,)-lS-1 X)-l X'(S,)-IS-l y = (X'O-l X)-l X'O-ly. 
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It is easy to verify that COV(bGLS) = 0-2(X'n-1 X)-l. 
The vector of residuals may be written as 

e(O) = y(O) _ y(O) = y(O) _ X(O) (X(O)' X(O»)-l X(O)'y(O) 

= [1 - X(O) (X(O)' X(O»)-l X(O)']y(O) 

and an estimate of 0-2 is given by 8 2 = (n - k - l)-le(O)'e(O). Using the 
new variables y(O) , X(O) , and e(O) , all procedures on testing and confidence 
intervals can be carried out without any change. For example, if we wish 
to test the hypothesis 

H: C{3 = ° vs A : C{3 -# 0, 

where C is an r x (k + 1) matrix with r S k + 1, then H is rejected if 

(b~nsC')[C(X'n-l X)-lC't1(CbGLS) ~ 8 2rFr ,n_k_l,a, 

where 

7.3 Estimated Generalized Least Squares 

Unfortunately, the matrix n is not usually known and needs to be esti­
mated. If {2 is an estimate of n, then bEGLS = (X'{2-1 X)-l X'{2-1y has 
been called an estimated generalized least squares estimate (or an EGLS 
estimate) of {3. In general, small sample properties of such estimates are 
hard to come by, except by model-specific Monte Carlo methods. However, 
fairly general asymptotic properties are available. For example, under cer­
tain conditions, given in Theil (1971, Ch. 8) and in Judge et al. (1985, 
p.176), bGLS and bEGLS are both consistent and have the same asymp­
totic distribution. Moreover, both estimates are asymptotically normal with 

mean (3 and covariance matrix n-10-2w- 1 , and ..jii(bEGLS - bGLS) .!: o. 
Under some further conditions, 

0-2 = (y - XbEGLS)'{2-1(y - XbEGLs)/(n - k) 

is a consistent estimator of 0-2 • 

7.3.1 A SPECIAL CASE: ERROR VARIANCES UNEQUAL 

AND UNKNOWN 

A special case where we need to consider empirical estimation of n occurs 
when the non-diagonal elements of n are zero and the diagonal elements 
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are unknown. That is, a2n = diag (at, ... , a~) and the a2 are unknown. 
This is a case of heteroscedasticity with unknown variances. 

There is now one unknown variance corresponding to each observation. 
Such situations do not lend themselves well to reliable estimation proce­
dures, but let us examine this case anyway. Suppose we apply ordinary 
least squares and obtain the vector e of residuals ei. It is reasonable to 
base any estimation of a~ on these residuals. A standard method consists 
of considering e(2) = (er, ... ,e~)'. Since e = Me, where, as in (2.13), 
M = (mij) = 1- X(X'X)-lX', it follows that ei = E;=lmijfj, and 
hence, since for i i- j, E[fifj] = 0, 

n 

E[e;] = L m;jaJ for i = 1, ... , n. (7.5) 
j=l 

Let M(2) = (m;j) and 00(2) = (at, ... , a~)'. Then we may write the system 
of equations (7.5) as 

(7.6) 

Replacing E(e(2)) by its estimate e(2) and 00(2) by its estimate "..(2) = 
( A2 A2)' t a1, ... ,an we ge 

(7.7) 

We can solve this set of equations to get the required estimates &~. These 
estimates are also known to be MINQUE. 

A major difficulty with these estimates is that some &;'s can turn out to 
be negative. Some alternative estimates of a~ have also been proposed (see 
Judge et al., 1985). 

Although, as mentioned earlier, it is not desirable to estimate individual 
a~'s in this way, the method can be useful if there is a relationship among 
the a~'s. For example, assume that 

for i = 1, ... , n where Zi is an m-dimensional known vector, with m < n, 
and a is a vector of parameters. Let Z' = (Zb ... , zn). Then from (7.6), 

(7.8) 

which prompts the estimation of a as 

(7.9) 

which in turn can be used to estimate a~'s. Since (M(2))-1 E(e(2)) = Za, 
another estimate of a is 

(7.10) 
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The difference between the two estimates stems obviously from different 
error distributions for the model (7.8). Yet another alternative (which, in­
cidentally, is a MINQUE - see Froehlich, 1973) is 

(7.11) 

For none of these estimators is there any guarantee of positivity of estimates 
of the u'f's. Judge et al. (1985) have given other methods of estimation in 
this case as well as for situations where u 2 has other algebraic forms. 

7.4 Nested Errors 

Suppose that out of the total of n = mM observations Yl. Y2, ... , each ofthe 
M sets of m observations, Yl, ... , Ym; Ym+l, .. ·, Y2m; ...... was obtained 
in some common way. For example, each set could have been obtained 
from a common production run, or result from experiments using common 
equipment, or be obtained by the same survey-taker. Then these sets could 
contain mutually correlated observations. 

A simple case of this occurs when all the correlations within each group 
are the same and we can write E[u'] = u 2 (1 - p)I + u 2 <I> where 

and 

Since m-111' is clearly idempotent with trace 1, its eigenvalues consist 
of 1 one and m - 1 zeros. The eigenvalues of E, therefore, consist of m - 1 
zeros and one pm. Let G be an orthogonal matrix that diagonalizes E, i.e., 

GEG' = D and GG' = I 

where D is a diagonal matrix D = diag (d1, ... , dm ) of the eigenvalues of E, 
which are d1 = pm and dl = 0 when e =f. 1. An example of such a matrix G 
is the matrix with first row m-1/ 2 (1, ... , 1)' = m-1/ 21' and the remaining 



(m -1) rows 

1 
v'2 
1 

v'6 

o 
-2 
v'6 
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0, 

0, 

........................................... , 

........................................... , 
m-1 

Jm(m-1) Jm(m-1) Jm(m-1) Jm(m-1)' 

although one would typically use a matrix program like SAS PROC MA­
TRIX (SAS, 1982b), or MINITAB1 (MINITAB, 1988) to obtain a suitable 
G. Let r be the n dimensional matrix with G's on its diagonal and O's 
elsewhere, Le., 

If we multiply both sides of our original model y = X {3 + e by r on the 
left, we get 

w = Z{3 + "1 

where w = ry, Z = r X and "1 = reo It is straightforward to verify that 
E["1"1'] is a diagonal matrix with diagonal elements 151"", t5n , where M of 
the t5i 's (one corresponding to each block of m observations) are T2 + pm 
and the remainder are T2 where T2 = a 2(1- p). In the case of the example 
of G given above, 

when i = tm + 1 where t = 0, ... , M - 1 

otherwise. 

Thus we have removed all non-diagonal terms in the error covariance matrix 
and are left with a situation with two subsets of observations within each of 
which the variances are the same. If a computer program is used to obtain 
G, an examination of the eigenvalues will show which observation belongs 
to which subset. 

Then we can apply any of the methods mentioned at the end of Sec­
tion 6.4, p. 118. Alternatively, if M is not too large, we could lose a few 
observations by simply deleting M cases, Wtm+1, where t = 0, ... , M - 1, 
and thereby reducing the model to a purely homoscedastic model. The 
above discussion can be extended to the case when the M subsets are of 
unequal size (Srivastava and Ng, 1988). 

1 MINITAB is a registered trademark of MINITAB, Inc., State College, PA 
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7.5 The Growth Curve Model 

When nothing is known of the form of 0, it is still possible to estimate it, 
if the experiment can be replicated an adequate number of times, i.e., if we 
have the model 

Yt=X{3+€t 

where X is an m x p matrix, t = 1,2, ... , M, E(€t) = 0 and cov(€t) = O. 
Here Y 1, ... , Y M are independent m dimensional vectors and a 2 has been 
absorbed in O. 

Let y = M- 1 L~1 Yt and E = M- 1 L~1 €t· Then 

y = X{3 + E 

where E(E) = 0 and cov(y) = COV(E) = M-10. Hence, the generalized 
least squares estimate of {3 is given by 

bGLS = (X'O-1 X)-1 X'O-1 y . 

However, 0 is not known. But since E(Yt - y) = 0, for all t = 1, ... , M, 
an unbiased estimator of 0 is given by 

M 

0= (M _1)-1 2)Yt - Y)(Yt - Y)'. 
t=1 

Therefore, an estimated generalized least squares estimate of {3 is 

bEGLS = (X'O-1 X)-1 X'O-1 y . 

Under the assumption that €t is multivariate normal, it can be shown that 
this bEGLS is an unbiased estimator (see Exercise 7.3). 

Under normality, the hypothesis H : C{3 = 0 against A: C{3 -j. 0 (where 
C is r x p dimensional with r :S p) is rejected if 

M - r - m + p b'eGLSC'(CEC,)-1CbEGLS F 
(M - l)r 1 + (M _ 1)-1T2 > r,M-r-m+p,c> 

where E = (X'0-1 X)-1, T2 = My'G'(GOG')-1Gy and G: (m-p) x m is 
such that GX = O. Alternatively, if it is inconvenient to find a suitable G, 
one could use T2 = My'[0-1 - 0- 1 X(X'0-1 X)-1 X'0-1]y. (This result 
is obtained with the help of Lemma A.l, p. 279, of Appendix A). 

Example 7.1 
Exhibit 7.1 shows dental measurements for girls from 8 to 14 years old. 
Each measurement is the distance, in millimeters, from the center of the 
pituitary to the ptery-maxillary fissure. Suppose we wish to relate these 
measurements to age and write our model as 
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where Xtl = age - 11. Then 

X=( 1 1 
-3 -1 

1 1)' 
1 3 

Clearly, for the same subject s the m = 4 measurements Yt are not inde­
pendent and 

cov(€s) = n, where €s = (<:ls, ••. , <:4s)'. 

However, we have M = 11 replications of the experiment. 

Age Subjects 

in Years 1 2 3 4 5 6 7 8 9 10 11 

8 21.0 21.0 20.5 23.5 21.5 20.0 21.5 23.0 20.0 16.5 24.5 
10 20.0 21.5 24.0 24.5 23.0 21.0 22.5 23.0 21.0 19.0 25.0 
12 21.5 24.0 24.5 25.0 22.5 21.0 23.0 23.5 22.0 19.0 28.0 
14 23.0 25.5 26.0 26.5 23.5 22.5 25.0 24.0 21.5 19.5 28.0 

EXHIBIT 7.1: Data on Dental Measurements 
SOURCE: Pothoff and Roy (1964). Reproduced from Biometrika with the per­
mission of Biometrika Trustees. 

Since fJ = (21.2,22.2,23.1,24.1)', an estimate of n is given by 0 = 

E;!l (Yi - fJ)(Yi - fJ)' /10 

Hence 

( 
4.51 3.36 4.43 4.36) 
3.36 3.62 4.02 4.08 

= 4.33 4.03 5.59 5.47 . 
4.36 4.08 5.47 5.94 

b - (X'O-l X)-l X'O-l- _ ( 22.70 ) EGLS - Y - 0.482 . 

Suppose we wish to test the hypothesis that the linear term is zero. That 
is, H : {31 = 0 against A: (31 =I O. In this case, e = (0,1), r = 1, p = 2 and 

E = (X'O-l X)-l = ( 3.807 0.160) 
-0.160 0.160 

and e Ee' = 0.045. The matrix 

G= ( 1 
-1 

-1 
3 

-1 1) 
-3 1 

is such that GX = O. Therefore, T2 = 11fJ'G'(GOG,)-lGfJ = 0.11 and 

F = M - r - m + p b~GLSe'(eEe')-lebEGLS = 45.94. 
(M -l)r 1 + T2/1O 

Therefore, at 1 and 8 degrees of freedom, we reject the hypothesis at a 5 
per cent level. • 
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7.6 Serial Correlation 

Frequently when the observations Yi are taken over successive time inter­
vals, the fi'S are correlated. This type of correlation is called serial corre­
lation. We consider the particular case where the fi'S follow a first order 
autoregressive (often called AR(1)) process: 

ft = pft-1 + Ut, (7.12) 

where Ipi < 1 and for all t = 1, ... , n, Ut'S are independent and identically 
distributed with mean 0 and variance O"~. The model (7.12) is called au­
toregressive since ft is linearly related to lagged values of itself. It is said 
to be of first order because the maximum lag is one. 

The AR(1) is only one possible model of serial correlation. Other models 
include higher order autoregressive, AR(r), processes given by 

r 

ft = L Psft-s + Ut, 
s=1 

moving average, MA(m), processes 

m-1 

ft = Ut + L asUt-s, 
8=1 

and mixtures, ARMA(r,m), of autoregressive and moving average pro­
cesses. Typically, analysis consists of first identifying the kind of process, 
its order (r, m) and then the relevant parameters p, Ps or/and as. The 
literature on such time series processes is huge, much of it stemming from 
the seminal work of Box and Jenkins (1970), and a reasonably complete 
treatment of it is well beyond the scope of this book. Consequently, we 
shall briefly discuss the AR(l) process, which is by far the most popular of 
these processes. We refer the interested reader to Judge et al. (1985) and 
to Anderson (1971) for a fuller treatment of the AR(1) and other models. 

If the AR(1) process has been in operation since the indefinite past, then 
by repeated application of (7.12) we have, since Ipi < 1, 

n 00 

ft = lim (pn+1ft_n_1 + '""' pSUt_s) = '""' pSUt_s. 
n---+oo ~ L.....t 

s=o s=o 

Hence 
00 

E(ft) = 0, var (ft) = 0"; L(lY = 0";/(1 _ p2) 
s=o 

and 
00 

COV(ft,ft+r) = LP2s+rO"; = prO";/(1- p2). 
s=o 
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Therefore, COV(E) = a~n is 

1 p p2 pn-l 
p 1 p pn-2 

a~(l- p2)-1 p2 P 1 pn-3 
(7.13) 

pn-l pn-2 pn-3 1 

Let el,.'" en be the usual ordinary least squares residuals from the 
model 

y = X{3+E. 

Then 
n n 

fJ = L eiei-d L e~ (7.14) 
i=2 1 

is an estimate of p which may be shown to be consistent if for all i, hii --+ 0 
where, as in Section 5.2, p. 101 hii's are the diagonal elements of H = 
X(X' X)-l X'. Let 0 be the result of replacing p by fJ in the matrix n in 
(7.13). Then an estimated generalized least squares estimator of {3 in the 
model is given by 

(7.15) 

This-two step method of first estimating p using (7.14) after running ordi­
nary least squares and then using the resulting residuals to obtain an esti­
mated generalized least squares estimate is often called the Prais-Winsten 
(1954) procedure. 

Since 0 is a matrix of typically fairly large dimensions, it is computa­
tionally preferable to obtain the estimate (7.15) in a different way. Let 

Jl-fJ2 0 0 0 0 
-fJ 1 0 0 0 

~= 
0 -fJ 1 0 0 

0 0 0 1 0 
0 0 0 -fJ 1 

Then it may be verified that ~,~ = (1- fJ2 )O-1. Since least squares estima­
tion is unaffected by scalar multiplication, we may apply the transformation 
XCO) = ~X, yCO) = ~y and lOCO) = ~E in (7.15) and get 

(7.16) 

which is an OLS estimator. This transformed model may be written as 

k 

Yt - PYt-l = L(Xtj - PXt-l,j)!3j + Ut 
j=O 

(7.17) 
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for t = 2, ... , n where, as before, n is the total number of observations, k 
is the number of independent variables and XtO = 1. When t = 1, 

k 

J1- jJ2Yl = J1- jJ2 L,BjXlj + J1- jJ2El. 

j=O 
(7.18) 

Therefore, all one need do is to apply ordinary least squares to the model 
consisting of (7.17) and (7.18), which is roughly equivalent to what most 
computer packages (e.g., SAS PROC AUTOREG - SAS, 1982a) do for 
the AR( 1) model. Notice that the models (7.17) and (7.18) could also have 
been directly obtained from (7.12). An alternative to this approach is to 
apply maximum likelihood estimation directly, as illustrated on p. 144 for 
the case of spatial correlation. 

7.6.1 THE DURBIN-WATSON TEST 

A test of the hypothesis p = 0 against the alternative p i= 0 is based on the 
Durbin-Watson statistic, 

n n 

d = L(et - et_l)2/ L e;. 
t=2 t=l 

While this test is primarily to detect the existence of the AR(1) process, it 
is frequently used, in practice, to detect the presence of any kind of serial 
correlation, under the assumption that most serially correlated data would 
exhibit, at least partially, the behavior of an AR(1) process. Notice that 
d = 0 when et = et-l, d = 4 when et = -et-l, while a value of d close to 
2 indicates a low or zero valued p. 

Unfortunately, the percentage points of d cannot be given in tables since 
its distribution depends on X. However, for any chosen level of significance, 
numbers dL and du independent of X have been tabulated (and are given 
on p. 326 for the 5 per cent level) such that, when Et are normal, 

1. if du < d < 4 - du , the hypothesis H is accepted, 

2. if d < dL or d > 4 - dL , it is rejected, and 

3. if dL < d < du or 4 - du < d < 4 - dL , the test is inconclusive. 

However, given X, the distribution of d under H can be computed. For 
example, methods have been given by L'Esperance et al. (1976), Koerts 
and Abrahamse (1969), White (1978) and Srivastava and Yau (1989), and 
one of these can be used to give appropriate probability values. Also, d is 
asymptotically normal (see Srivastava, 1987; also see Section 7.7.1), which 
can also be used to obtain approximate critical values. 
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7.7 Spatial Correlation 

Just as when data are taken over time we frequently have serial correlation, 
when data are taken over contiguous geographical areas (e.g., census tracks, 
counties or states in a country) we frequently encounter spatial correlation. 
This is because nearby areas are often much alike; e.g., mean household 
income for some city block will usually not be too different from that for a 
neighboring block. 

7.7.1 TESTING FOR SPATIAL CORRELATION 

One can use an obvious generalization of the Durbin-Watson statistic to 
test for spatial correlation. This test, known to geographers as Geary's 
(1954) test, is based on the statistic 

n 

C L Wij(ei - ej)2/s2 

i,j=l 

(7.19) 

where c is a constant and Wij is a monotonically declining function of the 
distance between the ith and jth regions. Both c and Wij'S are chosen by 
the user so that Wij = Wji and Wii = O. The most common choice (see 
Haggett et al., 1977, and Bartels, 1979) of Wij is to set Wij = aij where 

aij = { 1 o 
if i and j are contiguous 

otherwise. 

An alternative to (7.19) is the statistic 

c L Wij e i e j/s2 

i,; 

(7.20) 

which is often called Moran's (1950) statistic. Both (7.19) and (7.20) can 
be written in the form 

ce'Ve/s2 (7.21) 

where V is a suitable n x n matrix. 
When to '" N(O, a 2 J), an exact distribution of (7.21) can be obtained 

(using methods in Sen, 1990, or procedures similar to those in, say, Koerts 
and Abrahamse, 1969), but it is unreasonable to expect to find tabulated 
values since we would need such values for each of many possible V's, which 
would vary from application to application. Consequently, most users of 
these statistics invoke the fact that (7.21) is asymptotically normal (Sen, 
1976, 1990, Ripley, 1981, p. 100 et seq.) with mean ctrB and variance 
2c2 (n - k + l)-l[(n - k - 1) trB2 - (trB)2] where B = M'VM and M = 
J - X(X'X)-lX'. 
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If E is not normal, but the Gauss-Markov conditions continue to hold, 
(7.21) is still asymptotically normal (under some mild conditions - see 
Sen, 1976) with mean ctrB and variance 2c2 trB2. 

For more on the properties of these and other tests of spatial correlation 
see Cliff and Ord (1981). 

7.7.2 ESTIMATION OF PARAMETERS 

Unlike serial correlation, the literature on estimation in the presence of spa­
tial correlation is relatively sparse although spatial correlation frequently 
has more serious effects than does serial correlation (owing to the larger 
number of non-zero elements in the error covariance matrix - see also 
Kramer and Donninger, 1987). 

The first order spatial autoregressive model for the error vector €, a 
generalization of the serial correlation model, is 

E = pAE+U (7.22) 

where E[u] = 0, the components Ui of U are uncorrelated, i.e., E[uu'] = 
a 2 I, and A = (aij) with aij = 1 if i and j represent contiguous zones and 
aij = 0 otherwise. The model (7.22) implies that each Ei is p times the sum 
of Ee'S of contiguous zones plus an independent disturbance. Assuming that 
1- pA is nonsingular, (7.22) can be written as € = (I - pA)-lU and hence 

(7.23) 

One method of estimating the model y = X f3 in this case is to use 
generalized least squares. The estimate is bp = [X'(I - pA)2X]-lX'(I­
pA)2y. The catch is that we do not know p. If € is normally distributed, 
what may be done now is to run distinct generalized least squares for 
several values of p (say between 0 and .25 in increments of .01) and select 
that which yields the smallest value of 

(y - Xbp)'(I - pA)2(y - Xbp) - 2Iog(det[(I - pA)]). (7.24) 

This criterion is, of course, based on maximum likelihood (see also Ord, 
1975; Warnes and Ripley, 1987). 

Alternatively, we could proceed as follows. Since A is symmetric, there 
exists an orthogonal matrix r such that 

where Ai's are the eigenvalues of A and r is a matrix of the corresponding 
eigenvectors. Then r(I - pA)r' is also diagonal and has diagonal elements 
1- PAi. Furthermore, r(I - pA)-lr' is diagonal, as is r(I - pA)-2r', and 
this last matrix has diagonal elements (1 - pAi)-2. Thus if X(A) = rx, 
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y(A) = ry(A) and €(A) = rIO, we can write our regression model y = Xf3+€ 

as 
y(A) = X(A) f3 + €(A). (7.25) 

But now, because of (7.23), 

E(€(A)€(A),) = rE(a')r' = r(1 - pA)-2r' 

= diag ((1 _ ~Al)2' ... , (1 - ~An)2 ) 
is diagonal. Therefore, we can perform a weighted regression on the trans­
formed model (7.25), using as weights 1-PAi. Again, an estimate of p could 
be obtained by comparing, for several p's, the values of (7.24) - which, 
in this case, is e(A)'e(A) - 2 log (det [(I - pAm, where e(A) is the vector of 
residuals. Macros for spatial correlation for use with MINITAB have been 
written by Griffith, 1989. A spatial equivalent of the Prais-Winsten pro­
cedure (p. 141) for serially correlated AR(1) models is also possible as an 
alternative. 

The first order spatial moving average model is written as to = (I +o:A)u 
where A is as in (7.22). It can be easily verified that for this model E[€€'] = 
a 2(I +2o:A+o:2 A 2). Since it may be shown that if AT = (arj)' then arj is the 
number of sequences of exactly r -1 zones one must traverse in getting from 
ito j, a higher order spatial moving average model is 10 = [I + L~=l O:fAf]u. 
For this model, the covariance of 10 takes the form 

(7.26) 

where the Pk'S are unknown parameters. 
It can readily be verified that 

r A 2r' = r Ar'r Ar' = diag (Ai, ... , A;), 

and in general 
r Akr' = diag (A~, ... , A~). 

Consequently, 

q q 

rE(€'tO)r' = a 2 diag(1 + LPkA~, ... , 1 + LPkA~). (7.27) 
k=l k=l 

Thus, again we have reduced the spatially correlated case to one that only 
requires weighted regression, but here, because of the large number of pa­
rameters, it might be difficult to estimate weights by minimizing (7.24). 
But weights may be obtainable using (7.9), (7.10) or (7.11). 

For more on these methods, as well as other methods of estimation under 
spatially autoregressive errors, see Anselin (1988), Griffith (1988), Mardia 
and Marshall (1984), Cook and Pocock (1983), Raining (1987) and Vecchia 
(1987). Mardia and Marshall have established consistency and asymptotic 
normality for a wide range of procedures. 
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Problems 

The time series computations can be done using just about any of the 
major statistical packages, as well as one of the many special purpose time 
series packages. All of the exercises can be done quite easily using a matrix 
program like SAS PROC MATRIX (SAS, 1982b) or PROC IML (SAS, 
1985c) or MINITAB (MINITAB, 1988). 

Exercise 7.1: For the model (7.2), show that: 

1. The estimators bOLs and bCLS are unbiased estimators, where boLs 
is the OLS estimator. 

2. cov(bCLS ) = a 2 (X'n-1 X)-l. 

3. cov(boLS ) = a 2(X'X)-1(X'nX)(X'X)-1. 

Using the Gauss-Markov theorem, state which of the two following numbers 
is bigger: 

where l is a non-null p-dimensional vector. 

Exercise 7.2: Show that for the model (2.42) on page 43, OLS and GLS 
estimates are identical. 
[Hint: Let A = 1- n-1u'. Then A- = A and AZ = Z where Z is as in 
(2.40).] 

Exercise 7.3: Show that bECLS in Section 7.5 is an unbiased estimator of 
f3 under the assumption of multivariate normality. 
[Hint: Under the assumption of normality, nand fI are independently 
distributed. Take the expectation given n.] 

Exercise 7.4: The data of Exercise 3.14, p. 79, were collected over time. 
At a 5 per cent level, test the hypothesis that there is no serial correlation 
against the alternative that there is serial correlation. 

Exercise 7.5: Apply the Durbin-Watson test to each of the models con­
sidered in Exercise 2.19, p. 54. When can you accept the hypothesis of no 
serial correlation? 

Exercise 7.6: In Exercise 2.15, p. 53, we suggested taking first differences 
of the dependent variable as an attempt to combat serial correlation. For 
each of the models described, compute the Durbin-Watson statistic and 
explain if we succeeded. In the cases where we did not succeed, can you do 
better using a first order autoregressive model? 

Exercise 7.7: U.S. population (Yt) in thousands for the years 1790, 1800, 
... , 1970 is: 
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Year Oil Gas Bit. Anth. Year Oil Gas Bit. Anth. 

1950 80.7 11.7 34.5 69.9 1966 64.7 18.5 23.3 43.9 
1951 76.4 11.6 32.9 70.4 1967 63.6 18.3 23.3 43.9 
1952 75.3 12.1 32.3 67.2 1968 61.4 17.8 22.5 45.6 
1953 78.5 13.9 32.0 68.3 1969 61.4 17.4 23.0 48.7 
1954 80.4 15.3 29.1 59.8 1970 59.9 16.9 27.9 51.5 
1955 78.6 15.3 28.4 53.6 1971 60.8 17.2 30.4 53.5 
1956 76.6 15.4 29.6 54.5 1972 58.4 16.9 31.9 52.9 
1957 82.1 15.7 30.2 57.9 1973 63.5 18.7 33.6 55.7 
1958 78.6 16.2 28.3 56.5 1974 102.9 24.1 57.7 85.5 
1959 74.0 17.2 27.5 51.9 1975 105.1 32.3 65.9 109.6 
1960 72.3 18.3 26.6 48.0 1976 106.7 40.1 63.4 112.6 
1961 71.8 19.6 25.8 48.8 1977 105.5 51.6 62.3 107.4 
1962 70.8 19.8 24.8 46.5 1978 103.2 55.3 64.6 99.7 
1963 69.5 20.0 24.0 49.8 1979 133.3 66.0 64.1 106.5 
1964 68.3 19.2 24.0 50.8 1980 204.5 81.7 59.4 105.5 
1965 66.3 19.1 23.5 47.5 1981 273.6 96.0 57.4 104.0 

EXHIBIT 7.2: Prices of Crude Oil, Natural Gas, Bituminous Coal and Lignite, 
and Anthracite by Year 

SOURCE: Darrell Sala, Institute of Gas Technology, Chicago. 

3929, 5308, 7239, 9638, 12866, 17069, 23191, 31443, 39818, 50155, 62947, 
75994, 91972, 105710, 122775, 131669, 151325, 179323, 203211. 
Fit a model of the form 

to these data, assuming the errors to be first order autoregressive. Why did 
we take the square root of the dependent variable? 

Exercise 7.8: In Exercise 7.7, Yt+l - Yt is approximately equal to the 
number of births less deaths plus net immigration during the period t to 
t + 1. Since births and deaths are approximately proportional to Yt, it is 
reasonable to propose a model of the form 

Zt = Yt+1 - Yt = (30 + (31Yt + f.t· 

Assuming f.t to be first order autoregressive, estimate (30 and (31. How would 
you forecast the 1980 population? 

In this exercise we have ignored the fact that Yt is possibly heteroscedas­
tic. Can you suggest a way to, at least crudely, compensate for it? 

Exercise 7.9: It is usually conjectured that, over the last several years, 
prices of other fuels have been determined by the price of oil. Exhibit 7.2 
gives prices for crude oil, natural gas, bituminous coal and lignite, and 
anthracite in 1972 cents per 1000 BTU. Assuming first order autoregressive 
errors, estimate a model expressing bituminous coal and lignite prices in 
terms of oil prices. Since it would appear that after the 'energy crisis' of 
1973~74, the price of bituminous coal and lignite responded over about two 
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years, introduce suitable lagged variables to take this into account. Test the 
hypothesis that the price of this energy source is determined by oil prices. 

Do the same for anthracite and natural gas prices. Can the use of broken 
line regression be helpful in the latter case? 

Exercise 7.10: The data set in Exhibit 7.3 gives ratios Ut of fluid intake to 
urine output over five consecutive 8-hour periods (t = 1, ... ,5) for 19 babies 
divided into two groups (G). The babies in group 1 received a surfactant 
treatment. The seven babies in group 2 were given a placebo and constitute 
a control group. 

1. Estimate a model expressing Ut as a linear function of t for the control 
group. 

2. Assuming that the covariance matrix is the same for both groups, 
test if the same linear function suffices for both groups against the 
alternative that the functions are different. 

3. An examination of a plot of the means of Ut for each time period over 
all surfactant subjects will reveal that the plot is not quite a straight 
line. Can you find a more appropriate function? 

Exercise 7.11: Human immuno-deficiency virus (HIV) infection causing 
acquired immuno-deficiency syndrome (AIDS) is known to affect the func­
tioning of a variety of organ systems, including the central nervous system. 
In order to test its effect on the developing brain, the following study was 
carried out. 

Five baby chimpanzees were injected with a heavy dose of HIV intra­
venously at 1 hour of age, subsequent to which the babies were allowed 
to be nursed by the mother. After six months, under general anesthesia, 
the radio-active microspheres technique was used to measure brain blood 
flow. Since there is a federal restriction on the use of this primate model, 
only a limited number of studies could be done. Therefore, the investi­
gators obtained biopsies from five regions of the brain and measured the 
radioactive counts; the results (y) were expressed as cerebral blood flow in 
ml/100 grams of brain tissue. The partial pressure (x) of carbon dioxide 
in millimeters of mercury (also called PC02 ) was also obtained. After the 
biopsy, the animals were returned to their cages for future studies. 

Assume that all pairs of observations for the same chimpanzee have the 
same correlation, while observations for different chimpanzees are uncorre­
lated. With y as the dependent variable and x as the independent variable, 
test the hypothesis that the slope is the same for all regions of the brain 
against the alternative that region 2 and 4 observations have different slopes 
than those from other regions. 

Exercise 7.12: Trucks can be weighed by two methods. In one, a truck 
needs to go into a weighing station and each axle is weighed by conventional 
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G Ul U2 U3 U4 U5 

1 0.26 0.23 0.38 0.38 0.35 
1 0.00 0.28 0.14 0.47 1.17 
1 0.72 1.00 0.27 0.56 0.64 
1 1.81 0.72 1.02 0.68 1.00 
1 0.43 0.80 0.87 1.99 0.68 
1 0.16 0.24 0.40 0.39 1.02 
1 0.03 0.36 0.52 0.93 1.25 
1 0.09 0.19 0.37 0.57 0.78 
1 0.53 0.58 0.44 1.64 0.82 
1 0.19 0.30 0.53 0.69 0.93 
1 0.32 0.32 0.20 1.08 1.17 
1 0.60 0.49 0.80 1.20 1.11 
2 0.46 0.46 1.20 0.63 0.40 
2 0.00 0.58 0.89 0.50 0.96 
2 0.29 0.41 0.79 1.68 2.70 
2 0.00 0.33 0.34 0.28 0.73 
2 0.29 0.62 0.40 0.67 0.41 
2 0.80 0.60 0.62 0.85 1.38 
2 0.62 0.17 0.46 0.63 0.79 

EXHIBIT 7.3: Data on Intake/Output Ratio 
SOURCE: Rama Bhat, M.D., Department of Pediatrics, University of Illinois at 
Chicago. This data is a part of a larger data set. A full discussion of how the 
data were gathered is given in Bhat et al. (1989). 

means. The other is a newer and a somewhat experimental method where a 
thin pad is placed on the highway and axles are weighed as trucks pass over 
it. Former weights are called static weights and are given in Exhibit 7.5 as 
8W, while the latter are called weight in motion or wim. The parenthetic 
superscripts in the exhibit are the axles: 1 represents axle 1, 23 the combi­
nation of axles 2 and 3 and 45 the combination of 4 and 5. Obviously, one 
would expect the axle weights for the same truck to be correlated. Assume 
that the off-diagonal terms of the correlation matrix are the same and the 
matrix is the same for all trucks. 

1. Assuming weight in motion to have the same variance for all axles or 
axle pairs (Le., wim(l), wim(23) and wim(45) have the same variance), 
estimate a linear model of the form wim - 8W = f30 + f318W. Test the 
hypothesis f31 = 0 against the alternative that it is not zero. 

2. If you cannot assume that the variances are the same, but assume 
instead that the variance of each wim is proportional to a function 
of 8W, how would you proceed? 

3. Examine suitable residuals from the results of part 1 above to verify 



150 Chapter 7. ·Correlated Errors 

Chimp. Frontal Parietal Occipital Temporal Cerebellum 
# (Region 1) (Region 2) (Region 3) (Region 4) (Region 5) 

x y x y x y x y x Y 
1 30.3 64.3 30.3 99.6 30.3 71.7 29.3 86.5 30.3 61.8 
2 35.1 56.8 34.0 62.3 34.4 40.1 35.2 97.0 35.0 47.1 
3 36.1 62.4 36.8 92.9 34.9 51.6 37.4 83.0 37.2 75.0 
4 35.1 60.5 35.8 95.1 36.0 70.7 36.1 97.5 33.4 55.7 
5 31.0 43.6 29.6 73.2 28.7 44.5 28.5 79.1 30.2 42.2 

EXHIBIT 7.4: Data on PC02 (x) and Cerebral Blood Flow (y) for Five Regions 
of the Brain of Each of Five Chimpanzees 
SOURCE: Tonse Raju, M.D., Department of Pediatrics, University of Illinois at 
Chicago. 

if the variance of wim is indeed a function of sw and, if necessary, 
re-estimate 130 and 131' 

4. Consider a model of the form wim - sw = ao + a1t + a2t2 where t 
is the axle order, i.e., t = 1 for axle 1, t = 2 for axle 23 and t = 3 for 
axle 45. Estimate the a's and obtain a confidence region for them. 

Exercise 7.13: Exhibit 7.6 provides data on median family income for 
34 Community Areas in the northern half of Chicago. Also given are the 
percentages of population who are black (PB), Spanish speaking (PS) and 
over 65 (PA). The contiguity matrix A is given in Exhibit 7.7. Both data sets 
were constructed by Prof. Siim Soot, Department of Geography, University 
of Illinois at Chicago. 

1. Assume a first order spatial autoregressive model, estimate p and 
use it to estimate parameters in a model with income as the depen­
dent variable and PB, PS and PA as independent variables. Are the 
coefficients of the independent variables significant? 

2. Assume that the covariance matrix is of the form (7.26) with q = 4. 
Apply (7.9) to estimate parameters. 

3. Under the same assumptions as part 1 above, apply (7.10) and (7.11) 
to estimate variances. Use these estimated variances to estimate pa­
rameters (making reasonable assumptions when the estimated vari­
ances turn out to be negative). 

4. Try other values of q. 

Test residuals (in each case) for the presence of spatial correlation and 
comment. 
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SW(l) wim(1) SW(23) wim(23) SW(45) wim(45) 

8660 5616 11920 15600 8520 10608 
8820 6448 17040 19344 19480 18512 
8780 6448 33040 34944 30040 29744 

11180 9152 27840 33072 29040 31824 
10680 10192 20200 30576 20300 30784 
10820 7072 27200 29952 31900 29952 
9500 7072 33200 34112 31820 29952 
9660 6448 24000 19760 33200 16640 

11320 9568 29520 33280 34100 34320 
10460 6240 31640 30576 31620 27040 
10720 5616 33560 42016 33720 35776 
12740 9152 29720 30160 24380 23088 
10920 9152 26560 29952 15280 14144 
8720 6240 12880 14352 9920 11323 

10380 6448 27260 29952 23020 20592 
8980 5824 14160 13312 11340 11024 
8780 7072 31280 37648 30000 37024 
9160 6240 13900 13104 9660 9984 

10220 7072 32820 36192 32740 35152 
8820 6240 13940 13936 12300 12480 
9460 6240 20640 26624 18680 19552 

10120 8320 24700 18928 23200 20176 
9500 6656 27240 35984 23460 25792 
9820 7072 20740 20800 19280 17264 
8760 7488 17660 21840 14500 16640 

11360 8320 32380 37856 17480 17888 

EXHIBIT 7.5: Data on Static Weights and Weight in Motion of Trucks 
SOURCE: Saleh Mumayiz, Urban Transportation Center, University of Illinois 
at Chicago, who compiled the data from a data set provided by the Illinois De­
partment of Transportation. 



152 Chapter 7. *Correlated Errors 

Obs # Area Name PB PS PA Income 

1 ROGERS PARK 9.41 11.92 14.96 18784 
2 WEST RIDGE 0.72 3.71 22.68 25108 
3 UPTOWN 15.06 23.26 13.88 14455 
4 LINCOLN SQ. 0.54 11.31 17.98 20170 
5 NORTH CENTER 1.17 19.01 13.61 19361 
6 LAKE VIEW 6.93 18.80 14.77 20716 
7 LINCOLN PARK 8.59 10.48 9.94 24508 
8 NEAR N. SIDE 32.75 2.89 13.01 23395 
9 EDISON PARK 0.00 0.96 18.64 27324 

10 NORWOOD PARK 0.02 0.96 19.38 27595 
11 JEFFERSON PK. 0.02 1.61 20.42 25082 
12 FOREST GLEN 0.06 1.55 19.03 31651 
13 NORTH PARK 0.94 5.54 17.95 25975 
14 ALBANY PARK 0.61 19.69 11.14 19792 
15 PORTAGE PARK 0.09 2.59 19.06 23402 
16 IRVING PARK 0.13 8.62 15.59 21088 
17 DUNNING 0.48 1.61 18.29 24445 
18 MONTCLARE 0.00 1.66 20.47 24005 
19 BELMONT 0.08 5.76 18.82 22245 
20 HERMOSA 0.38 31.21 12.86 19118 
21 AVONDALE 0.18 20.47 13.61 19144 
22 LOGAN SQUARE 2.64 51.70 9.39 16224 
23 HUMBOLT PARK 35.57 40.73 6.45 14461 
24 WESTTOWN 8.99 56.72 8.56 12973 
25 AUSTIN 72.45 5.90 6.10 16566 
26 W GARFLD PK. 98.55 0.82 4.96 10922 
27 E GARFLD PK. 99.00 0.83 7.81 9681 
28 NEAR W. SIDE 76.45 9.96 8.14 7534 
29 N. LAWNDALE 96.48 2.69 6.55 9902 
30 LOWER W. SIDE 1.06 77.57 7.01 14486 
31 LOOP 19.05 3.44 21.26 26789 
32 NEAR S. SIDE 94.14 1.49 9.44 7326 
33 ARMOUR SQUARE 25.35 4.83 14.77 15211 
34 EDGEWATER 11.12 13.33 18.40 19859 

EXHIBIT 7.6: Community Area Data for the North Part of the City of Chicago 
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EXHIBIT 7.7: The Contiguity Matrix A for the 34 Community Areas in Northern 
Part of Chicago 



CHAPTER 8 

Outliers and Influential 
Observations 

8.1 Introduction 

Sometimes, while most of the observations fit the model and meet G-M 
conditions at least approximately, some of the observations do not. This 
occurs when there is something wrong with the observations or if the model 
is faulty. 

As far as the observations are concerned, there could have been a mis­
take in inputting or recording data. A few observations might reflect con­
ditions or situations different from those under which other observations 
were obtained. For example, one or two of the observations from a chem­
ical experiment may have been affected by chemical contamination or by 
equipment malfunction. If the data set on house prices were to include one 
or two observations where either the properties were particularly run-down 
or where for unusual circumstances they were sold at prices that did not 
reflect their 'true value', these points would most likely not belong to the 
model for houses. 

Observations that do not fit the model might point also to deficiencies 
in the model. There could be an independent variable which should have 
been included in the model but was not. Such data points might also show 
us that the algebraic form of the model is incorrect; e.g., we might need 
to make some transformations to the data (Chapter 9) or consider forms 
which require the use of non-linear regression. 

Because there are two main reasons for the existence of observations 
that do not belong to the model, there are two principal purposes in trying 
to identify them. One is obviously to protect the integrity of the model 
from the effects of points that do not belong to it. The other purpose is to 
identify shortcomings in the model. The latter point, which is particularly 
important, is often ignored by inexperienced analysts. In some sense the 
postulated model reflects what we already know or think we know; other­
wise we would not have formulated the model the way we did. Points that 
do not conform to it are the surprises and can tell us things we did not 
know. This information can lead to substantial improvements in the model. 
It can also lead to discoveries which are valuable in themselves. As Daniel 
and Wood (1980, p. 29) put it, "Numerous patents have resulted from the 
recognition of outliers." 

Observations that do not belong to the model often exhibit numerically 



8.2. The Leverage 155 

large residuals and when they do they are called outliers. As described in 
Section 1.6, p. 11, outliers frequently have an inordinate influence on least 
squares estimates although not all influential points have large residuals. 
Although observations that do not fit the model do not necessarily have 
large residuals, nor are they necessarily influential, there is little hope of 
finding such non-conforming points if they do not stand out either as out­
liers or as influential points. Therefore we shall confine our attention in this 
chapter to outliers and influential points. Besides, a particularly influential 
point should be scrutinized simply because it has so much effect on the 
estimates. 

A point has undue influence when it has a large residual or is located 
far away from other points in the space of the independent variables (Ex­
hibit 1.lOb, p. 12). A measure of this latter remoteness is the leverage hii' 
which we have already encountered in Section 5.3 (p. 106). Indeed, the 
residuals and the leverages constitute the blocks used in building virtually 
all measures to assess influence. Because of their importance, we shall ex­
amine leverages and residuals in the next two sections before proceeding 
to discuss how these measures might be used to identify influential points. 

8.2 The Leverage 

As stated in Section 5.3, the leverages hii are the diagonal elements of 
the hat matrix H = X(X' X)-l X'. Consequently, an individual hii = 
x~(X' X)-lXi where x~ is a row of the design matrix X and, therefore, 
corresponds to a single observation. The key feature of a leverage hii is 
that it describes how far away the individual data point is from the cen­
troid of all data points in the space of independent variables, i.e., how far 
removed Xi is from :I: = n-1 L~=l Xi. We shall show this in the subsection 
below. 

In the case of a lever, greater influence can be generated at a point far 
removed from the fulcrum, than at a point closer to it. This is because 
for a given change at a point remote from the fulcrum the corresponding 
changes in close-in points are relatively small. The situation is similar for 
the leverage hii with the fulcrum at the centroid when 130 ¥- O. When 130 = 0 
the fulcrum is obviously the origin and leverage measures the distance from 
the origin. 

Since, as shown in Section 5.3, L~=l hii = k + 1, if we had the option of 
choosing independent variable values we would choose them so as to make 
each hii = (k + 1)/n. However, such a choice is seldom ours to make. But 
if all hii's are close to (k + 1)/n and if all the residuals turn out to be 
acceptably small, no point will have an undue influence. Belsley, Kuh and 
Welsch (1980, p. 17) offer 2(k + 1)/n as a possible cut-off point for hii' but 
note that this criterion tends to draw attention to too many points. 

A slight shortcoming of the leverage as a diagnostic tool is that it treats 
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all independent variables the same regardless of how each one affects the 
dependent variable. For example, a variable that we might ultimately dis­
card from the model because of its inefficacy (Chapter 11) would affect 
hii as much, or as little, as if it were the most important predictor. The 
DFFITS and DFBETAS described in Section 8.5 are more sensitive to the 
importance of an individual bj . 

8.2.1 *LEVERAGE AS DESCRIPTION OF REMOTENESS 

Let Z be the centered version of X, i.e., Z' = (Xl - x, ... , Xn - x). Then 
the diagonal elements of H = Z (Z' Z) -1 Z' are 

hii = (Xi - x)'(Z' Z)-l(Xi - x). (8.1) 

Since (n _1)-1 Z' Z is sample covariance matrix of the 'observations' Xi, it 
is easy to see that (8.1) is a standardized form of squared distance between 
Xi and X. Apart from rendering (8.1) unit-free, this form of standardization 
also takes into account any relationship between independent variables. 

Let fI = 'fj1 where 'fj = n-1 L~=l Yi. Since the vector of predicted values 
isy=Hy, 

y - fI = Hy - n-111'y = (H - n-111')y. 

On the other hand, since l' Z = 0, it can be shown (using the centered 
model (2.40) on p.42) that y - fI = Hy. It follows that 

(8.2) 

Therefore, hii also describes distance between Xi and X. 

Equation 8.2 also shows that n- 1 ::; hii ::; 1, which is why we took pains 
not to refer to hii as a distance. 

8.3 The Residuals 

For the purpose of detecting observations that do not belong to the model 
(and also influential points), more valuable than the residuals are the Stu­
dentized residuals, often called RSTUDENT and defined by 

e* = ei (8.3) 
t 8(i) VI - hii 

where ei is, as before, a residual and 8(i) is equivalent to 8 if least squares 
is run after deleting the ith case. Denote as y(i) and X(i) the results of 
removing the ith row from y and X and let b( i) be the least squares 
estimate of f3 based on y(i) and X(i), i.e., b(i) = (X(i)X(i))-l X(i)y(i). 
Clearly, 

n 

(n - k - 2)8(i) = L[Y£ - x~b(iW 
£=1 
Copi 
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has essentially the same statistical properties as 8 2 , and, in particular, 
under G-M conditions 8~i) is an unbiased and consistent estimate of 0'2. 

An alternative expression for it follows from 

(n - k - 2)8~i) = (n - k -1)82 - e~(l- hii)-l (8.4) 

which is proved in the appendix to this chapter. Obviously, (8.3) is most 
similar to the standardized residuals (5.4) and frequently will also be nu­
merically similar. Since in either case, each residual is being divided by 
an estimate of its standard error, it is fairer to make comparisons between 
Studentized or standardized residuals than among the residuals themselves. 
However, analysts who have used residuals to identify outliers and watched 
the maximum of their numerical values decline as outliers are eliminated 
might find Studentized or standardized residuals a bit disconcerting. Since 
typically, 82 or 8(i) will decline as outliers are eliminated, the maximum of 
such residuals wIll not always decline. They are essentially relative mea­
sures. 

The ers are fascinating quantities. It is shown in the appendix to this 
chapter (and slightly differently in Cook and Weisberg, 1982, p. 21) that 
if we append to our list of independent variables an additional one - an 
indicator variable z which is 1 for the ith case but is zero otherwise -
then the t-value associated with this variable is exactly ei. This means 
that ei has a t distribution when the errors are Gaussian and has a near t 
distribution under a wide range of circumstances (see Section 5.3; also see 
Exercise 8.2). With the presence of z in the model, the estimates of the 
coefficients of the other independent variables and the intercept are not 
affected by ith observation. Therefore, ei is a standardized measure of the 
distance between the ith case and the model estimated on the remaining 
cases. Therefore, it can serve as a test statistic to decide if the ith point 
belongs to the model (see also Exercise 8.3). 

8.4 Detecting Outliers and Points That Do Not 
Belong to the Model 

Anyone of the plots of the residuals - against Yi'S or against any of the 
Xij'S or even against the case numbers - will show us which residuals (if 
any) are large. And because these plots are easily drawn and also used for 
other purposes, this is possibly what is done most often. 

However, for a search for points that might not fit the model, the Stu­
dentized residuals are much more useful. One could examine a listing or a 
plot of these against, say, case numbers. One can easily identify from these 
which ei are significant at some given level, e.g., 5 per cent, and flag the 
corresponding observations for further scrutiny. 

But this process can be pointlessly tedious. For example, if there are 
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a hundred normally distributed observations all belonging to the model, 
then there would be naturally about five observations for which ei would 
be significant at a 5 per cent level. Therefore, it would be useful to have 
methods for judging if outliers are present at all. 

Several methods are possible. If the number of observations is small, 
the Bonferroni inequality can be used (see Section 3.8.4, p. 73). For larger 
numbers of observations the significance levels can be raised to reflect the 
number of observations, but this is not entirely satisfactory. A much better 
alternative is to use a normal plot (Section 5.2.1, p. 101) of the ei's. If 
there are vertical jumps near either end of such a plot, or even if the plot 
turns sharply upwards or downwards near the ends, we might have points 
which should be flagged for further investigation. 

As alternatives to the normal plot, some analysts use various other types 
of univariate displays like histograms, stem-and-Ieaf displays and box plots. 
It should be noted that causes other than outliers also can give disturbing 
shapes to normal plots (as well as other displays of Studentized residuals). 
One is heteroscedasticity; however, if the variance varies as a function of 
E(Yi) or one of the independent variables, other plots can be used to detect 
its presence. But if the cause is a fluctuation in variance which is not a 
function of a known variable, or if the cause is an extremely long-tailed 
distribution of the Yi'S, there is probably no simple way to distinguish their 
effects from those caused by the presence of outliers. 

Some analysts treat each Yi as if it were a missing future observation 
and construct a confidence interval for it based on corresponding Xij'S (as 
described in Chapter 3). If the observed Yi falls outside this interval, it could 
then be tagged for future study. Finally, the partial regression leverage plots 
described in Section 11.3.3, p. 243, have also been proposed as means for 
outlier detection. 

8.5 Influential Observations 

Despite the conclusions of Exercise 8.4 at the end of this chapter, not all 
influential points have large ei's. But such points do need to be examined 
simply because they are influential and a bad observation that is influential 
will hurt the model more than a bad but less influential one. For such 
examinations, what better measures can we have than ones that tell us how 
much b or iJ would change if a given point were to be deleted? Therefore, 
a crucial formula is 

(8.5) 

where, as in Section 8.2, b(i) is the least squares estimate of f3 obtained 
after deleting the ith case. A proof of (8.5) is given in the appendix to this 
chapter. The vector b - b(i) is often called DFBETAi . 
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Let 
(X' X)-l:Vi = (aOi' ... ' akd. 

Then, an individual component of DFBETAi is 

DFBETAij = bj - bj (i) = ajiei 
1 - hii 

for i = 1, ... , n and j = 0, ... ,k. From (8.5) we also get 

(8.6) 

DFFITi = iii - Yi(i) = :v~b - :v~b(i) = hiiei/(l - hii ) (8.7) 

which tells us how much the predicted value Yi, at the design point :Vi, 
would be affected if the ith case were deleted. 

In order to eliminate the effect of units of measurement, standardized 
versions of these statistics are often used. Since by Theorem 2.2, p. 36, 
the covariance matrix of b is a 2 (X' X)-l, the variance of an individual 
component bj of b is the jth diagonal element a2qjj of a2(X' X)-l, where 
qij is the (i,j)th element of (X'X)-l. It is appropriate to estimate a2 by 
S(i) since we are examining the ith observation and it may be suspect. 
Therefore, dividing the right side of (8.6) by the square root of s(i)qjj we 
get the standardized DFBETAij , which is 

ajiei 
DFBETASij = 1/2· 

S(i) (1 - hii)qjj 
(8.8) 

Since the covariance matrix of iJ = Xb is a 2 X(X'X)-lX' = a 2 H, the 
variance of Yi may be estimated by s(i)hii . Hence, the standardized version 
of DFFITi is 

h 1/ 2 
DFFITSi = ii ei (8.9) 

s(i)(l - hii ) 

Obviously, these standardized forms are unit-free. 
It is a relatively easy matter to express them as functions both of the 

leverage and the Studentized residuals. DFBETASij can be written as 
[qjj(l - hii))-1/2ajiei and DFFITSi as 

[h· ·/(1 - h··))l/2e* U 'n t· (8.10) 

Therefore, if either the leverage increases or the Studentized residual in­
creases, both measures of influence will increase. 

A natural question that arises at this stage is how we use these measures 
to decide which of the data points is to be flagged for scrutiny. There are 
several possible approaches to answering this question and in a practical 
application one generally follows all of them; how one weights the evidence 
provided by each defines the analyst's style. If one is very familiar with 
the substantive application then one develops a feel for what is too large. 
Another approach is to run down the list of the measures of influence and 
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identify those which are much larger than the others. Here, the types of 
plots that we described in connection with ei's could be useful. It should 
be pointed out in this context that it is desirable to give some attention to 
DFBETAS's (or DFBETA's), tedious though it might be, since sometimes 
a point could be influential on a single bj and not affect iii's very much. 
A third approach is to use some criterion level. For DFFITS, Belsley, Kuh 
and Welsch (1980, p. 28) use hii = (k + l)/n (see the paragraph just 
preceding Subsection 8.2.1) and e7 = 2 (since under normality e: has a t 
distribution and under a wide range of circumstances e7 has approximately 
a t distribution) in (8.10) to arrive at the criterion 2[(k + l)/(n - k _1)P/2, 
or when n is much larger than k, the criterion 2[(k + 1)/njI/2. A larger 
value would tag the point for further examination. A criterion of 2n-1/ 2 
for DFBETAS's has been suggested by Belsley, Kuh and Welsch (1980). 

All four measures of influence examined in this section combine leverages 
and Studentized residuals to give expressions that are physically meaning­
ful. Therefore, although the above-mentioned criteria are often useful, it 
is the physical meaning rather than criteria that is key here. In fact, we 
can write DFBETAij as aijei, where aij = ajd(l - hii ) is a function 
only of the independent variable values. Consequently, the standard error 
of DFBETAij is aija(l - hii )1/2. Therefore, if, instead of standardizing 
DFBETA by division by the standard error of bj , we had standardized it 
by division by an estimate of its own standard deviation, we would have 
got exactly e7! The same is true of DFFIT. 

8.5.1 OTHER MEASURES OF INFLUENCE 

The measures given in the last section are by no means the only ones 
available for detecting influential observations. Some measure the effect on 
the estimated covariance matrix of b. One such measure is the ratio of 
the determinants of the estimated covariance matrix of b( i) and b. This is 
called the covariance ratio and is given by 

. . det[s~i)(X;i)X(i»)-l] 
Covanance RatIO = det[s2(X'X)-1] . (8.11) 

A value of this ratio close to 1 would indicate lack of influence of the ith 
data point. It follows from (8.14) given in the appendix to this chapter and 
formul<£ in Section A.8, p. 272, of Appendix A that 

det(X(i)'X(i)) = det(X'X - XiX~) = det(X'X)det[I - (X'X)-l(XiXD] 

= det(X' X) det[I - x~(X' X)-lXi] = (1 - hii ) det(X' X). 

Therefore, (8.11) can be written as [S(i)2/S2]k+l(1- hii)-l and, by (8.4), 
it can be shown to equal the reciprocal of 
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which is a function of Studentized residual and leverage. 
Another set of measures, which we will also see in Chapter 11, Sec­

tion 11.3.1, p. 239, are the PRESS residuals ei,-l = Yi - ih(i). Obviously, 
an individual ei,-l shows how well an observation is predicted by a model 
based on the other observations. From (8.7), it is easy to see that 

Hence 
(8.12) 

A very frequently used measure of influence can be defined as the distance 
between the vectors b and b(i) 'standardized by' the estimated covariance 
matrix 8 2 (X' X)-l of b. This distance, known as Cook's (1977) distance, is 
given by 

(b - b(i))' X' X(b - b(i))j[(k + 1)82]. (8.13) 

From (8.5) it follows that (8.13) equals 

e~hid[(k + 1)82(1- hii )2]. 

Hence, it is essentially the same as the square of the DFFITS i . Another 
useful measure of distance has been given by Andrews and Pregibon (1978). 

Actually, the number of measures available in the literature for iden­
tifying outliers and influential points verges on being mind-boggling. A 
partial list, with very readable explanations, is given in Chatterjee and 
Hadi (1986) and the discussion following it. Also see Cook and Weisberg 
(1980) and (1982), Cook (1986) and Lawrence (1988). 

8.6 Examples 

Example 8.1 
Exhibit 8.1 shows some of the outlier and influential point diagnostics from 
a weighted regression (with weight n) of Y on x using the data of Ex­
hibit 6.10. From this and from the residual plot of Exhibit 8.2 we see that 
there is one very influential point (#29), which also has an unusually high 
RSTUDENT value. A possible reason for the great influence of the point 
is the large weight it receives, but this would not totally account for the 
RSTUDENT value. While weighting does affect RSTUDENT, it only com­
pensates for the rather small variance one would expect from the mean of 
so many observations. Since a single value of slightly over 2 from among 
the 31 remaining observations is not so noteworthy, no other point seems 
to stand out. 

Examination of a map showed that to make the bus trip corresponding 
to case #29, one has to transfer, i.e., change buses. This is a very plausible 
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Obs # ei e* , 6.fj Obs # ei e* , 6.fj 

1 3.28 0.32 0.04 17 3.41 0.79 0.22 
2 9.43 0.95 0.16 18 -2.61 -0.53 -0.10 
3 -4.22 -1.16 -0.29 19 -1.16 -0.20 -0.05 
4 -4.74 -0.83 -0.18 20 0.02 0.00 0.00 
5 4.64 0.66 0.10 21 -4.69 -1.30 -0.35 
6 -10.14 -2.27 -0.74 22 -0.06 -0.02 -0.01 
7 -3.82 -0.77 -0.15 23 -0.57 -0.12 -0.04 
8 7.80 1.43 0.40 24 -1.91 -0.27 -0.04 
9 -10.78 -1.09 -0.11 25 0.54 0.09 0.02 

10 -0.59 -0.05 -0.01 26 3.09 0.44 0.07 
11 -3.67 -1.29 -0.59 27 0.12 0.02 0.00 
12 4.46 0.63 0.11 28 -1.06 -0.36 -0.21 
13 5.07 0.50 0.09 29 8.06 5.27 3.05 
14 8.27 1.19 0.19 30 -0.54 -0.08 -0.01 
15 -7.38 -1.05 -0.14 31 3.09 0.31 0.03 
16 -0.50 -0.09 -0.02 32 -4.46 -0.79 -0.18 

EXHIBIT 8.1: Residuals (e), Studentized Residuals (e*) and DFFITS (b..y) for 
Travel Time Example 

reason for a large residual. If buses keep to schedule, half the time between 
buses (the headway) is the expectation of waiting time. But if they do not, 
the expected waiting time increases, since more people arrive during the 
longer gaps and consequently have to wait longer. In fact, it can be shown 
that the expected wait for randomly arriving buses is approximately the 
average headway. Moreover, waiting for buses is possibly so onerous that 
the time taken may be perceived as longer. Of course, one also waits for a 
bus at the beginning of a trip, but that affects all observations equally. 

Unfortunately, case numbers 2 and 23 also require transfers. These points 
are not outliers. One possible reason is that the very influential point #29 
may have pulled the regression line up so much that the residuals for points 
2 and 23 were considerably smaller than they would otherwise have been 
(the x values are very close for all three points). At any rate, we found the 
argument of the last paragraph so compelling that we decided to explore 
the matter further. 

On deleting case number 29 and rerunning the regression, the residual for 
observations 2 and 23 increased to about 13 and 3 respectively with RSTU­
DENT values of 1.9 and .89. While this was not a resounding confirmation 
of our conjecture, we nevertheless decided to go ahead and append to our 
model an indicator variable T which took the value of 1 for those cases 
which involved a bus transfer. Exhibit 8.3 provides parameter estimates 
and t-values while Exhibit 8.4 shows a residual plot. The R2 value increased 
from about .66 to about .83 when the variable T was added. However, ob­
servation number 29 remained quite influential (DFFITS29 =2.8, e~9 = 1.5) 
although the residual e29 = 1.2 was quite small - not too surprising given 
the concentration of 17 trip makers (n - see Exhibit 6.10) at that point. It 
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EXHIBIT 8.2: Residuals from a Weighted Regression of yon x Using Travel Time 
Data 

Variable bj s.e.(bj ) t-value 

Intercept 10.169 3.60 2.82 
x 0.812 0.12 6.70 
T 10.488 1.94 5.41 

EXHIBIT 8.3: Parameter Estimates, Standard Error of Parameters and t-Values 
When the Variable T Was Included in Travel Time Model 

would appear from these results that our course of action was reasonable. 
Indeed, the outlier led us to a conclusion which we might otherwise have 
overlooked. 

If we examine Exhibit 8.4 using inter-quartile ranges (as in Example 6.1, 
p. 112), we might notice very slight heteroscedasticity. But we are getting 
a bit carried away at this stage! The model of Exhibit 8.3 is adequate for 
any purpose we can think of. • 

Example 8.2 (Continuation of Example 4.4, Page 92) 
In Examples 5.2, p. 103, and 5.4, p. 106, we have already examined the 
residuals from the model that we constructed in Example 4.4, p. 92, of 
LIFE against a piecewise linear function of the log of income for 101 coun-
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EXHIBIT 8.4: Residuals from a Weighted Regression of y on x and the Indicator 
Variable T Using Travel Time Data 

tries. Exhibit 8.5 shows a normal plot of the Studentized residuals. (Readers 
preferring stem-and-Ieaf diagrams or other plots are invited to construct 
them.) Just like the plot in Exhibit 5.3, this plot also seems to show the pos­
sibility of outliers near both the top and the bottom. Exhibit 8.6 presents 
Studentized residuals ei's, hii's, DFFITSi's (~y) and DFBETASij's (~bj). 
Four observations - Iran (Observation 23), Libya (25), Saudi Arabia (27) 
and Ivory Coast (58) - have Studentized residuals less than -2 and two 
countries - Yugoslavia (49) and Sri Lanka (93) - have Studentized residu­
als above 2. Therefore, it is quite possible that some, though not necessarily 
all, of these observations do not fit the model (see Section 8.3). A point 
with a high Studentized residual does not necessarily have to be eliminated. 
Much depends on whether there are other reasons to believe that the point 
does not belong in the analysis. 

While several of the hii's are relatively large (e.g., greater than .06, using 
the criterion of Section 8.2), none is excessively so and for all six countries 
with numerically large Studentized residuals, the value of leverage is quite 
low. This is basically why only five countries have values of DFFITS ex­
ceeding in absolute value the cut-off mentioned in Section 8.5, which in this 
case works out to .345. All are among the six with large ei's. The largest 
DFFITS corresponds to Saudi Arabia, which is indeed influential. Deleting 
it would change the predicted value at its GNP level by .67 standard error, 
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EXHIBIT 8.5: Normal Plot of Studentized Residuals from Life Expectancy Model 

which can be shown to equal about 4.4 years; the change in the coefficients 
bo, b1 and b2 would be about half a standard error each. No other point 
comes close to having so much influence, although the deletion of some 
would have a fair amount of effect on one or other of the estimate of /3j's. 
Most such points belong to the list of six given earlier. Some exceptions are 
Guinea, Laos, Uruguay and Portugal. 

From the above discussion, it is obvious we should examine Saudi Arabia 
carefully. Its oil has made it a recently and suddenly rich country (note that 
the data are from the seventies). Its social services, education, etc., have 
not had time to catch up. This would also be true of Iran and Libya. Ivory 
Coast is another example of recent wealth although not because of oil (in 
the mid-70's). "Since the country attained independence from France in 
1960, the Ivory Coast has experienced spectacular economic progress and 
relative political stability" (Encyclopredia Britannica, 1974, Macropredia, 
v. 11, p. 1181). In the early seventies this country of less than four million 
was the world's second largest producer of tropical hardwoods, the third 
largest producer of cocoa and a major producer of coffee. 

All these countries have recently become rich. Therefore, we could in­
troduce into the model per capita income from, say, twenty years before. 
Instead, we simply chose to eliminate these obviously unusual points since 
we decided that they should not be considered in an attempt to find a 
general relationship between average wealth and longevity. 
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Obs e* • hii f).fJ f).bo f).bl f).b2 Obs e~ • hii f).fJ f).bo f).bl f).b2 

1 .119 .044 .026 -.001 .001 .012 51 .402 .013 .046 .016 -.009 -.004 
2 .048 .043 .010 -.001 .001 .005 52 -.689 .014 -.083 -.042 .030 -.004 
3 .080 .043 .017 -.001 .001 .008 53 -1.456 .013 -.168 .011 -.037 .073 
4 -.030 .077 -.008 -.001 .001 -.005 54 .736 .013 .083 .022 -.009 -.014 
5 .120 .084 .036 .007 -.007 .025 55 1.022 .014 .123 -.025 .043 -.065 
6 -.033 .042 -.007 .000 -.000 -.003 56 -1.686 .012 -.190 -.043 .013 .038 
7 .325 .044 .070 -.002 .003 .033 57 -.250 .013 -.029 .002 -.007 .013 
8 -.351 .084 -.106 -.019 .021 -.073 58 -2.923 .017 -.384 .143 -.197 .248 
9 .561 .025 .090 -.050 .056 -.021 59 .017 .015 .002 -.000 .001 -.001 

10 .423 .026 .069 -.029 .032 -.001 60 1.438 .015 .178 -.049 .075 -.104 
11 .493 .041 .103 -.006 .007 .045 61 -.350 .013 -.040 -.013 .007 .004 
12 .385 .060 .097 .008 -.009 .058 62 .001 .013 .000 -.000 .000 -.000 
13 .058 .051 .013 .000 -.000 .007 63 -1.333 .021 -.197 .101 -.126 .143 
14 .401 .060 .101 .009 -.010 .061 64 1.039 .015 .129 -.036 .055 -.076 
15 .929 .046 .204 -.156 .174 -.171 65 .364 .012 .041 .006 -.000 -.011 
16 .240 .098 .079 .017 -.019 .057 66 .093 .015 .011 -.003 .004 -.006 
17 .420 .035 .080 -.012 .013 .027 67 1.256 .013 .142 .037 -.015 -.024 
18 .558 .028 .095 -.031 .034 .010 68 -.146 .019 -.020 .009 -.012 .014 
19 -.283 .097 -.093 -.020 .022 -.066 69 1.014 .018 .137 .092 -.076 .032 
20 -.584 .019 -.081 .036 -.047 .056 70 -.244 .030 -.043 -.037 .033 -.020 
21 -.089 .016 -.011 .003 -.005 .007 71 .671 .034 .127 .112 -.101 .063 
22 .873 .022 .130 .099 -.084 .043 72 -.081 .037 -.016 -.014 .013 -.008 
23 -2.238 .041 -.462 .360 -.400 .353 73 .136 .019 .019 .013 -.011 .005 
24 -.827 .026 -.134 .080 -.096 .103 74 -1.253 .019 -.175 -.125 .104 -.049 
25 -2.743 .036 -.530 .073 -.081 -.186 75 -.842 .036 -.163 -.145 .132 -.084 
26 -1.443 .014 -.169 -.071 .046 .004 76 -.240 .031 -.043 -.037 .033 -.020 
27 -3.751 .031 -.672 .496 -.551 .413 77 -.021 .032 -.004 -.003 .003 -.002 
28 .353 .043 .075 -.059 .065 -.059 78 -1.799 .032 -.325 -.282 .253 -.155 
29 .498 .046 .110 -.086 .096 -.088 79 -1.261 .024 -.198 -.158 .138 -.076 
30 .948 .019 .131 -.058 .076 -.090 80 .155 .026 .025 .021 -.018 .011 
31 .863 .027 .144 -.089 .106 -.113 81 .484 .014 .058 .028 -.020 .002 
32 -1.430 .019 -.198 .088 -.114 .136 82 1.520 .036 .292 .260 -.235 .149 
33 .585 .034 .110 -.076 .088 -.090 83 -.998 .020 -.141 -.102 .050 -.040 
34 .587 .018 .079 -.032 .043 -.053 84 -.730 .018 -.099 -.067 .054 -.023 
35 .439 .027 .073 -.048 .054 -.032 85 .439 .051 .102 .096 -.089 .060 
36 -.338 .014 -.040 .006 -.012 .020 86 -.765 .014 -.090 -.041 .028 -.001 
37 .458 .029 .078 -.024 .027 .010 87 .111 .027 .019 .016 -.014 .008 
38 .780 .034 .147 -.102 .118 -.120 88 .533 .036 .103 .092 -.084 .053 
39 .752 .014 .088 -.010 .024 -.042 89 1.557 .024 .242 .191 -.166 .090 
40 .378 .032 .069 -.046 .054 -.055 90 .734 .042 .153 .140 -.129 .084 
41 -.944 .023 -.144 .079 -.097 .108 91 -.534 .016 -.068 -.040 .031 -.010 
42 -.097 .036 -.019 .013 -.015 .015 92 -.126 .029 -.021 -.018 .016 -.010 
43 .274 .015 .033 -.008 .013 -.019 93 3.238 .015 .394 .204 -.149 .027 
44 .501 .042 .104 -.081 .090 -.080 94 .703 .019 .097 .068 -.056 .025 
45 .756 .042 .159 -.124 .138 -.123 95 -.313 .020 -.044 -.032 .027 -.013 
46 .709 .035 .135 -.094 .108 -.109 96 -1.568 .015 -.191 -.101 .074 -.015 
47 -.445 .019 -.062 .028 -.037 .043 97 .589 .017 .078 .052 -.042 .017 
48 1.249 .038 .249 -.179 .204 -.205 98 -.730 .041 -.151 -.138 .126 -.082 
49 2.112 .018 .285 -.116 .156 -.190 99 .277 .025 .045 .036 -.031 .018 
50 -1.212 .014 -.144 .025 -.047 .074 100 .594 .032 .109 .095 -.085 .053 

101 -.547 .020 -.078 -.057 .048 -.023 

EXHIBIT 8.6: Influence Diagnostics for Life Expectancy Model 



8.6. Examples 167 

On the positive residual side, both Sri Lanka and to a lesser extent 
Yugoslavia have a fair amount of influence. With over 300 hospitals in a 
country of 13 million (1 bed per 330), an excellent public health program, a 
literacy rate of over 70 per cent (80 per cent for males), and 'senility' as the 
major cause of death (all information taken from Encyclopffidia Britannica, 
1974, Micropffidia, v. 9. pp. 506-507), Sri Lanka was rather unique among 
less developed countries of the early seventies. While Yugoslavia is not 
too influential, it is the only Socialist country on our list and for such 
countries the relationship between income and social services might be 
different from that for more free-enterprise countries. For this reason we 
decided to eliminate these two points as well. 

Exhibit 8.7 shows a normal plot of the et's obtained after deletion of 
the points. It is fairly straight. There are still Studentized residuals with 
numerical values greater than 2 (there are 8 of them). One also finds large 
DFFITS's: the largest is -.44 for Ethiopia, followed, in order of absolute 
values, by -.41 for Cambodia (not shown in an exhibit). However, the 
value of S shrank from about 6.65 to about 4.95 when the outliers were 
deleted. Since except for hii' all statistics we are considering have SCi) in 
the denominator, the reduction of S implies, typically, a commensurate 
magnification. Therefore, a DFFITS i of .44 at this stage implies less effect 
on the bj's than a .44 value before deletion of points. This is important 
to note, since after the deletion of points other points will appear with 
seemingly high influence. However, Cambodia did have rather a unique 
recent history and perhaps should be deleted. 

But a more serious problem has also emerged. Exhibit 8.8, which shows 
a plot of residuals against predicteds after deletion of points, also shows 
the existence of more than moderate heteroscedasticity. In Exercise 8.11 
the reader is requested to take necessary action to reduce the effect of 
heteroscedasticity and then to check to see if new outliers or influential 
points emerge. • 

Example 8.3 (Continuation of Example 6.6, Page 124) 
Let us return to the dial-a-ride example introduced in Chapter 6 (see Ex­
ample 6.6). To save space, we shall display only the diagnostics we refer 
to. Therefore, Exhibit 8.9 shows only the values of RSTUDENT, h ii and 
DFFITS i . 

It can be seen that there are two very large et's (Cases 53 and 45) and two 
others (10 and 24) which are just under 2. Using the criterion mentioned 
in Section 8.2, which is 2(k + l)/n ~ .26 (in this case), we find that hii 

exceeds this value in 8 cases, but in only four is it even higher than .3. The 
largest, .57, is for Case 1 (one of two services in Ann Arbor, Michigan). 
It is simply a large service with many vehicles serving a big population. 
The other three points with leverage greater than .3 are Case 24 (Benton 
Harbor, Michigan), Case 48 (in Buffalo) and Case 51 (in Detroit). The last 
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Obs e* hi; fly Obs e* hi; fly Obs e* h ii fly 
1 .263 .572 .305 19 .880 .064 .231 37 .102 .059 .025 
2 1.026 .046 .226 20 -.282 .256 -.165 38 .474 .094 .153 
3 1.029 .107 .357 21 .601 .047 .134 39 .539 .052 .127 
4 -.101 .049 -.023 22 -1.026 .066 -.272 40 .407 .084 .123 
5 .328 .158 .142 23 .217 .044 .047 41 -.855 .107 -.296 
6 -.775 .116 -.281 24 -1.942 .366 -1.474 42 .211 .040 .043 
7 .018 .208 .009 25 .607 .037 .118 43 -.178 .047 -.040 
8 .213 .069 .058 26 -.381 .071 -.105 44 .101 .055 .024 
9 -.929 .276 -.574 27 -.047 .024 -.007 45 2.945 .077 .849 

10 -1.975 .248 -1.133 28 .420 .060 .106 46 -.553 .044 -.118 
11 -.660 .101 -.221 29 -.868 .046 -.191 47 -.693 .200 -.347 
12 .722 .080 .212 30 .392 .037 .076 48 -1.333 .362 -1.005 
13 .244 .080 .072 31 .443 .037 .087 49 .571 .113 .204 
14 -1.169 .070 -.321 32 -.880 .073 -.247 50 -1.299 .175 -.598 
15 -.806 .075 -.230 33 .370 .101 .124 51 .065 .353 .048 
16 .051 .040 .011 34 -1.018 .094 -.328 52 .262 .093 .084 
17 .240 .170 .109 35 1.057 .294 .682 53 6.995 .291 4.483 
18 -.489 .240 -.275 36 .454 .038 .090 54 .069 .291 .044 

EXHIBIT 8.9: Influence Diagnostics for Dial-a-Ride Model 

two charge no fares and since we set the fare at 1 cent for the purpose of 
taking logs, the value of this variable became a large negative number and 
contributed to the high leverage. Benton Harbor has an enormous service 
area. Although there are three much larger areas in the data, they are all 
counties, and since each had 3 or 4 vehicles, it might be conjectured that 
service was restricted mainly to their densest parts. 

Using the criterion for DFFITS mentioned in Section 8.5, which is 2[(k + 
1)/n]l/2 = .72, we see that five of the values shown are large, four of them 
being those we flagged above as having large lefl's. Of the points mentioned, 
Case 53 obviously stands out. It has by far the highest ef and DFFITS i . 

Its DFBETAS for IND (2.12) compared with the standard error of IND 
(.104) shows that its deletion would change the coefficient of IND (.80) 
by more than 20 per cent. Case 53 corresponds to Regina, Saskatchewan, 
which was well known in transportation planning circles as an extremely 
unusual service. Therefore, we had no difficulty in deleting the point. Case 
45 was from Xenia, Ohio. and it too had a very high load factor - 225 
trips per vehicle for a 12 hour day. But we decided to eliminate Regina only 
at this stage, since sometimes the deletion of one point can substantially 
change the influence statistics for other points and because Regina was such 
an unusual service. Ann Arbor (Case 1) does not have a large influence 
(DFFITS1 =.3), but because of its high leverage we should keep a close eye 
on it. 

As feared, after Regina was eliminated, the DFFITS for Ann Arbor shot 
up. While the residual was low, RSTUDENT became 4.38 and DFFITS 
almost 6. We had to drop Ann Arbor because it just had too much influence 
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and we were reluctant to let one point be so dominating. On the next 
round Xenia (RSTUDENT=6.1, DFFITS=1.7) was dropped. The normal 
plot of Studentized residuals after running a weighted least squares on the 
remaining points is shown in Exhibit 8.11 and appears to be fairly straight. 
RSTUDENT's and DFFITS's are given in Exhibit 8.lD. While there are still 
fairly large DFFITS values, we did not seek to eliminate any other cases, 
largely because, after eliminating the three cases, the value of s dropped 
from 7.35 to 3.28 (see end of the discussion of Example 8.2). 

Each of the three cases we eliminated represented a very unusual dial-a­
ride system. If we assume that we are constructing this model in order to 
forecast ridership, we are implicitly assuming that these deleted points are 
sufficiently unusual that any system to which we would apply our model 
would not resemble them. Originally, these data were used to construct a 
model to predict ridership for yet to be started small dial-a-ride systems in 
the Chicago area. We were confident that such systems would not resemble 
the large and/or heavily used systems of Ann Arbor, Regina or Xenia. 

Obs e* h ii t::.iJ Obs e* hii t::.iJ Obs e* h ii t::.iJ 
1 - - - 19 1.678 .070 .459 37 1.000 .066 .266 
2 1.978 .068 .534 20 .558 .253 .324 38 .690 .091 .219 
3 2.567 .113 .917 21 .680 .074 .192 39 .798 .064 .209 
4 -.901 .059 -.225 22 -.996 .071 -.275 40 -.900 .169 -.407 
5 1.100 .179 .514 23 -.512 .086 -.157 41 -.632 .103 -.215 
6 -.048 .127 -.018 24 -.855 .438 -.755 42 -.455 .048 -.102 
7 .288 .210 .148 25 .793 .052 .186 43 -.367 .050 -.084 
8 .486 .068 .132 26 .053 .073 .015 44 .563 .060 .142 
9 .861 .325 .598 27 -1.245 .054 -.298 45 - - -

10 -2.194 .263 -1.312 28 .221 .107 .077 46 -1.789 .047 -.398 
11 -2.191 .110 -.769 29 -1.049 .050 -.241 47 1.599 .211 .828 
12 1.487 .081 .444 30 .148 .063 .038 48 -1.686 .357 -1.258 
13 -.068 .091 -.022 31 .234 .043 .049 49 .594 .125 .225 
14 -.553 .083 -.166 32 -.586 .076 -.168 50 -.447 .169 -.202 
15 -.339 .075 -.097 33 -1.384 .223 -.741 51 .366 .404 .301 
16 -.340 .046 -.074 34 -.951 .093 -.305 52 .271 .114 .097 
17 -.861 .229 -.469 35 1.214 .333 .858 53 - - -
18 .091 .268 .055 36 .284 .065 .075 54 .293 .301 .192 

EXHIBIT 8.10: Influence Diagnostics for Dial-a-Ride Model After Deleting 3 
Points 

Other analysts might continue with the process of eliminating points 
or try new variables (e.g., an indicator variable for free fare services). We 
recommend to the reader that he or she retrace our steps and then try 
other alternatives. We also tried other alternatives, although to save space 
we did not report on them here. When we had used these data to construct 
a model to forecast ridership for new services in the Chicago area, we had 
deleted six cases. 

We should mention that the computations for this exercise were made 
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EXHIBIT 8.11: Normal Plot for Studentized Residuals from Dial-a-Ride Model 
Estimated After Deleting 3 Points 

using the SAS NLIN procedure to compute the weights, which were as in 
Example 6.8, p. 125, followed by the REG procedure to get the influence 
diagnostics, the two procedures being put together in a single program. 
While the residuals printed out by SAS PROC REG are not weighted, the 
other statistics (RSTUDENT, DFFITS, DFBETAS) do take weighting into 
account. • 

The tedium of applications like these might be alleviated if we had a pro­
cedure that would remove alternative sets of cases in a single computer run 
and show us the effects of each alternative choice. Moreover, sometimes in­
dividual observations might not be too influential, but two or three together 
might turn out to have undue influence. Not much work has been done on 
this subject. One possibility is to use the indicator variable interpretation 
of Studentized residuals presented in Section 8.3. Then one would append 
an indicator variable corresponding to each of a limited number of obser­
vations and use a variable choice procedure (Chapter 11). Some techniques 
also exist for obtaining the combined influence of several data points. These 
procedures are described in detail in Belsley, Kuh and Welsch (1980), Cook 
and Weisberg (1980, 1982) and Hadi (1985; see also Chatterjee and Hadi, 
1986, particularly the discussions following the paper). 

Notice that in each of the three examples presented, we carefully exam-
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ined the outlier or influential point. In one case, this led to the inclusion of 
an additional variable; in other cases we eliminated the points after decid­
ing that they did not belong in the model we were seeking to construct. In 
'real life' practical problems, it is not desirable to eliminate, without care­
ful examination, every point with a large amount of influence or a large 
RSTUDENT value, although during diagnostic analysis one often needs to 
delete points temporarily and then bring them back in later. In textbook 
exercises, where the substantive background of data sets is not adequately 
known, it is also sometimes necessary to discard points that are suspected 
of not belonging to the model without fully understanding the underlying 
reasons. 
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Appendix to Chapter 8 

8A SOME PROOFS 

PROOF OF (8.5): By considering X and XCi) as partitioned matrices with 
each row forming a separate submatrix, we see that X' X = 2.:::;=1 xRxi and 
that 

n n 

X(i)XCi) = L XRX/ = L XRX/ - XiX~ = X' X - XiX~. (8.14) 
£=1 R=l 
l#-i 

Therefore, from Theorem A.1, p. 275, in Appendix A, we get (see also 
Example A.6) 

Similarly, 
n 

X' y =""'x·y·-x·y·=X'y-x·y·. 
(i) (i) ~ J J •• • • 

(8.15) 
j=l 

and (8.5) follows. o 

PROOF OF (8.4): Since H is an idempotent matrix we have 2.:::;=1 h'ft = 
hii . From (2.13) it follows that He = H[J - H]E = 0 and therefore, we 
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have 2::;=1 hiiei = O. Applying these results along with (8.5) we get 

n n 

L [Yi - x~b(i)f = L [Yi - x~b + x~b - x~b(iW 
£=1 £=1 
£=ii £=ii 

n n 

= L [ei + x~(X' X)-l xiei (l - hii )-1]2 = L lee + ha (1- hii )-lei ]2 
£=1 £=1 
£=ii £=ii 
n 

= L[ee + ha(l - hii )-l ei ]2 - lei + hii (l - hii )-l eif 
i=l 

n n n 

= L e; + (1 - hii )-2e; L h;e + 2ei(1 - hii )-l L eehie - (1 - hii )-2e; 
i=l e=l e=l 

n 

= Le; - (1- hii )-le;, 
i=l 

and (8.4) follows. o 

PROOF OF INDICATOR VARIABLE INTERPRETATION OF RSTUDENT: 
For convenience of presentation and without loss of generality, we con­
sider the case of the RSTUDENT for the first observation and show that it 
is the same as the t-value for an indicator variable Zi which takes the value 
1 for the first case and is zero otherwise. This variable Zi is considered to be 
an additional independent variable, i.e., we append it to the original model 

(8.16) 

and consider the model 

(8.17) 

where i = 1, ... , n. This model, which has also been called the mean shift 
operator model, can be written as 

y = [ 1 * X ]/3* + E, 

where 1* = (1,0, ... ,0)' and /3* = (8,130, ... , 13k)', Let 

X' 1 

X'X 
) -1 = ( 

where Xl is the first row of X. Then, from the formulre contained in Ex­
ample A.8, on p. 276, we get ell = (1 - h ll )-l, C22 = (X' X - x1xD-1 



Appendix 175 

and 

where hll = :z:~(X'X)-l:Z:l. The least squares estimate of f3* is given by 

Therefore, the least squares estimate of 8 is 

$ = CllYl + C~2X'y 

C~2 ) ( Y: ). 
C22 Xy 

= (1- hll)-l[Yl -:z:~ (X' X)-l X'y] = (1 - hll)-l(Yl - ih) 

where Yl = :z:~ band b = (X' X)-l X'y. Since Yl - Yl is the usual residual 
eb its variance is a 2 (1 - hll ). Consequently, 

$/vvar($) = eI/[a(l- hll )1/2]. 

Therefore, in order to show that ei is the same as the t-value corresponding 
to the variable Zi in (8.17), all that remains to be done is to show that the 
usual unbiased estimate of a2 from the model (8.17) is the sfl) from the 
model (8.16). 

Notice that 

y'( 1* X ) b* = (Yl y' X ) ( Cll 
C12 

= CllY~ + 2YlY' XC12 + y' XC22 X'y 
= (1 - hll)-ly~ + 2(1 - hll)-lYlY' X(X' X)-l:Z:l 

+y'X(X'X - :Z:l:z:~)-l X'y 

= (1 - hll)-ly~ + 2(1 - hll)-lYlYl 

'X [(X'X)-l (X'X)-l:Z:l:Z:~(X'X)-l] X' 
+y + 1- hll Y 

= (1 - hll)-ly~ + 2(1 - hll)-lydh + y' Xb + y~(1- hll)-l 

= (1 - hll)-l(Yl - Yl)2 + y' Xb. 

Hence the residual sum of squares for (8.17) is 

y'y - y'( 1* X )b* = y'y - y' Xb - (1 - hll)-l(Yl - Yl)2 
n 

= L ef - (1 - hll)-leI· 
i=l 

It then follows from (8.4) that the usual unbiased estimate of a 2 from the 
model (8.17) is the desired sf!). 0 
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Problems 

Exercise 8.1: Let 

and P(i) = X(i>,X(i). Show that 

hii = 1 - [1 + X~P(i) -lXitl. 

Thus, points with large values of X~P(i) -lXi have a large effect on the 
estimates. 

Exercise 8.2: *Show directly (Le., without using the indicator variable 
interpretation) that ei has Student's t distribution with n - k - 2 degrees 
of freedom. 
[Hint: Note that b(i) and S(i)2 and Yi are independent. Show that 

Yi = xal + (X(i)'X(i»)-lXiX~]-lb(i) + hiiYi. 

Hence show that ei is independent of S(i)2.] 

Exercise 8.3: * A method of determining if the first observation belongs 
to the model Yi = x~f3 + fi with i = 2, ... , n is to test the hypothesis 
E[Yl] = Xlf3 against the alternative E[Yd i:- Xlf3. Under the assumption 
that € rv N (0, ( 21), show that the likelihood ratio test would reject the 
hypothesis for large values of (ei? 
Exercise 8.4: Fit a line by least squares to the following points: (4,.9), 
(3,2.1), (2,2.9), (1,4.1) and (20,20). Obtain Studentized residuals and also 
plot the points and the estimated line. Does the point (20,20) appear as an 
outlier? Using a suitable indicator variable, numerically demonstrate the 
indicator variable interpretation of RSTUDENT's. Also demonstrate that 
DFFIT and the DFBETA's do indeed measure what has been claimed for 
them. 

Exercise 8.5: Investigate the presence of outliers and influential points 
using hii , e;, DFBETASij and DFFITS i for the model you fitted in Exer­
cise 2.11, p. 50. 

Exercise 8.6: Redo Exercises 1.12, p. 25, and 2.16, p. 53, after deleting 
the fourth case. Explain why, in both cases, the RSTUDENT value of the 
first observation changed so much on deleting the point. 

Exercise 8.7: Run a least squares program on the data in Exhibit 1.11, 
p. 15, to obtain a regression of property crime rate on population. Exam­
ine various influence diagnostics and discuss what you would do. Regress 
violent crime rate on property crime rate and obtain influence diagnostics. 
State your conclusions. Do the same for a regression of violent crime rate 
against property crime rate and population. 
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Exercise 8.8: For the appropriately weighted version of the regression ex­
ercise in Example 4.5, p. 92, do there appear to be any outliers or unusually 
influential points? 

Exercise 8.9: Consider the data in Exhibit 8.12 on male deaths per million 
in 1950 for lung cancer (y) and per capita cigarette consumption in 1930 
(x). 

1. Estimate a model expressing y as a linear function of x. Do any of the 
points look particularly influential? Delete the United States, rerun 
the model and check if the influences of Great Britain and Finland 
have been substantially altered. Now, put the U.S. back and delete 
Great Britain and examine the influence of points for the resultant 
model. 

2. Try an appropriate broken line regression and examine the residu­
als. If you notice heteroscedasticity, run an appropriately weighted 
regression. Examine the data points for outliers or undue influence. 

3. Do you think a plausible reason for using broken line regression is that 
the number of women who smoke might be much higher in countries 
with high per capita cigarette consumption? 

4. Write a report discussing your various efforts and your final conclu­
sion. 

(A discussion of part 1 of this example is contained in Thfte, 1974, p. 78 et 
seq. The data was used in some of the earlier reports on Smoking and Health 
by the Advisory Committee to the U.S. Surgeon General. See reference to 
Doll, 1955.) 

Country y x Country y x 

Ireland 58 220 Norway 90 250 
Sweden 115 310 Canada 150 510 
Denmark 165 380 Australia 170 455 
United States 1901280 Holland 245 460 
Switzerland 250 530 Finland 3501115 
Great Britain 465 1145 

EXHIBIT 8.12: Data on Lung Cancer Deaths and Cigarette Smoking 
SOURCE: TUfte (1974). Adapted by permission of Prentice Hall, Inc., Englewood 
Cliffs, New Jersey. 

Exercise 8.10: Construct a model similar to that in Exercise 7.7, p. 146, 
but now do so ignoring serial correlation. Look for outliers and influential 
points. Write your conclusions. 
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Exercise 8.11: We ended our discussion of Example 8.2 without having 
taken it to a conclusion. Do so. 

Exercise 8.12: Assuming you have completed Exercise 6.15, p. 130, check 
to see if some of the cases in the house price data set should have been 
deleted. Be careful; there are very few observations to work with and a 
very large number of independent variables. 

Exercise 8.13: In the model used to carry out the test in Exercise 4.8, 
p. 97, do any of the RSTUDENT's or hii'S give cause for concern? Given 
that we have rather few observations, would you consider deleting any of 
them as unduly influential? 

A T S C P E Y 

0 0 1.75 13.4 0.274 2 2.55 
1 3 4.10 3.9 0.198 2 1.83 
0 4 2.35 5.3 0.526 1 1.80 
1 6 4.25 7.1 0.250 1 0.89 
0 9 1.60 6.9 0.018 2 1.28 
0 25 3.35 4.9 0.194 1 1.51 
0 27 2.85 12.1 0.751 1 1.84 
1 28 2.20 5.2 0.084 1 1.62 
1 29 4.40 4.1 0.236 1 1.01 
1 32 3.10 2.8 0.214 1 1.39 
0 33 3.95 6.8 0.796 1 1.74 
1 35 2.90 3.0 0.124 1 1.57 
1 38 2.05 7.0 0.144 1 2.47 
0 39 4.00 11.3 0.398 1 1.49 
0 53 3.35 4.2 0.237 2 1.29 
0 56 3.80 2.2 0.230 1 0.14 
1 59 3.40 6.5 0.142 2 1.69 
1 65 3.15 3.1 0.073 1 0.70 
0 68 3.15 2.6 0.136 1 -0.19 
1 82 4.01 8.3 0.123 1 0.08 

EXHIBIT 8.13: Florida Cumulus Experiment Data 
SOURCE: Woodley, et al. (1977). © 1977 by the AAAS. Reproduced with per­
mission. 

Exercise 8.14: The data in Exhibit 8.13 are from an experiment on the 
effects of cloud seeding by silver iodide crystals on precipitation. They 
were given in Woodley et al. (1978) and have also been analyzed by Cook 
and Weisberg (1980). Each of the cases represents a different day. The 
dependent variable y is the natural logarithm of precipitation in the target 
area in a 6-hour period (in 107 cubic meters). The independent variables 
include a dummy variable A on seeding (A = 1 for seeded days and A = 0 
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for days when no seeding was done), the number of days after the first day 
of the experiment (T), the percentage of cloud cover in the experimental 
area (C) and total rainfall (P) in the study area an hour before seeding 
(in 107 cubic meters). The independent variable S relates to heights of 
clouds and E is an indication of whether the radar echo was stationary (2) 
or moving (1). Using these six independent variables as well as the four 
additional ones obtained by taking products of the variable A with each of 
the variables S, C, P and E, obtain an OLS model for y. Identify influential 
points. Using only the information given in this chapter, give reasons why 
each of these points is influential. 

Repeat the above exercise with the variable A x P replaced by A x log[P]. 

Exercise 8.15: In the data set on hospital charges (Exhibit 4.13, p. 99), 
one case was left out, primarily to facilitate the use of the data in Chapter 5. 
This case represented a sixteen-year-old female patient who was treated by 
the doctor with ID number 730 for a severity level 2 condition. The charges 
totaled $820. Would you include this case in your analysis of log of charges? 
Should any of the other observations be deleted? 

Exercise 8.16: Using the same data as in Exercise 8.15, investigate the 
presence of outliers when 'charges' is the dependent variable. After deleting 
any outliers, examine plots of residuals against dependent and independent 
variables for both the 'logged' and the 'non-logged' model. Which one would 
you choose? If deletion of outliers (except for the point mentioned in the 
last exercise) was forbidden, what would your choice have been? 

Exercise 8.17: For the models you originally constructed in Problem 2.20, 
p. 55, and refined in other exercises, look for outliers and influential points, 
and take whatever action you deem appropriate. (In the marriage rate 
example, can you explain the most prominent influential point?) 

Exercise 8.18: Look for outliers and influential points in the model you 
constructed in Exercise 3.11, p. 77. Write your conclusions. 
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Transformations 

9 .1 Introduction 

Until now we have considered situations where the algebraic form of the 
model, i.e., 

{3o + {3IXil + ... + (3k X ik, 

was approximately correct. Obviously, this will not always be so. The actual 
relationship may not be a linear function of the Xij'S and sometimes not 
even of the (3j's. In some such cases we may still be able to do linear 
regression by transforming (i.e., using functions of) the independent and/or 
the dependent variables. 

While we shall look at this subject in detail in the other sections of this 
chapter, let us consider two examples now. Suppose the true relationship 
between Xl, X2 and Y is y = {3IX~/2 + (32X~/2. Obviously, this is linear in {31 
and {32 and should present no problem in itself if we know that we would 
have to take square roots of the Xj's. If we do not know this, then we will 
have to convince ourselves that there is a need to make some transformation 
and then try to find a good one by analyzing the data. As another example, 
consider a form that appears quite frequently in economics: y = Ax~x~. By 
taking logarithms (the base is unimportant) of both sides, we get log(y) = 
log(A) + ex 109(XI) + (3log(x2), and we may be able to use linear regression 
methods. Other examples as well as techniques for deciding on the need for 
transformations and for choosing them when needed are discussed in this 
chapter. 

9.1.1 AN IMPORTANT WORD OF WARNING 

If we transform the dependent variable Yi we would be changing var (Yi). 
We exploited this fact to our advantage in Chapter 6 where we transformed 
the Yi'S to make previously unequal variances equal. Sometimes the same 
transformation of the Yi'S will yield a good algebraic form and at the same 
time induce equality of variance. Unfortunately, often this will not be the 
case. The reader should be warned that if a transformation of a dependent 
variable is made, it may be necessary to take other steps to correct the 
heteroscedasticity induced. Transforming the dependent variable would also 
affect the normality of the fi'S and, in addition, could give rise to bias, 
which would then have to be alleviated. (No such problems occur if only 
independent variables are transformed.) 
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Therefore, it has been recommended in the literature that nonlinear least 
squares (Appendix C) or direct maximization of the likelihood function is 
preferable as a means to estimate parameters for models with a transformed 
dependent variable and sometimes it is necessary to use these methods. 
Such models are sometimes called generalized linear models and have been 
treated in depth by McCullagh and NeIder (1983). However, as we shall see 
in the next section, under some specific circumstances, linear least squares 
may be used to estimate certain generalized linear models. 

9.2 Some Common Transformations 

Some types of transformations seem to appear more often than others. In 
this section we examine a few of them before embarking on a more general 
treatment. 

9.2.1 POLYNOMIAL REGRESSION 

We have already encountered examples of polynomial regression in Chap­
ter 1 (Section 1.2, p. 2), where we discovered that Yi = f30 + f31Xil + fi was 
not quite adequate to describe the data and we needed a model of the form 

Yi = f30 + f31xil + f32 X;1 + fi· 

Other, more complex polynomial models can also be used. For example, 

Yi = f30 + f31xil + f32 X;1 + f33 x i2 + f34 X;2 + f35 x il x i2 + fi, 

which is a second degree polynomial in two variables, and 

Yi = f30 + f31Xil + f32 x ;1 + f33x~1 + f34 Xtl + fi, 

which is of fourth degree in one variable, may sometimes be employed. 
Polynomials, particularly those of second degree, are frequently used in 
fitting so-called response surfaces, which in turn are used to find the value of 
an independent variable or the combination of values of several independent 
variables which yield a maximum or a minimum value of the dependent 
variable (as in Exercise 2.18, p. 53). 

However, if injudiciously done, polynomial regression can present two 
types of problems. First, the number of parameters increases rapidly with 
both the degree of the polynomial and the number of the (original) vari­
ables. For example, even a second degree polynomial with m variables can 
have as many as 1+2m+!m(m-1) parameters. Then for m = 10 we would 
have 66 parameters! Another problem, even with one independent variable, 
is that while high degree polynomials can be made to fit the data very well 
(with a high enough degree, an excellent fit can always be obtained even 
if no actual relationship exists!), such relationships usually mean little and 
are often worthless for predictive purposes. 
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9.2.2 SPLINES 

There is no reason why broken line regression (Section 4.5, p. 89) cannot 
be generalized to broken curve regression. Then cases on either side of the 
break point, or knot, as it is sometimes called, would be described by curves 
given by, say, polynomials. An example of such a model which uses second 
degree polynomials and which is continuous across the knot is 

where, as in Section 4.5, the value x of the independent variable Xl repre­
sents the break point and 

In fact, the model 

if XiI > X 

if XiI:::; X. 

(9.1) 

corresponds to a function of Xl which is also differentiable. Such curves, 
consisting of polynomial curves coming together at knots, are sometimes 
called splines, although the word is more often reserved for the special case 
where, if the polynomials are of degree m, all derivatives of order m - 1 or 
less exist across each knot. Model (9.1) is an example of the more restrictive 
definition. 

When the break point(s) are known, the estimation of such broken curve 
models presents no difficulty. If they are not known, nonlinear least squares 
(Appendix C, see especially Example C.4, p. 313) could be used to obtain 
estimates of the break point and the other parameters. Splines are used in 
some computer 'graphics' packages to draw smooth curves through a set 
of points. For more on splines and broken curve regression, see Seber and 
Wild (1989, Ch. 9), Eubank (1984) and Smith (1979). 

9.2.3 MULTIPLICATIVE MODELS 

By a multiplicative form of Xl, ... , Xk we mean a function of the form 

k 

Y = A II xjj, 
j=l 

where A and (3j'S are parameters. Taking logs of both sides, we get 

k 

log(y) =(30+ L{3jlog(Xj), 
j=l 

(9.2) 

(9.3) 
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where {30 = log(A). With an appropriate error term added, (9.3) can fre­
quently be estimated by linear least squares. 

There are cases where multiplicative forms are suitable. Models based 
on such forms are in widespread use in econometrics where the well-known 
Cobb-Douglas model is just one example. The coefficients of multiplica­
tive models have a very simple interpretation. Let Ay be a small change 
in y because of a small change AXj in Xj. From (9.3) it follows that 
y-l(8yj8xj) = {3jxj l, i.e., 

Therefore, {3j is the limit of the ratio of the percentage change in y to 
the percentage change in x j. In economics such a ratio is referred to as 
an elasticity. That {3j'S have this interpretation might partially account for 
the popularity of multiplicative models. 

While, as illustrated in Example 9.4, the need for a multiplicative model 
is difficult to diagnose using purely empirical means, the underlying sit­
uation can often give clues as to whether such a model is called for. We 
illustrate this in the example below. 

Example 9.1 (Continuation of Example 6.6, Page 124) 
Consider the dial-a-ride example. We expected the number of riders to be 
proportional to a function of the number of vehicles. We also expected it to 
be proportional to a function of the hours of service. Indeed, we felt that 
RDR was proportional to functions of each of the independent variables. 
Consequently, we wrote E[RDR] as a product of these functions. 

We chose these functions to be power functions: VH)31 , HR)32 etc., partially 
based on convenience for least squares analysis, but also because they were 
intuitively reasonable. The result was a model of the form (9.2). • 

However, before we can estimate parameters in multiplicative models 
we need to decide how the error term should be introduced. Two possi­
bilities are in common use. They imply somewhat different interpretations 
of the underlying substantive situation and are discussed in the next two 
subsections. 

MULTIPLICATIVE ERRORS 

In the econometrics literature, the usual procedure is to use the model 

(9.4) 

Such models can arise in many ways. Suppose the real underlying model is 
Yi = A n;=l zfj, but for some reason, we do not know or cannot measure 
the Zij'S. Instead, we rely on the surrogates Xij = Zij'T}ij where 'T}ij is an 
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unobservable random variable. Then (9.4) results with Ei = n;=l ri:;{3j . 
Another way the model (9.4) could occur is if the real underlying model 

contained a product n;:k+l x~J of additional variables but these latter 
variables or their values were not known. Then, writing Xij = Zj''lij for 
j = k + 1, ... , m, we could absorb the z/s into the A and the "li/S into the 
error term to get (9.4). 

Taking natural logarithms of both sides of (9.4), we get a model akin to 
our usual regression model: 

However, this model has to be handled with some care. E(log(Ei)) will not 
usually be zero even if E(Ei) is assumed to be 1- as is usually done. Econo­
metricians frequently make the additional assumption that "li = log(Ei) is 
normally distributed with mean, say, {L and variance a 2 , the same for all 
i. Then it can be shown that (Exercise B.l, p. 297) 1 = E(Ei) = E(e71i ) = 
J.I+~0"2 

e . Hence, {L + ~a2 = 0 and E[log(Ei)J = {L = -a2/2. Therefore, we 
need to rewrite (9.5) as 

log(Yi) = (log(A) - a 2 /2) 

+ f3l log(xil) + ... + f3k log(xik) + [log(Ei) + a 2 /2J. 

Now, E[log( Ei) + a 2/2J = 0, and var [log ( Ei) + a 2/2J = var ["liJ = a 2 • 

Thus if the Yi'S are uncorrelated, we get a model for which the Gauss­
Markov conditions are satisfied. Therefore, we can apply OLS and obtain 
estimates of f3l, ... ,f3k and also get the estimate bo of the intercept term 
f30 = (log(A) - a2/2) and the estimate 8 2 of a2. An estimate of A can be 
found from the last two estimates. One, proposed by Srivastava and Singh 
(1989), gives 

where,,( = 1- a'(X'X)-la, X is the n x (k + 1) design matrix 

and a' = (1,0, ... ,0). 

ADDITIVE ERRORS 

An alternative to (9.4) is 

(9.6) 
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and its interpretation is fairly obvious. Assuming that E(Ei) = 0, i.e., 
E(Yi) = AX?ll ... x?:, and taking logarithms of both sides of (9.6), we have 

log[Yi] = log[E(Yi) + Ei] = log[E(Yi)(1 + EdE(Yi»)] 
= f30 + f31 Iog(Xid + ... + f3k log(xik) + log[1 + Ed E(Yi)]. 

Since it is most unlikely that E[log(1 + Ed E(Yi))] is even a constant (let 
alone zero), this is one of the situations where it has been recommended in 
the literature that means other than linear least squares be used to estimate 
the parameters of (9.6). However, in the frequently occurring case where Yi 
is counted and, therefore, has a Poisson distribution, linear least squares 
can be used if we are willing to tolerate a very slight bias. Then, by taking 
a Taylor's series expansion of 

it may be shown that for moderate to large values of E(Yi), E(Zi) ~ o. 
Exhibit 9.1 shows how good the approximation is. Thus, for say E[Yi] 2: 3, 
adding a half to Yi before taking logs essentially eliminates bias. Corrections 
of this kind are sometimes called Anscombe's corrections (Anscombe, 1948, 
Rao, 1973, p.426). A similar procedure can be used to find bias-reducing 
corrections for several different transformations and a fair number of dis­
tributions of Yi for which the variance is a function of the mean. 

E(Yi) E[Zi] E(Yi) E[Zi] 

2 .0259 5 -.0021 
3 .0019 7 -.0012 
4 -.0020 15 -.0002 

EXHIBIT 9.1: Values of E[ziJ for Selected Values of E[YiJ 

Example 9.2 (Continuation of Example 9.1, Page 183) 
It is obvious that for the dial-a-ride example we chose a model with additive 
errors. That is why we added a half to RDR before taking logs although, 
given the size of this variable (the smallest value of RDR was 56), the half 
makes very little difference. However, it is not obvious that multiplicative 
errors are entirely absent from the model. 

Obviously variables are missing from the model, a very important one 
being the dedication and ability of key personnel. Another missing variable 
is the proportion of vehicles in operation per day. All we knew was the 
number of vehicles owned; we did not know how many were in the repair 
shop or sitting idle because there were no drivers. All these point towards 
the presence of a multiplicative error (in addition to an additive error). 
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This leads to a model of the form 

RDR,; = CE(RDRi)[l + €/l)] + €i(2) 

= E(RDR,;)[l + €i(l) + (€P) /E(RDRi))] = E(RDR,;)[l + €i], 

where E(€i(l)) = E(€P)) = E(€i) = 0, €i(l) + (€P)/E(RDR,;)) = €i and 
C is a constant. 

We surmised that variations in RDR,;/ E(RDR,;) due to differences in 
key personnel, number of vehicles in use, etc., would decline with the size 
of the service, i.e., with E(RDR,;). Therefore, we assumed that var (€i(l)) 
would be roughly proportional to E(RDR,;) and therefore, var (€i) would 
be roughly proportional to E(RDRi)' This, of course, leads to the same 
weights as we would get for a purely additive errors model for a counted 
dependent variable. As mentioned above, the half that was added to RDR 
has little effect. Nor would there be any palpable difference in estimates 
if we replaced the half by other comparably sized numbers. Consequently, 
the course of action we followed would appear to be appropriate. 

This example illustrates that choices to be made in applications of re­
gression are frequently not clear-cut. However, we feel that we made a good 
choice. • 

9.2.4 THE LOGIT MODEL FOR PROPORTIONS 

We have already seen proportions of counts in Chapters 4 and 6. Such 
variables are of the form mdni' where mi is the number of individuals 
out of ni that possess a certain property. The variable mi is a counted 
variable and ni is usually treated as a fixed number. Since 0 ::; mi ::; ni, it 
follows that 0 ::; Yi ::; 1. In most applications where the dependent variable 
Yi = mdni is a proportion of counts, it is desirable to set 

E(Yi) = J(Zi) where Zi = f30 + f31Xil + ... + f3kXik (9.8) 

and J is a cumulative distribution function (since 0 ::; J(z) < 1). An 
example of such a function is the logistic distribution function 

J(z) = exp(z)/[l + exp(z)], (9.9) 

the shape of which is illustrated by the curve in Exhibit 9.2. When z is 
small, so is J(z). The derivative of the curve is also small but it gradually 
increases as the cost difference increases. Between about J(z) = 1/4 and 
J(z) = 3/4 the curve is almost a straight line and then the derivative 
declines. The model (9.9) is often called a logit model. 

Example 9.3 
Suppose mi is the number of travelers between two places who take the 
train and ni - mi is the number of travelers who drive. Suppose we have 
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a' (3' 

1 

J(z) 

o~~--~--~--------------------------

(3 a 

EXHIBIT 9.2: The Logistic Distribution Function 

only one independent variable Xi which is the difference in travel times 
between the two modes, i.e., Xi = (train travel time - drive time). E(Yi) 
(in (9.8)) is obviously the probability of choosing the train, given that either 
car or train is chosen. • 

An interesting question we might pose here is: If we are primarily in­
terested in the straight line part of J (z ), can we approximate the logistic 
distribution function by a straight line? The answer is usually no, as Ex­
hibit 9.2 illustrates. Although we would want the line a - a', we would get 
the line (3 - (3' because of the points marked with the x's, which are not 
idiosyncratic points. In fact, they are just about right on the logistic curve! 

The case where the logistic distribution function is used in (9.8) is an­
other one where the literature often recommends the use of nonlinear least 
squares (Appendix C) or direct maximization of the likelihood function (as 
can be done using SAS PROC LOGIST, described in SAS, 1986). How­
ever, it is frequently possible to apply linear least squares for this purpose. 
It may be verified that from (9.9) we get J(z)/[1 - J(z)] = exp(z), and, 
therefore, log[J(z)] - log[1 - J(z)] = z. Hence (see (9.8)), 

log[E(Yi)/(1 - E(Yi))] = Zi' 

If ni's are fixed numbers and each mi = Yini has a binomial distribution, 
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then it may be shown, using a Taylor series approximation (essentially in 
the same way as on p. 185), that the expectation of the difference 

consists of terms of the order [E(mi)]-2 and [E(ni - mi)]-2 and is small 
when E(mi) and E(ni - mi) are large. Consequently, we may write our 
model as 

log[(Yi + (2n)-1)/(1- Yi + (2n)-1)] 

= log(mi + .5) -log(ni - mi + .5) = Zi + fi 
(9.10) 

where E[Ei] ~ 0 for large values of E(mi) and E(ni - mi). We shall call 
the function on the left side of (9.10) a logit transformation of Yi' 

Obviously, (9.10) can be estimated by linear least squares. Since niYi has 
a binomial distribution, var [Yi + (2ni)-1] = var [Yi] = nil E(Yi)[l- E(Yi)] 
and therefore the variance of the top line of (9.10) is, from (6.4) 

var [log(Yi + (2ni)-1) -log(1- Yi + (2ni)-1)] 

~ _1_ + 1 2var y.) _ E(Yi)[l- E(Yi)] 
[E(Yi) E(l - y) ( t - ni( E(Yi)[l - E(Yi)])2 (9.11) 

= [ni E(Yi)(l - E(Yi))t 1. 

Therefore, we need to weight (see Section 6.4, p. 118), and the weight 
should be the reciprocal of the last expression in (9.11). This procedure 
works quite well where most ni's and mi's are moderately large (notice 
that when E(mi) or E(ni - mi) is small, the data point usually gets a 
relatively small weight). However, when this is not so, and particularly 
when all ni's are 1 (so that Yi is either 0 or 1), other procedures (maximum 
likelihood or nonlinear least squares) must be used. 

An alternative to the logistic distribution function, and practically indis­
tinguishable from it, is the normal distribution function <I> (see Cox, 1970). 
Then, from (9.8), <I>-l(E(Yi)) is linear in the parameters. <I>-1 is called a 
probit transformation and is often used in place of the logit. 

9.3 Deciding on the Need for Transformations or 
Additional Terms 

Perhaps the best starting point in any practical problem is to consider the 
underlying situation, as we did in Examples 9.1 and 9.2. Sometimes, of 
course, understanding the underlying situation is not sufficient. Then we 
must examine the data to see whether the chosen model 

(9.12) 
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is adequate or if transformations or additional terms involving the same 
Xij'S would be helpful. 

In this section we discuss several methods of doing this. They fall roughly 
into three categories. First we have graphical methods. Then there are 
methods where we append to the list of independent variables additional 
ones, which are nonlinear functions of those we had before, to see if the new 
variables have much value. If they do, we might wish to retain them, or 
seek some transformation of the original variables. Finally, we have near­
neighbor techniques, where we compare variances estimated over small por­
tions of the independent variable space with the variance estimated over­
all. Formal tests for deciding on the need for transformations or additional 
terms are sometimes loosely referred to as tests for nonlinearity. 

9.3.1 EXAMINING RESIDUAL PLOTS 

By far the most frequently used method of checking for the need for trans­
formations is to examine plots of residuals against each independent vari­
able. We did this in Chapter 1. Exhibit 1.4, p. 5, showed such a plot. Clearly 
some action was needed. Exhibits 1.5 and 1.6 show that we have substan­
tially improved the situation and that further efforts are unwarranted. We 
remind the reader that text-book examples are chosen carefully to illustrate 
a point. For many applications, plots are not nearly as obvious. 

Unfortunately, this type of examination is marginal since we are consid­
ering one variable at a time. Therefore, we may not always be able to see 
the need for, say, product terms. A little reflection will convince the reader 
that the need for multiplicative models would be quite difficult to ascertain 
in this way. The example below provides such an illustration. 

Example 9.4 
Suppose a person knew quite a bit about regression but did not know the 
formula that the area (Y) of a rectangle is its length (Xl) times width 
(X2). He suspected that length and width affect area; therefore he cut out 
a number of cardboard rectangles and measured their dimensions. He then 
weighed each and divided the weight by a known constant to obtain the 
area. However, because of a wide range of imperfections in his technique he 
realized that there is some error in this estimate and decided to use linear 
regression to estimate the (incorrect) model 

Y i = (30 + (31 X1 i + (32X2i + €i· 
Exhibit 9.3 shows his data. Actually, these numbers were generated using 

a pseudo-random number generator: Xl and X2 were obtained using a 
uniform distribution from 10 to 35 and Y i was set to equal to (X1i )(X2i )+1Ji 
where 1Ji ""' N(O, 1600). 

His estimates for (30, (31 and (32 were 

bo = -423.8 (47.4), b1 = 18.5 (1.31), b2 = 22.6 (1.38), 
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y Xl X2 Y Xl X2 Y Xl X2 

457.7 17 27 582.6 30 19 539.6 19 29 
568.2 22 27 590.4 34 19 516.8 19 25 
452.8 16 24 131.6 16 13 791.2 27 29 
783.7 34 23 415.0 33 11 516.9 15 31 
629.4 30 21 606.3 28 21 493.8 30 18 
216.9 13 17 628.7 20 31 366.3 32 12 

1014.2 31 32 130.3 14 11 634.6 24 23 
471.6 25 19 359.6 34 12 194.4 13 19 
266.4 32 11 438.2 14 29 734.5 28 26 
243.3 15 11 417.9 27 15 432.9 26 16 
278.0 18 15 332.7 21 17 362.7 15 26 
354.6 12 27 626.6 29 23 231.4 11 16 
534.2 32 17 575.2 16 34 442.4 27 17 
374.2 26 16 641.9 27 24 538.5 22 28 
441.1 18 21 448.5 26 15 365.6 29 10 
762.7 31 22 536.9 21 24 315.9 17 19 
702.8 23 33 742.2 30 25 

EXHIBIT 9.3: 'Areas', Lengths and Widths of Rectangles 

respectively, where the quantities within parentheses are the standard er­
rors. The R2 of .89 indicates a very good fit. Exhibits 9.4 and 9.5 are the 
residual plots one customarily examines. They do not appear to show any 
nonlinearity, and indeed our ill-informed analyst could easily emerge with 
a model from this exercise that area is a linear function of dimension. • 

9.3.2 USE OF ADDITIONAL TERMS 

One easy method of determining if nonlinearity exists is to insert nonlinear 
terms into the model and then test to see if they should have been included. 
Frequently they are polynomial terms. For example, suppose we are trying 
to determine if the model 

is adequate. Then we can consider the model 

and test the hypothesis that all 'Yi'S are zero against the alternative that at 
least one is not. Such a test would be an F-test as discussed in Chapter 3. 

Frequently, if an analyst is unable to reject the hypothesis that a spe­
cific set of nonlinear terms is needed, he or she comes to the conclusion 
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that (9.3.2) is adequate and that no nonlinearity is indicated. A practical 
difficulty that often arises is that, if there are several variables and prod­
uct terms are used, the number of terms in the augmented equation can 
get very large. In such cases, the user has to choose different selections of 
additional terms for different runs. 

A related procedure is found in MINITAB (1988; see Burn and Ryan, 
1983). Here, the model 

is augmented to 

k 

Yi = /30 + L /3f, Xi/; + Ei 

f,=l 

k k 

Yi = /30 + L /3f,Xif, + aoz/j ) + L af,Zi(j)xif, + "Ii, 
f,=l f,=l 

where z/j) = 0 when Xij < Xj, z/j) = 1 when Xij ::::: Xj and Xj = 
n-lL::~=lXij. In the augmented model, if the hypothesis (ao,aj)' = 0 

is rejected, then a transformation of the variable Xj is indicated, and if 
(ao, ... , aj - 1, ... , aj + 1, ... , ak)' = 0 is rejected, perhaps interaction 
terms are needed. Each of the xi's is considered in turn. 

TUKEY'S TYPE OF NONADDITIVITY 

Tukey (1949) proposed a test for nonlinearity based on augmenting the 
model y = X (3 + e to 

y=X{3+a!+e, 

where! is a known vector-valued function of X{3, E(e) = 0, and cov(e) = 
a 2 I. Such tests are useful for determining if interactions (e.g., products 
of independent variables) should be included, without having to include a 
large number of terms and thereby giving up a large number of degrees 
of freedom. Let i be the estimate of ! obtained by substituting for {3 its 
estimate b. Then a test for the hypothesis a = 0 against a =f. 0 is based on 

e'e - [(e' i)2 / i' i]' 
which has an F distribution with 1 and n - k - 2 d.f. Rejection would occur 
for large values of this statistic. Further details, extensions (to where! is 
matrix valued), and examples can be found in Tukey (1949), Milliken and 
Graybill (1970) and Andrews (1971a). 

9.3.3 USE OF REPEAT MEASUREMENTS 

If for each of i = 1, ... ,n values Xi of the vector of independent variables, 
there are several observations Yif where £ = 1, ... ,ni, then for each Xi we 
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can compute a mean ih and a variance s~ for the corresponding Yi,l, ... , Yi,n; 

and E(s;) is equal to a 2 for all L Therefore, by combining the s~'s we can 
get the following estimate of a2 : 

n n 

i=l i=l 

This estimate would be immune from any nonlinearity. Now if we used the 
ih's as the observations and ran a weighted regression with weights Wi = ni, 
we would get another estimate s~ of a 2 with which we can compare s~. If s~ 
is much smaller than s~, then we would reject the hypothesis of adequacy 
of our model (9.12). The ratio s~/s~ has an F distribution with n - k-1 
and L:~=l (ni - 1) degrees offreedom. 

Perhaps easier is to construct an indicator variable for each point Xi 

which is one for observations corresponding to it. These indicator variables 
can be appended to the list of independent variables and we could test if 
their coefficients are all zeros. 

However, it is often difficult to find several observations for each combi­
nation of values of the predictor. It has been proposed that when several 
observations are not available for each Xi, we can proceed, somewhat ap­
proximately, by dividing the range of each independent variable Xj into 
small intervals and considering the values of Xj to be the same in each 
interval. However, with many variables this immediately poses a problem. 
Suppose we divided the range of each of five independent variables into 
five intervals. Then we would get 55 cells, and if each cell were to contain 
several cases, a very large data set would be needed. 

MINITAB (1988) has an option which performs such tests. 

THEIL'S ApPROACH 

When there is only one independent variable, an alternative approach not 
requiring repeat observations is the following. Order the Xi'S from smallest 
to largest (the sequence within ties does not matter) and let the index 
i = 1, ... ,n reflect the order, Le., 

Run a regression and compute residuals ei and 8 2 in the usual way. Obtain 
an alternative, approximately unbiased estimate of a 2 from 

n 

8~ = 2:(ei - ei_l)2/[2(n - 1)]. (9.13) 
i=2 

Now we can compare (9.13) to 8 2 or use 8~/82. As we saw in Chapter 7, the 
latter is also a test statistic for serial correlation and is readily available 
from packages. The reader can see, perhaps by referring back to Exhibit 1.9a 
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on p. 12, that 8; will usually be smaller than 8 2 if transformations or 
additional terms are needed. 

This approach cannot be directly extended to many dimensions, because 
there is no obvious way of ordering vectors. But it can be extended if we 
notice that what we are looking for in computing 8; is not so much an 
ordered sequence of XiI'S but proximity between pairs of XiI'S. This idea 
has been exploited by Daniel and Wood (1980) and also in the approaches 
given in Section 9.3.5. 

9.3.4 DANIEL AND WOOD NEAR-NEIGHBOR ApPROACH 

Daniel and Wood (1980, p. 133 et seq.) use the idea of estimating u from 
pairs of Xi'S which are close together. Instead of (9.13), they compute 

(9.14) 

where L(a) is the summation over close-by xi's and xi's described below 
and a is the number of such pairs. For independently, normally distributed 
Zi'S with common mean and variance u 2 it can be shown that 

E(izi - zei/u) = 1.128 = 1/.886. 

Thus (9.14) is a reasonable estimator of u, and can be compared with s. 
Obviously, ei's are not independent, but with a large n assuming them 
to be independent is usually not too inappropriate. The (n - k - l)/n 
approximately compensates for degrees of freedom. 

To obtain close-by points, Daniel and Wood compute the distance Dil 
between Xi and Xe as 

k 

Di( = 2:)bp(Xip - X(pW /82. (9.15) 
p=l 

The role of the bp is two-fold: to compensate for differences in units of 
measurement for different independent variables and to give less impor­
tance to less important independent variables which will presumably tend 
to have smaller bp's. The 8 2 is not critical; it is there to render the Dii's 
dimensionless. 

The Die'S can be used to select a set of (i,l) pairs that are close together. 
Because the total number of such pairs is quite large - n( n -1) /2 - Daniel 
and Wood use a two-step procedure. In the first step the Yi'S are sorted or 
ranked as 

YI < Y2 < ... < Yn. 
Then for each Yi, the pairs (i, i-I), (i, i - 2), (i, i - 3), (i, i - 4) are retained; 
this yields 4n - 10 pairs. These (4n - 10) pairs will include many of the 
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pairs with small Dil'S, since if a Dil is small, IYi - Yil will be too. In the 
second step, the Dil'S are computed and ranked for these (4n - 10) pairs. 
For the smallest of these Dil's, (9.14) is computed with a = 1, then (9.14) 
is computed for the a = 2 smallest Dil's, then for the a = 3 smallest Dil's 
and so on until a = 4n - 10. 

All 4n - 10 values of (9.14) need to be examined. When a is small, 
the estimates of (9.14) may not be too reliable; when a is close to 4n -
10, (9.14) may be based on points which are not too close. Daniel and 
Wood recommend choosing a set of consecutive values of (9.14) which are 
relatively constant and comparing them to s. A program which carries out 
this procedure is contained in the package that is a companion to Daniel 
and Wood (1980). Several examples of the procedure are given in that book. 

9.3.5 ANOTHER METHOD BASED ON NEAR NEIGHBORS 

The Daniel and Wood approach helps us detect nonlinearity when it is 
quite serious and sometimes tells us when we do not need to worry about 
the adequacy of our model. However, it is difficult to decide what to do 
if s is somewhat larger, but not much larger, than (9.14). This is because 
the distribution of (9.14) is not known and is, moreover, difficult to obtain. 
Even if we replace (9.14) by a quantity the distribution of which is known, 
it is difficult to say much about a quantity which is being selected out of 
4n - 10 dependent values of it. 

To remedy these problems, at least partially, we consider (see (9.13)) 

L wil(ei - ei)2/ws2, 
i,i 

(9.16) 

where W = ~i,i Wit, Wit = g(dil), Wit = Wii and Wii = 0 for all i and e. The 
9 is some function (e.g., g(dit) = d:;/) which is positive and monotonically 
fairly rapidly decreasing and dit is a measure of distance between Xi and 
Xi. A simple example of such a measure is IIxi - XiII = [(Xi - Xd(Xi -
XiW/2. Alternatively, and preferably, we could invoke the centered model 
of Section 2.10, p. 42, and since Z' Z is the sample covariance matrix of the 
independent variable values, use 

1 . - - -
(Zi - zt)'(Z'Z)- (Zi - Zi) = hii + hit - 2hil (9.17) 

where Zi is a row of Z and if = (hit) = Z (Z' Z) -1 Z'. Another possibility 
is 

hii + hit - 2hil' (9.18) 

Note that, as may easily be verified, this last expression is a-2var [:Vi - Yi]. 
Formally, (9.16) is the same as Geary's statistic for spatial correlation 

(Section 7.7.1, p. 143). As in that case, an alternative to (9.16) is 

n = L(wil/w)eiet/s2. (9.19) 
i,e 
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As before, probably the most convenient way to use (9.16) and (9.19) when 
n is large is to invoke the fact that both (9.16) and (9.19) are asymptotically 
normal with means and variances as given in Section 7.7. For the readers' 
convenience these formulre are reproduced below. Note that both (7.19) 
and (7.20) can be written in the form ce'V e/ 8 2 where V is a suitable n x n 
matrix. Under normality, the mean of ce'Ve/82 is ctrB and its variance 
is 2c2(n - k + l)-l[(n - k - 1)trB2 - (trB)2], where B = M'VM and 
M = I - X(X' X)-l X'. When the errors are not normal, under some mild 
conditions the mean and variance are, asymptotically, ctrB and 2c2 trB2. 

For reasons that are fairly obvious, the method works better when a 
large proportion of the independent variables require transformations, or 
additional terms involving a large proportion of the variables are called for. 
This is fortunate, since the need to transform fewer variables is typically 
easy to detect by other means. 

A fundamental difference between (9.15) and the other measures is that 
the latter do not include the bj's. Of course, there is nothing to prevent 
us from including bj's in the measures that do not contain them or from 
removing them from the one that does. However, a choice needs to be 
made. The reason for including bj's was to reduce the effects of relatively 
unimportant variables. It is not clear that this is always accomplished, 
since bj may not necessarily be too good a measure of importance. The 
alternative position is that when we use these measures, we should merely 
focus on nonlinearity and disregard variable importance. After finding and 
more or less correcting for nonlinearity, we are in a better position to judge 
the importance of variables. 

Example 9.5 (Continuation of Example 9.4, Page 189) 
For the data described in Example 9.4 with g(dil ) set as Ilxi - XtW, the 
approximate value of (n - E(n))/(varn)1/2 was computed using the for­
mulre for the means and variances given above for the normal case. This 
value was 3.73, showing that the linear model used in that example should 
be rejected. Therefore, the test helps us take a correct decision even though 
the plots were quite unhelpful. • 

Example 9.6 (Continuation of Example 9.2, Page 185) 
Consider the dial-a-ride data of Exhibit 6.8, p. 125, without making any 
transformations. Because the independent variables are in vastly different 
units of measurement, we used (9.17) as distance and set its reciprocal as 
the Wil'S. 

The possible presence of heteroscedasticity required that we consider 
weighted residuals. Therefore, we set the vector of residuals as Wl/2(y -
XbWLs) where bWLS = (X'WX)-l X'Wy, Y = (Yl,"" Yn)' is the vector 
of values of the dependent variable RDR (number ofriders), X is the design 
matrix including all the remaining variables and W is the diagonal matrix of 



9.4. Choosing Transformations 197 

weights, which are estimates of 1/ E[YI] since the Yi'S are counted variables. 
These estimates were simply taken to be f)-I from an ordinary least squares 
exercise. When any of the weights were negative it was replaced by a zero. 
Notice that weighting also requires replacing X by W I / 2 X in the expression 
for B in the formulre for the mean and variance of (9.19). 

Computation of (0 - E(0))/(varO)I/2, again using the formulre for the 
mean and variance of 0 under an assumption of normality, yielded 3.7, 
which strongly recommends transformations. A similar exercise after taking 
logs yielded .78. • 

An alternative which is easier to apply than the one mentioned above and 
detects certain kinds of nonlinearity is described in Burn and Ryan (1983) 
and is available in MINITAB (1988). In this method the sum of squares 
of residuals ~ call it SSEc ~ is computed from a regression based only 
on the m design points for which hii :s:; 1.1(k + 1)/n. From the discussion 
of Section 8.2.1, p. 156, it is easily seen that these points would be close 
to the centroid of all the design points. If, now, SSE is the error sum of 
squares when all points are used, it is easily seen that 

(9.20) 

where 
SSELOF = SSE - SSEc, 

would be high in the presence of substantial nonlinearity. It may also be 
seen that SSELOF is independent of SSEc and has a chi-square distribution 
with (n - m) degrees of freedom. Therefore, (9.20) has an F distribution 
under the hypothesis of nonlinearity. 

9.4 Choosing Transformations 

In the last section we examined methods for deciding whether a transfor­
mation was necessary. A few of the techniques can also give us a hint as 
to what transformations are called for. However, in general, these methods 
simply identify need and leave the analyst to find the suitable transforma­
tions. In this section we shall discuss some methods to help us make this 
choice. Subsections 9.4.1 and 9.4.2 present essentially graphical methods, 
while the remaining subsections of this section are devoted to analytical 
procedures. 

9.4.1 GRAPHICAL METHOD: ONE INDEPENDENT 

VARIABLE 

When there is only one independent variable, we can examine a plot of 
the dependent variable against it. Sometimes this plot will immediately 
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suggest a course of action - e.g., the use of the logit function examined 
earlier in this chapter, or of broken line regression, as in Chapter 4. If no 
obvious course is apparent, the following method given in Mosteller and 
Tukey (1977) has been found useful by the authors. 

Divide the range of the independent variable into three portions, making 
a good compromise between getting equal numbers of data points in each 
portion and making the three portions roughly equal. For each of the three 
sets of data points thus created, find a point (which mayor may not be 
one of the data points) which is a good representative of the set. For each 
set, a good choice is the point whose coordinates are the medians of the x 
and y values for the points in the set. Find the slope of the line joining the 
first two points (going from left to right) and the slope for the line joining 
the last two. If the two slopes are equal, then the data points should be 
describing a straight line. If not, the middle of three points will be below 
(the convex case) or above (the concave case) the line joining the other 
two. 

_1/y2 
-1/y 11 x 5 

_1/yl/2 IF CONVEX x4 
log(y) UP THE LADDER x 3 
yl/2 x 2 

Y <I You ARE HERE t> x 
y2 Xl/2 
y3 IF CONCAVE log(x) 
y4 DOWN THE LADDER _1/x1/ 2 
y5 

JJ- -1/x 
-1/x2 

-1/x3 

EXHIBIT 9.6: Ladder of Transformations 

We may now transform either the dependent variable y or the indepen­
dent variable x using the ladder of power transformations given in Ex­
hibit 9.6. If the three points are in a convex configuration we move up the 
ladder; if they are in a concave configuration we move down. In either case 
we apply the transformations to the chosen coordinates (x or y) of the three 
points. If the two slopes mentioned above become roughly equal we stop; 
if the configuration changes from convex to concave or vice versa we have 
gone too far. 
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EXHIBIT 9.7: Plot of Stevens' Data 

Example 9.7 
Consider the data of Exhibit 1.15, p. 23. Suppose we do not know that 
Stevens took logarithms or we wish to check if his action was appropriate. 
Exhibit 9.7 shows a plot of y against x. Consider the three points with 
coordinates 

(50,1), (77.5,9.25) and (95,29). 

The slopes between the first two and last two points are 

8.25/27.5 =.3 and 19.75/17.5 = 1.13, 

which are far from equal. Suppose we decide to transform the dependent 
variable. Going up the ladder to yl/2, we take square roots of the y coor­
dinates and get the slopes 

(3.04 - 1)/27.5 = .074 and 2.35/17.5 = .134. 

They are getting closer. Now, moving on to log(y), we get the slopes 

(.966 - 0)/27.5 = .035 and .496/17.5 = .028. 

These are quite close, and, indeed, we may have gone too far. Nevertheless, 
let us try _1/yl/2; the slopes are .025 and .0082; the situation is getting 
worse. We can deem the slopes for log(y) close enough and go with it (after 
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all, the points chosen were somewhat arbitrary), or we could look for some 
small positive power for y (e.g., y(.1), for which, incidentally, the slopes are 
nearly equal). • 

Sometimes, particularly when some values of the dependent variable y 
are negative, an analyst might wish to add a quantity c to y before raising 
it to a power. A graphical method for choosing c and the power has been 
given in Dolby (1963). 

9.4.2 GRAPHICAL METHOD: MANY INDEPENDENT 

VARIABLES 

The primary problem with graphical methods is that usually we have only 
two dimensions to work with. Therefore, we need to find a way to examine 
two dimensional cross-sections of an essentially many dimensional situa­
tion. Examining plots of the dependent variables against each independent 
variable is sometimes not very useful, since the clutter introduced by the 
effects of other independent variables makes the identification of trans­
formations difficult. For example, the points (y, Xl, X2) = (2,1,3), (1,2,1), 
(3,2,3), (1,3,0), (3,3,2), (2,4,0) all lie on the plane y = -3 + Xl + X2, but 
a plot of y against just Xl will show the six points arranged in a regular 
hexagon. Wood (1973) has given an alternative method which is usually 
much more useful. 

COMPONENT PLUS RESIDUAL PLOTS 

Consider the estimated model 

where i = 1, ... ,n, the bj's are estimates of j3j'S and the ei's are the resid­
uals. Then 

k 

Yi - bo - L bjXij = bmXim + ei· 

j=l:j#m 

Thus bmXim + ei is essentially Yi with the linear effects of the other variables 
removed. Plotting bmXim + ei against Xim eliminates some of the clutter 
mentioned above. Wood (1973) called these plots component plus residual 
plots since bmXim may be seen as a component of iii (see also Daniel and 
Wood, 1980). The plot has also been called a partial residuals plot. The 
method of the last section can be applied to each of these plots, but now 
we would be transforming only the independent variables. 

Obviously, the value of such plots depends on the quality of the estimate 
of bj's. If the independent variables are related (see Chapter 10), bj's could 
be so far away from the appropriate j3j that component plus residual plots 
could become misleading. Moreover, if, say, one of several highly related 
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independent variable requires a transformation, the appearance of bending 
can be shared by several of the plots. Then also such plots are of lim­
ited value. A modification of component plus residual plots which includes 
nonlinear terms in the component has been proposed by Mallows (1985). 

R I 8 R I 8 R I 8 

99 6.5 1 670 26.0 2 400 18.0 3 
125 11.0 1 820 44.0 2 640 22.0 3 
200 17.0 1 325 8.0 2 468 6.0 4 
550 37.0 1 366 15.0 2 668 22.0 4 
100 9.0 1 325 9.0 2 850 24.0 4 
250 6.0 2 411 7.0 3 825 27.0 4 
400 14.0 2 580 14.0 3 950 27.0 5 
475 18.0 2 580 17.0 3 1000 31.0 6 
250 12.0 2 580 16.5 3 780 12.0 6 

EXHIBIT 9.8: Data on Monthly Rent (R dollars), Annual Income (I x 1000 
dollars) and Household 8ize (8). 

Example 9.8 
Generally, the rent (R) a household pays for an apartment is related to its 
income (I). It is conceivable that rents would also be related to household 
size (S), since larger households would require more space. On the other 
hand, larger households would have less money available for rent. The data 
in Exhibit 9.8 was extracted from a much larger set by one of the authors. 
The original data set was collected about 20 years ago from several sources, 
principally successful lease applications. The purpose of the original study 
was to determine rent levels appropriate for low income housing. 

Exhibits 9.9 and 9.10 show component plus residual plots for the two in­
dependent variables. C(I) and C(S) denote respectively the component plus 
residuals for I and S. Obviously, the plot corresponding to income requires 
no action. In the case of the plot for S, some action seemed necessary. 
The nature of the plot made a search for three (see Section 9.4.1) typical 
points difficult. Therefore, we chose the four points (1,60), (2,280), (3,410), 
(5,580). Taking the square roots of S and then computing slopes between 
pairs of transformed points, we get approximately 531, 409 and 337. We 
have not gone far enough. With logs we get 317, 320 and 332, showing that 
a log transformation may be about right for S. • 

Example 9.9 
Consider the data set of Exhibit 9.11 where the dependent variable PCS is 
the percentage savings that occurred when the operation of some transit 
routes was given over to private companies. The independent variables are 
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EXHIBIT 9.9: Component Plus Residual Plot for Income in Rent Model 
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EXHIBIT 9.10: Component Plus Residual Plot for Household Size in Rent Model 
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VI V2 V3 V4 V5 V6 V7 V8 V9 pes 
55.0 0.10 17.95 379.45 15.0 1327.02 4.16 0.00 10.68 19.8 
67.0 1.00 11.94 767.52 20.0 16120.02 0.12 1.00 7.21 29.0 
20.0 1.00 17.77 92.40 15.0 3060.24 15.58 1.00 11.56 50.0 
66.0 0.89 20.18 810.98 0.0 1861.85 3.33 1.00 8.02 48.0 
35.0 1.00 7.57 220.00 0.0 806.69 4.38 1.00 6.11 30.0 
69.0 0.45 19.57 468.22 16.0 1014.00 3.52 0.00 7.28 30.0 
35.0 0.43 11.00 184.30 0.0 35.78 0.76 1.00 6.14 0.1 
48.0 1.00 13.94 206.44 0.0 24.15 1.20 1.00 7.37 27.0 
45.0 0.83 14.21 255.00 0.0 38.99 0.47 0.88 7.34 3.1 
45.0 0.80 13.32 145.00 0.0 27.38 0.47 0.67 7.19 0.1 
26.0 1.00 12.63 173.00 0.0 25.08 0.47 1.00 6.09 30.2 
20.0 1.00 19.03 405.10 0.0 1606.77 9.57 0.00 9.28 45.9 
45.0 0.00 29.93 74.41 15.0 1327.02 4.16 0.00 8.34 49.0 
45.0 0.00 33.29 38.80 25.0 1327.02 4.16 1.00 6.38 50.0 
60.0 0.75 10.13 297.20 12.0 7869.54 16.68 1.00 7.80 43.0 
45.0 0.71 16.83 360.27 25.0 5179.78 12.36 1.00 8.84 22.9 

9.0 1.00 13.90 27.93 0.0 514.62 2.00 0.00 6.94 10.0 

VI Average capacity of buses in service 
V2 Ratio of buses in use during non-peak period to those in use in peak period 

[Peak Periods are those when most people travel to or from work] 
V3 Average speed 
V 4 Vehicle-miles contracted 
V5 Distance from center of metropolitan area 
V6 Population of metropolitan area 
V7 Percentage of work trips in the metropolitan area that are made by transit 
V8 Buses owned by sponsor 7 buses owned by contractor 
V9 Per capita income for metropolitan area 
pes Per cent savings 

EXHIBIT 9.11: Data on Transit Privatization 
SOURCE: Prof. E.K. Morlok, Department of Systems Engineering, University of 
Pennsylvania. 
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those that the analyst (Morlok) initially thought were important determi­
nants of it. While several of the independent variables seemed to require 
transformations, to save space, we have shown only the component plus 
residual plot for V2 in Exhibit 9.12. The axes labels are similar to those 
in Example 9.8. It is possible to see a very convex pattern here, but quite 
clearly the transformations of Exhibit 9.6 without alteration are not ap­
propriate. We tried the two independent variables V2 and (V2)2. We also 
replaced V6 by V6- 1/ 2 for reasons the reader is invited to explore in Exer­
cise 9.11. The resultant component plus residual plot for V2, presented in 
Exhibit 9.13, shows that we did not do too poorly. • 

9.4.3 ANALYTIC METHODS: TRANSFORMING THE 

RESPONSE 

A good transformation should make residuals smaller. However, when we 
transform the dependent variable so that Yi becomes !(Yi), we also change 
scales. Therefore, we cannot simply compare the 82 's after making vari­
ous transformations. We need to make some adjustments to them. Such 
adjustments are used in the methods described below. 

THE Box AND Cox METHOD 

For situations where all Yi > 0, Box and Cox (1964) considered the following 
family of transformations: 

when>. f=. 0 

when>. = 0, 
(9.21) 

where i = 1, ... ,n. [Notice that, by the use of L'Hospital's Rule, it can be 
shown that 

Hm(y; - 1)/>. = 10g(Yi)') 
A-O 

Define yeA) = (y~A), ... , y~))'. 
To find the appropriate transformation from the family (9.21), all we 

need do is maximize -~nlog[82(>.)) given by 

n 

- ~nlog[82(>.)) = (>. - 1) ~)og(Yi) - ~nlog[0-2(>.)], (9.22) 
i=l 

where 0-2(>.) = n-1y(A)'[I - H)y(A); i.e., 0-2(>.) is the sum of squares of the 
residuals divided by n when Yi(A)'S are used as observations (see (2.13)). 
82(>.) is essentially the 82 for the transformed model adjusted for change 
of scale for the dependent variable y(A). The maximization is best carried 
out by simply computing (9.22) for several values of >.. We shall sometimes 
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EXHIBIT 9.12: Component Plus Residual Plot for V2 
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EXHIBIT 9.13: Component Plus Residual Plot for V2 after including V22 
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call -1nlog[s2(A)] the Box-Cox objective function. A justification for the 
procedure is given in the subsection below. 

Let Amax be the value of A which maximizes (9.22). Then, under fairly 
general conditions, for any other A, 

(9.23) 

has approximately the chi-square distribution with 1 degree of freedom. 
This follows from the fact, which will be obvious from the discussion in 
the next subsection, that (9.23) is twice the logarithm of a likelihood ratio, 
which is known to have such a distribution. 

The Box-Cox transformations were originally introduced to reduce non­
normality in data. However, as an examination of (9.22) will show, it should 
be well suited to our purpose of reducing nonlinearity. It should be pointed 
out that the approach will attempt to find transformations which will try to 
reduce the residuals associated with outliers and also reduce heteroscedas­
ticity, particularly if there was no acute nonlinearity to begin with. An­
drews (1971b) has noted the fairly severe effect of outliers and influential 
points on choice of the Box-Cox transformations and since then a number of 
methods have been proposed to combat such situations; e.g., see Cook and 
Wang (1983), Carroll (1982), Carroll and Ruppert (1985), Atkinson (1985, 
1986). A discussion of this subject is, unfortunately, beyond the scope of 
this book. 

Example 9.10 (Continuation of Example 9.7, Page 199) 
Let us return to Stevens' data. After using a set of A'S separated by .1 
(Exhibit 9.14) and surmising that the maximum of -log[s2(A)] occurred 
for A in the interval (0, .1), we used a more finely separated set of values 
of A to obtain Exhibit 9.15. The largest value of -(n/2) log[s2(A)] occurs 
around .07. This gives us the transformation [y.07 - 1]/.07. Actually, we 
would just use y.07, which is about what we found in Example 9.7. 

>. 0.1.2.3.4.5.6.7.8 
-1nlog[s2(>.)] 1.99 5.23 -.698 -8.40 -10.89 -12.99 -14.85 -16.58 -18.21 

EXHIBIT 9.14: Values of Box-Cox Objective Function Over a Coarse Grid: 
Stevens' Data 

>. .01 .02 .03 .04 .05 .06 .07 .08 .09 
-1nlog[s2(>.)] 2.74 3.48 4.17 4.78 5.28 5.63 5.80 5.78 5.58 

EXHIBIT 9.15: Values of Box-Cox Objective Function Over a Fine Grid: Stevens' 
Data 

Notice that the difference nlog[s2(0)]-nlog[s2(Amax)] = 2 x 3.81 = 7.62 
is significant at even a 1 per cent level (the 10, 5, 1 and .001 per cent 
critical values are, respectively, 2.71, 3.84, 6.63 and 10.83). Nevertheless, 
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because .07 is so close to zero, the obvious intuitive appeal of logs in this 
case overrides this consideration, at least in the judgment of the authors .• 

Example 9.11 (Continuation of Example 5.5, Page 107) 
Application of the Box-Cox method to seek an appropriate transformation 
of the dependent variable 'charges' in the hospital charge data given in 
Exhibit 4.13, p. 99, yielded Exhibit 9.16. The maximum occurs for>. = .2 
and both the log transformation (>. = 0) and the square root are significant 
using (9.23). The reader who has completed Exercises 8.15 and 8.16 will 
recognize that the main shortcoming of the model using simply 'charges' 
as the dependent variable is the presence of the outlier. Therefore, to some 
extent, the Box-Cox procedure chose the transformation it did in order to 
take care of it. 

The original data set from which our set was extracted had about 2000 
cases covering several diagnostic categories (ailments). In that set, the point 
we have called an outlier did not appear to be so. The space between the 
isolated outlier and other points was 'filled in' with observations. For this 
larger data set, Feinglass found that a transformation between the log and 
square root was most appropriate and chose the log transformation because 
the coefficients then have a fairly simple explanation in terms of percentages 
(see Exercise 9.1). He also did not want to give the appearance of undue 
fastidiousness resulting from a transformation like, say, y.17! • 

>. -.5 -.1 0 .1 .2 .3 .4 .5 1.0 
-!n log[s2(>.)] -420.6 -404.5 -403.6 -400.82 -400.19 -400.37 -401.3 -402.9 -418.5 

EXHIBIT 9.16: Values of Box-Cox Objective Function: Hospital Charge Data 

*DERIVATION OF Box-Cox OBJECTIVE FUNCTION 

Since ayP') faye = 0 when i i- f, the Jacobian of the transformation from 
yY') to Yi is given by (see Section B.6, p. 293) 

n n 

II (ay;A) /aYi) = (II Yi)A-l. (9.24) 
i=l i=l 

Assuming that y(A) has a normal distribution with mean X f3 and covari­
ance matrix 0'2 I, the density function of y is proportional to 
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Therefore, the log-likelihood function is, ignoring constants, 

n 

log[C(,8, (72, A)] = (A - 1) L log[Yi] 
i=l (9.25) 

Maximizing (9.25) by differentiating it with respect to,8 and (72 and equat­
ing to zero, we get, for a given A, the maximum likelihood estimates of,8 and 
(72. These are (3(A) = (X'X)-l X'y(>') and o-2(A) = n-1(y(>')),[I - H]y(>'). 
Substituting these estimates into equation (9.25), we get 

as given in (9.22) 

*OTHER FAMILIES OF TRANSFORMATIONS FOR DEPENDENT VARIABLES 

Sometimes it is useful to 'start' (Mosteller and Tukey, 1977) our transfor­
mations by adding a constant to Yi before applying the transformation. We 
saw an example of this when we added Anscombe's correction. If the vari­
able has a natural non-zero lower bound, particularly if it is negative, such 
starts often work well. If the value a of the start is unknown, the following 
family of transformations can be useful: 

y~>') = { [(Yi + a)>' - 1]/A, 
• log(Yi + a), 

when A f 0, 

when A = O. 
(9.26) 

Then, as before, it can be shown that the maximum likelihood estimate 
of (A, a) maximizes 

n 

- ~n log[s~(A)l = (A - 1) L log(Yi + a) - ~n log[(72(A)], (9.27) 
i=l 

where o-2(A) = n-1y(>')'[I - H]y(>') , with y(>') = (y~>'), ... , yr-))' defined 
by (9.26). Therefore, except for the addition of a and the fact that the 
search for the maximum must now be conducted over two variables, the 
procedure is essentially the same as the one given earlier. The corresponding 
chi-square statistic has two degrees of freedom. 

Since both approaches just described try to minimize sums of squares, 
they might not always work well if the distribution of residuals from the 
untransformed model has a fairly symmetric appearance. In such cases the 
following family of 'modulus' transformations, due to John and Draper 
(1980), might be appropriate. 

y(>') = {(sign)[{/Yi - b/ + 1}>' -1J/A, 
• (sign) log[{/Yi - b/} + 1], 

when A f 0, 

when A = 0, 
(9.28) 
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where sign=sign of (Yi - b) and b is some preselected value such as the 
arithmetic or geometric mean. Estimation of >. proceeds analogously to 
that for the previous two families: maximize 

n 

- ~nlog[s~(>')l = (>. - 1) I)og(IYi - bl + 1) - ~nlog[a2(>.)], (9.29) 
i=1 

where &2(>.) is now defined in terms of (9.28). 

9.4.4 ANALYTIC METHODS: TRANSFORMING THE 

PREDICTORS 

Analogous to the Box-Cox family of transformations for the dependent 
variable is the family of transformations given by Box and Tidwell (1962) 
for independent variables: 

Z .. _ { [x~j -IlIaj, when aj # 0 
~J - (9.30) 

log(xij), when aj = 0, 

for i = 1, ... , n and j = 1, ... , k. We need to estimate the ai's. Since 
the dependent variable is not being transformed, we need not worry about 
changes of scale, and simply minimize 

n 

L(Yi - f30 - f31 zi1 - ... - f3kZik)2. 
i=1 

This minimization is probably most easily carried out using nonlinear least 
squares (Appendix C). An alternative method requiring repeated applica­
tions of linear least squares is given in Box and Tidwell (1962). 

Example 9.12 (Continuation of Example 9.8, Page 201) 
Since the apartment rent model has two independent variables I and S, we 
applied nonlinear least squares to 

1"'1 - 1 S"'2 - 1 
R = f30 + f31-- + f32 . 

a1 a2 

The estimates are shown in Exhibit 9.17. It would appear that I requires 
no action. The course of action for S is less clear. While its power a2 has an 
estimate of .378, the standard error is so large that it includes all reasonable 
options! Based on our previous work (Example 9.8), we stayed with a log 
transformation. • 

9.4.5 SIMULTANEOUS POWER TRANSFORMATIONS FOR 

PREDICTORS AND RESPONSE 

We could also simultaneously obtain appropriate power transformations for 
the dependent variable as well as for the independent variables. For sim-
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Parameter Estimate Std. Error 

(30 -18.441 44.986 
(31 16.101 5.623 
(32 246.049 121.788 
0!1 0.988 0.110 
0!2 0.378 1.127 

EXHIBIT 9.17: Parameter Estimates and Corresponding Standard Errors for 
Nonlinear Least Squares Applied to Rent Model 

plicity in presentation we consider only the case where all the observations 
(dependent and independent) are positive; other cases can be handled in 
a manner similar to those given in the subsections near the end of Sec­
tion 9.4.3. The transformations are given by 

y~>..) = {(y; - 1)/A 
• 10g(Yi) 

x~-:/j) = { (xl; - 1)hj 
'J log(xij) 

when Ai- 0 

when A = 0 

when 'Yj i- 0 

when 'Yi = 0 

for i = 1, ... ,n, and j = 1, ... ,k. Let XC,),) denote the matrix (x~J'») and let 
HC')') = XC')')(XC,),)IXC,),»)-IXC,),)I. Then it may be shown that the max­
imum likelihood estimate of (A, ')') is obtained by maximizing (9.22) but 
now 0-2 = n-1y C>")' [1 - HC')')]yC>"). This is a problem in nonlinear optimiza­
tion which can also be handled by some nonlinear least squares procedures 
where user-supplied 'loss functions' can be used in place of the sum of 
squares 'loss' required by least squares (e.g., SAS PROC NLIN described 
in SAS, 1985b and SYSTAT1 NONLIN described in Wilkinson, 1987). A 
modified Newton algorithm is given in Spitzer (1982) for the case in which 
A and the 'Yj'S are all the same. 

lSYSTAT is a trademark of SYSTAT, Inc., Evanston, IL. 



Appendix 211 

Appendix to Chapter 9 

9A SOME PROGRAMS 

The lines of program (albeit oosthetically rather crude) given below com­
pute (0 - E(0))j(varO)1/2 of Section 9.3.5, using formuloo for means and 
variances derived under the normality assumption. They are written in SAS 
PROC MATRIX, which is described in SAS, 1982b. It is assumed that a 
data set has already been defined in which the first variable is the depen­
dent variable and the remaining ones are the independent variables. The 
data set name needs to be inserted over the underlines and the lines given 
below inserted after definition of the data. 

PROC MATRIX; FETCH X DATA= _______ ; 
N=NROW(X);KCOL=NCOL(X); Y=X(,1); Z=J(N,1,1); X(,1)=Z; 
ADJ=I(M)-X*(INV(X'*X))*X'; ADJ2=I(N)-«Z*Z')#/N); 
E=ADJ*Y; D=J(M,M,O); 
DO KK=1 TO KCOL; 

SS=ADJ2*X(,KK); SD=SS'*SS#/N; 
SD1=(SD)##(.5);X(,KK)=X(,KK)#/SD1; 

END; 
DO K=1 TO M; DO L=1 TO M; 

DO KK=1 TO KCOL; 
D(K,L)=D(K,L)+(X(K,KK)-X(L,KK))**2; 

END; 
IF K=L THEN D(K,L)=O; ELSE D(K,L)=1#/D(K,L); 

END;END; 
B=ADJ*D*ADJ; NUM=E'*D*E; DEN=E'*E; DEN=DEN#/(M-KCOL); 
ST=NUM#/DEN; MEAN=TRACE(B); 
VAR=2*«M-3)*TRACE(B**2)-(TRACE(B)**2) )#/(M-1); 
ST=(ST-MEAN)#/SQRT(VAR); PRINT ST; 

While there are several programs written to carry out the Box-Cox com­
putations of Section 9.4.3 (e.g., see Stead, 1987, and other appropriate 
entries in SAS, 1988), unless there is severe multicollinearity present, ade­
quate and simple programs can be written using MINITAB or SAS PROC 
MATRIX or PROC IML. The lines below illustrate such a program in SAS 
PROC MATRIX. One needs to adjust the 'DO' statement for the grid to be 
searched over. Otherwise, the method of use is the same as for the program 
lines given above. 

PROC MATRIX; FETCH X DATA= _______ ; 
N=NROW(X); Y=X(,1); Z=J(N,1,1); X(,1)=Z; 
H=X*INV(X'*X)*X'; M=I(N)-H; M=M#/(N); 
YLOG=LOG(Y);G=SUM(YLOG); 
DO L=.O TO .1 BY .01; 
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IF L=O THEN YL=YLOG; ELSE YL=(Y##L-Z)#/L; 
S=YL'*M*YL; S=LOG(S); S=S#N#/2;GG=(L-l)#G; 
S=-S+GG; PRINT L S; 

END; 
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Problems 

Exercise 9.1: Suppose you have completed the study recommended in 
Exercise 4.9, p. 97 (with the dependent variable logged), and you need to 
explain the meaning of the estimates of (3j'S to your client. What would you 
say? Suppose, in addition to the independent variables already included, 
you had an additional one: severity times age. How would you explain the 
meaning of the coefficient of this variable to your client? 

Discuss the merits and shortcomings of logging the variable 'charges', 
pretending that you have not yet seen the data. 

Exercise 9.2: Derive Anscombe's correction for 10g(Yi) when Yi is Poisson 
(p. 185). If the dependent variable Yi were a proportion of counts (no logs), 
what would be the appropriate Anscombe's correction? 

Exercise 9.3: Suppose someone comes to you for help with a regression 
problem where the dependent variable is a proportion of counts. The in­
dependent variable values are such that the expectations of the dependent 
variable values for each of them must lie between .25 and .75. He will use 
the model only to make predictions which are expected to be in the same 
range. He does not wish to get involved with logits. Can he get by without 
transforming the dependent variable? 

Exercise 9.4: Derive the results of Section 9.4.5 by writing down the 
likelihood equation and maximizing with respect to (3 and 0-2 . Give details. 

Exercise 9.5: Using the weights you did in Exercise 8.11, p. 178, and 
deleting the outliers we deleted in Example 8.2, p. 163, fit a model which 
is a second degree polynomial in LINC to the data of Exhibit 4.7, p. 90. 
Examine residuals to see if you prefer this model over the broken line model. 

Exercise 9.6: Fit a model of the form (9.1) to the data of Problem 9.5, 
choosing as knot the point LINC= 7. 

Exercise 9.7: A generalization of the Cobb-Douglas model given in Part 1 
of Exercise 2.19, p. 54, is the translog model 

where lower case Latin letters are logs of corresponding capital letters, 
but otherwise the notation is the same as in Exercise 2.19. Estimate the 
parameters of this translog model for each of the sectors 20, 36 and 37 
under the assumption that Gauss-Markov conditions are met. Test the 
hypothesis that the Cobb-Douglas model is adequate against the alternative 
that the translog model is needed. For the Cobb-Douglas model of Part 1 
of Exercise 2.19, give an estimate of a. 
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ta tr ma mr ta tr ma mr ta tr ma mr 

360 459 71 61 360 422 48 36 650 265 11 29 
860 410 29 87 840 408 21 51 850 229 9 43 
450 487 41 41 918 432 38 227 319 395 35 24 
800 505 46 97 280 307 29 41 300 350 11 16 

70 200 41 20 507 375 40 119 900 370 13 34 
915 339 29 237 235 540 75 40 1000 388 14 79 
795 324 60 135 217 250 35 35 900 388 14 69 
862 547 147 313 450 600 23 12 335 500 26 27 
100 120 13 11 1178 513 27 184 450 440 19 30 
186 450 33 17 300 300 12 12 377 464 35 43 
850 450 62 205 185 350 24 12 1050 425 13 54 
992 388 42 265 650 362 9 16 1000 437 14 148 
100 120 13 11 172 173 18 26 350 600 13 16 
150 200 25 24 1100 465 12 72 950 450 13 36 
141 250 43 32 1200 471 29 148 1053 403 30 80 
809 435 27 44 220 400 5 10 900 460 17 29 
800 420 16 47 100 200 19 14 1000 409 10 81 

EXHIBIT 9.18: Data Travel Times and Usage for Automobiles and Public 
Transportation 

SOURCE: Selected by Robert Drozd from Census UTP Package. 

Exercise 9.8: Exhibit 9.18 provides data on travel time by car (ta), travel 
time by public transportation (tr ), the number of people who used any kind 
of public transportation (mr ) and number of those who used a car or van 
either as driver or passenger (ma) to travel between pairs of points. Travel 
times, which are in tenths of minutes, are averages of those reported by 
the travelers. The data set was selected (not randomly) from the Bureau 
of Census Urban Transportation Planning Package for the Chicago area 
and then modified by one of the authors. The primary modification was 
the addition to auto travel times of an amount of time which reflected the 
cost of parking. For downtown zones this amounted to about sixty minutes. 
Obtain a logit model for the proportion of auto users corresponding to each 
of the three sets of independent variables: 

1. The difference in travel times 

2. The two travel times 

3. Square roots of the two travel times. 

Which model do you think is best? Why? 
Based on what you have found, formulate and estimate a model that you 

think might be better than the ones you have already fitted. 
Using each of the models you constructed, obtain an estimate of the 

proportion of public transportation users among 50 commuters whose travel 
times are ta = 500 and tr = 500. Treating these proportions as future 
observations, give 95 per cent confidence intervals for them. 
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Exercise 9.9: Apply as many of the procedures of Section 9.3.5, p. 195, as 
you can to both the 'logged' and 'unlogged' models of the dial-a-ride data 
(Exhibit 6.8, p. 125). Selectively drop some of the independent variables 
and rerun the procedure. State any conclusions you reach. 

ACC WHP SP G ACC WHP SP G ACC WHP SP G 

8.0 20.5 7.5 0 8.0 40.0 7.5 0 1.0 84.5 22.5 0 
5.0 20.5 22.5 0 5.0 40.0 22.5 0 1.0 84.5 30.0 0 
5.0 20.5 30.0 0 2.0 40.0 30.0 0 0.6 84.5 40.0 0 
4.0 20.5 40.0 0 1.8 40.0 40.0 0 0.2 84.5 50.0 0 
3.0 20.5 50.0 0 1.5 40.0 50.0 0 1.6 84.5 7.5 2 
2.0 20.5 60.0 0 0.7 40.0 60.0 0 0.6 84.5 22.5 2 
7.8 20.5 7.5 2 7.8 40.0 7.5 2 0.6 84.5 35.0 2 
4.6 20.5 22.5 2 4.6 40.0 22.5 2 0.2 84.5 45.0 2 
4.2 20.5 35.0 2 1.6 40.0 35.0 2 0.7 84.5 7.5 6 
3.4 20.5 45.0 2 1.4 40.0 45.0 2 2.0 257.0 7.5 0 
2.4 20.5 55.0 2 1.0 40.0 55.0 2 1.0 257.0 22.5 0 
6.7 20.5 7.5 6 6.7 40.0 7.5 6 0.8 257.0 30.0 0 
3.7 20.5 22.5 6 3.7 40.0 22.5 6 0.4 257.0 40.0 0 
3.4 20.5 35.0 6 0.7 40.0 35.0 6 1.6 257.0 7.5 2 
2.5 20.5 45.0 6 0.5 40.0 45.0 6 0.6 257.0 22.5 2 
1.5 20.5 55.0 6 0.2 40.0 55.0 6 0.3 257.0 35.0 2 

2.0 84.5 7.5 0 0.7 257.0 7.5 6 

EXHIBIT 9.19: Acceleration Data 
SOURCE: Raj Tejwaney, Department of Civil Engineering, University of Illinois 
at Chicago. 

Exercise 9.10: Exhibit 9.19 gives observations on the acceleration (ACC) 
of different vehicles along with their weight-to-horsepower ratio (WHP) , 
the speed at which they were traveling (SP), and the grade (G; G = 0 
implies the road was horizontal). 

1. Run a regression using ACC as your dependent variable without mak­
ing any transformations, and obtain component plus residual plots. 

2. Obtain a good fitting model by making whatever changes you think 
are necessary. Obtain appropriate plots to verify that you have suc­
ceeded. 

3. The component plus residual plot involving G in 1 (above) appears 
to show heteroscedasticity. If you have been successful in 2, the ap­
pearance of any serious heteroscedasticity should vanish without your 
having to weight or transform the dependent variable. Explain why 
you think this happens. 

Exercise 9.11: Explore transformations of other independent variables 
and complete building a model for PCS that we started in Example 9.9. 

Exercise 9.12: Exhibit 9.20 gives cleanup costs (C) corresponding to sales 
at hot dog stands (RH D) and at beer stands (RB) for a medium-sized sports 
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facility. (The authors have lost all records other than the data; consequently 
the units of measurement are not known.) Use component plus residual 
plots and also the Box-Tidwell method to find suitable transformations of 
the independent variables. Can you reconcile the difference in results you 
get from the two approaches? [You may need to use weighted least squares.] 

C RHD RB C RHD RB C RHD RB 

10.4 579 302 8.2 191 409 11.0 240 513 
10.6 661 442 12.2 680 540 14.3 701 814 
8.5 273 308 9.6 376 389 14.7 675 917 
8.9 840 400 7.7 120 276 8.9 408 300 
6.7 207 97 7.5 113 248 9.2 411 517 

8.7 272 312 

EXHIBIT 9.20: Stadium Cleanup Data 

Exercise 9.13: Apply the Box-Cox approach to Model 2 of Exercise 2.15, 
p. 53, to find an appropriate transformation for the dependent variable. 

Exercise 9.14: Find appropriate transformations of independent variables 
in the models considered in Exercise 2.20, p. 55 (now properly weighted and 
with perhaps some particularly influential points deleted. In at least one 
case we saw no need for transformations.) Rerun the transformed models 
and check if fit has improved. 

Exercise 9.15: The only time the market value or, equivalently, the depre­
ciation of a piece of real property is observable is when it is sold. However, 
for various reasons, including the assessment of property taxes, it is often 
necessary to estimate its value at other times on the basis of selling prices 
of other similar properties. 

The data set in Exhibit 9.21 provides the age and corresponding depreci­
ation for 11 similar properties. After fitting an appropriate curve, estimate 
the depreciation at age zero; i.e., the depreciation right after the facility 
was first built. Notice that since such large factories are designed for spe­
cific, highly specialized production processes, if some other manufacturer 
were to buy it they would have to make major changes in order to adapt it 
to their use. Consequently, the depreciation at year zero need not be zero. 

Clearly, the estimate of depreciation you make will depend on the trans­
formation you use. Therefore, it is important to choose it carefully. 

Obtain 95 per cent confidence intervals for the prediction you make, as 
well as for the corresponding future observation. Discuss which of these two 
confidence intervals is appropriate if your interest is in estimating 'a fair 
market value.' 
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Age Depr. Age Depr. Age Depr. 

7 60.7 22 68.7 35 90.9 
17 83.5 22 81.3 48 96.9 
19 69.2 28 94.5 21 87.7 
20 70.5 28 80.8 

EXHIBIT 9.21: Depreciation in Market Value of Large Factories 
SOURCE: Diamond-Star Motors, Normal, IL. We are grateful to Gary Shultz, 
General Counsel, for making these data available. 
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Multicollinearity 

10.1 Introduction 

Until this point, the only difficulties with least squares estimation that 
we have considered have been associated with violations of Gauss-Markov 
conditions. These conditions only assure us that least squares estimates will 
be 'best' for a given set of independent variables; i.e., for a given X matrix. 
Unfortunately, the quality of estimates, as measured by their variances, 
can be seriously and adversely affected if the independent variables are 
closely related to each other. This situation, which (with a slight abuse of 
language) is called multicollinearity, is the subject of this chapter and is also 
the underlying factor that motivates the methods treated in Chapters 11 
and 12. 

10.2 Multicollinearity and Its Effects 

If the columns of X are linearly dependent, then X' X is singular and the 
estimates of {3, which depend on a generalized inverse of X' X, cannot be 
unique. In practice, such situations are rare, and even when they do occur, 
practical remedies are not difficult to find. A much more troublesome situ­
ation arises when the columns of X are nearly linearly dependent. Just as 
linear dependency leads to the singularity of X' X, near linear dependency 
leads to near singularity. Since singularity may be defined in terms of the 
existence of a unit vector c (i.e., with c'c = 1) such that Xc = 0 or equiv­
alently c' X' X c = 0, we may characterize near singularity in terms of the 
existence of a unit vector c such that IIX cl1 2 = c' X' X c = 8 is small. This 
is equivalent to saying that, for some c = (co, ... , Ck)' of unit length, the 

length of :E;=oCjXli] is small where X = (X[O] , ... ,X[k]). (The presence of 
square brackets in the subscript of x emphasizes that we are discussing a 
column of X and distinguishes it from Xi which we have used to denote a 
row of X.) 

When near singularity exists, the variance of estimates can be adversely 
affected, as we now show. From the Cauchy-Schwartz inequality 

1 = [c' C]2 = [c'(X' X)1/2(X' X)-1/2cf 

:::; c'(X' X)cc'(X' X)-lC = 8c'(X' X)-lC. 

Consequently, var(c'b) = a 2c'(X'X)-lc::::: a 2 /8, which will be large when 
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{j is small in comparison to 0"2. This will usually result in some of the bj's 
have large variances. We could also get counter-intuitive results, especially 
in signs of bj's. Moreover, near singularity can magnify effects of inaccu­
racies in the elements of X. Therefore, it is most desirable to detect the 
presence of near singularity and to identify its causes when it is there. 

Multicollinearity is the special case of near singularity where there is a 
(linear) near relationship between two or more m[j]'s; i.e., it requires that 

the length of ~;=o cjm[j] be small with at least two m[j] 's and corresponding 
Cj'S not too small. 

Since ~;=o cjm[j] is affected by the units in which the variables are mea­
sured, when assessing smallness it is desirable to scale X; i.e., instead of 
y = X f3 + € consider the equivalent model 

y = X(s)f3(s) + €, 

where X(s) = XD(s) -1, f3(s) = D(s)f3 and 

(10.1) 

(10.2) 

Since (X(s>'X(s»)-l = D(s)(X'X)-lD(s), it is easy to see that, if b(s) is 
the least squares estimator of f3(s), then 

A consequence of this scaling is that it removes from consideration near 
singularities caused by a single m[j] being of small length, i.e., near singu­
larities which are not multicollinearities. 

For d = D(s)c, 

(see Example A.9, p. 277), where dmin is the smallest characteristic root of 
X(s)'X(s). Therefore, if multicollinearity is present (c'X'Xc is small with 
Ildll not too small), dmin will be small. Conversely, if we have a small 
eigenvalue of X (s >' X (s), and if '"Yo is the corresponding eigenvector, then 
'"YbX (s>, X (s)'"Yo is small and it may easily be shown that multicollinear­
ity then would be present. Moreover, since the eigenvectors are mutually 
orthogonal, each small eigenvalue represents a different near relationship. 

Belsley, Kuh and Welsch (1980) give a very thorough discussion of mul­
ticollinearity from a slightly different starting point and cover in greater 
depth most of the material of this chapter (see also Stewart, 1987, and 
the comments following that article). While in much of our discussion we 
use just the scaled model (10.1), several authors recommend a model that 
is both centered and scaled (Section 2.11, p. 44). In fact, there is quite a 
controversy on the subject - see Belsley (1984, 1986) and commentaries 
following Stewart (1987). 
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The example below illustrates some of the difficulties caused by multi­
collinearity. 

Example 10.1 
Consider the highly multicollinear values of the independent variables Xl 

and X2 given in Exhibit 10.1. These data were made up by the authors. 
The dependent variables y(1), y(2) and y(3) may be considered as different 
samples. They were obtained by adding a N(O, .01) pseudo-random number 
to 

(10.3) 

and it is easily seen that corresponding values of the dependent variables 
are much alike. 

Xl X2 y(1) y(2) y(3) 

2.705 2.695 4.10 4.10 4.06 
2.995 3.005 4.34 4.73 4.39 
3.255 3.245 4.95 4.81 5.02 
3.595 3.605 5.36 5.30 5.23 
3.805 3.795 5.64 5.75 5.57 
4.145 4.155 6.18 6.26 6.50 
4.405 4.395 6.69 6.61 6.65 
4.745 4.755 7.24 7.13 7.26 
4.905 4.895 7.46 7.30 7.48 
4.845 4.855 7.23 7.32 7.39 

EXHIBIT 10.1: Multicollinear Data 

To keep matters confined to the highly multicollinear Xl and X2, let us 
consider the model Yi = f3IXil + f32Xi2 + €i. The least squares estimate b of 
{3 for the dependent variable y(l) is 

bl = 5.21 (2.00), b2 = -3.70 (-1.42) [s = .082], 

where the quantities within parentheses are the t-values. For the dependent 
variables y(2) and y(3) the corresponding estimates are 

bl = -1.40 (-.47), b2 = 2.90 (.98) [s = .094] 

and 
bl = .54 (.12), b2 = .97 (.21) [s = .147]. 

These fairly wild fluctuations in the value of b are due to the fact that 

(X'X)-l = (1001.134 -1001.05) 
-1001.05 1000.972 . 
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EXHIBIT 10.2: Plot of Independent Variable Values for Multicollinear Data. 
[A small circle denotes points corresponding to 'observations', a bullet. corre­
sponds to forecast points along the direction of the data points and a solid box. 
to forecast points in a direction orthogonal to the direction of the data points.] 

Since b = (X' X)-l X'y, the slightest change in X'y is magnified by the 
matrix (X' X)-l, leading to these fluctuations in the value of b. This is 
mirrored in the size of the covariance matrix a 2 (X' X)-l of b, which remains 
large even though a and its estimate s are quite small. 

The eigenvalues of (X' X) are 341.6 and .0007 and the corresponding 
eigenvectors are 

(.707 .707)' and (.707 - .707)'. (10.4) 

Therefore, the length of the linear combination %2 = . 707::1: [lJ - .707::1:[2J is 
very small compared to that of %1 = . 707::1: [lJ + .707::1:[2J' where ::I:(jJ is the 
vector of values of the independent variable x j. 

Now let us see how this multicollinearity affects prediction. For this pur­
pose we shall simply focus on estimates obtained using y(l) as dependent 
variable. For (Xl, X2) = (5,5) or (Xl, X2) = (10,10), which lie along the 
direction of the data points (Le., along %1 - see Exhibit 10.2), the corre­
sponding fj's are 7.52 and 15.04. Inserting these values of (Xl, X2) into (10.3) 
we get 7.5 and 15, so that our predictions are fairly good even though the 
estimates of individual i3/s are clearly poor. The corresponding standard 
errors of fj are .0325 and .0650, which are also quite small. Therefore, esti­
mates along the %1 direction are quite good. This is also true of predictions 



222 Chapter 10. Multicollinearity 

made for points close to the Zl direction and, in particular, would be true 
for all predictions corresponding to the design points used to estimate the 
model, i.e., the iii's. 

For (Xl,X2) = (0,10) and (Xl,X2) = (10,0), which lie in a direction 
orthogonal to the direction of the points (i.e., in the Z2 direction), fj = -37 
and 52, which is obviously nonsense. Moreover, s.e.(fj) = 26 in both cases. 
Therefore, a prediction in this direction or close to it is perhaps best not 
made at all. 

In situations like this, many analysts might delete one of the independent 
variables. The basic idea is that if Xl and X2 are related, then C1Xl +C2X2 ~ ° 
and we can solve this approximate equation and express one of the variables 
(say X2) in terms of the other. If we now substitute for X2 in the original 
model we get a model without X2. 

When we remove X2, the estimate of the sole coefficient (continuing to 
use y(1) as the dependent variable) turns out to be 1.5 with a standard 
error of .007. The 1.5 is easy to explain using (10.3): In the absence of X2, 

Xl is playing the role of both Xl and X2. But now that X2 is missing from 
the equation, the forecast for the point (Xl, X2) = (0,10) would be 0, which 
is obviously incorrect. Moreover, the standard error is a 'reassuringly small' 
0. From the discussion of Section 11.2.1 we shall see that the deletion of 
Xl has caused the model to become quite biased. If we deleted Xl from the 
model, we would get a terrible estimate for the point (Xl, X2) = (10,0). An 
alternative to deleting one or the other variable is to use a composite of 
the two. One such possibility is to use Xl + X2. The estimated coefficient of 
this composite independent variable is .75, which also does not yield good 
forecasts for the two points along the eigenvector Z2 corresponding to the 
small eigenvalue. The fact is that in this problem we simply do not have 
enough information in the Z2 direction to make a good forecast. 

As we shall see in the next two chapters, sometimes it may be reasonable 
to trade off some of the high variance for bias. However, note that for 
this purpose bias is usually computed for the predicteds fji, which under 
acute multicollinearity, might not reflect the high levels of bias we would 
encounter in estimating future observations for independent variable values 
which are not related in much the same way as the design points. • 

10.3 Detecting Multicollinearity 

10.3.1 TOLERANCES AND VARIANCE INFLATION FACTORS 

One obvious method of assessing the degree to which each independent 
variable is related to all other independent variables is to examine R;, 
which is the value of R2 between the variable Xj and all other independent 
variables (i.e., R; is the R2 we would get if we regressed Xj against all other 
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xl's). The tolerance TOLj is defined as 

TOLj = 1- R; (10.5) 

and, obviously, TOLj is close to one if Xj is not closely related to other 
predictors. The variance inRation factor VIF j is given by 

(10.6) 

Clearly, a value of VIF j close to one indicates no relationship, while larger 
values indicate presence of multicollinearity. 

Notice that neither R; nor the method below will detect the situation 
where an independent variable has nearly constant values - i.e., it is re­
lated to the constant term. However, this case will be identified by the 
method of Section 10.3.3. 

Perhaps the most frequently used device for detecting multicollinearity 
is the correlation matrix 'R of the xi's mentioned in Section 2.11. The diffi­
culty with 'R is that while it shows relationships between individual pairs of 
variables, it is difficult to see from it the strength of relationships between 
each Xj and all other predictors. However, it may be shown (Exercise 10.2) 
that the diagonal elements of 'R -1 are exactly the variance inflation factors. 
Since if no multicollinearity is present these diagonal elements are 1, VIF /s 
show to what extent the variance of an individual bj has been inflated by 
the presence of multicollinearity. Stewart (1987) has defined collinearity in­
dex as the square root of the variance inflation factors and, in that context, 
has presented a number of interesting properties of VIF /8. 

SAS provides, on request, all the multicollinearity detection devices men­
tioned above and other packages provide at least a few from which others 
can be readily obtained. 

10.3.2 EIGENVALUES AND CONDITION NUMBERS 

We have already seen in Section 10.2 the value of eigenvalues and the 
desirability of using X(s)X(s) rather than X'X. Moreover, since the sum 
of eigenvalues is equal to the trace, and each diagonal element of X(s)X(s) 
is 1, 

k 

L Aj = tr(X(s)X(s») = k + 1 (10.7) 
j=O 

where A/S are the eigenvalues of X(s)X(s). This provides the immediate 
ability to make the comparisons we alluded to in Section 10.2. We need 
only consider what fraction of k + 1 any given eigenvalue is or even what 
fraction of k + 1 is accounted for by any collection of eigenvalues. 

Another method of judging the size of one eigenvalue in relation to the 
others is through the use of the condition number 'TJj, which also has some 
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other pleasant properties described in Belsley, Kuh and Welsch (1980) and 
Stewart (1987). It is defined as 

"lj = JAmax/Aj (10.8) 

where Amax = maxo~j9 Aj. Belsley, Kuh and Welsch (1980) suggest that 
an eigenvalue with "lj > 30 be flagged for further examination. 

10.3.3 VARIANCE COMPONENTS 

If we wish to go further than the mere detection of multicollinearity to 
determine which linear combinations of columns of X are causing it, we 
can use the eigenvectors (Section 10.2). A more frequently used approach 
involves the variance of the coefficients of xl's. Since it is usually applied 
to Xes), in this section we will be discussing variances of the components 
b/s) of b(s) = D(s)b (see (10.1) and (10.2)). 

Since X(s)X(s) is symmetric, it can be written as rD>.r' where D>. 
diag (AO, ... , Ak) and 

r~ (~iH>:E) 
is an orthogonal matrix. Hence, cov(b(s)) = a2(X(s)X(s))-1 = a2rD~lr' 
and, therefore, 

k 

var [b·(s)j - a 2 '"' A- 1",2 J - ~ f Ijf· (10.9) 
f=O 

The Xil,J/s are called components of variance of b/s ), and 

k 
A. ,-12/,",,-12 
'l-'fj = Af Ijf ~ Af Ijl> (10.10) 

£=0 
is called the proportion of variance of the jth coefficient bj (s) corresponding 
to the £th eigenvector. 

Notice that, except for the standardization to make 2::;=0 CPfj = 1, CPfj 

is simply the reciprocal of the eigenvalue times the square of a component 
of the eigenvector. Therefore, it provides information very similar to that 
given by the matrix of eigenvectors, r. However, now we know something 
about how the variances of bj's are being affected, which, of course, is 
valuable. Much of the damage done by multicollinearity is to variances and 
the proportions of variance tell us which relationship is doing how much 
damage to which variance. 
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The proportions of variance are usually presented in a table with the rows 
corresponding to the.e's and the columns to j's, (or, in some programs, with 
the rows corresponding to the j's and the columns to the .e's). Examination 
of such a table typically consists of identifying rows corresponding to small 
eigenvalues and then, in such rows, identifying ¢>f.j'S which are large. Notice 
that since we are considering scaled variables, near singularity cannot occur 
unless there is multicollinearity. Therefore, every small eigenvalue is caused 
by the relationship between at least two independent variables. Also notice 
that since each column obviously adds to one, if the same independent 
variable features prominently in several different linear combinations of 
small length then ¢>f.j cannot be too large for some combinations. One 
must compensate for this fact in one's analysis of the tables. 

Some analysts prefer to use the centered and scaled version Z(s) of X 
described in Section 2.11 instead of merely the scaled version X(s). The 
eigenvalues of Z(s)Z(s) can be obtained and components of variance com­
puted in the same way as for (X(s)X(s)). They are also available from 
several packages. 

Xl X4 X2 X3 X5 Y Xl X4 X2 X3 X5 Y 

10.0 8.9 13.9 14.0 18.8 17.9 9.7 9.9 13.5 14.0 20.0 17.2 
7.4 6.0 10.4 11.1 13.1 16.2 10.0 5.9 14.0 14.0 12.7 16.6 
8.9 5.8 12.5 13.4 12.4 16.8 7.5 8.3 10.4 11.2 17.8 17.1 
6.6 8.4 9.1 9.8 17.2 13.3 7.7 7.1 10.9 11.6 15.1 16.7 
5.7 8.3 8.1 8.7 16.9 15.8 5.0 5.3 6.9 7.5 11.6 16.2 
4.7 9.1 6.7 7.1 18.9 12.6 8.5 4.6 11.8 12.7 10.2 16.7 
9.1 9.5 12.8 13.7 20.0 17.6 4.9 7.4 6.8 7.3 15.4 15.4 
8.7 6.3 12.0 13.0 13.3 16.8 7.3 9.4 10.1 11.0 20.0 15.9 
8.7 6.5 12.1 13.0 14.3 16.6 3.8 8.4 5.3 5.7 17.4 16.3 
6.0 6.8 8.4 9.0 14.7 15.1 5.3 4.9 7.3 7.9 10.2 14.9 
5.8 5.9 8.0 8.6 12.7 16.1 7.5 9.0 10.6 11.3 18.7 17.5 
7.0 5.3 9.9 10.5 11.0 17.0 6.2 8.7 8.7 9.2 18.4 16.4 
7.9 5.8 10.9 11.8 12.7 17.3 8.0 7.6 11.3 12.0 16.1 16.1 
7.9 8.3 10.9 11.7 17.5 16.3 9.9 5.5 13.7 14.0 12.3 17.9 
8.9 5.2 12.4 13.4 10.9 15.7 6.7 6.6 9.4 10.1 13.6 16.0 

EXHIBIT 10.3: Supervisor Rating Data 

10.4 Examples 

Example 10.2 
The data given in Exhibit 10.3 are part of a larger data set which was 
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gathered for purposes other than that illustrated in this example. The six 
variables are each composites obtained from responses to several questions 
on a questionnaire. The dependent variable y is a composite of responses 
to questions on attitudes towards the respondent's supervisor and on job 
satisfaction. The highest possible score of 20 would be obtained if a respon­
dent showed a strong liking for the supervisor and also was most satisfied 
with his or her job. The predictor Xl, which measures the level of social 
contact each respondent felt he or she had with the supervisor, was based 
on questions such as 'Do you see your supervisor outside of your work 
place?'. The predictor X2 measures the perceived level of the supervisor's 
personal interest in the employee's personal life, based on questions like 
'Would you discuss a personal problem with your supervisor?' while X3 

measures the level of support the employee feels from the supervisor, based 
on questions like 'Is your supervisor supportive of your work?' Variables X4 

and X5 measure the drive of the supervisor. The former is based directly 
on the employee's perception of this drive and the latter on such questions 
as 'Does your supervisor encourage you to learn new skills?' 

Since the maximum value of y was 20 and most scores were close to 
it, we used as dependent variable -log[l - y/20], which is part of the 
logit transformation (Section 9.2.4, p. 186) and seems to work quite well. 
There was also no apparent heteroscedasticity and no weighting was done. 
However, it should be noted that none of the collinearity diagnostics depend 
on the dependent variable. 

Variable bj s.e. TOL 

Intercept 0.830 0.318 
Xl -0.012 0.647 0.002 
X2 0.199 0.483 0.001 
X3 -0.117 0.178 0.010 
X4 -0.367 0.294 0.008 
X5 0.186 0.147 0.009 

EXHIBIT 10.4: Parameter Estimates, t-Values and Tolerances for Supervisor 
Rating Data 

The tolerances shown in Exhibit 10.4 and the eigenvalues and condition 
numbers presented in Exhibit 10.5 all tell us that we have a multicollinear 
disaster on our hands. The last row of the table in Exhibit 10.5 shows 
one of the offending linear combinations - that involving Xl and X2. The 
second last row shows another such linear combination involving X4 and 
X5. The third row from the bottom is more interesting. The only large 
variance component in it is associated with X3. But the .0425 in the var (bl ) 

column accounts for most of the variance of var (b l ) not accounted for 
by the smallest eigenvector and a similar situation exists in the var (b2 ) 

column. Therefore, there is linear combination involving Xl, X2 and X3 
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Eigen- Condition Proportions of 
values Number var (bo) var (bd var (b2 ) var (b3 ) var (b4 ) var (b5 ) 

5.867 1 .0005 .0000 .0000 .0000 .0000 .0000 
.114 7.16 .0021 .0001 .0001 .0005 .0010 .0008 

.0182 17.96 .7905 .0001 .0001 .0002 .0015 .0010 
.00031 137.4 .1482 .0425 .0294 .9851 .0000 .0001 
.00019 175.3 .0530 .0021 .0023 .0002 .9341 .9442 

.000037 400.5 .0057 .9552 .9680 .0139 .0633 .0540 

EXHIBIT 10.5: Eigenvalues, Condition Numbers and Variance Proportions for 
Supervisor Rating Data 

which also contributes to a small eigenvalue. The first three rows do not 
have eigenvalues small enough to concern us too much. However, row 3 is 
interesting because the variance of the intercept has a large component in it. 
It seems that the intercept is somewhat related to several of the variables. 
We shall shortly see another and slightly more obvious example of this. 

At this stage many analysts would confirm their findings from the exam­
ination of variance components by running regressions (e.g., of Xl against 
X2, X3 against Xl and X2, etc.). However, we did not do this because the 
relationships were fairly obvious from an examination of the data. 

The only purpose of the methods of this chapter is to identify multi­
collinearity and its causes. However, in this example, because of the some­
what arbitrary way in which the independent variables were created, there 
is a fairly simple way to reduce multicollinearity. Since Xl, X2 and X3 seem 
highly related, we decided to combine them. (Actually, we did this in two 
steps: first we combined Xl and X2 and then found that this combination 
was highly related to X3' But to save space we have not shown this inter­
mediate step.) Since the variables are highly related and also because their 
scales are somewhat alike, we simply added the three to get a new variable 
Zl' We might have handled this differently but this simple expedient seems 
adequate. Similarly, we added X4 and X5 to get a variable Z2. We can inter­
pret Zl as a measure of favorable 'people orientation' and Z2 as a measure 
of high 'task' or 'mission' orientation. 

Variable bj t TOL 

Intercept 0.816 2.904 
Zl 0.029 4.478 0.9986 
Z2 0.003 0.348 0.9986 

EXHIBIT 10.6: Parameter Estimates, t-Values and Tolerances for Supervisor 
Rating Data After Combining Variables 



228 Chapter 10. Multicollinearity 

Eigen- Condition Proportions of 
values Number var (bo) var (b 1 ) var (b2 ) 

2.939188 1 0.0025 0.0053 0.0047 
0.046307 7.97 0.0008 0.5400 0.4226 
0.014505 14.2 0.9967 0.4546 0.5727 

EXHIBIT 10.7: Eigenvalues, Condition Numbers and Variance Proportions for 
Supervisor Rating Data After Combining Variables 

The value of s hardly changed (.231 vs .. 228) when we went from using 
the Xj'S to using the Zj'S as independent variables. The tolerances in Ex­
hibit 10.6 show that multicollinearity is almost gone. None of the condition 
numbers are small enough to concern us much. 

However, the difference between what the tolerances show (virtually 
no multicollinearity) and what the condition numbers show (mild multi­
collinearity) is perhaps worthy of attention. The R;'s (since they are es­
sentially R2 ,s) are defined with y subtracted out. In that sense they are 
centered measures and relationships involving the intercept term play no 
role in them or in the tolerances. However, since the variance components 
and the eigenvalues are computed with a model that has not been centered, 
relationships involving the intercept do play a role. The somewhat small 
eigenvalue in the last row of Exhibit 10.7 is due to such a relationship. An 
examination of the values of Zl, Z2 would have revealed it. Both indepen­
dent variables have values which cluster around moderately large positive 
numbers. The 'variable' associated with the intercept term takes only one 
value - 1. Therefore, it is most predictable that there would be a linear 
combination of small length that involves them. 

The t-values given in Exhibit 10.6 show that we might wish to delete Z2. 

It would appear that employees are quite indifferent to the task orientation 
of their supervisors. • 

Example 10.3 (Continuation of Example 4.3, Page 88) 
Let us return to the house price example. As a result of working out the 
related exercises, the reader has probably already come to the conclusion 
that outliers are present and that some weighting is necessary. We deleted 
the 20th case and also weighted the regression. For the latter procedure we 
ran the regression and set weights at Wi = 1 if Yi < 50 and Wi = .25 if 
Yi ~ 50, and then ran the regression again with these weights. (This was 
perhaps an overly conservative approach. Several other possibilities exist. 
Weighting with E[Yi] is a possibility. A bolder move would have been to 
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if ih < 50, 

if 50 ::; ih < 60, 

if 60::; Yi, 
(10.11) 

and also remove one or two more outliers.) 

Variable b t-value TOL 

Intercept 19.253 4.87 
FLR 0.019 7.25 0.34 
RMS 2.535 2.33 0.13 
BDR -5.848 -4.37 0.14 
BTH 2.350 1.58 0.62 
GAR 1.687 1.58 0.48 
LOT 0.282 3.36 0.72 
FP 5.952 2.27 0.69 
ST 9.978 5.29 0.81 
L1 0.745 0.38 0.37 
L2 3.874 2.30 0.53 

EXHIBIT 10.8: Parameter Estimates, t-Values and Tolerances for House Price 
Model After Weighting and Eliminating an Outlier 

Eigen- Condo Proportions of Variance of Coefficients of 
value Num. Int. FLR RMS BDR BTH GAR LOT FP ST Ll L2 

7.27 1 .0004.0008.0001.0003.0012.0029.0007.0020.0032 .0024 .0018 
1.29 2.4 .0005.0001.0001.0001.0002.0346.0004.0899.0375 .0352 .1013 
.836 3.0 .0000.0001.0000.0000.0002.0058.0002.4437.2406 .0166 .0236 
.750 3.1 .0003.0005.0001.0002.0003.0035.0007.0950.5387 .0126.1067 
.430 4.1 .0003.0012.0000.0014.0022.4214.0001.0935.0069 .1534 .0001 
.239 5.5 .0033.0009.0001.0005.0028.1563.0290.0845.1058 .2925 .4682 
.067 1.4 .0218.2110.0053.0376.2564.0440.0377.0004.0169 .3267 .0674 
.061 1.9 .0427.0007.0000.0182.6295.0297.1444.0293.0269 .1180 .0345 
.034 14.5 .0015.6889 .0163 .1587 .0753 .0922 .0154 .0001 .0008 .0052 .0045 
.024 17.4 .4007.0060.0143.0304.0010.0777.7321 .1614.0107.0256.1711 
.005 39.8 .5287.0898.9636.7525.0308.1319.0392.0003.0122 .0118 .0208 

EXHIBIT 10.9: Eigenvalues, Condition Numbers and Variance Proportions for 
House Price Model After Removing Outlier and Weighting 

Exhibit 10.8 shows the parameter estimates, t-values and tolerances. 
Obviously, there is a fair amount of multicollinearity, particularly involv­
ing RMS and BDR. Exhibit 10.9 shows eigenvalues, condition numbers 
and variance proportions. Only one condition number is very large. Cor­
responding variance proportions show a pattern we have seen in the last 
example. The intercept, RMS and BDR dominate a linear combination of 
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small length. The reason is easy to see from the raw data (Exhibit 2.2, 
page 32). RMS-BDR is very frequently 3. The situation would become a 
little better if RMS were replaced by 

COR = RMS - BDR - Mean of (RMS - BDR). 

The reader is invited to do this and find that tolerances and standard errors 
are quite improved. The largest condition number drops to about 17.2. 

The other rows of Exhibit 10.9 do not show any particularly small linear 
combinations. However, the reader is invited to verify that there is a slight 
and fairly harmless relationship between the intercept and LOT, between 
FLR and BDR and between BTH and LOT. • 
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Problems 

Exercise 10.1: Let 

X[l] = (10.1, 9.9, 5.1, 4.9)' and X[2] = (9.9, 10.1, 4.9, 5.1)', 

and let W1 = X[l] + X[2] and W2 = X[l] - X[2]' Consider a design matrix 
W = (W1 W2)' Assuming var(fi) = 1 in the model y = W,B + €, obtain 
the standard errors of the estimates of (31 and (32. 

Suppose we now substitute for W1 and W2 and consider the model y = 
Xo: + € where X = (X[l] X[2])' Obtain the standard errors of the estimates 
of CY1 and CY2 from those of (31 and (32. 

Exercise 10.2: Show that r jj = VIFj where rijis the (ij)th element of 
R-1 . 

[Hint: Write R = (Z(s))'Z(s) as 

Now show that the top left hand element of R-1 is (1- C~2C2~/C12)-1 and 
then use the material from Section B.7, p. 295.] 

Exercise 10.3: Using the table in Exhibit 10.10, can you identify the 
principal causes of multicollinearity? 

Eigen- Condition Proportions of 
values Number var (bo) var (bd var (b2 ) var (b3 ) var (b4 ) var (b5 ) 

5.7698 1 .0009 .0033 .0000 .0001 .0001 .0000 
0.1313 6.629 .0007 .7599 .0008 .0004 .0003 .0001 
0.0663 9.332 .2526 .0484 .0038 .0027 .0057 .0001 
0.0268 14.69 .3761 .0003 .0012 .0019 .0695 .0000 
.00573 31.73 .0402 .1705 .0634 .2585 .0004 .0001 
.00017 186.0 .3295 .0176 .9307 .7364 .9241 .9997 

EXHIBIT 10.10: Eigenvalues, Condition Numbers and Variance Proportions for 
Exercise 

Exercise 10.4: In Example 10.3 we suggested using a variable COR in 
place of RMS. Show that this in fact does improve matters. Also identify the 
linear combinations associated with the smaller eigenvalues in this changed 
model. 

Exercise 10.5: For the regression model using all independent variables 
in Exercise 3.14, p. 79, investigate the multicollinearity structure. Be sure 
to examine the data for outliers and heteroscedasticity before you begin. 
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Exercise 10.6: The data set presented in Exhibit 10.11, given in Longley 
(1967), has been used by him and subsequently by others to check the 
numerical accuracy of regression programs. Consider a model where total 
employment (Total) is the dependent variable, and the remaining variables 
are the independent variables. These latter variables are a price index (Def), 
gross national product (GNP), unemployment rate (Unemp), employment 
in the armed forces (AF), noninstitutional population (Population) and the 
year. Identify the major causes of multicollinearity in these data. 

The estimate of the coefficient of the variable 'Def' should be 15.062. 
Does the computer package you are using give this value? You might also 
wish to test other computer packages with this data set. 

Def GNP Unemp AF Population Year Total 

83.0 234289 2356 1590 107608 1947 60323 
88.5 259426 2325 1456 108632 1948 61122 
88.2 258054 3682 1616 109773 1949 60171 
89.5 284599 3351 1650 110929 1950 61187 
96.2 328975 2099 3099 112075 1951 63221 
98.1 346999 1932 3594 113270 1952 63639 
99.0 365385 1870 3547 115094 1953 64989 

100.0 363112 3578 3350 116219 1954 63761 
101.2 397469 2904 3048 117388 1955 66019 
104.6 419180 2822 2857 118734 1956 67857 
108.4 442769 2936 2798 120445 1957 68169 
110.8 444546 4681 2637 121950 1958 66513 
112.6 482704 3813 2552 123366 1959 68655 
114.2 502601 3931 2514 125368 1960 69564 
115.7 518173 4806 2572 127852 1961 69331 
116.9 554894 4007 2827 130081 1962 70551 

EXHIBIT 10.11: Longley's Data 
SOURCE: Reproduced from the Journal of the American Statistical Association, 
62, with the permission of the ASA. 

Exercise 10.7: Investigate the multicollinearities in the unconstrained 
trans log model of Exercise 9.7 

Exercise 10.8: Investigate multicollinearity in each of the models in Ex­
ercise 2.20, p. 55. 



CHAPTER 11 

Variable Selection 

11.1 Introduction 

Frequently we start out with a fairly long list of independent variables that 
we suspect have some effect on the dependent variable, but for various rea­
sons we would like to cull the list. One important reason is the resultant 
parsimony: It is easier to work with simpler models. Another is that reduc­
ing the number of variables often reduces multicollinearity. Still another 
reason is that it lowers the ratio of the number of variables to the number 
of observations, which is beneficial in many ways. 

Obviously, when we delete variables from the model we would like to 
select those which by themselves or because of the presence of other in­
dependent variables have little effect on the dependent variable. In the 
absence of multicollinearity, as, say, with data from a well-designed exper­
iment, variable search is very simple. One only needs to examine the bj's 
and their standard errors and take a decision. Multicollinearity makes such 
decisions more difficult, and is the cause of any complexity in the methods 
given in this chapter. Notice that in the last chapter, when we examined 
the possibility of relationships among the independent variables, we ignored 
the effects any of them might have on the dependent variable. 

Ideally, given the other variables in the model, those selected for removal 
have no effect on the dependent variable. This ideal situation is not likely to 
occur very often, and when it does not we could bias the regression (as we 
shall see in Section 11.2). Moreover, as we shall also show in Section 11.2, 
on the average, 8 2 will tend to increase with a reduction in the variable list. 
Thus the practice of variable search is often a matter of making the best 
compromise between keeping 8 2 and bias low and achieving parsimony and 
reducing multicollinearity. 

During variable selection, one frequently finds, clustered around the cho­
sen model, other models which are nearly 'as good' and not 'statistically 
distinguishable'. As with many other decisions in the practice of regression, 
the decisions involved in variable selection are seldom obvious. More often 
there is no unique choice and the one that is made reflects the analyst's 
best judgment at the time. 

There is yet another problem with variable search procedures. Suppose 
we apply such a procedure to twenty independent variables constructed 
entirely of random numbers. Some of these variables, by sheer chance, may 
appear to be related to the dependent variable. Since we are picking the 
'best' subset from our list, they appear in our short list and we end up with 
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a nonsense relationship. An illustration can be found in Wilkinson (1979), 
and his findings are startling. 

Despite these problems, variable search procedures can be invaluable if 
can-ied out judiciously. However, some further caveats are in order. We 
should be careful not to drop an important variable. For example, if the 
purpose of the study is to determine the relationship between the price of 
something and its sales, it would be silly to drop price just because our 
search procedure recommends it unless we are sure that price has virtually 
no effect on sales. In fact, the lack of effect might be the key finding here or 
may only be due to a poor design matrix where the corresponding column 
had a very short length or was highly related to some other column. Re­
searchers whose primary interest is forecasting should also make sure that 
they are not (without very strong reasons) dropping an easy-to-predict 
independent variable in favor of a more troublesome one. Finally, if theo­
retical considerations or intuitive understanding of the underlying structure 
of the relationship suggest otherwise, the results of the mechanical proce­
dures given below in Section 11.3 should play second fiddle. Ultimately, it 
is the researcher who should choose the variables - not the 'computer'! 

11.2 Some Effects of Dropping Variables 

Assume that 
Yi = (30 + (31xil + ... + (3k X ik + €i 

is the correct model and consider 

(11.1) 

(11.2) 

which includes only the first p-1 < k independent variables from (11.1). In 
this section we discuss the effects of considering the incorrect abbreviated 
model (11.1). Since we have 'starred' several of the subsections of this 
section, we describe below some of the principal results obtained in the 
subsections. 

As mentioned earlier, deleting some independent variables usually biases 
the estimates of the parameters left in the model. However, no bias oc­
curs if the values of the deleted variables are orthogonal to those of the 
remaining variables, and then the estimates of (30, ... ,(3p-l are exactly the 
same whether Xip,' .. ,Xik are included or not. Deletion of variables usually 
increases the value of the expectation of 8 2 and decreases (in the sense that 
the difference is non-negative definite) the covariance matrix of the esti­
mates of (30, ... , (3p-l. Note that we are referring to the covariance matrix, 
which is defined in terms of 0'2, not an estimate of it, which would fre­
quently behave differently. Because estimates of (30, ... ,(3p-l are biased, it 
is not surprising that predicted values usually become biased. One measure 
of this bias is called Mallows' Cpo While a definition of Cp is postponed to 
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Section 11.2.4, the key property for applications is that if (11.2) does not 
lead to much bias in the predicteds, then 

Therefore, if one is considering several candidate models, one can look at 
the corresponding 8~, R~ and Cp values (the first two are the familiar 8 2 , R2 
measures applied to possibly truncated p variable model; all are provided 
by most packages) and judge which models are relatively bias-free. These 
become the ones from which a selection can be made. 

Since coefficients become biased, the deletion of variables can cause 
residuals of the abbreviated model to have non-zero expectations (Sec­
tion 11.2.4). This leads to plots of residuals against predicteds which some­
times show a pattern as if the residuals were related to the predicted values. 
When one sees such a plot, it is reasonable to suspect that a variable has 
been left out that should have been included. However, not much value 
should be placed on an apparent absence of pattern since even in quite 
biased models, such patterned plots do not occur with any regularity. 

11.2.1 EFFECTS ON ESTIMATES OF (3j 

Assume that the correct model is 

y = X13 + €, (11.3) 

where E(€) = ° and cov(€) = a 2 I. Let X = (Xl, X2), and 13' = (13~ 13;) 
where Xl is n x p dimensional, 131 is a p-vector and the other dimensions 
are chosen appropriately. Then 

(11.4) 

While this is the correct model, suppose we leave out X 2132 and obtain the 
estimate bl of 131 by least squares. Then bl = (XiXl)-l Xiy, which not 
only is usually different from the first p components of the estimate b of 
13 obtained by applying least squares to the full model (11.3), but also is 
usually biased, since 

E(bt) = (XiXl)-l Xi E(y) 

= (Xixl)-l Xi (Xl13l + X 2132) = 131 + (Xixl)-l XiX2132· 

Thus, our estimate of 131 obtained by least squares after deleting X 2132 is 
biased by the amount (XiXt)-l XiX2132 . 

Notice that the bias depends both on 132 and X2. For example, if X2 is 
orthogonal to Xl, that is, if XiX2 = 0, then there is no bias. In fact if 
XiX2 = 0, 

) -1 = ( 
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(see Example A.8, p. 276) and since X'y = (X~y X~y), it follows that bl 
is actually the same as the first p components of b. 

11.2.2 *EFFECT ON ESTIMATION OF ERROR VARIANCE 

The estimate of a 2 based on the full model is given by 

S2 = RSSk+d(n - k - 1) == (n - k - 1)-ly'[I - H]y. 

When we delete X 2 f3 2 , an estimate of a 2 based on p independent variables 
will be given by 

where HI = XI(X~XI)X~ and Yp = Xlbl = Hly is the predicted value of 
y based on the first p independent variables. While E(S2) = a 2 , we need to 
calculate E(s~). Since tr(I -Hd = n-p and from (11.3) and Theorem B.3, 
p. 288, we can easily show that E(yy') = a 2 I + Xf3f3'X', we get, using 
various properties of the trace of a matrix (Section A.6, p. 271), 

(n - p) E(s;) = E[y'(I - HdY] = E[ tr((I - Hdyy')] 

= tr[(I - Hd E(yy')] = tr[(I - Hd(a2 I + Xf3f3' X')] 

= (n - p)a2 + tr[(I - HdXf3f3'X'] = (n - p)a2 + f3'X'(I - HdXf3 

Hence, 

and, since E( s2) = a 2, it follows that 

Therefore, s~ is usually a biased estimator of a2 and E( s~) increases when 
variables are deleted. On the other hand, as shown in the next subsection, 
the covariance of bl is less than or equal to the covariance of the estimate of 
f31 based on the full model. Therefore, practical choices involve determina­
tion of the trade-offs between improvements in one aspect and deterioration 
in another, and the reconciliation of these trade-offs with the aims of the 
analysis. 

11.2.3 *EFFECT ON COVARIANCE MATRIX OF ESTIMATES 

Since bl = (X~Xd-1 X~y and cov(y) = a 2 I, we get 

cov(bd = a2(X~Xd-l. 
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However, based on the full model 

Therefore, the covariance of the vector b(l) containing the first p compo­
nents of b is, using Example A.8, p. 276, 

(11.6) 

Similarly, the vector b(2) of the last k+ I-p components of b has covariance 

Since X~X2(X2X2)-IX2XI is positive semi-definite, 

X~XI ~ X~XI - X~X2(X~X2)-1 X~XI' 

(11. 7) 

where the inequality signs are as defined in Section A.13, p. 279. It follows 
that 

(X~XI)-I ~ [X~XI - X~X2(X~X2)-1 X~XI]-I. 

Hence, cov(bl ) ~ cov(b(1)); i.e., the covariance matrix of the estimate of 
first p components of {3 decreases when the remaining components, along 
with the corresponding columns of X, are deleted. 

11.2.4 *EFFECT ON PREDICTED VALUES: MALLOWS' Cp 

Since E[yp] = HI E[y] = HIX(3 it follows that yp is biased, unless X(3-
HIX(3 = [1 - H1]X(3 = E[ep ] = 0, where ep is the vector of the residuals 
from the abbreviated model. Define Bias (Yp) as E[yp - y]. Then 

and 

n 

2)Bias (ypiW = [E(yp) - E(y)]'[E(yp) - E(y)] = {3' X'[1 - H 1]X{3 
i=l 

where Bias (Ypi) is the ith component of Bias (Yp). To make this last ex­
pression scale-free, we standardize it by a 2 • Thus a standardized sum of 
squares of this bias is given by 

which, on using (11.5), becomes 

E[RSSpJ/a2 - (n - p). 



238 Chapter 11. Variable Selection 

Hence, an estimate of this standardized bias is 

RSSp/82 - (n - p). (11.8) 

If the bias in Yp introduced by dropping variables is negligible, this quantity 
should be close to zero. 

An alternative way to examine bias in Yp is to look at the mean square 
error matrix MSE(yp), or, more conveniently, at its trace TMSE(yp) (see 
equation (B.6), p. 288). Since, cov(Yp) = HI cOV(y)HI = a2 HI, 

MSE(yp) = E[(yp - Xf3)(yP - Xf3)'J 

= cov(Yp) + Bias (Yp)Bias (yp)' = a2 HI + (1 - HdXf3f3' X'(1 - Hd. 

Therefore, the trace TMSE(yp) of the MSE matrix, which is the sum of 
the mean square errors of each component of yp, is 

since tr(HI) = p. 
Let 

Jp = TMSE(Yp)/a2 = p + 13' X'(I - HI)Xf3/a2 , 

which, using (11.5), can be estimated by 

RSSp ( ) RSSp ( ) C = -- - n - p + p = -- - n - 2p . 
P 8 2 8 2 

This is known as Mallows' Cp statistic (see Mallows, 1973). From the dis­
cussion of (11.8) it follows that, if bias is close to zero, Cp should usually 
be close to p. 

11.3 Variable Selection Procedures 

The purpose of variable selection procedures is to select or help select from 
the total number k of candidate variables a smaller subset of, say, p - 1 
variables. There are two types of such procedures: those that help choose 
a subset by presenting several if not all possible combinations of variables 
with corresponding values of Cp , 8~, R~ and possibly other statistics, and 
those that pretty much do the selecting by presenting to the analyst very 
few (frequently one) subsets of variables for each value of p - 1. As we have 
already mentioned, in many situations there is rarely one obviously best 
equation and the near winners are almost as good. Therefore, we prefer the 
former approach, which we have called the search over all possible subsets. 
It has also been called the best subset regression. However, such methods 
have voracious appetites for computer time, so that when computer time is 
at a premium, particularly if there are a large number of variables to select 
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from, other methods might be necessary. Of these, the most popular is the 
stepwise procedure discussed in Section 11.3.2. Draper and Smith (1981) 
give a fuller discussion of variable search than we do but their ultimate 
recommendation is somewhat different. 

11.3.1 SEARCH OVER ALL POSSIBLE SUBSETS 

As the name implies, the search over all possible subsets of independent 
variables allows us to examine all regression equations constructed out of 
a given list of variables, along with some measure of fit for each. In our 
opinion, this procedure is the most useful, particularly if the number of 
variables is not too large. At the present time, a search over 20 variables 
is easily feasible on a mainframe computer, although new developments in 
compiler technology and in supercomputers will soon make it possible to 
computationally handle much larger numbers of variables. Even now, for 
large numbers of variables, one may force inclusion of a predetermined list 
of the variables in all models and search over only the remaining variables. 
(It is perhaps worth mentioning that computer packages do not actually fit 
each possible model separately; they use a 'short-cut' method, frequently 
one based on a procedure given in Furnival and Wilson, 1974, or see Seber, 
1977, Chapter 11.) 

A difficulty with this procedure stems from the prospect of having to 
examine huge computer outputs. For example, if even one line is devoted 
to each combination of variables, 20 variables would necessitate over a 
million lines. Therefore, several of the packages at least allow the user to 
use some criterion to eliminate combinations of variables that can be ruled 
out a priori. For example, SAS PROC RSQUARE allows one to choose to 
be printed for each p only the 'best' (based on R2) m models and to put 
bounds on the number of variables p. In BMDp1 (see Dixon, 1985) the 
user can choose among R2, R~ and Cp as the determinant of 'best' and 
ask that only the 'best' m models of any specified size p - 1 along with 
the 'best' model of each size be printed. The Linear Least Squares Curve 
Fitting Program, which is a companion to Daniel and Wood (1980), uses 
Cp as the only means for culling and shows a plot of Cp's against p. 

The PRESS (acronym for PREdiction Sum of Squares) statistic, first 
presented by Allen (1971), is another statistic that might be used to com­
pare different models. It is defined as L~=l e~,_l where ei,-l is as in equa­
tion (8.12) on p. 161. For each combination of variables, this provides a 
composite measure of how well it would predict each of the observations 
had the observation been left out when parameters were estimated. Several 
other measures also exist - see, for example Amemiya (1980), Judge et al. 
(1985), and Hocking (1976). However, nearly all of them eventually reduce 

1 BMDP Statistical Software Package is a registered trademark of BMDP Statistical 
Software Inc., Los Angeles, CA 
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to relatively simple functions of n, p, 8~, 8 2 and R~ (see SAS, 1985b, p. 
715-16) ~ as, indeed, does Cpo 

As will be apparent from Section 11.4, we somewhat favor Cp as a cri­
terion for an initial selection. However, two points should be noted about 
it. First, when using it, we need to assume that the model with the entire 
list of independent variables included is unbiased. Second, Cp measures the 
bias in predicteds YP from the abbreviated model, and these predicteds may 
not reveal the extent of the bias in estimates of certain future observations 
(see Example 10.1, p. 220). Whatever criterion statistic is used, in practice 
one sets bounds in such a way that the subset of models presented includes 
all those one would seriously consider. 

Boyce et al. (1974) describe a very flexible program which can be used 
for the search over all possible subsets, although the primary purpose of the 
program is to search through all possible combinations of a given number 
of variables and identify the one with the highest R2. The program can be 
obtained by writing to the authors of that monograph. 

11.3.2 STEPWISE PROCEDURES 

Of the stepwise procedures, the only one commonly used in actual appli­
cations is the stepwise procedure. Lest this sound silly, we point out that 
among stepwise procedures, there is one called the stepwise procedure. We 
also discuss the backward elimination procedure and the forward selection 
procedure, but primarily as an aid to the discussion of the stepwise proce­
dure. Some stepwise procedures are not discussed here. Among the more 
interesting ones are the MAXR and the MINR procedures given in SAS 
PROC STEPWISE (see also Myers, 1986). 

THE BACKWARD ELIMINATION PROCEDURES 

Backward elimination procedures start with all variables in the model and 
eliminate the less important ones one by one. A partially manual version 
consists of removing one or two variables with low t-values, rerunning, re­
moving some more variables, etc. Such a manual method does not work 
too badly when the researcher has a good understanding of the underlying 
relationship. However, it is tedious, and an automated version is available. 
Mechanically it works the same way but, as with most automated proce­
dures, we pay for the convenience of automation by having to use preset 
selection criteria. The procedure computes the partial F's corresponding 
to each variable, given the list of variables included in the model at that 
step. The partial F statistic (sometimes called 'F to remove') is the square 
of the t statistic corresponding to each variable. Hence the probabilities 
obtained and the decisions taken are identical to using the t. If the lowest 
F value falls below a preset number (the 100 x a per cent point for the F 
distribution with the appropriate degrees of freedom, where a is either set 
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by the analyst or by the computer package) the corresponding variable is 
deleted. 

After each variable is deleted, partial F's are recomputed and the entire 
step is repeated with the variables still remaining in the model. The pro­
cedure stops when no partial F falls below the appropriate preset number. 

While most users pay little attention to these preset numbers and use 
only the default values supplied by the computer package (for SAS a is 
.1), it is perhaps appropriate to match the number to the purpose of the 
analysis. At each step, the minimum value of partial F over all variables 
still in the model is computed. Hence, if the test is performed at the 100 x a 
per cent level, the actual probability of including one variable when in fact 
it has no effect on the dependent variable is much higher than a. Therefore, 
if one wishes to be particularly careful about not including inappropriate 
variables, one might wish to set very Iowa's. On the other hand, if one 
wishes the model to lean towards inclusivity rather than exclusivity, as one 
would if prediction was the main purpose for the model, a higher value of 
a is desirable (see also Forsythe, 1979, p. 855). 

Apart from the problem of providing an inadequate list of models for 
the analyst to choose from, there is one further problem with backward 
elimination. Suppose we have three independent variables Xl, X2, X3, where 
Xl is highly correlated with X2 and X3 and also with y and we would like 
to have Xl in the final model - at least for parsimony. But being highly 
correlated with both X2 and x3, Xl would have a large standard error and 
consequently a low t-value and a low partial F-value. As a result, it may 
get deleted early and we would never see it again. 

THE FORWARD SELECTION PROCEDURE 

The forward selection procedure works in the opposite way to the back­
ward elimination procedures. It starts with no variable in the model and 
first selects that Xj which has the highest correlation with y. Subsequent 
selections are based on partial correlations, given the variables already se­
lected. The partial correlation of y and Xj given Xjll ... , Xj., written as 
rYXj ,Xi! ... Xj.' is the correlation between 

1. the residuals obtained after regressing y on xh, ... , Xj., and 

2. the residuals obtained after regressing Xj on Xjll ... , Xj •• 

Clearly, the partial correlation measures the relationship between y and Xj 

after the linear effects of the other variables have been removed. 
At every step, the partial F-value is computed for the variable just se­

lected, given that variables previously selected are already in the model 
(such a partial F is called a 'sequential F' or sometimes 'F to enter'). If this 
sequential F-value falls below a preset number (e.g., the a-point of the ap­
propriate F distribution - the default value of a in SAS is .5) the variable 
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is deleted and another one is sought. If no suitable variable is found or if all 
the variables are in the model, the procedure stops. SAS uses a variation 
in which, instead of the partial correlations, the partial F's are computed 
for each variable not in the model. If the highest of the F's computed is 
high enough, the variable is included; otherwise the procedure stops. 

A problem with forward selection is the reverse of the one for the back­
ward selection. Suppose that of the highly correlated variables XI,X2 and 
X3, we want X2 and X3 in the model because together they provide a better 
fit. But Xl may enter the model first and prevent the others from getting 
in. Because of such problems, these procedures are now of primarily ped­
agogical or historical interest, having been replaced in actual use by the 
stepwise procedure and the all possible subsets search. 

THE STEPWISE PROCEDURE 

The stepwise procedure is actually a combination of the two procedures 
just described. Like the forward selection procedure, it starts with no in­
dependent variable and selects variables one by one to enter the model 
in much the same way. But after each new variable is entered, the step­
wise procedure examines every variable already in the model to check if it 
should be deleted, just as in a backward elimination step. Typically, titiJ 
significance levels of F for both entry and removal are set differently than 
for the forward selection and backward elimination methods. It would be 
counter-productive to have a less stringent criterion for entry and a more 
stringent criterion for removal, since then we would constantly be pick­
ing up variables and then dropping them. SAS uses a default value of .15 
for both entry and exit. As for the forward selection procedure, SPSS-X2 
(SPSS, 1986) permits, as an additional criterion, a tolerance level (e.g., 
TOLj 2: .01) to be specified which needs to be satisfied for a variable to be 
considered (see Section 10.3.1, p. 222 for a definition of tolerance). 

It is generally accepted that the stepwise procedure is vastly superior to 
the other stepwise procedures. But if the independent variables are highly 
correlated, the problems associated with the other stepwise procedures can 
remain (see Example 11.1 below; also see Boyce et al., 1974). Like the 
forward selection and backward elimination procedures, usually only one 
equation is presented at each step. This makes it difficult for the analyst 
to use his or her intuition, even though most stepwise procedures allow the 
user to specify a list of variables to be always included. 

2SPSS-X is a trademark of SPSS, Inc., Chicago, IL. 
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11.3.3 STAGEWISE AND MODIFIED STAGEWISE 

PROCEDURES 

In stagewise regression the decision to append an additional independent 
variable is made on the basis of plots of the residuals (from a regression 
of the dependent variable against all variables already included) against 
variables which are candidates for inclusion. In the modified stagewise pro­
cedure the plot considered is that of 

1. the residuals obtained after regressing y on xii' ... , Xj. against 

2. the residuals obtained after regressing Xj on xii' . .. , Xj., 

where xii' ... ' Xj. are the variables already in the model. Plots of this 
latter kind are called added variable plots, partial regression plots, partial 
regression leverage plots or simply partial plots. 

In the case of the stagewise procedure, the slope obtained from applying 
least squares to the residuals is not a least squares estimate in the sense 
that, if the candidate variable is included in the model and least squares is 
applied to the resultant multiple regression model, we would get a different 
estimate for its coefficient. In the case of the modified stagewise procedure 
(without intercept) the estimates are LS estimates (see Exercise 11.1, also 
Mosteller and Thkey, 1977, p. 374 et seq.). 

Modified stagewise least squares might appear to resemble a stepwise 
technique. But actually they are very different largely because of the way 
they are practiced. Stagewise and modified stagewise methods are essen­
tially manual techniques - perhaps computer aided but nonetheless man­
ual in essence. At every stage, transformations may be made and outliers 
dealt with and perhaps even weighting performed. Several examples of what 
we have called a modified stagewise approach can be found in Mosteller and 
Thkey (1977, see chapter 12 et seq.). 

It might be mentioned in passing that some analysts find partial plots 
valuable for the identification of outliers and influential points (see Chat­
terjee and Hadi, 1986, Cook and Weisberg, 1982, Belsley, Kuh and Welsch, 
1980). 

11.4 Examples 

Example 11.1 
The data shown in Exhibit 11.1 are essentially made up by the authors. The 
independent variable Xl has values which are the same as an independent 
variable in a data set in the authors' possession, except that they have been 
divided by 10 to make them more compatible with the size of X2, which 
consists of pseudo-random numbers between 0 and 1. X3 is Xl + X2 with 
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an additional random disturbance added and X4 is Xl + X2 with a slightly 
larger disturbance added. Actually, X4 and X3 are not too far apart, but 
as we shall see below, they lead to different behavior on the part of the 
stepwise procedure. The dependent variable is .5Xl + 1.5X2 plus a normal 
pseudo-random number. 

Xl X2 X3 X4 Y Xl X2 X3 X4 Y 

0.760.050.870.870.14 0.17 0.97 1.39 1.42 1.49 
0.47 0.40 1.16 1.20 1.06 0.98 0.82 1.96 1.98 1.92 
0.46 0.45 1.03 1.05 1.14 0.230.220.71 0.740.13 
0.55 0.26 0.89 0.90 0.50 0.74 0.33 1.09 1.09 1.04 
0.55 0.86 1.69 1. 72 1.45 0.61 0.73 1.63 1.67 1.09 
0.38 0.52 1.19 1.23 1.02 0.62 0.85 1.56 1.57 1.35 
0.39 0.31 0.86 0.88 0.78 0.51 0.97 1.56 1.57 1.60 
0.460.140.760.780.53 0.81 0.16 1.18 1.20 0.47 
0.10 0.41 0.52 0.53 0.54 0.030.76 1.08 1.120.79 
0.95 0.26 1.23 1.23 0.69 0.770.38 1.22 1.23 1.14 

EXHIBIT 11.1: Artificially Created Data for an Example on Variable Search 

Step Variable Variable Incr. 
No. Entered Removed p-1 R2 R2 Cp F p-value 

1 X3 1 0.7072 0.7072 11.7 43.47 0.0001 
2 X2 2 0.1011 0.8083 4.12 8.96 0.0082 

EXHIBIT 11.2: Summary Output from Stepwise Procedure for Independent Vari­
ables Xl, X2 and X3 

Exhibit 11.2 shows a summary of actions from a stepwise procedure. 
Much more detailed action logs are available, and the reader is encouraged 
to examine one to see exactly how the method proceeds. As is apparent, 
X3 was the first variable chosen to enter the model. Then X2 and Xl were 
compared to see which would have the higher partial F if it were introduced 
into the model (we were using SAS PROC STEPWISE). Since X2 had the 
higher value, it was inserted into the model. Then X2 and X3, which are now 
in the model, were examined to see if one of them should be dropped. Both 
met the partial F criteria for inclusion and were retained. The program 
then computed the partial F value for the sole variable Xb still left out 
of the model, as if it were in the model. The criterion of significance at a 
.15 level was not met and the procedure stopped. The full output would 
give the usual least squares printouts associated with each of the models 
selected (in this case y against X3 and of y against X3 and X2). 

Applying the stepwise procedure to Xl, X2 and X4 yields more interesting 
results. The summary lines from an output are presented in Exhibit 11.3. 
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Step Variable Variable Incr. 
No. Entered Removed p-1 R2 R2 Cp F p-value 

1 X4 1 0.7070 0.7070 11.66 43.44 .0001 
2 X2 2 0.0977 0.8047 4.43 8.51 .0096 
3 Xl 3 0.0258 0.8305 4.00 2.43 .1383 
4 X4 2 0.0001 0.8304 2.01 0.014 .9087 

EXHIBIT 11.3: Summary of Stepwise Procedure for Independent Variables Xl, 

X2 and X4 

p-1 R2 Cp bo bl b2 b3 

1 0.032 75.45 0.77 0.326 
1 0.705 11.85 0.27 1.361 
1 0.707 11.67 -0.36 1.103 

2 0.759 8.79 -0.29 -0.463 1.255 
2 0.808 4.12 -0.19 0.781 0.633 
2 0.830 2.03 -0.13 0.655 1.487 

3 0.831 4.00 -0.12 0.737 1.589 -0.094 

EXHIBIT 11.4: All Possible Subsets Search Over Xl, X2 and X3 

Now X4 entered the model first, then X2 was entered and finally Xl. After all 
three variables were in the model, X4 was no longer found to be significant 
enough to stay and was deleted. 

Exhibit 11.4 shows the result of applying an all possible subsets search 
to Xl, X2 and X3. Estimates bj of the coefficients of X j for each combination 
of variables are listed, first in order of the number p of variables and then 
for each p they are ordered by R2. The combinations (X2' X3) and (Xl, X2) 

both appear to be fairly good. But the stepwise procedure chose (X3, X2) 

and gave us little information on (Xl> X2), although it has indeed the higher 
R2, and, as we know from having constructed the data, it is the right model. 
Although this is a fairly contrived data set, fear of situations like this make 
us partial to the all possible subsets search. Writing about various stepwise 
procedures (and perhaps overstating a little), Freund and Littel (1986) 
point out that: 

In general contradictory results from these procedures are the 
rule rather than the exception, especially when models con­
tain many variables. Also none of the stepping procedures is 
clearly superior. ... Of course, PROC RSQUARE does guar­
antee optimum subsets, but as previously noted, may become 
prohibitively expensive. 

Notice that even for this correct model Cp is not too near 3, as we would 
have expected. It serves only to remind us that Cp is a random variable .• 



246 Chapter 11. Variable Selection 

Example 11.2 
As another example consider Part 1 of Exercise 2.20, p. 55, on murder rate 
(M). The model has been included in a number of exercises and the reader 
perhaps already has ideas about what steps to take in order to get ap­
proximate compliance with Gauss-Markov conditions. Several possibilities 
exist'. For example, one could ignore the slight heteroscedasticity and use 
OLS with Nevada, Utah and perhaps some other points deleted (for fairly 
obvious but different reasons). Alternatively, one could use weighted least 
squares. 

The approach we chose to pursue is as follows. Although in this case 
there is no compelling reason to do so, one possible weighting scheme is 
to use as weights population divided by the expectation of murder rate, 
i.e., POP / E[M], which is very close to what one gets using the weight 
recommended for proportion of counts in Exhibit 6.7, p. 123. When we 
used these weights, the predicted against residual plot showed little het­
eroscedasticity, but several other plots did. Since, in particular, variances 
seemed to be increasing with UR, we decided to also weight with its re­
ciprocal. That is, we used POP /( E[M] x UR) for weights. This achieved 
approximate homoscedasticity. While we chose the weight by purely empir­
ical experimentation, a partial explanation for its appropriateness follows 
from the conjecture that rural crime rates and urban crime rates have dif­
ferent variances and our chosen expression is a rough approximation to 
the expression we would get if we took this into account. Weighting was 
performed using nonlinear least squares as described in Section 6.4, p. 118. 

When we used these weights, the influence of observations was largely 
due to some of them getting very large weights and there were no obvious 
influential points with large residuals. Because their populations were small, 
the OLS outliers got so little weight that there was little reason to bother 
with them. There also appeared to be no need for transformations. 

It is usually a good idea to examine the multicollinearity structure before 
doing a variable search. Exhibit 11.5 shows eigenvalues and variance compo­
nents. The three smallest eigenvalues seem to be due to multicollinearities 
between 

1. The intercept, PL (1000 x proportion below poverty level) and HS 
(1000 x proportion high school graduates); 

2. B (birthrate), HT (death rate from heart disease), HS and to a lesser 
extent CR (crime rate) and PL; and 

3. UR (1000 x proportion of population living in urban areas) and CR. 

(Before this confirms the worst fears of suburban residents, let us point out 
that most suburbs are also considered 'urban areas'!) 

Exhibit 11.6 shows partial results of applying an all possible subsets 
search. A number of models are potential candidates for selection. If parsi­
mony is important, we can easily select a five-variable model. Less than five 
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C. Variance Proportions Corresponding to 
No. Int MA D PL S B HT UR CR HS 

1.0 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 
8.4 .00 .00 .02 .06 .00 .00 .00 .02 .01 .00 

11.1 .00 .00 .14 .01 .01 .00 .04 .00 .02 .00 
15.5 .00 .02 .02 .15 .03 .01 .00 .05 .06 .00 
19.4 .00 .18 .11 .00 .16 .04 .07 .01 .00 .00 
22.1 .00 .03 .46 .03 .31 .01 .07 .03 .03 .00 
28.3 .00 .63 .15 .01 .02 .13 .03 .06 .09 .00 
37.7 .00 .11 .05 .00 .40 .01 .01 .74 .47 .02 
65.3 .08 .00 .05 .19 .05 .77 .59 .03 .25 .19 
119 .91 .01 .07 .54 .01 .03 .18 .06 .06 .78 

EXHIBIT 11.5: Condition Numbers and Variance Proportions for Murder Rate 
Model 

variables seems to raise the Cp somewhat. But even with five variables, we 
have some choice. The highest R2 combination includes two pairs of multi­
collinear variables: (CR, UR) and (HS, PL). Therefore one might prefer to 
look upwards in the list for other, less collinear combinations. However, the 
variables just mentioned are rather persistent in their presence. Moreover, 
the most obvious replacement variable is B, which, by itself, has the lowest 
R2. Assuming that the ultimate model will be used as a means of identify­
ing methods to reduce murders, B is not very helpful (except to someone 
advocating incentives for abortion). Therefore, we stayed with the model 
shown in Exhibit 11.7. The slightly higher value of R2 (than that in Ex­
hibit 11.6) of .863 is due to the fact that the weights were recomputed 
from estimates of E[M] based on the five independent variables actually 
included. As policy determinants, the variables have high enough t-values 
that the presence of multicollinearity is not too unwelcome. 

In interpreting the results, one needs to bear in mind that the data are 
for states. For example, the model does not imply that divorced people are 
more likely to be murdered or be murderers. All it says is that where there 
is a high divorce rate (D), murder rate is usually also relatively high -
other things being equal, of course. _ 

Example 11.3 (Continuation of Example 10.3, Page 228) 
Exhibit 11.8 shows part of an output obtained by applying an all possible 
subsets search procedure to the house price data. The variables, weighting, 
etc., are as in Example 10.3. Readers who have completed Exercise 10.4 will 
know that there is not too much multicollinearity left in the model except, 
perhaps, for a possible relation involving BDR and FLR. As Exhibit 11.8 
shows, there is not much hope of deleting either, since they feature in most 
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k R2 Cp Variables in Model k R2 Cp Variables in Model 

1 .005 254.1 B 5 .842 10.6 CRHS URPL MA 
1 .025 248.0 HT 5 .842 10.3 CRHSURBMA 
1 .031 246.3 S 5 .843 10.2 CRHS URB HT 
1 .045 242.1 MA 5 .847 8.9 CR HS UR PL S 
1 .185 199.8 HS 5 .848 8.7 CRHS URPL HT 
1 .196 196.8 D 5 .852 7.5 CR HS UR B S 
1 .235 184.9 UR 5 .854 6.8 CRHS URB D 
1 .239 183.6 PL 5 .855 6.6 CRHS URB PL 
1 .258 178.1 CR 5 .860 5.2 CRHS URPL D 

2 .321 161.2 PLD 6 .865 8.5 CR HS UR B PL MA 
2 .343 154.5 URMA 6 .865 8.4 CR HS UR B PL HT 
2 .345 153.8 CRD 6 .866 8.2 CRHS URB D MA 
2 .350 152.3 DHS 6 .867 7.9 CR HS UR B D S 
2 .419 131.5 URD 6 .860 7.0 CRHS URPL D S 
2 .622 70.5 CRPL 6 .860 6.9 CR HS UR PL D MA 
2 .646 63.4 URHS 6 .861 6.7 CR HS UR B PL S 
2 .733 37.3 CRHS 6 .862 6.5 CR HS UR PL D HT 
2 .754 31.0 PLUR 6 .875 5.4 CRHS URB PL D 

3 .755 32.8 PL URHT 7 .868 9.4 CR HS UR B D S MA 
3 .757 32.1 PLURB 7 .861 8.7 CR HS UR PL D MA S 
3 .760 31.1 PLURS 7 .861 8.6 CR HS UR B PL S HT 
3 .771 28.0 CRPL UR 7 .861 8.6 CR HS UR B PL S MA 
3 .772 27.6 CRHSB 7 .862 8.2 CR HS UR PL D HT S 
3 .778 25.7 PLURD 7 .864 7.8 CR HS UR PL D HT MA 
3 .779 25.5 URHSD 7 .875 7.4 CR HS UR B PL D HT 
3 .780 25.0 CRHS UR 7 .876 7.0 CR HS UR B PL D S 
3 .786 23.3 PL UR HS 7 .878 6.4 CR HS UR B PL D MA 

4 .800 21.0 CRHS URMA 8 .797 33.0 CR HS B MA D S PL HT 
4 .801 20.7 CR HS URS 8 .808 29.5 CR PL UR D B MA S HT 
4 .806 19.2 PL UR HS HT 8 .844 15.6 PL UR HS D HT S MA B 
4 .810 18.0 CRHS URHT 8 .869 11.4 CR HS UR B D S MA HT 
4 .816 16.4 PL UR HS S 8 .862 10.4 CR HS UR B PL S MA HT 
4 .825 13.5 CRHSURD 8 .864 9.7 CR HS UR PL D HT MA S 
4 .832 11.4 PL UR HS D 8 .876 9.0 CR HS UR B PL D S HT 
4 .840 9.0 CR HS UR PL 8 .879 8.3 CR HS UR B PL D MA HT 
4 .842 8.3 CR HS UR B 8 .879 8.1 CR HS UR B PL D MA S 

9 .870 10.0 CR HS UR B PL D MA S HT 

EXHIBIT 11.6: All Possible Subsets Search for Murder Rate Model 



11.4. Examples 249 

Variable b t-value TOL 

Intercept 73.01 1.29 
D 0.55 2.75 0.660 
PL 0.41 3.19 0.315 
DR 1.68 5.49 0.332 
CR 0.01 2.96 0.281 
HS -3.50 -5.05 0.335 

EXHIBIT 11.7: Parameter Estimates, t-Values and Tolerances for Selected Model 
for Murder Rate 

of the 'better' models. 
A conservative approach here is to choose between the best (p - 1=) 

9-variable model and the two best 8-variable models. The 9-variable model 
has dropped L1, which did not look important (Exercise 10.4), and it ap­
pears that the neighborhood it represents is not too different from the 
neighborhood described by L1= 0, L2= o. The two 8-variable models differ 
in that one contains BTH and no GAR and the other contains GAR but no 
BTH. The reader is invited to obtain parameter estimates and collinear­
ity diagnostics for both these models. It will be apparent that there is not 
much to pick and choose between them. GAR has a slightly lower tolerance 
in the overall model, but BTH is another of the variables which is related 
to FLR and BDR. But we are clutching at straws! One could just about 
flip a coin. If the deletion of either BTH or GAR looks unreasonable, as it 
might to a realtor, we could just choose the 9-variable model. • 
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p-1 R2 S Cp Variables in Model 

3 0.750 4.08 62.6 FLR ST LOT 
3 0.773 3.89 55.4 FLR ST COR 
3 0.788 3.76 50.7 FLR ST GAR 
3 0.788 3.76 50.6 FLR ST BDR 
3 0.794 3.71 48.8 FLR ST FP 

4 0.826 3.49 40.5 FLR ST FP GAR 
4 0.829 3.46 39.7 FLR ST BDR GAR 
4 0.838 3.36 36.6 FLR ST FP COR 
4 0.839 3.36 36.3 FLR ST BDR LOT 
4 0.861 3.11 29.2 FLR ST FP BDR 

5 0.874 3.04 27.0 FLR ST FP BDR GAR 
5 0.880 2.97 25.3 FLR ST FP BDR BTH 
5 0.884 2.92 23.9 FLR ST FP BDR LOT 
5 0.884 2.91 23.7 FLR ST BDR LOT COR 
5 0.891 2.84 21.9 FLR ST FP BDR COR 

6 0.901 2.77 20.6 FLR ST BDR LOT COR BTH 
6 0.902 2.76 20.3 FLR ST BDR LOT COR GAR 
6 0.909 2.67 18.2 FLR ST FP BDR COR BTH 
6 0.918 2.52 15.1 FLR ST BDR LOT GAR L2 
6 0.921 2.48 14.2 FLR ST FP BDR COR LOT 

7 0.926 2.46 14.0 FLR ST FP BDR COR LOT GAR 
7 0.930 2.39 13.2 FLR ST FP BDR COR LOT L2 
7 0.932 2.36 12.7 FLR ST BDR LOT COR GAR L2 
7 0.933 2.35 12.4 FLR ST FP BDR LOT L2 GAR 
7 0.936 2.30 11.6 FLR ST FP BDR COR LOT BTH 

8 0.938 2.34 12.9 FLR ST FP BDR COR LOT BTH L1 
8 0.938 2.34 12.9 FLR ST BDR LOT COR GAR L2 BTH 
8 0.938 2.31 12.5 FLR ST FP BDR LOT BTH L2 GAR 
8 0.948 2.14 9.69 FLR ST FP BDR COR LOT BTH L2 
8 0.948 2.14 9.65 FLR ST FP BDR COR LOT L2 GAR 

9 0.939 2.38 14.3 FLR ST FP BDR COR LOT BTH L1 GAR 
9 0.940 2.36 14.1 FLR ST BDR LOT COR GAR L2 BTH L1 
9 0.948 2.20 11.5 FLR ST FP BDR COR LOT BTH L2 L1 
9 0.948 2.19 11.5 FLR ST FP BDR COR LOT L2 GAR L1 
9 0.956 2.03 9.14 FLR ST FP BDR COR LOT BTH L2 GAR 

10 0.956 2.09 11.0 FLR ST FP BDR COR LOT BTH L2 GAR L1 

EXHIBIT 11.8: All Possible Subsets Search for House Price Data 
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Problems 

Exercise 11.1: Show that the estimate of the regression coefficient ob­
tained when we regress the residuals from the model 

against those from the model 

without an intercept term, is the same as that of {3j from the model 

y=X!3+€ 

where X (j) is the matrix X with the jth column x[j] removed, and the 
other letters have obvious meanings. 
[Hint: Write the last model above as 

y = X (j)!3(j) + (3jx[j] + € 

and mUltiply both sides by M(j) = I - X(j)(X(j)'X(j»)-lX(j() 

Exercise 11.2: Interpret the plot of residuals against predicteds for the 
model of Exercise 4.6, p. 96. 

Exercise 11.3: *Let iJ be the predicted value of y based on all k indepen­
dent variables in the model and let iJp be the predicted value of y based 
only on p - 1 independent variables. Show that cov(iJ) - cov(iJp ) ~ o. 
[Hint: Notice that 

can be written as 

x1E1l X~ + (X2 - XIEIlE12)E;:~(X2 - x 1E1lE12)', 

where E2.1 = E22 - E~2EIlE12.) 

Exercise 11.4: Is it possible to get a more parsimonious model to predict 
dial-a-ride patronage? Use the data as we decided in Example 8.3, p. 167, 
and the weights and transformations as we chose in Example 6.6, p. 124. 
Now apply your variable search procedures without weighting the model 
or deleting cases. What do you find? 

Exercise 11.5: Fill in the missing details in Example 11.3. Use the weights 
given in (10.11) and examine both collinearity diagnostics and outputs from 
variable search procedures. Would you come to different conclusions? 
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Exercise 11.6: Using the data of Exercise 2.18, p. 53, find a parsimonious 
model for per capita output using linear and quadratic terms in SI, SP 
and I. 

Exercise 11.7: Using all the variables given in Exhibit 2.2, p. 32, can you 
produce a better predictive model for house prices? Make sure that you 
take care of outliers, transformations (if any), etc. 

Exercise 11.8: Obtain a simple model to predict percentage savings (PCS) 
using the data of Exhibit 9.11, p. 203, after making the transformations we 
decided on in Example 9.9. 

Exercise 11.9: Apply both stepwise and all possible subsets search to 
the model considered in Example 10.2, p. 225. Which combination(s) of 
variables would you select? Compare the model(s) you chose with the one 
we selected in Example 10.2 in terms of fit, plausibility of estimates and 
their standard errors. 

Exercise 11.10: After you have completed Exercise 10.5, p. 231, use the 
data from Exercise 3.14, p. 79, to obtain a parsimonious model for y (oxygen 
demand). 

Exercise 11.11: After deleting whatever cases you think appropriate, use 
all possible subsets search to obtain more parsimonious models to take the 
place of each of the two models of Exercise 8.14, p. 178. 

Exercise 11.12: Check whether more parsimonious models can be found 
to take the place of each of the models in Exercise 2.20, p. 55 (excluding 
part 1). If so, what are they? 

Exercise 11.13: Suppose a person wants to buy a 3 bedroom house in the 
area represented in Exhibit 2.2, p. 32. How would you proceed to get him 
an idea of the price he would have to pay? 



CHAPTER 12 

*Biased Estimation 

12.1 Introduction 

One purpose of variable selection is to reduce multicollinearity, although, 
as we noted in Section 11.2, reducing the number of independent variables 
can lead to bias. Obviously, the general principle is that it might be prefer­
able to trade off a small amount of bias in order to substantially reduce the 
variances of the estimates of {3. There are several other methods of esti­
mation which are also based on trading off bias for variance. This chapter 
describes three of these: principal component regression, ridge regression 
and the shrinkage estimator. 

The bias that is created is with respect to the model with all the indepen­
dent variables included. While the amount of the bias can be theoretically 
computed, the resultant expressions depend on the parameters themselves 
and hence are not known. Typically for all methods, the sums of squares 
of residuals get larger (in comparison to OLS) and the usual measures of 
fit get worse, but the estimates of f3 have smaller variances. 

The use of all the methods described below is mired in controversy, with 
each having proponents and opponents. There are situations where a cer­
tain method might work well and situations where it might not. As a result, 
it is difficult to make objective and comprehensive recommendations. When 
carefully applied, the methods have the potential of enhancing our underly­
ing understanding of the situation. In this they are quite frequently useful. 
However, they should be applied only when the analyst has the time to 
carefully analyze the results and form a picture of 'what is going on' with 
the model. They should certainly not be applied in a routine or ritualistic 
manner. 

12.2 Principal Component Regression 

Typically, principal component regression is applied either to the centered 
and scaled version of the model 

y = X{3+e (12.1) 

if the intercept term is present, or to only the scaled version if the intercept 
term is absent. That is, we consider the model 

(12.2) 
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of Section 2.11, p. 44, if the model (12.1) has an intercept term and the 
model 

(12.3) 

that we used in Chapter 10 (see (10.2)) if it does not. As mentioned in Sec­
tion 2.11, p. 44, estimating the parameters of the model (12.2) is equivalent 
to estimating f3 from (12.1). The equivalence of (12.3) and (12.1) is trivial. 
The notation in the discussion below is with reference to model (12.2). 

Let r = (-y 1 ,. .. ,"'t k) be a k x k orthogonal matrix such that 

r'(z(s)z(s»)r = D>. 

where D>. is the diagonal matrix diag (AI,. . . ,Ak)' Obviously, Al 2:: ... 2:: 
Ak 2:: 0 are the eigenvalues of Z(s)Z(s) and "'t1"" ,"'tk are the corresponding 
eigenvectors. Since r is orthogonal, and therefore rr' = I, rewrite the 
model (12.2) as 

(12.4) 

where U = (UI, ... ,Uk) = z(s)r and '11 = (771, ... ,77k)' = r'D. The knew 
independent variables U1, ... ,Uk are called principal components. 

Since U'U = r' Z(s)z(s)r = D>., the least squares estimate of '11 is 

~ (U'U)-lU' D-1U' '11 = YeO) = >. YeO)' 

and hence the estimate of an individual77i is r,i = Aj1Ujy(O)' More impor­
tantly, the covariance matrix of r, is 

cov(r,) = a 2 D-;l 

where cov( €) is a2 I. Therefore, var (r,i) = a2 / Ai' 
If a Ai is small, its variance is large and typically signals the presence 

of multicollinearity in the model (12.1) (see Chapter 10). In such cases, 
we could alleviate this multicollinearity by deleting the ui's correspond­
ing to the small Ai's. The usual criteria for variable search, along with 
the size of var (r,i)' can be used to decide which uj's to remove. But now, 
because UU' is diagonal, it follows from the discussion at the end of Sec­
tion 11.2.1, p. 235, that the r,j's corresponding to the retained variables 
remain unchanged after the deletion of the other variables and that r,(r) is 
an unbiased estimate of '11(r) , i.e., 

(12.5) 

where'11(r) is the vector of 77j'S corresponding to the retained variables and 
r,(r) is the OLS estimator of '11(r)' 

After renumbering the columns of U, if necessary, write the matrix U as 
a partitioned matrix U = (U(r) U(k-r») where U(r) = (UI, ... , u r ) contains 



12.2. Principal Component Regression 255 

the columns of U we decide to retain and U(k-r) contains the columns we 
choose to delete. Renumber the 'f/j'S and the columns of r to correspond 
and write 1J and r in partitioned matrix form as 1J = (1J(r) 1J(k-r))' and 
r = (r(r) r(k-r)) where 1JCr) = ('f/l, ... ,'f/r)' and r(r) = hI'··· ,'"Yr). From 
(1204) we get U = z(s)r. Therefore, U(r) = z(s)r(r)' and we can write the 
abbreviated model as 

YeO) = U(r)1J(r) + e, 
or, writing Uij as the (i,j)th element of U, as 

YCO)i = Uil'f/l + ... + Uir'f/r + fi 
= Zil bU'f/l + ... + 'Ylr'f/r) + ... + Zikbkl'f/l + ... 'Ykr'f/r) + fi 

(12.6) 

(12.7) 

where i = 1, ... , nand 'Yij is the ijth element of r and e is the resultant 
new error term. 

Therefore, the deletion of some Uj'S need not, and usually does not, 
result in the removal of the columns of Z(s). What we have done in effect 
is imposed the constraints U(k-r) = ZCs)hr+l'··· ,'"Yk) = o. 

Example 12.1 (Continuation of Example 10.1, Page 220) 
In Example 10.1, we, in fact, effectively performed a principal components 
regression although we did not scale the independent variables. This was 
not necessary since their sample variances were equal. The rows of the ma­
trix r are given by (lOA) and Zl and Z2 are the two principal components. 

As we saw in that example, elimination of Z2 did not yield good predic-
tions when the values of Z2 were not close to zero. • 

Principal component regression is quite effective when the variables rep­
resented by the deleted principal components must always remain small; 
i.e., the relationship represented by them is always approximately 'true'. 
When this is not so, and particularly when it is possible to get additional 
observations, it might be preferable to obtain independent variable values 
in the direction of the components we would have deleted. If these design 
points are well chosen, it frequently does not require too many points to 
substantially reduce multicollinearity and make multicollinearity-reducing 
procedures unnecessary. 

12.2.1 BIAS AND VARIANCE OF ESTIMATES 

The model (12.7) can also be written as 

YeO) = Z(s)OCr) + e (12.8) 

where OCr) = r(r)1J(r)· Let d Cr ) be the estimate rCr)f7(r) of OCr). Since both 
f7(r) and d(r) minimize the same sum of squares, d(r) is also the OLS 
estimator of oCr). While f7Cr) is an unbiased estimator of 1J(r) , d(r) is not 
necessarily an unbiased estimator of oCr), as we see below. 
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Since f is orthogonal, 

fCr)'fCr) = I r , r(k-r)fCk - r ) = I k - r and fCr)'fCk-r) = O. 

Hence, TlCr) = qr)bCr ) and it follows from (12.5) that 

And because I = ff' = fCr)qr) + fCk-r)qk_r)' it follows that 

E[dCr )] = [I - fCk-r)f(k-r)]bCr) 

= bCr) - fCk-r)f(k-r)bCr) = bCr) - fCk-r)TlCk-r)· 

Therefore, the bias induced by deletion of the k-r variables is f Ck-r)TlCk-r). 

Let d be the estimate of b when no Uj'S have been deleted. Then 

Since D);l is diagonal it can be written as 

( 
D-l 

Cr) 
o D-~ ) 

Ck-r) 

where DCr) is the diagonal matrix of the latent roots corresponding to the 
eigenvectors which are the columns of fCr) and D Ck - r ) is that of the latent 
roots corresponding to the eigenvectors which are the columns of f Ck - r ). 

Therefore, 

cov(d) 

a2[fCr)D~~f(r) + fCk-r)D(k~rl(k-r)]. 

Since it can be shown fairly easily that cov(dCr») = a2fCr)D~~qr)' the 
reduction in the covariance matrix due to the elimination of variables is 

f Ck-r)D(k~rl(k-r). 

12.3 Ridge Regression 

Hoerl and Kennard (1970a, 1970b) have suggested a method of combating 
multicollinearity called ridge regression. Usually, though not always, ridge 
regression is applied to the centered and scaled model (12.2). Then, the 
ridge estimate of b for some c ~ 0 is given by 

(12.9) 
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where c is a small nonnegative number, often called the shrinkage param­
eter. The choice of an appropriate value of c is discussed in Section 12.3.2. 
Obviously, if we do not center or scale, we would replace Z(s) and Y(O) by 
X and y. 

It is easily seen that (12.9) is equivalent to 

de = [I +c(Z(s/Z(s))-lj-1d 

where, as before, d is the OLS estimate of 6. Since Z(sj'1 = 0, (12.9) is 
also equivalent to 

de = [Z(s)' Z(s) + cIj-l Z(s/Y. 

There is also a generalization of ridge regression available. The estimate 
is 

de = [Z(s)' Z(s) + rCr'j-l Z(s)'y 

where, as in Section 12.2, r is the matrix of eigenvectors of Z(sj'Z(s) and 
C is a diagonal matrix with nonnegative elements. We do not consider this 
further in this book. See Judge et al. (1985, p. 913, et seq.) for a treatment 
of this generalized ridge estimator. 

12.3.1 PHYSICAL INTERPRETATIONS OF RIDGE 

REGRESSION 

We can always find (at least in theory) an n x k matrix V, the columns 
of which are orthogonal to those of the matrix Z(s) and also to Y(O). Let 
W' = C1/2(V'V)-1/2V'. Then W'W = cI, W'Z(s) = 0 and W'Y(O) = o. 
Suppose we now perturb the matrix of independent variables Z(s) by the 
amount Wand obtain the least squares estimate of 6 in the model (12.2) 
with the matrix of independent variables as Z(s) + W. This estimate is 
given by 

[(Z(s) + W)'(Z(s) + W)t1(Z(s) + W)'Y(O) 

= [Z(s)' Z(s) + cIt 1 Z(s)'y(O) = de, 

i.e., the ridge estimates can be found by suitably disturbing the independent 
variable values by a small amount. In Exhibit 10.2, p. 221, the manifesta­
tion of multicollinearity was the narrowness of the strip within which the 
data lay. According to this interpretation of ridge regression, we would pre­
sumably be effectively widening this strip by adding some small numbers 
to the independent variables. 

Another similar interpretation consists of adding additional 'cases' to 
the data set by augmenting the design matrix by a matrix W such that 
W'W = cI and the dependent variable values by the appropriate number 
of zeros. This augmented model can be written as 
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It can easily be shown that the OLS estimator for this model is de. An 
example of such a W is vel, which provides an alternative way to compute 
ridge estimates using simply an OLS package. 

Yet another interpretation can be given in terms of constrained least 
squares. Suppose we impose the constraint that 6'6 = ",2 and minimize 

subject to this constraint. Then setting as / a6 = 0 where 

we get 
(Z(s)'Z(s) + cI)6 = Z(s)'Y(O) 

which yields the ridge estimate (12.9). Substituting (12.9) into the con­
straint 6'6 = ",2, we get a relationship between c and "'. 

Thus, a ridge estimate can be viewed as a constrained least squares 
estimate where the parameter 6 has been required to lie on the surface of 
a sphere. In the presence of acute multicollinearity, the estimates of the 
components 8j of 6 often start compensating for each other and can get 
numerically very large. In such cases, ridge regression is often effective. 

12.3.2 BIAS AND VARIANCE OF ESTIMATES 

Since 

E(de ) = [Z(s)'Z(s) + cIt 1 Z(s)'Z(s)6 

= [Z(sl' Z(s) + cltl [Z(s)' Z(s) + cI - cI]6 = 6 - c(Z(sl' Z(s) + cI)-16, 

the bias of the ridge estimate is 

(12.10) 

The covariance matrix of de is given by 

(12.11) 

Therefore, since the trace of a matrix is the sum of eigenvalues and the 
eigenvalues of the inverse of a matrix A are the reciprocals of the eigenvalues 
of A (see Appendix A), the sum of variances of the components dej of de 
is 

tr[ cov(de)] 

= (12 tr[(Z(s)' Z(s) + cI)-1 Z (s)' Z (s)(Z(s)' Z (s) + cI)-I] 
k 

= tr[(Z(sl'Z(s) + cI)-2Z(s)'Z(s)] = (12 L At(1 + CAjl)-2, 
j=1 

(12.12) 
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where Al 2: ... 2: Ak are the k characteristic roots of the matrix Z(sj'Z(s)' 
The sum of the variances of the components of the ordinary least squares 
estimator d of /j is 

k 

tr[cov(d)] = a2tr[(Z(s)'Z(s))-I] = a22:Ajl 
j=1 

k 

> a2 "" X:- 1 (1 + cX:- 1 )-2 
- ~ J J' 

j=1 

(12.13) 

i.e., the total of the variances of the components of a ridge estimator is 
lower than the corresponding total for the OLS estimator. The price we 
pay is, of course, the bias. 

The mean square error matrix of the biased estimator de is given by (see 
Appendix B, near the end of Section B.2, p. 286) 

where cov(de) and Bias (de) are given in (12.11) and (12.10) respectively. 
The total mean square error (Section B.2) is the trace of MSE(de) and is, 
therefore, (from (12.10) and (12.11)) 

TMSE(de) = tr[ cov(de)] + tr[Bias (de)Bias (de)] 
k 

= a22: At (1 + CAjl)-2 + c2/j'(Z(s)' Z(s) + cI)-2/j 

j=1 

k 

= a 2 2: Aj(Aj + C)-2 + c 2/j' (Z(s/ Z(s) + cI)-2/j. 

j=1 

Hoerl and Kennard (1970a) have shown that there exists a value of c, say 
Co, such that for 0 < c < Co, TMSE(de) ::;; TMSE(d). However, Co depends 
on the unknown parameters /j and a 2 and as such cannot be determined 
(see Thistead, 1978). 

Perhaps the most popular method for choosing c is through the use 
of what is called a ridge trace. Estimates de are obtained for different 
values of c over some interval (say, from 0 to 1) and then components dej 

of de are plotted against c. The resultant curves, called ridge traces, are 
then examined to find the minimum value of c after which values of dej 

are moderately stable. The de for this value of c is then adopted as the 
chosen ridge estimator. We could also examine the diagonal elements of 
a-2 cov[be] , which are actually akin to the variance inflation factors, in 
order to see the effect of c on the variances of estimates. 

The subject of proper choice of c has received so much attention in the 
literature that we have but touched on the subject in this section. A fuller 
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review is given in Draper and Van Nostrand (1979), Hocking (1976) and 
Judge et al. (1985). 

Example 12.2 (Continuation of Example 12.1, Page 255) 
Exhibit 12.1 shows plots of del, dc2 and a-2var (del) (a-2var (d:2 ) had a 
very similar plot) for the data of Exhibit 10.1, p. 220, with Xl and X2 as 
independent variables and y(1) as the dependent variable. Values of c shown 
are in the range 0 < c::; .1 which was chosen after a previous run over the 
interval 0 < c ::; 1, which is usually quite adequate. While typically one 
uses scaled variables, we did not do so here since both independent variables 
had the same sample standard deviations. 

2.0 50 

1.5 

1.0 del 

d 0.5 dc2 

0.0 

-0.5 

o 
o .015 .05 .1 

c 

EXHIBIT 12.1: Ridge Traces and QI = u-2var (dcd for Ridge Regression of y(1) 

Against Xl and X2 

Although several programs are available for doing ridge regression (e.g., 
PROC RIDGEREG documented in SAS, 1986), we wrote our own program 
using SAS PROC MATRIX. Only a few lines are required and no problems 
need occur unless one computes estimates for c = 0 in an extremely multi­
collinear situation, like the one being considered here. The values .997 and 
.503 of del and dc2 for c = .015 are actually very close to the 'true values' 
(see Example 10.1, p. 220) /31 = 1 and /32 = .5 (this does not always happen 
- see Exercise 12.7). However, had we not already known these true val­
ues, it would have been difficult to select them from the ridge traces shown. 
Perhaps we would have selected something like (.79, .71), which is similar 
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to what we get from principal components regression. With increasing c the 
reduction in variance is dramatic, as can also be seen from Exhibit 12.1. 

While we have illustrated only the methods of choosing c that we have 
discussed in the text, we did apply a number of other methods suggested 
in the literature to this problem. The results were not satisfactory. • 

12.4 Shrinkage Estimator 

There is another class of biased estimators introduced by Stein (1956) and 
James and Stein (1961). While the original thrust of ridge regression was 
to alleviate effects of multicollinearity, that of the shrinkage estimator was 
aimed solely at reducing the MSE. For the model y = Xf3 + e, where X is 
an n x p matrix and f3 is a vector of dimension p, it is given by 

a = [1- K,(n - P)82 ] b 
fJ b'X'Xb' 

(12.14) 

where K, is a number discussed below, b is the least squares estimator of f3 
and, as usual, 8 2 = (n-p)-l(y-Xb),(y-Xb). The estimator j3 is biased. 
Thus, in order to compare it with the least squares estimator b, we need to 
consider the mean squared error matrix MSE(j3) = E[(j3 - f3)(j3 - f3)'] and 
compare it with E[(b - f3)(b - f3)'], the covariance of b. The latter is, of 
course, a2 (X' X)-l. However, it is more convenient to compare the scalar 
quantities tr[(X' X)MSE(i3)] and tr[(X' X) cov(b)]. (Note that 

tr[(X' X)MSE(j3)] = E[(j3 - f3)' X' X(j3 - f3)] 

and 
tr[(X' X) cov(b)] = E[(b - f3)' X' X(b - f3)].) 

The latter is easily seen to equal a 2p. It has been shown by Stein that, 
if 0 < K, < 2(p - 2)(n - p + 2)-1 and p :::: 3, the former quantity - i.e., 
tr[(X' X)MSE(j3)]- is always less than a 2p and attains its minimum value 
at K, = (p - 2)/(n - p + 2). 

It may be shown (see Bilodeau and Srivastava, 1989, Carter et ai., 1990) 
that a uniformly minimum variance (UMV) unbiased estimator of the bias 
vector of j3 is 

j3-b= _K,(n- p)8\ 
b'X'Xb 

and a UMV unbiased estimator of the MSE matrix of j3 is 

82 [1- 2K,(n - p)282 ] (X'X)-l 
«n - p) + 2)b' X' Xb 

+K,(K,+ (n-:)+2) C;~,~~2r bb'. 
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A further improvement in the estimator {3 in (12.14) obtains if we modify 
it as follows: 

A [ ( Ii(n - p)S2)] 
f3(+) = max 0,1- b'X'Xb b. (12.15) 
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Problems 

Exercise 12.1: Consider the model given in (12.2), where E(€) = 0, and 
cov(€) = (72 I. Show that 

1. cov(€(O)) = (72A where A = (I - n-111 / ), 

2. the generalized inverse of A is A, and 

3. the generalized least squares estimate of (j is 

Exercise 12.2: Let z be a p dimensional random vector and let z 
N(8, (72Ip). Show that 

E[(z - 8)/(Z - 8)] = (72p. 

Exercise 12.3: Suppose y = Xf3 + €, where € rv N(o, (721) and X is an 
n x p matrix of rank p ::::; n. Let b = (X' X)-1 X'y. Show that 

E[(b - (3)' X' X(b - (3)] = (72p. 

[Hint: Let z = (X' X)I/2b and 8 = (X' X)I/2f3 where (X' X) = (X' X)I/2 . 
(X' X)I/2. Now, show that z rv N(8, (72Ip) and use the result from the last 
exercise.] 

Exercise 12.4: Let z be a p dimensional random vector and let z 
N(8, (72Ip). Show that 

E [ZI(Z - 8)] = (p _ 2) E (_1 ). 
ZIZ ZIZ 

[Hint: Let ~(8, I; z) denote the pdf of z = (ZI, ... , Zp)' and let 8 
((11, ... ,(lp)'. Then the left side is 

where RP = {(ZI' ... ,zp) : -00 < Zi < oo} and dz = dZ1 dZ2 ... dzp. It may 
be shown that 

100 Zi [) 100 
[ 1 2z2] -,-~~(8,I;z)dzi = - ~(8,I;z) -,- - -( 1')2 

-00 Z Z uZ, -00 Z Z Z Z 

using the integration by parts formula J u dv = uv - J v dU.] 
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Exercise 12.5: Using the results of the last problem, show that when p 2: 3 
the trace of the mean square error matrix of the Stein estimator given in 
(12.14) attains its minimum value at K, = (p - 2)j(n - p + 2). 

Exercise 12.6: Apply principal components regression to the supervisor 
rating data set given in Exhibit 10.3. Are your results very different from 
those we obtained in Example 10.2, p. 225? 

Exercise 12.7: Using each of the variables y(2) and y(3) of Exhibit 10.1, 
p. 220, as dependent variables, obtain ridge traces and plots of u-2var (ded 
and u-2var (de2 ). Comment on what you observe and select a suitable ridge 
estimator. 

Exercise 12.8: Try both ridge regression and principle components re­
gression on the data of Exercise 3.14, p. 79. How does removing outliers 
affect your results? 

Exercise 12.9: How would you do weighted principal components regres­
sion and weighted ridge regression? Apply weighted principal components 
regression to the house price example (with outliers deleted). How does 
your chosen model compare with the one found in Example 11.3, p. 247? 
Apply weighted ridge regression to the same data and discuss your results 
with particular reference to the sign of BDR. If you were to choose a single 
model to give to give to a client, which one would you choose and why? 

Exercise 12.10: Compute the shrinkage estimator for the data for Exer­
cise 12.7. Also compute the estimate of the mean square error matrix. 

Exercise 12.11: Using the methods considered in this chapter, can you 
find better models to take the place of those in Exercise 2.20, p. 55? 
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ApPENDIX A 

Matrices 

A rectangular array 

A= 

of rc numbers aij, when it is subject to certain rules of addition and mul­
tiplication given in Section A.I, is called a matrix of dimension r x c with 
elements aij. We shall use capital letters to denote matrices; when we wish 
to make explicit mention of a dimension we place it after a colon, e.g., 
A : r x c, B : 3 x 5. etc. When r=c the matrix A : r x c is called square 
and in that case a single number will suffice to give its dimension; i.e., 
A : r x r = A : r. When we wish to make specific mention of the ele­
ments aij of a matrix we shall denote the matrix as (aij) or if necessary as 
(aij) : r x c or as (aij): r when r = c. Sometimes, when no ambiguity arises, 
we shall employ the notation Arxc , (aij)rxc, Ar , (aij)r to denote A:r x c, 
(aij) : r x c, A: r and (aij): r respectively. A matrix of dimension r x c will 
also be called an r x c matrix; a square matrix of size r will also be called 
an r matrix. 

Two matrices (aij): r x c and (bij ): r' x c' are equal if and only if r = r', 
c = c' and aij = bij for all i and j. 

A.I Addition and Multiplication 

Two matrices A = (aij) : r x c and B = (bij ): r x c, of the same dimension, 
can be added and their sum is (aij + bij ) : r x c. Matrices of unequal 
dimensions cannot be added. 

The product of a number a and a matrix (aij) : r x c is the matrix 
(aaij) : r x c - i.e., each element gets multiplied by the number. The 
product C = AB of two matrices A = (aij):r x s and B = (bij):p x q is 
defined if and only if s = p, and then C = (Cij): r x q with Cij = E~= 1 aikbkj. 
Note that the existence of the product AB does not assure the existence 
of BA and even if the latter exists, AB will not necessarily equal BA. In 
the sequel, if sums of products of matrices are written, the assumption 
is made that their dimensions are appropriate. It is easy to show that 
A(BI + B2) = ABI + AB2 and E~=l ABk = A(E~=l Bk). 
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A.2 The Transpose of a Matrix 

If the rows and columns of a matrix A are interchanged, the resulting 
matrix is called the transpose of A and is denoted by A', Le., (aij)' = (aji). 
A square matrix A is said to be symmetric when it is its own transpose, 
Le., A = A'. 

The following identities are easily verified: 

K K 

(A')' = A, (A+B)' = A' +B', (LAd = LAL 
k=l k=l 

(AB)' = B'A', (ABC)' = C'B'A'. 

A matrix A of the form XX' is always symmetric since (XX')' = (X')'X' = 
XX'. 

Example A.I 
Let 

Then 

( 8 9 4) 
A+B= 11 7 3 

However, A and C cannot be added and AC does not exist. 

A' ~ (! ~) and AA' ~ (;~ ~) 
is symmetric. 

A.3 Null and Identity Matrices 

• 

If all elements of A are zeros, then A is said to be a null matrix or a zero 
matrix and is denoted by 0 or, if we need to make the dimension explicit, 
by O:r x c, O:r, Orxc or Or. 

The elements along the north-west to south-east diagonal of a square 
matrix A comprise the diagonal (sometimes also called the principal diago­
nal) of A. When the only non-zero elements of a matrix are in its diagonal, 
it is called a diagonal matrix; e.g., 

o~n (A.1) 
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is a diagonal matrix. If the diagonal entries of the diagonal matrix A 
are aI, ... , aT' then A is sometimes written as diag (aI, ... , aT)' Therefore, 
(A. 1) is the same as diag (1, 2, 3). 

The matrix diag (1, 1, ... ,1) is called an identity matrix and is denoted 
by I or l:r or IT) e.g., 

h = (1), 12 = (~ ~), and 13 = (~1 o~ 001) 

It is easy to see that if B is any matrix of suitable dimension, I B = B I = B. 

A.4 Vectors 

A matrix A consisting of a single column is often called a column vector 
and a matrix consisting of only one row is sometimes called a row vector. In 
this book, a vector always means a column vector, and, when its dimension 
is r, it could also be called an r-vector. Vectors will usually be denoted by 
a boldface lower case Latin or Greek letter, e.g., b, (3, Xi' Note that when 
this notation is used the subscript does not indicate dimension. 

The columns of an r x c dimensional matrix A may be viewed as column 
vectors aI, a2,"', a c , where ai's are r-vectors, and it will sometimes be 
more convenient to write A as A = (a1,"', a c ). Rows can be treated in 
the same way; e.g., 

where each (3~ is a row vector which is the transpose of a c-vector. 

Example A.2 
Let 

a1= 0)' a2 = 0) and a3 = cn 
Then 

0 1 -1 ) A = ( a1 a2 a3 ) = ° ° 1 1 

Also, 

( a' ) ( 1 2 n 1 
B= a' 1 ° = A', 2 

a; -1 ° 
since a~ = (1 23), a; = (1 ° 1) and a; = (-1 ° 1). • 
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A vector a = (al, ... , an)' is said to be a non-null vector if at least one 
ai is different from zero. If all the ai's are zero, it is called a null vector and 
is denoted by o. 

We designate a vector consisting entirely of l's as 1 = (1,1,1, ... ,1)'. 
Let x = (Xl, ... , xn)'. Then x = E7=1 xi/n = n-11'x and the vector 
(Xl - x, ... , Xn - x)' may be written as 

(A.2) 

The length of a vector x is (X'X)1/2 and is often written as Ilxll. For two 
vectors ::r: and y, we have the well-known Cauchy-Schwartz inequality, 

Ix'yl ::::: IIxil IIyll· 
The quantity x'y/[lixil IIylll is the cosine of the angle between the two 
vectors. Therefore, x' y = 0 implies that x and y are at right angles; ::r: and 
yare then said to be orthogonal. If, in addition, IIxil = 1 and IIyll = 1, x 
and y are called orthonormal. 

Two matrices A and B are said to be orthogonal if AB = o. A single 
matrix r is said to be orthogonal if it is a square matrix such that rr' = 
I. Note that this definition is not exactly the analog of the definition of 
orthogonality for vectors. In fact, r'r = I requires the columns of r to be 
orthonormal. Clearly, then, r' = r- l and for any vector a, 

IIrail = (a'r'ra)-1/2 = 11011, (A.3) 

Le., multiplication by an orthogonal matrix leaves length unchanged. 

A.5 Rank of a Matrix 

The set 01, ... , an is said to be linearly independent if no ai can be ex­
pressed as a linear combination of the others. This is equivalent to saying 
that there is no non-null vector c = (Cl' ... ' Cn )' such that E7=1 Ciai = o. 
If 01, ... , an are not linearly independent they are said to be linearly de­
pendent. 

It may be proved that the number of independent columns of a matrix 
A is equal to the number of independent rows (see Rao, 1973, Section 1a.3 
for a proof). The number of linearly independent columns of a matrix is 
called its rank, p(A). If the rank of a square matrix Ar is the same as 
its dimension r, then it is said to be non-singular; otherwise it is called 
singular. The following properties of p(A) are readily verified: 

1. p(A) = 0 if and only if A = 0, 

2. if A:r x c =f. 0, then 1 ::::: p(A) ::::: min(r,c), 

3. p(A) = p(A'), 
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4. p(AB) ~ min(p(A),p(B)), 

5. p(AB) = p(A) = p(B'A') if p(B:r x c) = r ~ c, 

6. p(A) = p(AA') = p(A' A). 

A.6 Trace of a Matrix 

For a square matrix A = (aij): r, the sum of its diagonal elements is called 
its trace, tr(A) ; i.e., tr(A) = 2:~=1 aii. It is easy to verify that 

1. tr(A) = tr(A'), 

2. tr(AB) = tr(BA), 

3. tr(ABC) = tr(BCA) = tr(CAB), 

4. tr(A + B) = tr(B + A) = tr(A) + tr(B), 

5. tr(2::=l A,) = 2::=1 tr(Aa), 

6. tr(kA) = k tr(A) where k is a real number. 

Example A.3 
If x is a vector, tr(xx') = tr(x'x) = x'x since x'x is a scalar. _ 

Example A.4 
Let r be an orthogonal matrix. Then 

tr[rxx'r'] = tr[xx'r'r] = tr[xx']' 

which as we have just seen is x'x. -
A.7 Partitioned Matrices 

A partitioned matrix is a matrix of matrices. For example, we can write 
the matrix 
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where 

All = (~ ~), A12 = (~ :), 

A21 = (193 ~~), A22 = (~~ ~~) 
17 18 19 20 

Bll = (~ ~ ~), B12 = ( : ) , 

B" ~ U~ :: :D, and B" ~ on 
The rules for multiplying two partitioned matrices are the same as for 

multiplying two ordinary matrices, only now the submatrices are the 'ele­
ments'. 

A.8 Determinants 

A permutation 7f( n) of the set of numbers 1,2, ... ,n is any reordering of the 
set; e.g., 1,3,2,4 is a permutation of 1, 2, 3, 4, as is 4, 2, 3,1. The ith element 
of 7f(n) will be referred to as 7f(n)i or as 7fi. The number #(7f(n)) of inver­
sions of a permutation 7f( n) is the number of exchanges of pairs of numbers 
in 7f( n) to bring them to their natural order. For example, exchanging 4 
and 1 and then 2 and 3 brings 4,3,2,1 into the order 1,2,3,4; therefore, the 
number of inversions in this case is 2. The number of inversions of a per­
mutation is not unique, but it might be shown that (_I)#(7r(n)) is unique. 
The determinant of a square matrix A = (aij) : n is defined as 

n 

det(A) = 2) _1)#(7r(n)) II a7ri ,i· 

For example, 

and 

det ( all 
a21 

7r(n) i=1 

det (i ~) = 3 x 2 - 1 x 1 = 5. 

The following properties are easily verified: 

1. det(A') = det(A). 
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2. If the ith row (or column) of a matrix is mUltiplied by a number c, 
its determinant is multiplied by c. Therefore, det(cA) = cn det(A) if 
A is an n x n matrix. 

3. If two rows (or columns) of a matrix are interchanged, the sign of 
the determinant changes. It follows that if two rows or columns are 
identical the value of the determinant is zero. 

4. The value of a determinant is unchanged if to the ith row (column) is 
added c times the jth row (column). Hence, if a matrix has linearly 
dependent rows (or columns), its determinant is zero. 

5. det[diag (a1, ... , an)] = I1~=1 ai and, in particular, det(I) = l. 

6. det(AB) = det(A) det(B). 

7. det(AA') ::::: O. 

8. If A and B are square matrices, 

~ ) = det(A), det (~ ~) = det(A), 

~ ) = det ( ~ ~ ) = det(A) det(B). 

9. det(Ip + AB) = det(Iq + BA), where A and B are matrices of dimen­
sion p x q and q x p respectively. 

A.9 Inverses 

If, for a square matrix A, there exists a matrix B such that 

AB=BA=I, 

then B is called the inverse of A and is denoted as A -1. If A is non-singular 
such a matrix always exists and is unique. For a singular matrix there is 
no inverse. 

Inverses may be computed as follows. Consider the three operations: 

01 Multiplying a row (or column) of a matrix A by a number c. 

02 Replacing a row (column) ai of A by ai + >.aj where>. is a number 
and aj is another row(column). 

03 Interchanging two rows or columns. 
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The application of a sequence of such operations to any nonsingular matrix 
will reduce it to an identity matrix. The application of the same sequence of 
operations (in the same order) to an identity matrix will yield the inverse. 
This is easily seen as follows: Notice that each of the row operations 01, 02 
and 03 is equivalent to the multiplication of A from the left by a matrix, 
say Oi' Therefore, a sequence of such operations is equivalent to multipli­
cation by a matrix 0 which is the product of a sequence of these individual 
matrices Oi' Since AA-1 = I and OA = I, it follows, on multiplying both 
sides of the former by 0, that A-I = 01. 

However, in order to reduce accumulated round-off errors, particularly 
in near singular situations (Chapter 10), actual computer procedures are 
somewhat more complex. A description of many of the procedures in com­
mon use is given in Chapters 11 and 12 of Seber (1977). While most users 
tend to ignore the exact computational procedure used by packages, and 
nowadays most of those given in serious statistical packages are quite reli­
able, a paper by Longley (1967) provides a sobering thought. He examined 
a number of the packages of the day with a highly multicollinear data set 
and found that estimates for one of parameters varied from -41 to 27 for the 
different packaged programs (the correct estimate found by careful hand 
calculation was about 15). A portion of his data is given in Exhibit 10.11, 
p.232. 

Example A.5 
The following sequence of operations: 

1. divide Row 1 by 5, 

2. subtract Row 2 from Row 1 and replace Row 1 by the result, 

3. divide Row 1 by -2, 

4. subtract 3 times Row 1 from Row 2 and place the result in Row 2, 

5. divide Row 2 by 2, 

reduces 

A=(~ 120)to h 

The same sequence of operations changes 

( - 1 
h to .i5 .5 

-.25 ) =B. 

It is easily verified that AB = BA = I, i.e., A and B are inverses of each 
other. _ 

Let P and Q be non-singular matrices. Since (Q-l p-l ) PQ = I, it follows 
that (PQ)-1 = Q-l p-l. 
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Theorem A.I Let P and Q be n-dimensional non-singular matrices such 
that Q = P + UV, where U has dimension n x q and V has dimension 
q x n. Then 

PROOF: Since Q-l P + Q-1UV = I, 

Q-l + Q-1UV p-1 = p-l. (A.5) 

Therefore, 

and it follows that 

On substituting for Q-lU from (A.6) into (A.5) we get (A.4). 0 

Example A.6 
Let Xn = (Xl, ... ,Xn)' be a k x n dimensional matrix where the xi's are k­
vectors. Let X n+l = (Xl,"" Xn , Xn+t)', Q = X~+lXn+1 and P = X~Xn­
Then 

from Theorem A.I. 

Example A.7 
Let 

• 



276 Appendix A. Matrices 

Then, 
, 11' 

Q-1 = In _ 11 - I __ _ 
1+1'1 - n n + l' 

since Q = In + 11'. 

Example A.8 
Let 

A = ( All 
A2l 

and B = ( Bll 
B21 

be two partitioned matrices. Then if B = A-I, we get from BA = I, 

B21AU + B22A21 = 0 and B21A12 + B22A22 = I, 

• 

whence solving the first pair of simultaneous equations and then the second 
pair, we get 

In particular, if 

A=( 

Bll = (All - A12A2l A 21 )-1 

B12 = -All A 12 (A22 - A21All A 12 )-1 

B21 = -(A22 - A21All A 12 )-1 A2lAll 

B22 = (A22 - A21All A 12 )-1. 

All 
o 

as can be verified from the formulre above or directly by multiplication. • 

A.I0 Characteristic Roots and Vectors 

If for a square matrix A, we can write Ax = cx for some non-null vector 
x, then c is called a characteristic root (or eigenvalue or latent root) of 
A and x is called the corresponding characteristic vector. A symmetric 
matrix A : r has r real valued characteristic roots, its rank equals the 
number of its non-zero characteristic roots and its trace is the sum of 
its characteristic roots (see Srivastava and Khatri, 1979, Chapter 1). The 
characteristic roots of a diagonal matrix are its diagonal elements; hence, 
obviously, all characteristic roots of an identity matrix are one. 

If an r-dimensional matrix A is symmetric, then there exists an orthog­
onal matrix f and a diagonal matrix D = diag (d1 , ... , dr ) such that 

A=fDf'. (A.7) 
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Moreover, the di's are the characteristic roots of A, and the columns of f 
are the corresponding eigenvectors (see Srivastava and Khatri, 1979, p. 18). 

Example A.9 
Let Xc = L:~=1 CjXj be any linear combination of the columns Xj of X : 
n x k. Since X' X is symmetric (see Section A.2), it can be written as f Df' 
where f is orthogonal and D is the diagonal matrix diag (db . .. ,dk) of the 
eigenvalues. Let "'I = (rb· .. ,rk)' = f'c. Then Ilcll = 11"'111 and 

k 

min IIXcl1 = min 'Y'D'Y = min Ldjr; = dmin , (A.8) 
IICII=1 11"'111=1 11"'111=1 j=1 

the smallest eigenvalue (call it dj ) of X' X, and the minimum occurs when "'I 
has a 1 in the row corresponding to dj and has zeros in other positions. For 
such a "'I, c is the jth column of f; i.e., c is the eigenvector corresponding 
to the smallest eigenvalue. • 

A.II Idempotent Matrices 

A square matrix A will be called idempotent if A 2 = AA = A. In this book 
all idempotent matrices are assumed to be symmetric. For such matrices 
tr(A) = p(A). Also it may be shown that A: r is idempotent if and only if 
p(A) + p(Ir - A) = r (see Srivastava and Khatri, 1979, p. 14). Yet another 
useful property is that the characteristic roots of an idempotent matrix A 
are either 0 or 1 and p(A) is equal to the number of roots that are 1 (see 
Exercise A.9). 

Example A.I0 
Let M(O) = In - n-111'. Since 1'1 = n, 

(M(O»)2 = In - n-1 11' - n-111' + n-2 11'11' = M(O). 

Hence, M(O) is idempotent. The matrix 11' is an n x n dimensional matrix 
of l's; hence tr(n- 1 u') = 1. Obviously tr(I) = n. Consequently, the trace 
of M(O) is n -1, which is also its rank. Moreover, it has n -1 characteristic 
roots which are 1 's and one zero root. • 

Example A.ll 
Let X be an n x (k + 1) dimensional matrix with n > k + 1 and let 
H = X(X'X)-IX' . Then 

HH = X(X'X)-IX'X(X'X)-IX' = X(X'X)-IX' = H. 
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Hence, H is idempotent. From Property 2 of traces (Section A.6) 

tr[X(X' X)-l X'] = tr[X' X(X' X)-l] = tr(Ik+d = k + 1. (A.9) 

Hence the rank of H is k + 1. If M = I - H, 

MM = (I - H)(I - H) = 1- H - H + HH = 1- H = M, 

showing that M is also idempotent. Moreover, since 

tr(M) = tr(I) - tr(H) = n - k - 1, (A.lO) 

Mhasrankn-k-1. • 

A.12 The Generalized Inverse 

A matrix B is said to be a generalized inverse of A if it satisfies ABA = A. 
A generalized inverse B of A is denoted as A -. While a singular matrix 
has no inverse, all matrices have generalized inverses. Notice that if A is 
non-singular, AA-l A = A. Hence an inverse is a generalized inverse. But 
when A is singular A-is not unique. 

Example A.12 
Let X be an n x p dimensional matrix of rank p ::; n. Then a generalized 
inverse of X is given by 

X- = (X'X)-lX', 

since XX- X = X(X'X)-lX'X = X. 

Example A.13 

• 

Let A be an idempotent matrix. Then A - = A, since AAA = AA = A. If 
A - is a generalized inverse for an arbitrary matrix A, then A = AA - A, and 
hence A-A = A - AA - A. Hence the matrix A-A is an idempotent matrix. 
Similarly, since AA - = AA - AA -, it follows that AA - is an idempotent 
matrix. Also, since peA) = p(AA-A) ::; p(A- A) ::; peA), it follows that 
peA) = p(A-A). • 

In fact, it can be shown that if there exists a matrix B such that BA is 
idempotent and p(BA) = peA), then B is a generalized inverse of A. This, 
along with some other results on generalized inverses, are presented in the 
following theorem. 

Theorem A.2 Let A be an m x n dimensional matrix. Then B is a gen­
eralized inverse of A if and only if 
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1. p(In - BA) = n - p(A), or 

2. p(BA) = p(A) and BA is idempotent, or 

3. p(AB) = p(A) and AB is idempotent. 

Corollary A.I 

1. (A' A)- A' is a generalized inverse of A and A(A' A)- is a generalized 
inverse of A', 

2. A(A' A)-A' A = A and (A' A)(A' A)- A' = A' , and 

3. A(A' A)- A' is symmetric, idempotent, of rank p(A), and unique. 

For proofs of these results, see Srivastava and Khatri (1979, p. 12-13) 
or Rao and Mitra (1971, p. 22-23). 

A.13 Quadratic Forms 

Let A be a symmetric matrix and x = (Xl' ... ' X r )' be a vector. Then 
x' Ax, which is a second degree polynomial in the Xi'S, is called a quadratic 
form in x. The matrix A will be said to be positive definite (semi-definite) 
if and only if x' Ax > 0 (~ 0) for all x :f. o. The fact that a matrix A is 
positive definite (semi-definite) is sometimes indicated as A > O(A ~ 0). 
In this book any matrix that is positive definite or positive semi-definite is 
assumed to be symmetric. 

Since 
z' X' Xz = (Xz)'(Xz) 

is a sum of squares and is hence non-negative, X' X is positive semi-definite 
for all matrices X. Using (A.7), it may be shown that the characteristic 
roots of a positive definite (semi-definite) matrix are all positive (non­
negative). Also, from (A.7) it follows that a matrix A is positive semi­
definite if and only if it can be written in the form A = X' X, since we can 
write A = r Dr' = r DI/2 DI/2r' = X' X, where D is a diagonal matrix 
with non-negative diagonal elements. 

Lemma A.I Let S : p be a positive definite matrix and B : p x m and 
C:p x (p - m) be two matrices of ranks m and (p - m), respectively, such 
that C' B = O. Then 

For a proof, see Srivastava and Khatri (1979). 

Corollary A.2 For matrices Band C as defined above 
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A.14 Vector Spaces 

The material of this section has not been directly used in the text. However, 
the concepts in it provide an alternative, geometrical discussion of least 
squares. 

A vector of the form L~l CiOi is said to be a linear combination of 
vectors 01, ... , On. The set of all linear combinations of a set of vectors 
constitutes a vector space. Obviously a vector space is closed under addition 
and multiplication by a scalar. Let Xl, ... , xp be p ::; n members of a vector 
space S. Then all linear combinations of them form a vector (sub)-space 
which is called a linear manifold M(X) spanned by X = (Xl' ... ' Xp). 
All vectors in S which are orthogonal to each vector in M(X) also form a 
vector subspace which is called the orthogonal complement of M(X) and is 
denoted by M.L(X). Needless to say, X E M(X) and y E M.L(X) implies 
x'y = o. It can be shown that any vector z E S can be written as z = x+y 
where X E M(X) and y E M.L(X) (Rao, 1973, p. 11). 

Example A.I4 
Linear combinations of the vectors 

constitute a vector space. Any vector of the form 

4 

(Cl' C2, C3, C4)' = L CiOi 

i=l 

is in it. All vectors of the form (Cl' C2, 0, 0)' are included in the manifold 
M(01,02) and are orthogonal to any vector of the form (0,0, C3, C4)' E 
M.L(03, 04). • 

Let S be a vector space and M(X) be a manifold contained in it and 
let M.L(X) be the orthogonal complement of M(X). Let z = X + y where 
z E S, X E M(X) and y E M.L(X). Then a matrix P such that pz = X is 
called a projection matrix and is said to project z on M(X) along M.L(X). 
It is unique for a given Sand M(X), and 1- P projects z along M(X) 
on M.L(X). Moreover, for x E M(X) and any YES, Ily - xii assumes 
its minimum value for x = Py. In order for a matrix to be a projection, 
it is necessary and sufficient that it be (symmetric and) idempotent (Rao, 
1973, pp. 46-48). 

Example A.I5 
H, as defined in Example A.11, is an idempotent matrix. Hence, it is a 
projection and, since Hy = Xb if b = (X'X)-lXy, H projects a vector 
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on M(X). Therefore M = 1- H projects a vector on the orthogonal 
complement of M(X). Let e = My. Then e and y = Hy are orthogonal. 
This can also be verified directly, since H M = H (I - H) = H - H = 0 
and, therefore, y'e = (Hy)'My = y'HMy = o. 

With the usual 'least squares' meanings (see Chapter 2) given to y, e, 
X and y, this example provides a geometric interpretation of linear least 
squares which several analysts, including the authors, have found useful. • 
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Problems 

Exercise A.I: Let 

A~(~ n.B~U -~).c~O ~ D· 
( 1 0 1) 

D = 1 1 1 ,and E = (1 2 3 4). 
223 

1. Obtain A + B, A' + B', C + D, C' + D', (C + D)'. 

2. Compute AB, B'A', A'B', (AB)" CD, C'D', D'C', (CD)'. 

3. Compute EE' and E' E. 

Exercise A.2: Let B = [(1 - p)In + pu']. 

1. Find the determinant of B and give conditions under which it is 
positive. 

2. Find the inverse of B. 

Exercise A.3: Find the eigenvalues of 

Exercise A.4: Let 

x' = (~ ~ !). 
Find the eigenvalues of X'X, (X'X)2 and (X'X)-1. 

Exercise A.5: Find the inverse of each of the following three matrices: 

Exercise A.6: Find the determinant of the matrix Q in Example A.7. 

Exercise A.7: Show that the matrix 0-1/ 2 X(X'0-1 X)-1 X'0-1/2, where 
X is an n x p matrix and 0-1 = 0-1/ 20-1/ 2 , is idempotent. What is its 
rank? 

Exercise A.8: Show that the matrix 
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is an idempotent matrix of rank 1. Find its eigenvalues. 

Exercise A.9: Let A be a symmetric, idempotent matrix of rank r. Show 
that the characteristic roots of A are either zero or 1. Also show that 
p(A) = r. 



ApPENDIX B 

Random Variables and 
Random Vectors 

B.l Random Variables 

B .1.1 INDEPENDENT RANDOM VARIABLES 

We assume the reader is familiar with the notions of random variables 
(r.v.'s) and the independence and expectation of r.v.'s. The expectation 
E(u) of an r.v. u is sometimes called the mean of u and we denote the 
variance E( u - E( U))2 of the r. v. u as var (u). The square root of var (u) is 
called the standard deviation of u. Given constants a and b, and an r.v. u, 
the following relationships are true and may be verified from a definition 
of E(u): 

1. E(au + b) = aE(u) + b. 

2. var (u) = var (u ± b). 

3. var(au±b) = a2var(u). 

4. E(u2 ) = var (u) + [E(u)j2. 

We also have the well known Chebyshev's inequality: 

P{lu - E(u)1 ?: T} :S T-2var (u). 

A function t(x) of n random variables x = (Xl, ... , Xn)' is called a statis­
tic. Now, suppose we wish to estimate a parameter () by t(x). If E[t(x)] = (), 
then the statistic t( x) is said to be an unbiased estimator of () and a mea­
sure of precision of this unbiased estimator is its variance E[t(x) - ()]2. If, 
on the other hand, E[t(x)] =I- (), then t(x) is called a biased estimator of (). 
A measure of its precision is also E[t(x) - ()j2, but now since E[t(x)] =I- (), 
this quantity is not the variance. It is called the mean square error. Let 
E[t(x)] = "1. Then 

E[t(x) - ()]2 = E[t(x) - "1 + "1 - ()]2 

= E[t(x) - "1]2 + ("1 - ())2 + 2("1 - ()) E[t(x) - "1] 

= E[t(x) - "1]2 + ("1 - ())2 = var [t(x)] + ("1 _ ())2. 

The quantity "1 - () is called the bias, Bias [t(x)J, of the estimator t(x). 
Hence, 

5. MSE(t) = var (t) + [Bias (tW. 
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B.1.2 CORRELATED RANDOM VARIABLES 

Let u and v be two r.v.'s with means e and "I respectively. Then the co­
variance between u and v is defined by 

cov(u, v) = E[(u - e)(v - TJ)J = E[(u - e)vJ = E[u(v - TJ)J. (B.l) 

If the random variables u and v are independent, then E( uv) = E( u) E( v). 
Therefore, if u and v are independent random variables, then 

cov(u, v) = E[u(v - TJ)J = E(u) E(v - "I) = O. 

However, cov( u, v) = 0 does not imply independence, as the following 
example shows. Let the random variable x have a symmetric distribution 
with mean zero. Then cov(x, X2) = E(x3) = 0, since the odd moments of 
a symmetric distribution are zero, but x and x2 are not independent. 

The covariance between two random variables depends on measurement 
units since 

cov(au + b, cv + d) = accov(u, v). 

In order to make it free of units, we define the correlation between the two 
r.v.'s u and v as 

cov(u,v) 
p - -:-------:----:--'----:-'-::-:-::-= 

- [var (u)var (v)J1/2· 
(B.2) 

B.1.3 SAMPLE STATISTICS 

For a random variable x with observations Xl, ... , Xn , the sample mean is 
defined as x = n-1 L~=l Xi and the sample variance as (n-l)-l L~=l (Xi­
X)2. The square root of the sample variance is called the sample standard 
deviation. 

Let Xu, ... ,Xn1 and X12, . .. ,Xn2 be observations on the variables Xl and 
X2 respectively. Then, the sample correlation coefficient between Xl and X2 
is defined by 

r X1 X2 = r = [",n )2 ",n )2J1/2· , L-i=l (Xi1 - Xl L-i=l (Xi2 - X2 

The sample correlation coefficient r lies between -1 and 1 and is a measure 
of the linear relationship between the two variables Xl and X2. 

The word 'sample' is sometimes dropped when it is obvious from the 
context that observations from a sample, rather than random variables, 
are being referred to. 

B.1.4 LINEAR COMBINATIONS OF RANDOM VARIABLES 

Let u be a linear combination of n random variables, i.e., 
n 

U = a1U1 + ... + anUn = Laiui; 
i=l 
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where E(Ui) = (}i, var (Ui) = a~ and COV(Ui, Uj) = aij when i i= j. Then 

1. E(u) = L~=l ai(}i, 

3. var(u) = L~=l aTaT, if aij = 0 for all i i= j. 
In addition, if Ui'S are normally distributed, then U is also normal with 
mean (L~=l ai(}i) and variance L~l aTa~ + L'; .. ~=l aiajaij' 

'rJ 

Example B.1 
Let U1,"" Un be random variables with means (}1,"" (}n and common 
variance a2 . Further, let COV(Ui,Uj) = O. Then, 

n 

var (u) = n-2 L var (Ui) = a 2 In, 
i=l 

h - -1 ",n were U = n L..i=l Ui' • 

B.2 Random Vectors 

When we have several random variables, it is often convenient to write 
them as vectors or matrices. For example, we may write u = (U1' ... ,Un)' 
to denote the n r.v.'s, U1,"" Un. Then u is called a vector of n r.v.'s or 
simply a vector r.v. or a random n-vector. Similarly, we can have a matrix 
U = (Uij) of r.v.'s Uij where i = 1, ... , I and j = 1, ... , J. We define 

If A, Band C are constant matrices (of appropriate dimensions), it is easily 
verified that 

1. E(u + v) = E(u) + E(v), 

2. E(Au) = AE(u), 

3. E(AU) = A E(U), 

4. E(AUB + C) = AE(U)B + C. 

Thus, if U = a'u = a1U1 + ... + anun, where a' = (al, ... , an) and u = 
(U1, ... ,Un)', then E(u) = a'E(u) = a'9, where 9 = ((}l, ... ,(}n)' and 
(}i = E(Ui). 

We define the covariance matrix of a random vector u with mean vector 
9as 

cov(u) = E[(u - 9)(u - 9)'], 
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where (J = E(u). It can readily be seen that cov(u) is the expectation of 
the matrix 

( 

(Ul - Od (Ul - 0I)(U2 - 02) (Ul - Ol)(Un - On) ) 

:: ~ :::: ~ :: ... ;~: .~:;;:)~. ~~; ..•.... (~~ ~:~(:;; On) , 

i.e., the diagonal elements of cov(u) are the variances of the individual 
components of u and the other elements are the covariances between pairs 
of components of u. Since (u - 0) (u-O)' is clearly a symmetric matrix and 
the covariance matrix is simply its expectation, the covariance matrix is 
always a symmetric matrix. 

The variance of U = a' u is 

var(u) = E[a'u - a'(J]2 = E[a'(u - (J)]2 = E[a'(u - (J)(u - (J)'a], 

since a'(u - (J) is scalar and is equal to (u - (J)'a. Hence 

var (u) = a'[ cov(u)]a. (B.3) 

Theorem B.1 Let u be a random n-vector, with mean vector (J and co­
variance matrix E. Then for any r x n matrix A of constants, 

E(Au) = A(J 

and 
cov(Au) = AEA'. 

PROOF: The identity (B.4) is trivial and since 

cov(Au) = E[(Au - A(J)(Au - AO)'] 
= E[A(u - (J)(u - (J)' A'] = Acov(u)A' 

we get (B.5). 

(B.4) 

(B.5) 

o 

Theorem B.2 The matrix E = cov(u) is symmetric and at least positive 
semi-definite. 

PROOF: We have already seen that the covariance matrix is always sym­
metric. For any linear combination of the vector u, say a' u, we get from 
(B.3) 

var (a'u) = a' cov(u)a ~ 0 

since the variance of any random variable is always non-negative. The the­
orem follows. 0 

For a random p-vector u, tr[ cov(u)] is called the total variance of u. 
The total variance is, obviously, the sum of the variances of the individual 
components of u. 
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Theorem B.3 Let u be a vector of dimension p with mean vector 8 and 
covariance matrix ~. Then 

1. E(uu') = ~ + 88', 

2. cov( u + d) = cov( u), for any constant p-vector d, 

3. cov(Au + c) = A~A', for any r x p matrix of constants A and any 
r-vector c of constants. 

The proof is simple. 
Let XI, ... , Xn random p-vectors, and suppose t(XI, ... , xn) is a vec­

tor statistic (i.e., a vector-valued function of Xl, ••. ,Xn ) to estimate the 
parameter vector 8. Then t is said to be an unbiased estimator of 8 if 
E[t(X1, . .. ,xn )] = 8; otherwise it is called a biased estimator of 8. Let 
E[t] = ",. Then", - 8 is called the bias of t and is denoted by Bias [t]. The 
mean square error matrix of t is defined as MSE(t) = E[(t - 8)(t - 8)']. It 
is easy to see that 

MSE(t) = E[(t - ",)(t - ",)'] + (8 - "1)(8 - "I)' 
= cov(t) + [Bias (t)][Bias (t)]'. 

(B.6) 

The trace of the MSE matrix is called the total mean square, TMSE. That 
is, 

TMSE(t) = tr[MSE(t)] = E[(t - 8)'(t - 8)] 

= E[(t - TJ)'(t - "I)] + (8 - "1)'(8 - "I). 

B.3 The Multivariate Normal Distribution 

A standard normal (i.e., normal with mean 0 and variance 1) r.v. is defined 
by its probability density function (pdf) 

(B.7) 

That Z is normal with mean 0 and variance 1 will be denoted by Z '" N(O, 1). 
A variable u has a normal distribution with mean J.L and variance a 2 > 0 if 
u has the same distribution as J.L + az. Then we shall write u '" N(J.L, ( 2 ). 

The joint pdf of n independent standard normal r.v.'s ZI, . .. ,Zn is easily 
obtained from (B.7); it is 

n 

II (271-)-1/2 exp( -~z;) = (271-)-n/2 exp[-~(z~ + ... + z~)]. (B.8) 
i=l 

Writingz = (ZI,···,Zn)', we can verify that E(z) = o and cov(z) = 
E(zz') = I. We shall say z has a multivariate normal distribution with 
mean 0 and covariance matrix I and denote this fact as z '" N (0, 1). 
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An n-dimensional r.v. U is defined as having the multivariate normal dis­
tribution with mean 8 and covariance matrix L: (denoted by U rv N(8, L:)) 
when it has the same distribution as 8 + Az where AA' = L: and z rv 

N(o,J). We shall sometimes write simply normal instead of multivariate 
normal when context makes the meaning obvious. 

If x rv N(8, L:), then a'x rv N(a'8,a'L:a), a univariate normal dis­
tribution. The converse of this statement is also true. That is, if a' x rv 

N(a'8, a'L:a) for every vector a, then x rv N(8, L:). This fact is sometimes 
used to define the multivariate normal distribution. 

Lemma B.1 Let u rv N(8, L:) and let A be an r x n matrix of constants; 
then Au rv N(A8,AL:A'). 

The proof can be found in Srivastava and Khatri (1979). 

Letting A = (0,0, ... ,0,1,0, ... 0) (i.e., A consists of a single row with 
a 1 in the ith position and zeros elsewhere), we see from Lemma B.1 that 
if u rv N(8, E) and L: = (Uij) then Ui rv N(()i,Uii). That is, the marginal 
distributions of components of normally distributed vectors are also normal. 
In essentially a similar way it may be shown that if 

then Ul rv N(8 l ,L:11 ). 

L:l2 

L:22 
(B.9) 

In (B.9) the vectors Ul and U2 are independently distributed if and only 
if L:l2 = O. Note that since L:l2 = COV(Ul, U2) = E[(Ul - 8 l )(U2 - 8 2 )'], 

which is a matrix consisting of the covariances between components of Ul 

and those of U2, independence of Ul and U2 will always imply that L:l2 = 0 
regardless of the distributions of Ul and U2. While L:l2 = 0 does not always 
imply the independence of Ul and U2, under normality it does. 

Example B.2 
Let y rv N(8,u2 J) and U = a'y = 'L,aiYi. Then U rv N(a'8,u2 a'a). As 
a special case with al = ... = an = n- l and ()l = ... = ()n = (), we get 
y rv N((), u2 In). • 

Example B.3 
Let v = b'y and u = a'y where y rv N(8,u2 I). Then 

where 

6 = ( 
a'8 
b'8 ) 

2 ( a'a 
and 2: = U a'b a'b) 

b'b . 
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This follows from the fact that 

( u) (a'Y) (a') _ v = b'y = b' Y = Cy, say, 

which has a normal distribution with mean CO and covariance 

2 , 2 ( a' ) 2 ( a' a a'b) a CC = a b' (a b) = a b'a b'b 

(since a'b = Eaibi = b'a). 
Therefore, U and v are independently normally distributed if and only if 

a'b = Eaibi = O. 
In a similar way it may be shown that if u = Ay and v = By, then u 

and v are independently normally distributed if and only if AB' = O. • 

Example B.4 
Suppose e = [I - X(X' X)-l X']y =: My and b = (X' X)-l X'y = By. 
Since 

MB' = [I -X(X'X)-lX']X(X'X)-l 

= [X - X(X'X)-lX'X](X'X)-l = [X - X](X'X)-l = 0 

it follows that e and b are independently normally distributed if Yi'S are 
normally distributed. • 

BA Quadratic Forms of Normal Variables: The 
Chi-Square Distributions 

Let UI, ... , Un be independent normal r.v.'s and let u' = (Ul,"" un). Then 
we can define the central and noncentral chi-square distributions in the 
following way: 

1. If for each i, Ui has a normal distribution with mean 0 and variance 1, 
then E~=l u~ = u'u has a (central) chi-square distribution with n 
degrees of freedom. We denote this fact as E~=l u~ f'V X; or simply 
~n 2 2 as L...i=l u i f'V X . 

2. If for each i, Ui f'V N(B i ,1), then E~=l u~ = u'u has a noncentral 
chi-square distribution with n degrees of freedom and noncentrality 
parameter E~=l B~ = 0'0, where 0 = (B l , ... , Bn)'. We denote this as 
E~=l u~ f'V X;(O'O). 

Clearly, if the noncentrality parameter is zero, we have a central chi­
square distribution. It also follows from the definition above that if Ui f'V 
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N(Oi' ai), then 2:7=1 (Ui - Oi)2 jar has a central chi-square distribution and 
2:7=1 a;:2u; has a noncentral chi-square distribution. In the latter case the 
noncentrality parameter is 2:7=1 Or jar, and in either case the number of 
degrees of freedom is n. 

Example B.5 
Let y rv N(X{3, ( 21), where y = (Y1,"" Yn)', X is an n x p matrix and 
{3 is a p-vector. Further, let b = Ay where A is an r x n matrix. Then 
b rv N(AX,6, a 2 AA'). If we choose A = (X' X)-l X', then AX,6 = ,6, 
AA' = (X'X)-l, 

(B.IO) 

and 
a-2 (b - {3)'(X' X)(b -,6) rv X~. (B.ll) 

-
Example B.6 
Let e rv N (0, M), where M is an idempotent matrix of rank r. Then e' Me 
has a central chi-square distribution with r degrees of freedom. This follows 
from the fact that there exists an orthogonal matrix f such that M = 
f DAf', where DA = diag (1, ... , 1,0, ... ,0) with the number of ones being 
equal to the rank of the matrix M. Thus e'Me = e'rDAf'e = z'DAz = 
2:~=1 zr, where z = (Zl,"" zn)' = f'e rv N(O, fMf') = N(O, DA)' _ 

In fact, there is a stronger result than the above example, which, because 
of its importance, is stated in the following theorem; the proof can be found 
in Srivastava and Khatri (1979). 

Theorem B.4 Let U1, ... ,Un be independently normally distributed with 
means 01 , .•• , On and common variance a 2 . Then a-2u' Au, for any sym­
metric matrix A, has a noncentral chi-square distribution with r = tr(A) 
degrees of freedom if and only if A is an idempotent matrix. The noncen­
trality parameter is given by (J' A(J j a 2 with (J' = (01 , ... , On). 

Example B.7 
Let Y1, ... ,Yn be independently normally distributed with common mean 
o and common variance a 2 . Then 

n 

a-2 2)Yi - f/) rv X~-l' 
i=l 

Since y = n- 11'y, where, as in Section A.4, 1 = (1, ... , I)', it follows 
that ny2 = n-1y'11'y and 

n n 

i=l i=l 
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We have seen in Example A.lO that A2 = A and tr(A) = n -1. Hence, the 
result follows from Theorem BA, since E[y] = (h and (J21' A1 = O. • 

The proofs of the following two theorems can also be found in Srivastava 
and Khatri (1979). 

Theorem B.5 (Cochran's Theorem) Let z = (Zl' ... ,Zn)' and assume 
that its components Zi have independent normal distributions with common 
variance 1 and means (it, ... , ()n. Let q1,' .. ,qp be the p quadratic forms 
qj = z' Aj z with p( Aj) = nj, such that 

z' z = q1 + ... + qp. 

Then q1,"" qp are independently distributed as noncentral chi-squares, 
qj rv X~/Aj) with Aj = 0' Ai}, if and only if n = L;=l nj and 0'0 = 
L;=l Aj where 0 = «()1,"" ()p)'. 

Theorem B.6 Let Zl,"" Zn be n independent normally distributed r.v. 's 
with means ()1, ... ,On and common variance a2, and let z = (Zl," . , Zn)'. 
Furthermore, let q1 = Z' A 1z and q2 = Z' A 2z, where Al and A2 are n x n 
symmetric matrices. Then q1 and q2 are independently distributed if and 
only if A1A2 = O. 

Example B.8 
Suppose y rv N(O, I), and let 

q = y'y = y'[1 - X(X' X)-l X']y + y'[X(X' X)-l X']y = q1 + q2, 

where X is an n x p matrix of rank p and y is an n-vector. From Exam­
ple A.ll, H = X(X'X)-lX' and M = [I - X(X'X)-lX'] are matrices 
of rank p and n - p respectively. Since (n - p) + p = n, q1 and q2 are 
independently distributed as X~_p(81) and X~(82) respectively, where 

81 = 0'[1 - X(X' X)-l X']O and 82 = 0' X(X' X)-l X'O. 

If 0 = X {3, then 81 = 0 and 82 = {3' (X' X){3. 
Independence could also have been demonstrated using Theorem B.6 and 

Example A.15. • 

B.5 The F and t Distributions 

The ratio of two independent chi-square r.v.'s each divided by its degrees 
of freedom has an F distribution; i.e., 

Fm,n = (u/m)/(v/n), 
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where u '" X!., v '" X; and u and v are independent, has the F distribution 
with m and n degrees of freedom. The quantities ulm and vln are often 
referred to as averaged chi-square variables. It follows immediately from 
the definition that Fm,n = II Fn,m. Tables for F distribution are given on 
p. 322 and the three pages following it. 

If z '" N(O, 1) and v '" X; and z and v are independent, 

has the Student's t distribution with n degrees of freedom. Thus it follows 
immediately that (tn)2 = z2/(vln) has the F distribution with 1 and n 
degrees of freedom. However, some caution should be exercised in the use 
of this identification since tn can be used for one-sided hypothesis testing 
while F1,n can be used only for two-sided tests. A table for the t distribution 
is given on p. 320. 

Since in the above discussion we assumed that u and v are central chi­
squares and z rv N(O, 1), we could have called the F and t distributions as 
defined above the central F and t distributions. When u has a noncentral 
chi-square distribution with m degrees of freedom and noncentrality param­
eter 8, then Fm,n is said to have a noncentral F distribution with (m, n) 
degrees of freedom and noncentrality parameter 8. Similarly, if z rv N ((), 1), 
then the tn is said to have a noncentral t distribution with n degrees of 
freedom and noncentrality parameter (). 

Example B.9 
Let Y = (YI, ... ,Yn)' N(o,a2I), y 
1)-1 ~~=I(Yi - y)2. From 

n n n 

LY; = [LY; _ny2] +ny2 = [L(Yi _y)2] +ny2, 
i=1 i=1 i=1 

it follows that 

Hence, from Example A.lO and Cochran's theorem, ql and q2 are inde­
pendently distributed as X;-l and X~ respectively. Therefore, ny2 I 8 2 
q2/[(n -1)-lql ] '" FI,n-l. • 

B.6 Jacobian of Transformations 

Let re = (Xl' ... ' xn)' be a random vector of n variables and let the pdf 
of re be J(re) when re E A, where A is a subset of the n-dimensional Eu­
clidean space Rn. Let y = g( re) be a one-to-one continuously differentiable 
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transformation of x E A, where y = (Y1,"" Yn)' and 9 = (gl,"" gn)' , 
and let the inverse transformation be x = h(y). Then the Jacobian of the 
transformation from x to y, denoted by J(x -+ y), is given by 

( ~ ... ~) By! BYn 

J (x -+ y) = det + : : : : : : : : : : : : ' 
0E.n. ... 0E.n. 
By! BYn 

where det+ stands for the absolute value of the determinant. It may be 
shown that 

J(x -+ y) = l/J(y -+ x) 

and that the pdf of y is 

f(h(y))J(x -+ y) 

for y = {g(x) : x E A}. These results follow from those concerning change 
of variables in multiple integration (see any advanced calculus book, e.g., 
Apostol, 1957, p. 271 et seq.). 

Example B.IO 
Let Xl and X2 be independently normally distributed each with mean 0 
and variance 1. Then the pdf of x = (Xl, X2)' is 

f(x) = (271")-1 exp[-~x'xJ. 

Let 
Xl = rcos(O) and X2 = rsin(O), 

where r > 0 and 0 ::; 0 < 271". Then, of course, r2 = xi + x~ = XiX and 

OXt/ or = cos( 0), oxt/ 00 = -r sin( 0) 

OX2/or = sin(O) and ox2/o0 = rcos(O). 

Hence, 
I ( cos(O) 

J(x -+ (r,O)) = det+ sin(O) 
-rsin(O) ) _ r 

rcos(O) -. 

Thus, the pdf of (r, 0)' is 

where r > 0 and 0 ::; 0 < 271". • 
Example B.ll 
Consider the following transformations: 
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where). #- 0, Yi > 0 and i = 1, ... ,n. Let y = (Y1, ... ,Yn)' and y(>') = 
(Y1 (>'), ... , Yn (>'»)'. Here the Jacobian J(y ---+ y(>'») is 

n n 

1/ J(y(>') ---+ y) = 1/ II [8yP) /8Yi] = 1/ II y;-l. 
i=l i=l 

This example is used in Section 9.4.3. • 

B.7 Multiple Correlation 

Suppose we have k variables Xl, . .. , Xk. Then, the maximum correlation 
between Xl and all possible (non-null) linear combinations of X2, . .. , Xk is 
called the multiple correlation coefficient between Xl and X2, . .. , Xk. If we 
write the covariance matrix of x = (Xl, . .. , Xn)' as 

cov(x) = ( O"u 
0"12 

then it may be shown that the multiple correlation is given by 

R ( ' ",-1 )1/2/ 1/2 = 0"12L..220"12 O"u 

and its value lies between 0 and 1 (see Srivastava and Khatri, 1979, Chap­
ter 2). 

Let 

where X1j, ... , Xnj are n observations on each Xj, Xj = n-1 L~=l Xij and 
j = 1, ... , k. Then, if 

w = Z'Z = ( Wu 
W12 

n 

Wij = ~)Xli -Xi)(Xlj -Xj), and i,j = 1, ... ,k. 
[=1 

The sample version of the multiple correlation coefficient is defined as 
follows: 

Definition B.1 The sample multiple correlation R 1(2, ... ,k), between Xl and 
X2, ... , Xk, is defined by 

R2 , w.- 1 / 1(2, ... ,k) = W12 22 W12 WU· 
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It follows that 

where :1:1 = (Xll' ... ,xnd'. The last expression in the equation is obtained 
using the fact that the variables in Z2 are centered and therefore l' Z2 = o. 

From the definition it follows, using the results of Example A.8 p. 276, 
that 

1- R~(2, ... ,k) = (Wll - W~2W221w12)/Wll = 1/(WllWll), 

where w ll is the (1, l)st element of W- 1 • If Wll = 1, then 

W ll - (1 _ R2 )-1 - 1(2, ... ,k)· 
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Exercise B.t: Let x rv N(/-L, a 2 ). Show that 

E(etX ) = eJLt+~t2<T2. 

Problems 297 

Exercise B.2: Let x rv N(O, 2). Show that Elxl = (14/11)1/2 = 1.128. 

Exercise B.3: Let Xl, ..• ,Xn be independently and identically distributed 
with mean 0 and variance a2 . Let it = n-1 L:~l Xi, and let Yi = Xi - it for 
all i = 1, ... , n. Find the covariance matrix of y = (Yl, ... , Yn)'. What can 
you say about the distribution of y when Xi'S are normally distributed? 

Exercise B.4: In the above exercise, show that it and y are independently 
distributed under the normality assumption. 

Exercise B.5: Let b = (X'X)-lX'y where y rv Nn (X{3,a2In ), X is an 
n x p matrix of rank p(~ n) and {3 is a p-vector. Are 

b'G'[G(X' X)-lG'tlGb and y'[I - X(X' X)-l X'Jy 

independently distributed? 



ApPENDIX C 

Nonlinear Least Squares 

We have made a number of forays into nonlinear least squares (NLS), and 
on one occasion (Section 6.4, p. 118) we used NLS to fit a linear function 
because we wished to perform iterative weighting. In this portion of the ap­
pendix we present an overview of nonlinear least squares with an emphasis 
on parameter estimation techniques. 

It is usual to use different notation for nonlinear least squares and linear 
least squares. However, we shall not do this with one exception. We shall 
continue to use y = (Yb ... , Yn)' to stand for the vector of n dependent 
variable values and rei = (XiI, ... , Xik)' to stand for the vector of values of 
the k independent variables corresponding to the ith observation. As for 
linear least squares, we shall let X = (reb ... ,ren ), stand for the matrix of 
independent variable values and set e = (EI, ... , En)' for the error vector. 
However, the parameter vector {3 will be replaced by 9* = (Oi,···, Ok)'. 
This is the true value we are going to attempt to estimate, while 9 will 
refer to a general point in the parameter space. 

Our model is 
(C. 1) 

where i = 1, ... ,n. The form of the function f needs to be specified by the 
user and is usually done on the basis of theoretical considerations in the 
substantive field of application. The Ei'S are assumed to have mean zero and 
also be homoscedastic and uncorrelated, i.e., E[e] = 0 and E[ee'] = CJ2 [. 

The NLS estimate of 9* is the value of 9 which minimizes 

n 

82 (9) = ~)Yi - f(rei,9))2. (C.2) 
i=l 

Assuming adequate differentiability of f, and setting partial derivatives 
of (C.2) with respect to each OJ equal to zero, we get 

n 

2)Yi - f(rei, 9))Vij = 0, (C.3) 
i=l 

for all j = 1, ... , k, where Vij = 8f(rei,9)/80j. While on occasion the 
system of k equations can be easily solved, frequently this is not possible 
and some iterative scheme needs to be used. Statistical packages provide 
such algorithms and we shall describe some in this part of the appendix. 
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Example C.l 
Let the form of f be f(Xi, 0) = exp[(hxil] + exp[02xi2]. Then, in order to 
minimize 

n 

S2(O) = S2(01,02) = L[Yi - exp(Olxil) - exp(02xi2)]2, 
i=1 

we set its partial derivatives with respect to 01 and O2 equal to zero and 
get the two equations 

n 

L[Yi - exp(Ol xil) - exp(02x i2)]Xil exp(Olxil) = 0 
i=1 

n 

and L[Yi - exp(Olxil) - exp(02x i2)]Xi2 exp(02Xi2) = 0, 
i=1 

which are not easy to solve for 01 and O2 • • 

C.l Gauss-Newton Type Algorithms 

Several methods have been given in the literature for the minimization of 
(C.2). Those based on the Gauss-Newton procedure are perhaps the most 
popular. 

C.l.I THE GAUSS-NEWTON PROCEDURE 

Assuming adequate differentiability of f, we can approximate it using linear 
terms of a Taylor expansion around a value 0(0) of 0 as follows: 

k 

f(Xi, 0) ~ f(Xi, 0(0») + L Vi/a) (OJ - 0/°») (C.4) 
j=1 

for i = 1, ... , n where Vi/a) is the partial derivative 

evaluated at 0(0). Hence, 

k 

Yi - f(Xi, 0) ~ ei(O) - L Vi/O)T/O) 
j=1 

(C.5) 

where e(O) = (el(O), ... ,en (O»)" with ei(O) = Yi - f(Xi,O(O») and r(O) = 
(Tl (0), ... , Tk(O»)' = () - 0(0). Therefore, if the approximation (C.4) is close, 
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minimizing S2(8) is approximately equivalent to minimizing 

n k 

~)e/O) _ ~::>i/0)'T/0»)2 = (e(O) - V(O)T(O»),(e(O) - V(O)T(O») (C.6) 
i=l j=l 

with respect to T(O) where V(O) is the matrix (Vi/O») of Vi/Oj,S. Since 
V(O)T(O) is linear in T(O), (C.6) is obviously minimized by the linear least 
squares estimate t(O) of T(O); Le., by 

t(O) = [(V(O»),V(O)]-l (V(O»)' e(O). 

Therefore, if the approximation (C.4) is reasonably good, one should 
expect that 

(C.7) 

Unfortunately, the approximation (C.4) is not always very good and (C.7) 
does not always hold true, but we shall postpone discussion of remedies for 
this till later. 

Whether (C.7) holds or not, we can mechanically continue with the pro­
cedure. At the next (Le., second) iteration of the procedure, we would start 
with 8(1) = 8(0) +t(O) and do exactly what we did earlier, only with 8(1) in­
stead of 8(0). At the (r+1)th step, we would start with (J(r) = 8(r-l)+t(r-l) 
and then apply least squares to the model e(r) = v(r)T(r) + € to get the 
estimate 

t(r) = [(V(r»)'v(r)t1(V(r»)'e(r) 

where e(r) = (el (r), . .. ,en (r»), with ei(r) = Yi - f(Xi, (J(r»), v(r) is the ma­
trix (Vi/r ») ofthe partial derivatives Vi/r ) = Vij = 8f(Xi, 8)/8()j evaluated 
at 8(r) and T(r) = 8 - 8(r). 

These iterations are continued until a suitable criterion is met. Typically, 
iterations are stopped when either 

1. [S2(8(r») - S2(8(r-l))]/[S2(8(r)) + 8*] < 8 where 8* and 8 are small 
numbers (e.g., 10-6 ), or 

2. a specified number of iterations or allotted computer time is exceeded. 

Obviously, one can think of possible replacements for 1; e.g., close enough 
consecutive 8(r),s. 

C.1.2 STEP HALVING 

If at any step S2((J(r+l») = S2((J(r) + t(r») ? S2((J(r»), a process called 
step halving can be undertaken. Instead of setting (J(r+l) = 8(r) + t(r) we 
compute values of S2((J(r) + vt(r») for v = .5, .25, .125, ... , and choose a v 

for which S2(8(r) + vt(r») < S2(8(r»). Then we set (J(r+l) = 8(r) + vot(r) 

where vo is the value of v chosen and continue with the Gauss-Newton 
iterations. 
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Other methods could have been used to find a suitable 1/. These include 
methods such as golden-section search, which searches over a number of 
possible values of 1/ to find one which minimizes 82(o(r) + I/t(r)). 

As can be seen from the argument at the beginning of Section C.2, for 
sufficiently smooth f, the process of step halving will ultimately always 
reduce 1/ to a point where 8 2 (o(r) + I/t(r)) < 8 2 (o(r)). In fact, the Gauss­
Newton iterations with the inclusion of this modification always converge. 
However, sometimes the speed of convergence is slow enough to render the 
procedure practically infeasible. Computer packages restrict the number of 
step halvings and stop when the maximum number is reached. In practical 
situations we have encountered, a very large number of step halvings usually 
occur near a local minimum of 8 2 (0). However, this need not always be so 
and then other methods need to be considered. Nevertheless, this modified 
Gauss-Newton procedure is a default option in SAS PROC NLIN. 

C.1.3 STARTING VALUES AND DERIVATIVES 

To run a Gauss-Newton procedure, the initial estimate 0(0) of the param­
eter vector 0 and the partial derivatives of f are needed. Computer pro­
grams usually require the user to supply initial estimates, although some 
(e.g., SAS) will, if requested, compute 8 2 (0) for each combination of several 
possible values of each OJ to find that combination 0(0) which minimizes 
8 2 (0) and will use this 0(0) as the initial estimate. 

Computer programs also frequently require the user to input algebraic 
expressions for the derivatives. Since this is not always too easy when f 
is complicated, some programs have the ability to numerically obtain ap­
proximate derivatives. One method is to use [F(Xi' O+hL1 j ) - F(Xi' O)]/h, 
where L1j is a vector of dimension k with its jth element 1 and all other 
elements zero. Since this is rather time consuming, after the kth iteration 
derivatives are sometimes estimated from values of f(Xi'O(s)) obtained 
from earlier iterations. For example, for s = r - 1, r - 2, ... ,r - k, O(s) can 
be substituted for 0 in 

k 

f(Xi,O) - f(Xi, oCr)) ~ L Vi/r ) (OJ _ o/r)) 
j=l 

and the resultant system of approximate equations solved for each Vi/r). 
A derivative-free approach has been taken by Ralston and Jennrich (1979; 

the method is also described in Bates and Watts, 1988, p. 82 et seq.) in their 
DUD (standing for 'Doesn't Use Derivatives') method, which is available 
in SAS PROC NLIN. 
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C.1.4 MARQUARDT PROCEDURE 

Since at each step, the Gauss-Newton procedure uses a linear least squares 
estimate t(r) = [(v(r))'v(r)j-l(v(r))' e(r), it is not unreasonable to expect 
that if vCr) is ill-conditioned - i.e., if the columns of vCr) are multicollinear 
- problems would arise. This is indeed what happens. Sometimes in ill­
conditioned cases, the Gauss-Newton procedure is excruciatingly slow, re­
quires excessive step halving and becomes practically unusable. 

Such situations are handled well by a procedure called Marquardt's pro­
cedure, in which at each iteration, T(r) = o(r+l) - oCr) is estimated by 

(C.8) 

which is rather akin to the ridge estimate (Section 12.3, p. 256). Mar­
quardt's (1963) paper motivates the method in a slightly different way: as a 
compromise between the Gauss-Newton procedure, to which Marquardt's 
procedure is congruent when c = 0, and the steepest descent procedure 
(Section C.2.1), which it resembles for large c. (This procedure was actu­
ally suggested by Levenberg, 1947, while Marquardt suggested one in which 
the cI in (C.8) is replaced by cD where D is the diagonal matrix consisting 
of the diagonal entries in (V(r)),v(r).) 

In actual use, c is usually initially set equal to a very small number 
(e.g., 10-3 in SAS). If, at any iteration, 8 2 (0(r+l)) > 8 2 (0(r)) (where 
o(rH) = oCr) + te(r)), then c is scaled up by some factor (10 in SAS) and 
step (C.8) is repeated. This scaling-up and recomputation of (C.8) may 
have to be done several times. On the other hand, if 8 2 (0(rH)) < 8 2 (0(r)), 
then c is scaled down (by .1 in SAS) for the next iteration. Thus, if at 
each iteration 8 2 (0(r)) declines, without having to change c within the 
iteration, then c -t 0 as r -t 00 and with increasing r the Marquardt 
procedure becomes essentially the Gauss-Newton procedure. 

C.2 Some Other Algorithms 

Another cluster of approaches for obtaining estimates of 0 involve minimiz­
ing 8 2(0) - see (C.2) - using one of the standard methods in nonlinear 
optimization. We present three of these in this section. 

The first two require f to be differentiable. Let vCr) be the gradient 
vector of 8 2 (0) at the point (J = (J(r), i.e., vCr) = ('!9(l), ... ,'!9(k)), where 
'!9(i)'s are the partial derivatives '!9(j) = 882 ((J)/8(}j evaluated at the point 
oCr). From (C.2) and (C.3) it is easy to verify that vCr) = -2(v(r))'e(r) 
where vCr) and e(r) are as in the last section. Then, taking a Taylor series 
expansion of 8 2 (0) about the point (J(r), we get, as for (C.4), 

(C.9) 
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where as before, T(r) = 0 - o(r). By the Cauchy-Schwartz inequality, 

l(v(r»),T(r)1 ~ IIv(r) II IIT(r) II, 

with equality holding if, and only if, for some a, T(r) = aV(r). Therefore, 
the right side of (C.9) is minimized when T(r) = -a(r)v(r) with a(r) > 0; 
i.e., when T(r) lies along - V, or, equivalently, when 0 moves away from oCr) 

in the direction of - v(r). This is called the direction of steepest descent. 
Obviously, there are many other directions which also reduce the right 

side of (C.9). For any k dimensional positive definite matrix P, the di­
rection _a(r) pv(r) (a(r) > 0) will reduce it, since then (v(r»)'T(r) = 

-a(r) (v(r»), pv(r) < O. This fact yields a number of alternative methods 
for minimizing 82 (0). Actually, since [(V(r»),v(r)t 1 and [(V(r»)'v(r) + 
CI]-l are both positive definite, the Gauss-Newton procedure and the Mar­
quardt procedure are, in a sense, applications of this principle. 

C. 2.1 STEEPEST DESCENT METHOD 

As the name implies, after starting at some initial choice 0(0) of 0, in each 
iteration of this method, we move in the direction of steepest descent; i.e., 
at the (r + 1 )th iteration 

o(r+l) = oCr) _ a(r)V(r) = oCr) + 2a(r)v(r)1 e(r). 

The major computational question is essentially the choice of a(r). If a(r) 

are chosen too small, although the right side of (C.9) will be negative, the 
entire process will be inefficient. On the other hand, 8 2 (0), which initially 
declines as we move in the - vCr) direction, can start increasing again and 
for large enough a(r) can exceed 8 2 (0(r»). 

Computer packages obtain a(r) by computing possible values of 8 2 (0) 
for several possible values of a(r). A very careful choice of a(r) is time 
consuming, but a cruder choice (which is what is usually made) increases 
the number of iterations. Frequently, the value of 8 2 (0) declines rapidly 
for the first few iterations and then the rate of decline slows down. Par­
ticularly if multicollinearity is present, the procedure can get so slow that 
it is preferable to use one of the other procedures except under unusual 
circumstances. 

C.2.2 QUASI-NEWTON ALGORITHMS 

Before describing this family of algorithms, we shall describe the Newton 
or, as it is sometimes called, the Newton-Raphson algorithm. After some 
initial choice 0(0), this procedure selects successive oCr) 's using the formula 

o(r+l) = oCr) + a(r)(H(r»)-lv(r), (C.lO) 

where a(r) is a suitable number and H(r) is the Hessian matrix of 8 2 (0) 
at the point 0 = O( r); i.e., H( r) is the matrix the (j, C)th element of which 
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is the second partial derivative f)282«(J)/{)()j{)(h evaluated at (J = (J(r). The 
motivation behind the use of (C.lO) is the following: Consider a Taylor 
expansion of 8 2 «(J) about (J(r), keeping all linear and quadratic terms -

(C.ll) 

It is easily shown, using matrix differentiation, that the right side of (C.ll) 
is minimized only if 

(C.12) 

from which, because (1i(r»-l is positive definite, we see that the choice 
(C.lO) minimizes the right side of (C.ll) for small enough a(r). 

Notice that (C.12) is also the necessary condition for maxima and saddle 
points, which makes the choice of an initial point slightly more critical com­
pared with other procedures. But possibly the most serious problem is that 
this procedure requires the computation of the Hessian. Since computer 
packages are intended to be user friendly, and a requirement of computing 
and keyboarding expressions for several second derivatives is not likely to 
win friends, statistical packages provide quasi-Newton methods rather than 
the Newton method. 

In quasi-Newton methods an approximate equivalent per) of the in­
verse of the Hessian is found numerically using a relationship of the form 
p(r+1) = per) + Q(r). These p(r),s are used in place of the (1i(r»-l,s in 
(C.lO). Taking a linear Taylor series approximation for the gradient vector, 
we get 

v(r+l) _ vCr) ~ 1i(r+l) «(J(r+l) _ (J(r», 

which yields, if 1i(r+1) is nonsingular, 

(1i(r+1»-l(v(r+l) _ vCr»~ ~ «(J(r+1) _ (J(r». 

If we now replace (1i(r+l»-l by p(r+l) = per) + Q(r) we get 

A number of choices of Q(r) will satisfy (C.13). One suggestion, made by 
Fletcher and Powell (1963), is 

(r) _ «(J(r+1) - (J(r»(6(r+l) - 6(r», 

Q - «(J(r+l) _ (J(r»'(V(r+l) - VCr»~ 
p(r)(v(r+l) _ v(r»(v(r+l) _ v(r», per) 

(V(r+1) - VCr»~, p(r) (v(r+1) - VCr»~ 

(C.14) 

The initial p(O) can be chosen to be I. If a(r) is chosen to yield a minimum 
of 8 2 (6), then p(r+l) chosen in this way will be positive definite (Fletcher 
and Powell, 1963). 
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C.2.3 THE SIMPLEX METHOD 

The simplex method is a derivative-free method which is only very distantly 
related to the simplex method used in linear programming. Roughly, the 
procedure is the following. Around any given value o(r) of 0 consider the 
point o(r) + h1 and the k points o(r) + h.tl j for j = 1, ... ,k where, as in 
Section C.1.3, .tlj is a vector with all components zero except the jth, which 
is one, h is a positive number and, as before, 1 = (1, ... , 1 )'. These k + 1 
points are the vertices of a simplex in k dimensional space. (Notice that 
in two dimensions a simplex is a triangle and in three it is a tetrahedron.) 
These vertices are examined to find which one maximizes 8 2 (0). Then a 
selection of points along the direction connecting this vertex to the centroid 
of the remaining vertices is examined to find a point which adequately 
reduces 82 (0). This point is o(r+1) , which is the starting point for the next 
iteration. 

Since calculations are not carried over from iteration to iteration, round­
off errors do not propagate and multiply. Although time consuming, the 
simplex method has the reputation of being very reliable. For more details 
see Griffiths and Hill (1985). 

C.2.4 WEIGHTING 

Nonlinear least squares is sometimes weighted and for much the same rea­
sons that linear least squares is on occasion weighted. (For a fuller treat­
ment of this subject, see Carroll and Ruppert, 1988.) In fact, as mentioned 
in Section 6.4, p. 118, we frequently perform weighted linear least squares 
using nonlinear methods when the weights depend on the parameters being 
estimated. In weighted NLS, instead of (C.2), we minimize 

n n 

(C.15) 
i=l i=l 

where Wi'S are weights. Some computer packages require that this objective 
function (C.15), sometimes called a loss function, be explicitly described. 
Others accept a description of the weights Wi. 

Now assume that f is linear in 0, i.e., f(Xi, 0) = x~O. Further, let Wi = 
Wi(O)'S be functions of 0 and W(O) = diag (Wl(O), ... , wn(O)). Now the 
objective function becomes 

8 2 (0) = (y - XO)'W(O)(y - XO). 

The Gauss-Newton method and the methods of Section C.2 can easily be 
applied to this objective function. Computationally, all we need do is run a 
weighted NLS program with f set as x~O. This is what we did in Section 6.4. 

We now show that the Gauss-Newton procedure applied to a weighted 
linear least squares model yields the steps of the iteratively reweighted least 
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squares procedure described in Section 6.4. In this case, at the (r + l)th 
step of the Gauss-Newton procedure e(r) becomes e(r) = y - xo(r) and, 
since v(r) = X for all iterations, we now use 

o(r+l) _ o(r) = [x'w(r) Xl- 1 x,w(r)e(r) 

for our iterations, where w(r) = w(o(r)). Therefore, 

o(r+l) = o(r) + [x'w(r) Xl- 1 x,w(r)e(r) 

= o(r) + [x,w(r) Xr 1 X'W(r) [y - xo(r)j 

= o(r) + [x'w(r) Xj-l x,w(r)y - [x'w(r) Xr1 x,w(r) xo(r) 

= [x,w(r) Xj-l x'w(r)y. 

In carrying out such iteratively reweighted linear least squares using the 
Gauss-Newton procedure, step halving is unnecessary and in fact, should 
be disabled if it is the default option. 

C.3 Pitfalls 

As Wilkinson (1987, p. NONLIN-33) puts it, "Nonlinear estimation is 
an art. One-parameter estimation is minimalist, multiparameter is rococo. 
There are numerous booby traps (dependencies, discontinuities, local min­
ima, etc.) which can ruin your day." With simple 1's and few parameters, 
point estimation of 0 can be quite straightforward; but when f is 'terri­
bly nonlinear' with many parameters, the successful completion of a least 
squares exercise is often cause for celebration. 

With continuously differentiable 8 2 (0) 's, the main problem is one of 
several local minima. This does not always occur. In some cases it is possible 
to show theoretically that there is only one local minimum which, therefore, 
is global. This is particularly true when f is linear and the weights are the 
cause of nonlinearity of 8 2 (0). When the form of f has been well studied 
in the literature, chances are that the question of uniqueness of estimates 
has already been examined. When theoretical information is not available 
and there are relatively few parameters, values of 8 2 (0) for different o's 
can be computed and these would provide us with an understanding of 
the behavior of 8 2 (0). Alternatively, one could run an NLS procedure for 
several different and widely separated starting values to see if the respective 
iterations converge to different local minima. If they do, the 0 yielding 
the smallest minimum would be selected (after perhaps trying out some 
more initial values). Another suggestion (Freund and Littell, 1986) is to 
approximate f with a suitable polynomial which can then be fitted by linear 
least squares. If the residual sum of squares for the polynomial regression 
is close to the value of 8 2 (0) for the 0 found by the nonlinear method, then 
the chances are that the desired global minimum of 8 2 (0) has been found. 
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Unless one is very sure that the right estimate has been found and is secure 
about the quality of the estimates, it is essential to end an NLS exercise 
with an examination of plots of residuals against independent variables and 
predicted values. 

Even apart from the issue of multiple minima, the selection of initial 
estimates deserves attention. When parameters appear in the exponent of 
large numbers within !, bad starting estimates can lead to underflows and 
overflows; i.e., to numbers too large or too small for the computer to handle. 

A number of methods are available for choosing initial values if intuition 
is not adequate. When an OLS cognate is available, it can be run to obtain 
initial parameter estimates. For example, if ! is linear and we are using 
NLS because weights depend on parameters, we could use OLS (setting 
all weights equal to 1) to obtain initial estimates. If by ignoring the error 
term, it is possible to transform the variables to make Y = !(m,9) linear, 
we could apply OLS to this transformed model. 

Often an examination of the behavior of ! as different independent vari­
ables go to zero or infinity can give us an idea of what initial values to 
choose. Draper and Smith (1981, p. 474) describe a generalization of this 
approach in which they suggest solving for 9, the k equations Yi = !(mi, 9), 
where the k sets of independent variable values have been chosen from 
among all mi's to be reasonably widely separated, and then using this so­
lution as the initial choice. 

Example C.2 
A reasonable model for population densities Yi in an urban area is Yi 
(h + 02di()3 + €i, where di is the distance from city center and 03 > o. 
When di is large, Yi ~ 01, the density in the urban fringe and rural areas. 
Ignoring the subscripts and the error terms, the model can be written as 

Therefore, if we know 01 we can plot log[Yi -OIl against log[d]. The intercept 
will give us log[02] and the slope 03 . These estimates should be good enough 
as initial values. • 

Even with reasonable choices of initial estimates, NLS methods some­
times give trouble. Improvements in 8 2(9) from iteration to iteration could 
become small, or, in the case of the Gauss-Newton procedure, step halving 
might have to be done too often. Overflows or underflows can still occur. 
In such cases, switching methods often helps and fortunately most serious 
statistical packages offer a choice of methods. 

Up to now we have concerned ourselves solely with the problem of get­
ting estimates at all, not with their quality. In general, NLS estimates are 
at least as susceptible to the ill effects of outliers, incorrect specification, 
and multicollinearity as OLS estimates. While sometimes OLS methods can 
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be adapted for identification and alleviation of these problems, such meth­
ods are not in general use and are not available in the popular statistical 
packages. 

C.4 Bias, Confidence Regions and Measures of Fit 

Assume that all went well with one of the procedures described in Sec­
tions C.1 and C.2 and the iterations converged at step u so that O(u) is 
the point iJ at which the global minimum of S2(O) occurs. Actually, O(u) 
will only be a close approximation to such a point but let us pretend that 
it is the minimizing point. When f is nonlinear, this final estimate iJ will 
nearly always be a biased estimate of 0* in the model (C.1), i.e., in general 
E[iJ] i= 0* (Box, 1971). 

However, under some mild conditions, iJ may be shown to be a con­
sistent and asymptotically normal estimator of 0* in the model (C.1) -
see Amemiya (1983) or Judge et al. (1985). Moreover, the asymptotic co­
variance matrix of O(u) is a2[(V(u»)'V(u)]-1 and 8 2 = S2(iJ)/(n - k) is a 
consistent estimator of a 2 • These facts are used in testing linear hypotheses 
and in the construction of confidence intervals and regions with V(u) play­
ing the role X did in Chapter 3. For example, if 8 2[(V(u»),V(u)]-1 = (aij), 
then OJ/a~f2 is treated as if it had the t distribution. As for the OLS case, 
computer packages provide these t values. 

Several asymptotically equivalent alternative expressions for the covari­
ance matrix are also available (e.g., estimates of the Hessian matrix can 
also be used to obtain an estimate for the covariance). For these alterna­
tives and for tests of nonlinear hypotheses, see Judge et al. (1985, p. 209 
et seq.) 

From the discussion of Section C.l.1, we can see where the covariance 
matrix a2[(V(u»)'V(u)]-1 came from. In that section we had approximated 
the function f by its tangent plane v(r)(o-o(r») and thereby obtained the 
estimate 

t(r) = [(V(r»),v(r)r1(V(r»)'e(r) 

~ [(V(r»),v(r)r1(v(r»),[v(r)(0 - oCr») + e] 

= (0 - oCr») + [(v(r»),v(r)]-l(V(r»)'e, 

whence cov(t(r») = a2 [(v(r»),v(r)j-l. 
All tests and confidence regions using asymptotic results are actually 

based on the tangent plane. The level curves of S* = (y - V(u)O),(y -
V(u)O), i.e., curves over which the values of S* are the same, can easily be 
seen (from the form of S*, which is quadratic in 0) to be ellipses around 
O(u). But S2(O), which is approximated by S*, will rarely have elliptic level 
curves. Since level curves bound confidence regions, the asymptotic confi­
dence regions can in practice be quite different from the actual confidence 
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EXHIBIT C.l: Level Curves of Weighted Sum of Squares for Travel Mode Choice 
Data 

regions. [Obviously, if two or less parameters are involved, we can obtain 
approximate level curves by computing 5 2 (0) for several values of 0 near 0, 
but we would not know the confidence levels associated with the regions the 
curves enclose.] The upshot of all this is that test and confidence regions as­
sociated with nonlinear regression should be interpreted with several grains 
of salt. 

Most computer packages provide the value of 5 2 (0) and/or 5 2 (0)/(n-k) 
which can be used as a measure of fit. They will either give R2 = 1 -
5 2 (0)/2:7=1 YT or provide the ingredients to compute it (either as part of 
the NLS program or some other portion of the statistical package). Notice 
that this is the no-intercept form of R2, which would appear to be relevant 
here since frequently there are no intercepts in the functions we fit, and 
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Step 00 01 S'2 (8) 

0 0 0 1381. 6 70051071950 
1 -0.116583990 0.0020871670 129.720690631157 
2 -0.123448664 0.0024688319 112.656625048396 

-0.124069413 0.0024941630 113.229792492524 
-0.123759038 0.0024814975 112.916241995827 
-0.123603851 0.0024751647 112.779692655420 
-0.123526257 0.0024719983 112.716473728977 
-0.123487460 0.0024704151 112.686128119070 
-0.123468062 0.0024696235 112.671271267681 
-0.123458363 0.0024692277 112.663921829192 
-0.123453513 0.0024690298 112.660266856604 
-0.123451088 0.0024689309 112.658444306955 
-0.123449876 0.0024688814 112.657534266290 
-0.123449270 0.0024688567 112.657079554497 
-0.123448967 0.0024688443 112.656852275735 
-0.123448815 0.0024688381 112.656738655638 
-0.123448739 0.0024688350 112.656681850410 
-0.123448702 0.0024688335 112.656653449002 
-0.123448683 0.0024688327 112.656639248599 
-0.123448673 0.0024688323 112.656632148472 
-0.123448668 0.0024688321 112.656628598428 
-0.123448666 0.0024688320 112.656626823411 
-0.123448665 0.0024688320 112.656625935903 

EXHIBIT C.2: Iterations of the Gauss-Newton Procedure for Travel Mode Choice 
Data 

even if there were, their role would be different. But many packages will 
also give the intercept form of R2; i.e., 1 - S2(O)j '2:;':=1 (Yi - y)2 or the 
means to compute it. 

C.5 Examples 

Several of the manuals that accompany statistical packages provide numer­
ous examples of NLS. We shall augment these with two more. 

Example C.3 
As mentioned in Section 9.2.4, p. 186, we can also use NLS to estimate 
parameters of a logit model. Therefore, consider the data of Exercise 9.8, 
p. 214, and let us estimate 00 and 01 in the model 

exp(Oo + 01 X id -1 
Yi = (0 0 ) + Ei = 1- [1 + exp( -00 - 01 X i1)] + Ei, (C.16) 

1 + exp 0 + lXi1 
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Step (}o (}I 8".t( 0) 

0 0 0 1381.670051071950 
1 -0.117900463 0.0020828501 129.936954803759 
2 -0.123479203 0.0024685013 112.651795383351 

-0.124069491 0.0024941602 113.229723134302 
-0.124070493 0.0024941562 113.229666855365 
-0.124080477 0.0024941165 113.229105112580 
-0.124176787 0.0024937288 113.223589469723 
-0.124870685 0.0024906104 113.176435170649 
-0.125648332 0.0024800114 112.960160699828 
-0.124094688 0.0024708301 112.714054674204 
-0.123551655 0.0024687639 112.658718755054 
-0.123486576 0.0024685279 112.652495508745 
-0.123479941 0.0024685039 112.651865474667 
-0.123479277 0.0024685015 112.651802393271 
-0.123479210 0.0024685013 112.651796084351 
-0.123479204 0.0024685013 112.651795453451 
-0.123479203 0.0024685013 112.651795390361 
-0.123479203 0.0024685013 112.651795384052 
-0.123479203 0.0024685013 112.651795383421 
-0.123479203 0.0024685013 112.651795383358 
-0.123479203 0.0024685013 112.651795383352 
-0.123479203 0.0024685013 112.651795383351 

3 -0.123479203 0.0024685013 112.651795383351 

EXHIBIT C.3: Iterations of the Marquardt Procedure for Travel Mode Choice 
Data 

Parameter Estimate Asymp. s.e. 

(}o -.12345 .066272 
(}I .00247 .000166 

EXHIBIT C.4: Parameter Estimates and Standard Errors for Model Choice Data 

where XiI = tr - ta is the difference in travel times between transit and car. 
Since Yi is a proportion of counts, we need to run a weighted nonlinear least 
squares procedure with weights Wi which are n[ E(Yi)]-1 [1- E(Yi)]-I. Level 
curves of a weighted version of 8 2 (0) (see (C.15)) for intervals of parameter 
values that we felt were reasonable are shown in Exhibit C.1. The curves 
indicate that there is possibly a single reasonable local minimum value. 
What we need to do now is find it. 

Let us use a Gauss-Newton procedure for which it is usually necessary 
to specify the derivatives of the right side of (C.16) with respect to (}o 

and (}I, and a set of initial values for the parameters. The derivatives are, 
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EXHIBIT C.5: Plot of Residuals Against Independent Variable Values for Travel 
Mode Choice Data 

respectively, 

exp( -(}o - (}IXil) and XiI exp( -(}o - (}IXil) 

[1 + exp( -(}o - (}lXil)]2 [1 + exp( -(}o - (}lXil)]2· 

We tried a number of different sets of initial values, including those found by 
using OLS, i.e., by completing Exercise 9.B. Exhibit C.2 shows the values 
of the parameters and 82 (9) for a set of iterations corresponding to the 
starting value 9 = (0,0). The rows with no iteration number represent step 
halving. The iterations end with ten step halvings producing no reduction 
in 8 2 (9). 

For each of the starting values we tried, after three or fewer steps, the 
parameter values reached a point close to that at Step 2 of Exhibit C.2. 
This and Exhibit C.1 led us to conjecture that the iterations had indeed 
taken us to a point very near the minimum point. 

Exhibit C.3 shows iterations for the Marquardt procedure applied to this 
problem. Unnumbered rows indicate increasing c by a factor of 10 (see Sec­
tion C.1.4). These iterations did ultimately meet the convergence criterion. 
The differences in estimates for the two procedures as they stand are barely 
perceptible and therefore we felt quite sure that we had essentially found 
the desired value {J of 9. Our estimates along with their standard errors are 
given in Exhibit C.4. These estimates are, in fact, very close to those that 
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would be obtained from Exercise 9.8. Exhibit C.5 shows a plot of residu­
als against XiI'S. While it illustrates the possible existence of an outlier, it 
also shows that for the data used we have a good fit. There is nothing to 
indicate that the local optimum found does not provide good parameter 
estimates. 

The program we used also gives values of 

n n 

L WiY; and L Wi(Yi - y)2, 
i=l i=l 

which are 2701.00 and 694.51. Therefore, the no-intercept version of R2 is 
.96 and the intercept version is .84. Since the weighting essentially divides 
each [Yi - f(a:i,6)J2 by the variance of Yi, S2(6)/[n - k] should be about 
one if the fit were perfect. Here, because several factors besides the very 
roughly adjusted travel times obviously influence choice of mode, the value 
of S2(6)/[n - k] = 2.3 has to be considered good. The correlation matrix 
was found to be 

( 1.0000 0.6654) 
0.6654 1.0000 ' 

indicating a modest amount of multicollinearity, which is also apparent 
from Exhibit C.1. • 

Example C.4 (Continuation of Example 4.4, Page 92) 
Suppose we felt somewhat uncomfortable estimating the break point X in 
the broken line regression example purely by eye (Example 4.4, p. 92). 
Then we could estimate X with nonlinear regression. Recall that the model 
(4.8) used there was of the form 

(C.17) 

Because of the presence of Di which depends on x, the right side of (C.17) 
is not only nonlinear, it is also not differentiable at X = XiI. Therefore, 
it is preferable to use a derivative-free method like the simplex method 
(Section C.2.3) or the DUD method (Section C.1.3). In the latter case, 
since derivatives are numerically computed, the procedure often behaves 
like a derivative-free procedure. 

Coding of dummy variables for a nonlinear least squares package is not a 
problem. Di(Xil - x) can be written as max(xil - X, 0) if the package allows 
a 'max' function. Packages that do not have such a function often permit 
functions with a statement as argument. These functions return the value 
1 when the statement is true and 0 when it is not. 

Since from Example 4.4 we already have reasonable parameter estimates, 
we can use them as starting values. Exhibit C.6 gives parameter estimates 
for each iteration of a simplex procedure. The first line gives the starting 
values and the last line the final estimates. Exhibit C.7 gives values of final 
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Step 82(6) /30 /31 /32 X 

0 4704.2 -2.000 9.000 -3.000 7.000 
1 4607.3 -0.168 8.730 -4.472 11.22 
2 4482.2 0.028 8.951 -3.033 7.969 
3 4354.2 -0.336 9.065 -2.800 6.985 
4 4334.7 -1.770 9.277 -2.635 6.732 
5 4325.1 -2.835 9.487 -2.836 6.711 
6 4322.2 -3.234 9.564 -3.044 6.726 
7 4321.2 -3.320 9.580 -3.163 6.705 
8 4320.9 -3.436 9.601 -3.154 6.689 
9 4320.9 -3.483 9.609 -3.157 6.685 
10 4320.8 -3.489 9.610 -3.144 6.683 
11 4320.8 -3.498 9.612 -3.147 6.683 
12 4320.8 -3.494 9.611 -3.148 6.683 
13 4320.8 -3.487 9.610 -3.147 6.683 
14 4320.8 -3.481 9.609 -3.146 6.683 
15 4320.8 -3.486 9.610 -3.147 6.683 
16 4320.8 -3.487 9.611 -3.148 6.683 
17 4320.8 -3.487 9.611 -3.148 6.683 
18 4320.8 -3.487 9.610 -3.147 6.683 

EXHIBIT C.6: Estimates by Iteration: Simplex Method Applied to Life 
Expectancy Data 

parameter estimates from a DUD procedure. Although the starting values 
were identical, it is obvious that the final estimates are not the same, except 
for the all-important x. Its value of 6.683 in both cases is close to the 7 we 
had chosen in Example 4.4. 

Parameter Estimate Std. Error 

/30 -2.9528 4.358 
/31 9.5242 0.793 
/32 -3.0870 0.860 
x 6.6833 1.097 

EXHIBIT C.7: Estimates and Standard Errors: DUD Procedure 

The main reasOn for the dissimilarity of estimates was the high level of 
multicollinearity, which is illustrated by the correlation matrix 

( 
1.0000 -0.9844 

-0.9844 1.0000 
-0.7486 0.8537 

0.7588 -0.8402 

-0.7486 0.7588) 
0.8537 -0.8402 
1.0000 -0.9189 

-0.9189 1.0000 
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of the parameters at the final estimate of the DUD procedure. In fact, at 
some of the earlier iterations the correlation matrix was even worse! 

Since f is not even differentiable at places, it is desirable to see if we 
have indeed found the desired estimate and not a less than optimal local 
minimum. One way to more or less convince ourselves of this was to make 
several runs with different starting values within a reasonable range. When 
the starting value of x was in the range 5 to 7.4 and the other parameters 
were in the range ±25 per cent of their final values, convergence always 
occurred, the final value of x was always 6.683, and the final values of 
the other estimates were acceptably close to those given in Exhibits C.6 
and C.7. But for initial values outside these ranges, iterations did on occa­
sion converge to other local optima. Most were unrealistic; e.g., x would be 
negative or greater than 10. One exception was the local minimum where 
estimates of {3o, {31! (32 and x were -5.56, 9.03, -4.41 and 7.6. The value 
of 8 2 (9) in this case was 4359 and in all cases was higher than for the 
estimates in Exhibits C.6 and C.7. Therefore, at least the estimate of x of 
6.683 seems to be the one we were after. The reader is invited to repeat 
this exercise, plot residuals and comment on the quality of fit of the chosen 
model and its closest alternative in Exercise C.5 • 
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Problems 

Exercise C.I: In Example C.3 we considered a model corresponding to 
Exercise 9.8, p. 214, Part 1. Using NLS, construct models corresponding to 
Parts 2 and 3. Are these much different from the models you estimated in 
Problem 9.8? 

Exercise C.2: The data set given in Exhibit C.8 shows, by country of 
origin, numbers of successful (APR) and unsuccessful (DEN) applicants 
for political asylum to the Immigration and Naturalization Service of the 
United States during the period 1983-85. Also given are the independent 
variables E, which takes the value 1 if the country is in Europe or is popu­
lated mainly by people of European descent, and 0 otherwise, and H, which 
takes value 1 if the country is considered hostile to the U.S. and 0 if non­
hostile. Use both weighted linear least squares and nonlinear least squares 
to construct logit models for the proportion of successful applicants. How 
different are the two models? Test the two hypotheses that the probability 
of gaining political asylum is affected (1) by being European and (2) by 
coming from a hostile country. 

Exercise C.3: Let y(t) be the U.S. population considered as a differen­
tiable function of time t. Then from the reasoning given in Exercise 7.8, 
p. 147, it follows that we can write, approximately, 

dy 
dt = 130 + f31Y, 

whence 10g[f3o + f31Y] = f31t + a where a is a parameter. Therefore, solving 
for y and rearranging parameters, we get 

Estimate the parameters OJ using the data of Exercise 7.7 and ignoring 
serial correlation. Plot residuals and comment. 
[Hint on getting initial values: Notice that when t -+ -00, y = 00 , 

which leads to an initial value of 0 for 00 . Now taking logs of both sides of 
y = 01 exp[02t] and using OLS, the other parameters can be estimated.] 

Exercise C.4: Another model often proposed for population forecasting 
is the logistic model 

exp[f3o + f31t] -1 
Y = a 1 (13 (3) = a[l + exp( -130 - f31t)] . + exp 0 + it 

Because of the presence of a it is difficult to apply linear least squares 
as we described in Section 9.2.4, p. 186. Apply nonlinear least squares to 
estimate the parameters of this model using U.S population data (Exer­
cise 7.7, p. 146). Here y = a when t -+ 00. Therefore, this value needs 
to be guessed. After that, the transformation of Section 9.2.4, p. 186, can 
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Country APR DEN H E Country APR DEN H E 

AFGHANISTAN 296 504 1 0 KENYA 0 10 0 0 
ALGERIA 0 5 0 0 KOREA 5 13 1 0 
ANGOLA 4 12 1 0 KUWAIT 0 11 0 0 
ARGENTINA 2 104 0 0 LAOS 5 25 1 0 
BAHAMAS 0 3 0 0 LEBANON 20 1107 0 0 
BANGLADESH 0 391 0 0 LIBERIA 15 200 0 0 
BELGIUM 0 4 0 1 LIBYA 70 55 1 0 
BELIZE 0 3 0 0 LITHUANIA 1 1 1 1 
BOLIVIA 0 16 0 0 MALAWI 1 1 0 0 
BRAZIL 2 4 0 0 MALAYSIA 0 3 0 0 
BULGARIA 20 27 1 1 MADAGASCAR 0 2 0 0 
BURMA 1 7 0 0 MALI 0 2 0 0 
BURUNDI 0 2 0 0 MEXICO 1 30 0 0 
CAMEROON 1 4 0 0 MOROCCO 0 12 0 0 
CAMBODIA 3 4 1 1 MOZAMBIQUE 1 50 0 0 
CHAD 0 1 0 0 NAMIBIA 3 6 1 0 
CHILE 9 62 0 1 NEW ZEALAND 0 2 0 1 
CHINA (PRC) 67 297 1 0 NEPAL 0 1 0 0 
COLUMBIA 5 25 0 0 NICARAGUA 1520 12983 1 0 
CONGO 0 1 0 0 NIGER 0 1 0 0 
COSTA RICA 1 28 0 0 NIGERIA 0 23 0 0 
CUBA 82 1257 1 0 PAKISTAN 24 337 1 0 
CYPRUS 0 4 0 0 PANAMA 0 13 0 0 
CZECHOSLAVKIA 77 110 1 1 PERU 1 19 0 0 
DJIBOUTI 0 1 0 0 PHILIPPINES 68 216 0 0 
DOMINICAN REP. 1 3 0 0 POLAND 1433 3119 1 1 
ECUADOR 1 4 0 0 PORTUGAL 0 4 0 0 
EGYPT 2 685 0 0 ROMANIA 297 364 1 1 
EL SALVADOR 473 18258 0 0 RWANDA 0 3 0 0 
ETHIOPIA 559 1572 1 0 SEYCHELLES 8 4 0 0 
FIJI 0 1 0 0 SIERRA LEONE 2 5 0 0 
FRANCE 1 10 0 1 SINGAPORE 1 0 0 0 
GAMBIA 0 3 0 0 SOMALIA 56 353 0 0 
G.D.R. 14 20 1 1 SOUTH AFRICA 12 29 0 0 
GERMANY (FDR) 0 9 0 1 SPAIN 0 13 0 1 
GHANA 28 80 0 0 SRI LANKA 0 90 0 0 
GREECE 0 10 0 1 SUDAN 0 17 0 0 
GRENADA 0 20 0 0 SURINAM 0 29 0 0 
GUATEMALA 9 1252 0 0 SWAZILAND 0 3 0 0 
GUINEA 1 4 0 0 SYRIA 64 225 1 0 
GUYANA 4 13 0 0 TAIWAN 2 9 0 0 
HAITI 28 1117 0 0 TANZANIA 0 14 0 0 
HONDURAS 6 206 0 0 THAILAND 3 15 0 0 
HUNGARY 115 268 1 1 TURKEY 4 60 0 1 
INDIA 1 241 0 0 U.S.S.R. 89 78 1 1 
INDONESIA 2 16 0 0 UGANDA 69 176 0 0 
IRAN 9556 7864 1 0 U.K 0 7 0 1 
IRAQ 83 619 0 0 HONG KONG 0 1 0 0 
IRELAND 3 18 0 1 URAGUAY 2 7 0 0 
ISRAEL 1 63 0 1 VENEZUELA 0 14 0 0 
ITALY 0 4 0 1 VIETNAM 42 133 1 0 
IVORY COAST 0 3 0 0 YEMEN ADEN 1 2 1 0 
JAMAICA 0 3 0 0 YEMEN SANAA 6 5 1 0 
JAPAN 1 2 0 0 YUGOSLAVIA 27 201 1 1 
JORDAN 2 119 0 0 ZAIRE 7 20 0 0 
KAMPUCHEA 4 6 1 0 ZIMBABWE 1 13 0 0 

EXHIBIT C.B: Data on Asylum Requests to the U.S. by Country of Origin of 
Applicant 
SOURCE: Prof. Barbara Yarnold, Dept. of Political Science, Saginaw Valley State 
University, Saginaw, Michigan. 
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be used to obtain the other parameters by OLS. Try different values of a, 
including 400,000 and 600,000, and obtain parameter estimates. In each 
case plot residuals. Comment on the suitability of the logistic function as 
a method for describing U.S population growth. 

Exercise Co5: Repeat Example C.4. Plot residuals against independent 
variable values and predicted values for the chosen parameter estimates and 
their closest rival(s). Is there a good reason to choose one set of parameter 
values over other(s)? 

Exercise Co6: Use nonlinear least squares to fit a model of the form (9.1) 
to the data of Example C.4 but now with proper weights and with outliers 
deleted (as for Exercise 9.6). 

Exercise Co 7: If in Exercise C.3, the errors were assumed to be first order 
autoregressive, what would you do? 

Exercise CoS: Using NLS, can you improve on the model you constructed 
in Exercise 9.15, p. 216? 



Tables 

z 0.00 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 

0.0 .50000 .50399 .50798 .51197 .51595 .51994 .52392 .52790 .53188 .53586 
0.1 .53983 .54380 .54776 .55172 .55567 .55962 .56356 .56749 .57142 .57535 
0.2 .57926.58317.58706 .59095 .59483 .59871 .60257.60642 .61026 .61409 
0.3 .61791 .62172.62552.62930.63307.63683.64058.64431 .64803 .65173 
0.4 .65542 .65910 .66276 .66640 .67003 .67364 .67724 .68082 .68439 .68793 
0.5 .69146 .69497 .69847 .70194 .70540 .70884 .71226 .71566 .71904 .72240 
0.6 .72575.72907.73237.73565.73891.74215.74537 .74857 .75175.75490 
0.7 .75804 .76115 .76424 .76730 .77035 .77337 .77637 .77935 .78230 .78524 
0.8 .78814 .79103 .79389 .79673 .79955 .80234 .80511 .80785 .81057 .81327 
0.9 .81594 .81859 .82121 .82381 .82639 .82894 .83147 .83398 .83646 .83891 
1.0 .84134 .84375 .84614 .84850 .85083 .85314 .85543 .85769 .85993 .86214 
1.1 .86433 .86650 .86864 .87076 .87286 .87493 .87698 .87900 .88100 .88298 
1.2 .88493 .88686 .88877 .89065 .89251 .89435 .89617 .89796 .89973 .90147 
1.3 .90320.90490.90658 .90824.90988 .91149 .91309 .91466 .91621 .91774 
1.4 .91924 .92073 .92220 .92364 .92507 .92647 .92786 .92922 .93056 .93189 
1.5 .93319 .93448 .93574 .93699 .93822 .93943 .94062 .94179 .94295 .94408 
1.6 .94520 .94630 .94738 .94845 .94950 .95053 .95154 .95254 .95352 .95449 
1.7 .95543 .95637 .95728 .95818 .95907 .95994 .96080 .96164 .96246 .96327 
1.8 .96407 .96485 .96562 .96638 .96712 .96784 .96856 .96926 .96995 .97062 
1.9 .97128 .97193 .97257 .97320 .97381 .97441 .97500 .97558 .97615 .97670 

2.0 .97725 .97778 .97831 .97882 .97932 .97982 .98030 .98077 .98124 .98169 
2.1 .98214 .98257 .98300 .98341 .98382 .98422 .98461 .98500 .98537 .98574 
2.2 .98610 .98645 .98679 .98713 .98745 .98778 .98809 .98840 .98870 .98899 
2.3 .98928 .98956 .98983 .99010 .99036 .99061 .99086 .99111 .99134 .99158 
2.4 .99180 .99202 .99224 .99245 .99266 .99286 .99305 .99324 .99343 .99361 
2.5 .99379 .99396 .99413 .99430 .99446 .99461 .99477 .99492 .99506 .99520 
2.6 .99534 .99547 .99560 .99573 .99585 .99598 .99609 .99621 .99632 .99643 
2.7 .99653 .99664 .99674 .99683 .99693 .99702 .99711 .99720 .99728 .99736 
2.8 .99744 .99752 .99760 .99767 .99774 .99781 .99788 .99795 .99801 .99807 
2.9 .99813 .99819 .99825 .99831 .99836 .99841 .99846 .99851 .99856 .99861 

3.0 .99865 .99869 .99874 .99878 .99882 .99886 .99889 .99893 .99897 .99900 
3.1 .99903 .99906 .99910 .99913 .99916 .99918 .99921 .99924 .99926 .99929 
3.2 .99931 .99934 .99936 .99938 .99940 .99942 .99944 .99946 .99948 .99950 
3.3 .99952 .99953 .99955 .99957 .99958 .99960 .99961 .99962 .99964 .99965 
3.4 .99966 .99968 .99969 .99970 .99971 .99972 .99973 .99974 .99975 .99976 
3.5 .99977 .99978 .99978 .99979 .99980 .99981 .99981 .99982 .99983 .99983 
3.6 .99984 .99985 .99985 .99986 .99986 .99987 .99987 .99988 .99988 .99989 
3.7 .99989 .99990 .99990 .99990 .99991 .99991 .99992 .99992 .99992 .99992 
3.8 .99993 .99993 .99993 .99994 .99994 .99994 .99994 .99995 .99995 .99995 
3.9 .99995 .99995 .99996 .99996 .99996 .99996 .99996 .99996 .99997 .99997 
4.0 .99997 .99997 .99997 .99997 .99997 .99997 .99998 .99998 .99998 .99998 

EXAMPLE: For z = 1.96 = 1.9 + 0.06, the row marked '1.9' and the column 
marked '.06' yields cI>(1.96) = .97500, where cI>(z) is the standard normal distri­
bution function. Also note cI>(-z) = 1- cI>(z). 

TABLE 1: Values of the Standard Normal Distribution Function. 
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v a =0.2 a = 0.125 a = 0.05 a = 0.025 a = 0.005 a = 0.0005 

1 1.3764 2.4142 6.3138 12.7062 63.6567 636.6192 
2 1.0607 1.6036 2.9200 4.3027 9.9248 31.5991 
3 0.9783 1.4228 2.3534 3.1824 5.8409 12.9240 
4 0.9408 1.3445 2.1325 2.7774 4.6041 8.6103 
5 0.9193 1.3011 2.0156 2.5714 4.0322 6.8688 
6 0.9055 1.2735 1.9437 2.4477 3.7084 5.9588 
7 0.8958 1.2544 1.8951 2.3653 3.5004 5.4079 
8 0.8887 1.2404 1.8600 2.3066 3.3562 5.0420 
9 0.8832 1.2298 1.8336 2.2628 3.2506 4.7815 

10 0.8789 1.2214 1.8129 2.2287 3.1700 4.5874 
11 0.8754 1.2146 1.7963 2.2016 3.1065 4.4375 
12 0.8724 1.2089 1.7827 2.1794 3.0552 4.3183 
13 0.8700 1.2042 1.7714 2.1609 3.0129 4.2213 
14 0.8679 1.2002 1.7617 2.1453 2.9774 4.1409 
15 0.8661 1.1968 1.7535 2.1320 2.9473 4.0732 
16 0.8645 1.1938 1.7463 2.1204 2.9213 4.0154 
17 0.8631 1.1911 1.7400 2.1103 2.8988 3.9655 
18 0.8619 1.1888 1.7345 2.1014 2.8790 3.9220 
19 0.8608 1.1867 1. 7295 2.0935 2.8615 3.8838 
20 0.8598 1.1849 1.7251 2.0865 2.8459 3.8499 
21 0.8589 1.1832 1.7211 2.0801 2.8319 3.8196 
22 0.8581 1.1816 1. 7175 2.0744 2.8193 3.7925 
23 0.8574 1.1802 1.7143 2.0692 2.8078 3.7680 
24 0.8567 1.1790 1.7113 2.0644 2.7974 3.7457 
25 0.8561 1.1778 1.7085 2.0600 2.7879 3.7255 
26 0.8555 1.1767 1.7060 2.0560 2.7792 3.7069 
27 0.8550 1.1757 1.7037 2.0523 2.7712 3.6899 
28 0.8545 1.1748 1. 7015 2.0489 2.7638 3.6742 
29 0.8540 1.1740 1.6995 2.0457 2.7569 3.6597 
30 0.8536 1.1732 1.6976 2.0428 2.7505 3.6463 
31 0.8532 1.1724 1.6959 2.0400 2.7445 3.6338 
32 0.8528 1.1717 1.6943 2.0374 2.7390 3.6221 
33 0.8525 1.1711 1.6927 2.0350 2.7338 3.6112 
34 0.8522 1.1704 1.6913 2.0327 2.7289 3.6010 
35 0.8518 1.1699 1.6900 2.0306 2.7243 3.5914 
36 0.8516 1.1693 1.6887 2.0286 2.7200 3.5824 
37 0.8513 1.1688 1.6875 2.0267 2.7159 3.5740 
38 0.8510 1.1683 1.6863 2.0249 2.7120 3.5660 
39 0.8508 1.1678 1.6853 2.0232 2.7084 3.5584 
40 0.8505 1.1674 1.6842 2.0215 2.7049 3.5513 
42 0.8501 1.1666 1.6823 2.0185 2.6985 3.5380 
44 0.8497 1.1658 1.6806 2.0158 2.6927 3.5261 
46 0.8493 1.1652 1.6790 2.0134 2.6875 3.5152 
48 0.8490 1.1645 1.6776 2.0111 2.6827 3.5053 
50 0.8487 1.1640 1.6763 2.0090 2.6782 3.4963 

NOTE: The table gives values of ta,v such that P[t > ta,v) = Q for a variable t 
which has a Student's t distribution with v degrees of freedom. 

TABLE 2: Percentage Points for Student's t Distribution. 
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n a = .01 a = .05 a =.1 a =.3 a =.5 a =.7 a =.9 a = .95 a = .99 

1 0.0002 0.0039 0.0157 0.1481 0.4545 1.0742 2.7067 3.8431 6.6370 
2 0.0201 0.1026 0.2107 0.7133 1.3863 2.4079 4.6052 5.9915 9.2103 
3 0.1148 0.3518 0.5844 1.4237 2.3660 3.6649 6.2514 7.8147 11.3449 
4 0.2971 0.7107 1.0636 2.1947 3.3567 4.8784 7.7794 9.487713.2767 
5 0.5543 1.1455 1.6103 2.9999 4.3515 6.0644 9.2364 11.0705 15.0863 
6 0.8721 1.6354 2.2041 3.8276 5.3481 7.2311 10.6446 12.5916 16.8119 
7 1.2390 2.1674 2.8331 4.6713 6.3458 8.3834 12.0170 14.0671 18.4753 
8 1.6465 2.7326 3.4895 5.5274 7.3441 9.5245 13.3616 15.5073 20.0902 
9 2.0879 3.3251 4.1682 6.3933 8.3428 10.6564 14.6837 16.9190 21.6660 

10 2.5582 3.9403 4.8652 7.2672 9.3418 11.7807 15.9872 18.307023.2125 
11 3.0535 4.5748 5.5778 8.147910.3410 12.8987 17.2750 19.677524.7284 
12 3.5706 5.2260 6.3038 9.0343 11.3403 14.0111 18.5493 21.0285 26.2205 
13 4.1069 5.8919 7.0415 9.9257 12.3398 15.1187 19.8131 22.3646 27.6919 
14 4.6604 6.5706 7.7895 10.8215 13.3393 16.2221 21.0653 23.6874 29.1449 
15 5.2293 7.2609 8.546811.721214.338917.321722.308424.998530.5817 
16 5.8122 7.9616 9.3122 12.6244 15.3385 18.4179 23.5431 26.2990 32.0038 
17 6.4078 8.6718 10.0852 13.5307 16.3382 19.511024.770327.590033.4126 
18 7.0149 9.3905 10.8649 14.4399 17.3379 20.6014 25.9908 28.8722 34.8093 
19 7.6327 10.1170 11.6509 15.3517 18.3377 21.6891 27.2049 30.1465 36.1950 
20 8.2604 10.8508 12.4426 16.2659 19.3374 22.7745 28.4134 31.4135 37.5704 
21 8.8972 11.5913 13.2396 17.1823 20.3372 23.8578 29.6165 32.6737 38.9364 
22 9.5425 12.3380 14.0415 18.1007 21.3370 24.9361 30.814733.9276 40.2937 
23 10.1957 13.0905 14.8480 19.0211 22.3369 26.0154 32.0084 35.1757 41.6428 
24 10.8564 13.8484 15.6587 19.9432 23.3367 27.0930 33.1978 36.4183 42.9842 
25 11.5240 14.6114 16.4734 20.8670 24.3366 28.1689 34.3831 37.6558 44.3186 
26 12.1981 15.379217.291921.792425.336529.243235.5647 38.8885 45.6462 
27 12.8785 16.1514 18.113922.719226.336330.3161 36.742840.116746.9675 
28 13.5647 16.9279 18.9392 23.6475 27.3362 31.3877 37.9175 41.3406 48.2829 
29 14.2565 17.7084 19.7677 24.5770 28.3361 32.4579 39.0891 42.5605 49.5926 
30 14.9535 18.492720.599225.507829.336033.526940.2577 43.776550.8970 
40 22.164326.509329.050534.875239.335344.1611 51.806955.762563.6960 
50 29.7036 34.7615 37.6872 44.3170 49.3349 54.7186 63.1692 67.5092 76.1596 

100 70.0600 77.9252 82.3559 92.1343 99.3341 106.900 118.501 124.348 135.814 

TABLE 3: Percentage Points of the Chi-Square Distribution With n Degrees of 
Freedom. 
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n m=lm=2m=3m=4m=5m=6m=7m=8m=9 

1 3980.3 4842.8 5192.2 5377.1 5491.5 5570.0 5612.8 5652.6 5683.2 
2 98.50 99.00 99.16 99.25 99.30 99.33 99.35 99.37 99.38 
3 34.12 30.82 29.46 28.71 28.24 27.91 27.67 27.49 27.35 
4 21.20 18.00 16.69 15.98 15.52 15.21 14.98 14.80 14.66 
5 16.26 13.27 12.06 11.39 10.97 10.67 10.46 10.29 10.16 
6 13.74 10.92 9.78 9.15 8.75 8.47 8.26 8.10 7.98 
7 12.25 9.55 8.45 7.85 7.46 7.19 6.99 6.84 6.72 
8 11.26 8.65 7.59 7.01 6.63 6.37 6.18 6.03 5.91 
9 10.56 8.02 6.99 6.42 6.06 5.80 5.61 5.47 5.35 

10 10.04 7.56 6.55 5.99 5.64 5.39 5.20 5.06 4.94 
11 9.65 7.21 6.22 5.67 5.32 5.07 4.89 4.74 4.63 
12 9.33 6.93 5.95 5.41 5.06 4.82 4.64 4.50 4.39 
13 9.07 6.70 5.74 5.21 4.86 4.62 4.44 4.30 4.19 
14 8.86 6.51 5.56 5.04 4.69 4.46 4.28 4.14 4.03 
15 8.68 6.36 5.42 4.89 4.56 4.32 4.14 4.00 3.89 
16 8.53 6.23 5.29 4.77 4.44 4.20 4.03 3.89 3.78 
17 8.40 6.11 5.19 4.67 4.34 4.10 3.93 3.79 3.68 
18 8.29 6.01 5.09 4.58 4.25 4.01 3.84 3.71 3.60 
19 8.18 5.93 5.01 4.50 4.17 3.94 3.77 3.63 3.52 
20 8.10 5.85 4.94 4.43 4.10 3.87 3.70 3.56 3.46 
21 8.02 5.78 4.87 4.37 4.04 3.81 3.64 3.51 3.40 
22 7.95 5.72 4.82 4.31 3.99 3.76 3.59 3.45 3.35 
23 7.88 5.66 4.76 4.26 3.94 3.71 3.54 3.41 3.30 
24 7.82 5.61 4.72 4.22 3.90 3.67 3.50 3.36 3.26 
25 7.77 5.57 4.68 4.18 3.85 3.63 3.46 3.32 3.22 
26 7.72 5.53 4.64 4.14 3.82 3.59 3.42 3.29 3.18 
27 7.68 5.49 4.60 4.11 3.78 3.56 3.39 3.26 3.15 
28 7.64 5.45 4.57 4.07 3.75 3.53 3.36 3.23 3.12 
29 7.60 5.42 4.54 4.04 3.73 3.50 3.33 3.20 3.09 
30 7.56 5.39 4.51 4.02 3.70 3.47 3.30 3.17 3.07 
40 7.31 5.18 4.31 3.83 3.51 3.29 3.12 2.99 2.89 
60 7.08 4.98 4.13 3.65 3.34 3.12 2.95 2.82 2.72 

120 6.85 4.79 3.95 3.48 3.17 2.96 2.79 2.66 2.56 
00 6.66 4.63 3.80 3.34 3.03 2.82 2.66 2.53 2.42 

TABLE 4: Upper 1 Per Cent Points of the F Distribution With m and n Degrees 
of Freedom: Continued on Next Page. 
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n m=10 m=12 m=15 m=20 m=24 m=30 m=40 m=60 m=120 m = 00 

1 5706.4 5729.8 5765.3 5785.2 5777.2 5825.4 5745.6 5825.4 5825.4 5592.4 
2 99.40 99.42 99.43 99.45 99.45 99.47 99.47 99.48 99.49 99.57 
3 27.23 27.05 26.87 26.69 26.60 26.50 26.41 26.32 26.22 26.27 
4 14.55 14.37 14.20 14.02 13.93 13.84 13.75 13.65 13.56 13.55 
5 10.05 9.89 9.72 9.55 9.47 9.38 9.29 9.20 9.11 9.03 
6 7.87 7.72 7.56 7.40 7.31 7.23 7.14 7.06 6.97 6.89 
7 6.62 6.47 6.31 6.16 6.07 5.99 5.91 5.82 5.74 5.66 
8 5.81 5.67 5.52 5.36 5.28 5.20 5.12 5.03 4.95 4.87 
9 5.26 5.11 4.96 4.81 4.73 4.65 4.57 4.48 4.40 4.32 

10 4.85 4.71 4.56 4.41 4.33 4.25 4.17 4.08 4.00 3.92 
11 4.54 4.40 4.25 4.10 4.02 3.94 3.86 3.78 3.69 3.61 
12 4.30 4.16 4.01 3.86 3.78 3.70 3.62 3.54 3.45 3.37 
13 4.10 3.96 3.82 3.66 3.59 3.51 3.43 3.34 3.25 3.18 
14 3.94 3.80 3.66 3.51 3.43 3.35 3.27 3.18 3.09 3.02 
15 3.80 3.67 3.52 3.37 3.29 3.21 3.13 3.05 2.96 2.88 
16 3.69 3.55 3.41 3.26 3.18 3.10 3.02 2.93 2.84 2.76 
17 3.59 3.46 3.31 3.16 3.08 3.00 2.92 2.83 2.75 2.66 
18 3.51 3.37 3.23 3.08 3.00 2.92 2.84 2.75 2.66 2.58 
19 3.43 3.30 3.15 3.00 2.93 2.84 2.76 2.67 2.58 2.50 
20 3.37 3.23 3.09 2.94 2.86 2.78 2.69 2.61 2.52 2.43 
21 3.31 3.17 3.03 2.88 2.80 2.72 2.64 2.55 2.46 2.37 
22 3.26 3.12 2.98 2.83 2.75 2.67 2.58 2.50 2.40 2.32 
23 3.21 3.07 2.93 2.78 2.70 2.62 2.54 2.45 2.35 2.27 
24 3.17 3.03 2.89 2.74 2.66 2.58 2.49 2.40 2.31 2.22 
25 3.13 2.99 2.85 2.70 2.62 2.54 2.45 2.36 2.27 2.18 
26 3.09 2.96 2.81 2.66 2.58 2.50 2.42 2.33 2.23 2.14 
27 3.06 2.93 2.78 2.63 2.55 2.47 2.38 2.29 2.20 2.11 
28 3.03 2.90 2.75 2.60 2.52 2.44 2.35 2.26 2.17 2.08 
29 3.00 2.87 2.73 2.57 2.49 2.41 2.33 2.23 2.14 2.05 
30 2.98 2.84 2.70 2.55 2.47 2.39 2.30 2.21 2.11 2.02 
40 2.80 2.66 2.52 2.37 2.29 2.20 2.11 2.02 1.92 1.82 
60 2.63 2.50 2.35 2.20 2.12 2.03 1.94 1.84 1.73 1.62 

120 2.47 2.34 2.19 2.03 1.95 1.86 1.76 1.66 1.53 1.40 
00 2.34 2.20 2.06 1.90 1.81 1.72 1.61 1.50 1.35 1.16 

TABLE 5: Upper 1 Per Cent Points of the F Distribution With m and n Degrees 
of Freedom: Continued From Last Page. 
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n m=lm=2m=3m=4m=5m=6m=7m=8m=9 

1 161.45 199.50215.70224.59230.16233.65235.80237.38238.57 
2 18.51 19.00 19.16 19.25 19.30 19.33 19.35 19.37 19.38 
3 10.13 9.55 9.28 9.12 9.01 8.94 8.89 8.85 8.81 
4 7.71 6.94 6.59 6.39 6.26 6.16 6.09 6.04 6.00 
5 6.61 5.79 5.41 5.19 5.05 4.95 4.88 4.82 4.77 
6 5.99 5.14 4.76 4.53 4.39 4.28 4.21 4.15 4.10 
7 5.59 4.74 4.35 4.12 3.97 3.87 3.79 3.73 3.68 
8 5.32 4.46 4.07 3.84 3.69 3.58 3.50 3.44 3.39 
9 5.12 4.26 3.86 3.63 3.48 3.37 3.29 3.23 3.18 

10 4.96 4.10 3.71 3.48 3.33 3.22 3.14 3.07 3.02 
11 4.84 3.98 3.59 3.36 3.20 3.09 3.01 2.95 2.90 
12 4.75 3.89 3.49 3.26 3.11 3.00 2.91 2.85 2.80 
13 4.67 3.81 3.41 3.18 3.03 2.92 2.83 2.77 2.71 
14 4.60 3.74 3.34 3.11 2.96 2.85 2.76 2.70 2.65 
15 4.54 3.68 3.29 3.06 2.90 2.79 2.71 2.64 2.59 
16 4.49 3.63 3.24 3.01 2.85 2.74 2.66 2.59 2.54 
17 4.45 3.59 3.20 2.96 2.81 2.70 2.61 2.55 2.49 
18 4.41 3.55 3.16 2.93 2.77 2.66 2.58 2.51 2.46 
19 4.38 3.52 3.13 2.90 2.74 2.63 2.54 2.48 2.42 
20 4.35 3.49 3.10 2.87 2.71 2.60 2.51 2.45 2.39 
21 4.32 3.47 3.07 2.84 2.68 2.57 2.49 2.42 2.37 
22 4.30 3.44 3.05 2.82 2.66 2.55 2.46 2.40 2.34 
23 4.28 3.42 3.03 2.80 2.64 2.53 2.44 2.37 2.32 
24 4.26 3.40 3.01 2.78 2.62 2.51 2.42 2.36 2.30 
25 4.24 3.39 2.99 2.76 2.60 2.49 2.40 2.34 2.28 
26 4.23 3.37 2.98 2.74 2.59 2.47 2.39 2.32 2.27 
27 4.21 3.35 2.96 2.73 2.57 2.46 2.37 2.31 2.25 
28 4.20 3.34 2.95 2.71 2.56 2.45 2.36 2.29 2.24 
29 4.18 3.33 2.93 2.70 2.55 2.43 2.35 2.28 2.22 
30 4.17 3.32 2.92 2.69 2.53 2.42 2.33 2.27 2.21 
40 4.08 3.23 2.84 2.61 2.45 2.34 2.25 2.18 2.12 
60 4.00 3.15 2.76 2.53 2.37 2.25 2.17 2.10 2.04 

120 3.92 3.07 2.68 2.45 2.29 2.17 2.09 2.02 1.96 
00 3.85 3.00 2.61 2.38 2.22 2.11 2.02 1.95 1.89 

TABLE 6: Upper 5 Per Cent Points of the F Distribution With m and n Degrees 
of Freedom: Continued on Next Page. 
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n m=10 m=12 m=15 m=20 m=24 m=30 m=40 m=60 m=120 m = 00 

1 239.47240.76241.87242.75243.11 243.22243.12242.50 240.63 233.02 
2 19.40 19.41 19.43 19.45 19.45 19.46 19.47 19.48 19.49 19.50 
3 8.79 8.74 8.70 8.66 8.64 8.62 8.59 8.57 8.55 8.53 
4 5.96 5.91 5.86 5.80 5.77 5.75 5.72 5.69 5.66 5.63 
5 4.74 4.68 4.62 4.56 4.53 4.50 4.46 4.43 4.40 4.37 
6 4.06 4.00 3.94 3.87 3.84 3.81 3.77 3.74 3.70 3.67 
7 3.64 3.57 3.51 3.44 3.41 3.38 3.34 3.30 3.27 3.23 
8 3.35 3.28 3.22 3.15 3.12 3.08 3.04 3.01 2.97 2.93 
9 3.14 3.07 3.01 2.94 2.90 2.86 2.83 2.79 2.75 2.71 

10 2.98 2.91 2.85 2.77 2.74 2.70 2.66 2.62 2.58 2.54 
11 2.85 2.79 2.72 2.65 2.61 2.57 2.53 2.49 2.45 2.41 
12 2.75 2.69 2.62 2.54 2.51 2.47 2.43 2.38 2.34 2.30 
13 2.67 2.60 2.53 2.46 2.42 2.38 2.34 2.30 2.25 2.21 
14 2.60 2.53 2.46 2.39 2.35 2.31 2.27 2.22 2.18 2.14 
15 2.54 2.48 2.40 2.33 2.29 2.25 2.20 2.16 2.11 2.07 
16 2.49 2.42 2.35 2.28 2.24 2.19 2.15 2.11 2.06 2.02 
17 2.45 2.38 2.31 2.23 2.19 2.15 2.10 2.06 2.01 1.97 
18 2.41 2.34 2.27 2.19 2.15 2.11 2.06 2.02 1.97 1.92 
19 2.38 2.31 2.23 2.16 2.11 2.07 2.03 1.98 1.93 1.88 
20 2.35 2.28 2.20 2.12 2.08 2.04 1.99 1.95 1.90 1.85 
21 2.32 2.25 2.18 2.10 2.05 2.01 1.96 1.92 1.87 1.82 
22 2.30 2.23 2.15 2.07 2.03 1.98 1.94 1.89 1.84 1.79 
23 2.27 2.20 2.13 2.05 2.01 1.96 1.91 1.86 1.81 1.76 
24 2.25 2.18 2.11 2.03 1.98 1.94 1.89 1.84 1.79 1.74 
25 2.24 2.16 2.09 2.01 1.96 1.92 1.87 1.82 1.77 1.72 
26 2.22 2.15 2.07 1.99 1.95 1.90 1.85 1.80 1.75 1.70 
27 2.20 2.13 2.06 1.97 1.93 1.88 1.84 1.79 1.73 1.68 
28 2.19 2.12 2.04 1.96 1.91 1.87 1.82 1.77 1.71 1.66 
29 2.18 2.10 2.03 1.94 1.90 1.85 1.81 1.75 1.70 1.65 
30 2.16 2.09 2.01 1.93 1.89 1.84 1.79 1.74 1.68 1.63 
40 2.08 2.00 1.92 1.84 1.79 1.74 1.69 1.64 1.58 1.52 
60 1.99 1.92 1.84 1.75 1.70 1.65 1.59 1.53 1.47 1.40 

120 1.91 1.83 1.75 1.66 1.61 1.55 1.50 1.43 1.35 1.27 
00 1.83 1.75 1.67 1.57 1.52 1.46 1.39 1.32 1.22 1.00 

TABLE 7: Upper 5 Per Cent Points of the F Distribution With m and n Degrees 
of Freedom: Continued From Last Page. 
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k=l k=2 k=3 k=4 k=5 
n dL du dL du dL du dL du dL du 

15 1.08 1.36 0.95 1.54 0.82 1.75 0.69 1.97 0.56 2.21 
16 1.10 1.37 0.98 1.54 0.86 1.73 0.74 1.93 0.62 2.15 
17 1.13 1.38 1.02 1.54 0.90 1.71 0.78 1.90 0.67 2.10 
18 1.16 1.39 1.05 1.53 0.93 1.69 0.82 1.87 0.71 2.06 
19 1.18 1.40 1.08 1.53 0.97 1.68 0.86 1.85 0.75 2.02 
20 1.20 1.41 1.10 1.54 1.00 1.68 0.90 1.83 0.79 1.99 
21 1.22 1.42 1.13 1.54 1.03 1.67 0.93 1.81 0.83 1.96 
22 1.24 1.43 1.15 1.54 1.05 1.66 0.96 1.80 0.86 1.94 
23 1.26 1.44 1.17 1.54 1.08 1.66 0.99 1.79 0.90 1.92 
24 1.27 1.45 1.19 1.55 1.10 1.66 1.01 1.78 0.93 1.90 
25 1.29 1.45 1.21 1.55 1.12 1.66 1.04 1.77 0.95 1.89 
26 1.30 1.46 1.22 1.55 1.14 1.65 1.06 1.76 0.98 1.88 
27 1.32 1.47 1.24 1.56 1.16 1.65 1.08 1.76 1.01 1.86 
28 1.33 1.48 1.26 1.56 1.18 1.65 1.10 1.75 1.03 1.85 
29 1.34 1.48 1.27 1.56 1.20 1.65 1.12 1.74 1.05 1.84 
30 1.35 1.49 1.28 1.57 1.21 1.65 1.14 1.74 1.07 1.83 
31 1.36 1.50 1.30 1.57 1.23 1.65 1.16 1.74 1.09 1.83 
32 1.37 1.50 1.31 1.57 1.24 1.65 1.18 1.73 1.11 1.82 
33 1.38 1.51 1.32 1.58 1.26 1.65 1.19 1.73 1.13 1.81 
34 1.39 1.51 1.33 1.58 1.27 1.65 1.21 1.73 1.15 1.81 
36 1.40 1.52 1.34 1.58 1.28 1.65 1.22 1.73 1.16 1.80 
36 1.41 1.52 1.35 1.59 1.29 1.65 1.24 1.73 1.18 1.80 
37 1.42 1.53 1.36 1.59 1.31 1.66 1.25 1.72 1.19 1.80 
38 1.43 1.54 1.37 1.59 1.32 1.66 1.26 1.72 1.21 1.79 
39 1.43 1.54 1.38 1.60 1.33 1.66 1.27 1.72 1.22 1.79 
40 1.44 1.54 1.39 1.60 1.34 1.66 1.29 1.72 1.23 1.79 
45 1.48 1.57 1.43 1.62 1.38 1.67 1.34 1.72 1.29 1.78 
50 1.60 1.59 1.46 1.63 1.42 1.67 1.38 1.72 1.34 1.77 
55 1.53 1.60 1.49 1.64 1.45 1.68 1.41 1.72 1.38 1.77 
60 1.55 1.62 1.51 1.65 1.48 1.69 1.44 1.73 . 1.41 1.77 
65 1.57 1.63 1.54 1.66 1.50 1.70 1.47 1.73 1.44 1.77 
70 1.58 1.64 1.55 1.67 1.52 1.70 1.49 1.74 1.46 1.77 
75 1.60 1.65 1.57 1.68 1.54 1.71 1.51 1.74 1.49 1.77 
80 1.61 1.66 1.59 1.69 1.56 1.72 1.53 1.74 1.51 1.77 
85 1.62 1.67 1.60 1.70 1.57 1.72 1.55 1.75 1.52 1.77 
90 1.63 1.68 1.61 1.70 1.59 1.73 1.57 1.75 1.54 1.78 
95 1.64 1.69 1.62 1.71 1.60 1.73 1.58 1.75 1.56 1.78 
100 1.65 1.69 1.63 1.72 1.61 1.74 1.59 1.76 1.57 1.78 

NOTE: For d > 2, compare 4 - d to the bounds given. k is the number of 
independent variables (excluding the constant term). 

TABLE 8: Five Per Cent Point for the Durbin-Watson Statistic. 
SOURCE: Durbin and Watson (1951), Reprinted from Biometrika with the per­
mission of Biometrika Trustees. 
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