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Preface

Any method of fitting equations to data may be called regression. Such
equations are valuable for at least two purposes: making predictions and
judging the strength of relationships. Because they provide a way of em-
pirically identifying how a variable is affected by other variables, regression
methods have become essential in a wide range of fields, including the social
sciences, engineering, medical research and business.

Of the various methods of performing regression, least squares is the
most widely used. In fact, linear least squares regression is by far the most
widely used of any statistical technique. Although nonlinear least squares
is covered in an appendix, this book is mainly about linear least squares
applied to fit a single equation (as opposed to a system of equations).

The writing of this book started in 1982. Since then, various drafts have
been used at the University of Toronto for teaching a semester-long course
to juniors, seniors and graduate students in a number of fields, including
statistics, pharmacology, engineering, economics, forestry and the behav-
ioral sciences. Parts of the book have also been used in a quarter-long course
given to Master’s and Ph.D. students in public administration, urban plan-
ning and engineering at the University of Illinois at Chicago (UIC). This
experience and the comments and criticisms from students helped forge the
final version.

The book offers an up-to-date account of the theory and methods of
regression analysis. We believe our treatment of theory to be the most
complete of any book at this level. The methods provide a comprehensive
toolbox for the practicing regressionist. The examples, most of them drawn
from ‘real life’, illustrate the difficulties commonly encountered in the prac-
tice of regression, while the solutions underscore the subjective judgments
the practitioner must make. Each chapter ends with a large number of exer-
cises that supplement and reinforce the discussions in the text and provide
valuable practical experience. When the reader has mastered the contents
of this book, he or she will have gained both a firm foundation in the the-
ory of regression and the experience necessary to competently practice this
valuable craft.

A first course in mathematical statistics, the ability to use statistical
computer packages and familiarity with calculus and linear algebra are
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prerequisites for the study of this book. Additional statistical courses and
a good knowledge of matrices would be helpful.

This book has twelve chapters. The Gauss-Markov Conditions are as-
sumed to hold in the discussion of the first four chapters; the next five
chapters present methods to alleviate the effects of violations of these con-
ditions. The final three chapters discuss the somewhat related topics of
multicollinearity, variable search and biased estimation. Relevant matrix
and distribution theory is surveyed in the first two appendices at the end
of the book, which are intended as a convenient reference. The last appendix
covers nonlinear regression.

Chapters and sections that some readers might find more demanding are
identified with an asterisk or are placed in appendices to chapters. A reader
can navigate around these without losing much continuity. In fact, a reader
who is primarily interested in applications may wish to omit many of the
other proofs and derivations. Difficult exercises have also been marked with
asterisks.

Since the exercises and examples use over 50 data sets, a disk containing
most of them is provided with the book. The READ.ME file in the disk
gives further information on its contents.

This book would have been much more difficult, if not impossible, to
write without the help of our colleagues and students. We are especially
grateful to Professor Siim S66t, who examined parts of the book and was
an all-round friend; George Yanos of the Computer Center at UIC, whose
instant E-mail responses to numerous cries for help considerably shortened
the time to do the numerical examples (including those that were ulti-
mately not used); Dr. Chris Johnson, who was a research associate of one
of the authors during the time he learnt most about the practical art of
regression; Professor Michael Dacey, who provided several data sets and
whose encouragement was most valuable; and to Professor V. K. Srivas-
tava whose comments on a draft of the book were most useful. We also
learnt a lot from earlier books on the subject, particularly the first editions
of Draper and Smith (1966) and Daniel and Wood (1971), and we owe a
debt of gratitude to their authors.

Numerous present and former students of both authors contributed their
time in editing and proof-reading, checking the derivations, inputting data,
drawing diagrams and finding data-sets. Soji Abass, Dr. Martin Bilodeau,
Robert Drozd, Andrea Fraser, Dr. Sucharita Ghosh, Robert Gray, Neleema,
Grover, Albert Hoang, M.R. Khavanin, Supin Li, Dr. Claire McKnight,
Ceesar Singh, Yanhong Wu, Dr. Y. K. Yau, Seongsun Yun and Zhang Ting-
wei constitute but a partial list of their names. We would like to single out
for particular mention Marguerite Ennis and Piyushimita Thakuriah for
their invaluable help in completing the manuscript. Linda Chambers TgXed
an earlier draft of the manuscript, Barry Grau was most helpful identifying
computer programs, some of which are referred to in the text, Marilyn
Engwall did the paste-up on previous drafts, Ray Brod drew one of the
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figures and Bobbie Albrecht designed the cover. We would like to express
our gratitude to all of them. A particular thanks is due to Dr. Colleen Sen
who painstakingly edited and proofread draft after draft.

We also appreciate the patience of our colleagues at UIC and the Uni-
versity of Toronto during the writing of this book. The editors at Springer-
Verlag, particularly Susan Gordon, were most supportive. We would like
to gratefully acknowledge the support of the Natural Sciences and Engi-
neering Research Council of Canada and the National Science Foundation
of the U.S. during the time this book was in preparation. The help of the
Computer Center at UIC which made computer time freely available was
indispensable.

Preface to the Fourth Printing

We have taken advantage of this as well as previous reprintings to correct
several typographic errors. In addition, two exercises have been changed.
One because it required too much effort and another because we were able
to replace it with problems we found more interesting.

In order to keep the price of the book reasonable, the data disk has is
no longer included. Its contents have been placed at web sites from which
they may be downloaded. The URLs are http://www.springer-ny.com
and http://www.uic.edu/ ashish/regression.html.
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CHAPTER 1
Introduction

1.1 Relationships

Perception of relationships is the cornerstone of civilization. By under-
standing how certain phenomena depend on others we learn to predict the
consequences of our actions and to manipulate our environment. Most rela-
tionships we know of are based on empirical observations. Although some
relationships are postulated on theoretical grounds, usually the theories
themselves were originally obtained from empirical observations. And even
these relationships often need to be empirically tested.

Some relationships are relatively easy to discover or verify. This is par-
ticularly true when chance plays little or no role in them. But when chance
does play a role, the task of discovering relationships often requires fairly
careful analysis of data. This book is devoted to the study of the analysis of
data aimed at discovering how one or more variables (called independent
variables, predictor variables or regressors) affect other variables (called
dependent variables or response variables).

Such analysis is called regression. This nomenclature is somewhat un-
fortunate since it has little to do with going backwards, as the word re-
gression implies. The name comes from an early (1885) application by Sir
Francis Galton, which dealt with the relationship of heights of parents and
heights of offsprings. He showed that unusually tall parents (‘taller than
mediocrity’, as he put it) had children who were shorter than themselves,
and parents who were ‘shorter than mediocrity’ had children taller than
themselves. This led to his theory of ‘regression toward mediocrity’ and
eventually led to its use with other studies involving relationships. This
choice of word is doubly unfortunate, since it might tend to date regression
from Galton’s work. Actually, regression is much older than that. Eigh-
teenth century French mathematicians (particularly Laplace) and others
(particularly Boscovich, in 1757) were clearly doing what we would call
regression (Stigler, 1975, 1984) and if one is willing to claim two-sample
testing as a subcase of regression (as we do in Chapter 4}, its history goes
back to Biblical times.
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1.2 Determining Relationships: A Specific
Problem

Example 1.1

We know that the more cars there are on a road the slower the speed of
traffic low becomes. A fairly precise understanding of this is important
to the transportation planner since reducing travel time is frequently the
main purpose behind increasing transportation facilities. Exhibit 1.1 shows
data on density in vehicles per mile and the corresponding speed in miles
per hour.

Density Speed (Speed)!/? | Density Speed (Speed)!/?
20.4 38.8 6.229 29.5 31.8 5.639
27.4 31.5 5.612 30.8 31.6 5.621
106.2 10.6 3.256 26.5 34.0 5.831

80.4 16.1 4.012 35.7 28.9 5.376
141.3 7.7 2.775 30.0 28.8 5.367
130.9 8.3 2.881 106.2 10.5 3.240
121.7 8.5 2.915 97.0 12.3 3.507
106.5 11.1 3.332 90.1 13.2 3.633
130.5 8.6 2.933 106.7 114 3.376
101.1 11.1 3.332 99.3 11.2 3.347
123.9 9.8 3.130 107.2 10.3 3.209
144.2 7.8 2.793 109.1 114 3.376

EXHIBIT 1.1: Data on Density of Vehicles and Average Speed
SOURCE: Huber (1957). Reproduced with permission from Transportation Re-
search Board, National Research Council, Washington, D.C.

Since congestion affects speed (and not the other way around) we are
interested in determining the effect of density on speed. For reasons that
need not concern us at the moment (but will be discussed in Chapter 6),
we shall set the dependent variable as the square root of speed. Exhibit 1.2
shows a plot (or a scatter plot as it is sometimes called) with the indepen-
dent variable (density) on the horizontal axis and the dependent variable
(square root of speed) on the vertical axis — as is usual.

Exhibit 1.3 is the same as Exhibit 1.2 except that now a line has been
fitted by eye to the data. If desired the equation of the line can be obtained
using straightforward analytic geometry methods; e.g., pick any two points
(™, y) and (), y()) on the line and substitute these values in

y( — 42

0¥y o
V=V = e @)
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EXHIBIT 1.2: Plot of Square Root of Speed Against Density

In this case we get

3.6 -5.5
b=—-""-"F"-9 (x-1 =63 . , 1
y—3.6 100_30(33 00) or y=6.3-.027z (1.1)
using the points (100, 3.6) and (30, 5.5). ]

The first question that comes to mind at this stage is: How well does our
line fit the observed points? One way to assess this is to compute for each
value z; of our independent variable the value §; of the dependent variable
as predicted by our line. Then we can compare this predicted value §; with
the corresponding observed value y;. This is usually done by computing the
residuals

e =Y — Ui (1.2)

Example 1.1 ctd.

For the first value z; of z, {1 = 6.3 — .027(20.4) = 5.7492 and e; =
6.229 — 5.749 = .48. Exhibit 1.4 displays a plot of the residuals e; against
the x;’s. While Exhibit 1.3 shows that the residuals are fairly small relative
to the original y;’s, indicating a fairly good fit, Exhibit 1.4 shows that we
can do better, since there is a slight pattern in the points (the points in
the middle are lower than those at either end), which we should be able to
account for.
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Density

EXHIBIT 1.3: Plot of Square Root of Speed Against Density with Regression
Line Drawn

One way to do this is to use, in addition to z;, a term involving z2. Here
we obtained the equation

y; = 7 — 0.05z; + 0.00015z2, (1.3)

using a least squares procedure that we shall describe shortly. We could
have tried to fit a parabola to our original data points and found its equa-
tion by using three points on the curve, but least squares is simpler. Ex-
hibit 1.5 shows a plot of the residuals against the predicted values (some-
times called ‘predicteds’) for (1.3), while Exhibit 1.6 gives a plot of the
residuals against x;. Since they do not show any obvious pattern, they in-
dicate that there is perhaps little more we can do and, indeed, we may have
done quite well already. Therefore, we choose

(speed)!/? = 7 — 0.05 density + 0.00015 density?

as our final equation.

Traffic flow is defined as speed xdensity. If we express this flow in terms
of density alone, using the regression equation given above, and plot it we
will find a curve that is increasing for low values of density and decreasing
for higher values. The maximum value of flow is an estimate of the capacity
of the road. It is interesting to note that this capacity is reached for a fairly
low density. ]
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EXHIBIT 1.4: Plot of Residuals Against Density

1.3 The Model

When we set out in the last section to fit a straight line, we had implicitly
hypothesized that the data had an underlying linear pattern, i.e., one of
the form

y = o + bz. (1.4)

However, we also knew that our observations would not fit this pattern
exactly (this book is not intended for situations where the fit is exact!).
Thus we hypothesized that we had a relationship of the form

¥ = Bo + Brx; + €, (1.5)

where i = 1,2,...,n and n is the number of data points. Equation (1.5) is
called a regression model and since we have only one independent variable,
it is called a simple regression model. Later we found that we could do
better with the model

yi = Bo + Grxi + Box? + €5

or, equivalently,
yi = Bo + B1izi1 + BaTa2 + €,

where z;; = z; and x;3 = xf andi=1,...,n.
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EXHIBIT 1.5: Plot of Residuals Against Predicted Speed (Density® Included in
Model)

In general, models of the form
Yi = PBo+ B1zi1 + BoTiz + -+ + BeTik + € where i=1,...,n, (1.6)

with k¥ > 1 independent variables, are called multiple regression models.
The B;’s are called parameters and the €;’s errors. The values of neither
the §;’s nor the €;’s can ever be known. However, they can be estimated
as we did in the last section (the €;’s by the e;’s).

In a simple regression model the 8y and (3; have simple interpretations.
When z = 0 in the equation (1.4), y = Bp. The term [, is frequently called
the intercept. For every unit increase in z, y increases by (1, which is often
referred to as the slope.

It is important to note that in our regression model the z;;’s are simply
numbers — not random variables. Therefore, it is pointless to talk of the
distribution of the z;;’s. The ¢;’s are random variables as are the y;’s, since
they depend on the ¢;’s. The y;’s are called observations, z;1,.. ., T;; are
said to constitute the design point corresponding to y; (or, simply, the ith
design point), and together y;, T;1, - . ., ;% constitute a case or a data point.

We often say that y;’s are observations of the dependent variable y and
for i = 1,...,n, z;;’s are the values of the independent variable ;. How-
ever, we very rarely treat y as a single random variable, and z; is not a
random variable at all. Moreover, more often than not, x;’s are related to



1.4. Least Squares 7

0.3
o]
o ° o
o]
o]
o o
o]
e 0.0+ °q o ° e
o o] o
0%
o
o o
o
-0.3 T T
0 80 160
Density

EXHIBIT 1.6: Plot of Residuals Against Density (Density® Included in Model)

each other. This makes the terms ‘independent variable’ and ‘dependent
variable’ rather unfortunate terminological choices, but at this stage they
are too entrenched in our vocabulary to change.

In Section 1.2 we fitted an expression involving z? to the data. This is
obviously non-linear in z;. But we were doing linear regression and for our
purposes, linearity means linearity in the parameters Gy, 81, . ., Bk; i-e., for
linear regression (1.6) needs to be a linear function of the §;’s.

1.4 Least Squares

Obviously the smaller the residuals the better the fit. Of all possible values
of the 3;’s, the least squares (LS) estimates are those that minimize

n n
§=Y "= (vi—Bo— Pz — faziz — -+ — Brwr)’, (L.7)
i=1 i=1
which in the case of simple regression becomes
S= Z(yi — Bo — Brza)®. (1.8)
i=1

If the reader is at all confused by us acting as if the 3;’s in (1.5) and (1.6)
are fixed but unknown numbers, and then talking about all possible values
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of the §;’s, he or she has every reason to be. The fact is that the 3;’s
have two meanings: one being a generic point in a space of possible values,
and the other a specific point in this space, which may be called the ‘true
value.’ It is conventional to be sloppy and mix up this dual role of the 3;’s
in linear least squares (although in nonlinear least squares the distinction is
usually made explicit — see Appendix C, p. 298). But this should cause no
confusion, and besides, we only consider §3;’s in their ‘true value’ meaning
except when we derive least squares estimates.
Since the partial derivatives of (1.8) with respect to 8y and §; are

8S/08y = -2 (yi—Po—Frza) (1.9)
1=1

and 0§/0681 = -2 Z(yz — Bo — Brzi1) i1, (1.10)
i=1

we obtain the least squares estimates by and b; of By and (; by setting
(1.9) and (1.10) equal to zero and replacing 8y and 81 by by and b,. Thus

from (1.9)
n n
Zyi —nbg — by van =0
i=1 i=1

and setting g =n"1Y "y, and 7, =n"1 Y0 | 741, we get
bo=y—b17;. (111)

From (1.10) it follows that

n n

- 2
E YiTi1 — nboZ1 — by E z; =0,
i=1 =1

which, when we use (1.11) to substitute for bg, yields

n n
Zyﬂz‘l =nZ1(y — b1Z1) — b ZSC?I =0. (1.12)
i=1 i=1
Therefore,
n n
by = (Z YiTi1 — niﬂ])/(z x} — ni?). (1.13)
=1 i=1

The alternative expression

n

b= (-9 (@i —21)/ Y (zia — 31)? (1.14)
i=1

i=1
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is sometimes useful. The equivalence of (1.14) and (1.13) is proved in Ap-
pendix 1A.}
These derivations would have been shortened somewhat if we rewrote
(1.5) as
y; = (Bo + 51%) + ﬂl(:l,‘il —Z1) + €. (1.15)

This model is called a centered model or, more specifically, the centered
version of (1.5). If 4o = Bo+B1Z1, then there is a one-to-one correspondence
between (8o, 31) and (70, 31) and the value of either pair determines the

other. Minimizing
n

Z[yi — 0 — Br(zin — &1))?

i=1
with respect to yo and 1 and noting that Y ., (z;1 — Z1) = 0 we see that
the least squares estimate of o is 7 and that of g, is still (1.14). If desired,
we may estimate by from b; and the estimate j of 9. The expression we
would use for this purpose would be the same as (1.11).

Computer packages exist for carrying out the computations of by and by,

and one would frequently depend on them. Application of these formulae
to the simple regression example in Section 1.2 yields

by = 6.3797, and b = —0.02777. (1.16)
In terms of the by’s and b;’s, the predicted values g; are
g = bo +bizi = § + bi(zin — T1) (1.17)
and the residuals e; are
ei =yi— 9=y —§— bi(zia — Z1)- (1.18)
It may be noted in passing that least squares residuals for the model (1.5)

have the property

n n n

Se=) wi-9-b) (ga—2)=0. (1.19)

=1 i=1 i=1

The method of least squares was apparently first published by the French
mathematician Legendre in 1805. However, Carl Friedrich Gauss, who pub-
lished it in 1809, claimed that he had been using the procedure since 1795,
leading to one of the more famous disputes in the history of science. The
reader who is interested in pursuing this dispute further may wish to con-
sult Plackett (1972) and Stigler (1981).

1This is an appendix to this chapter which is at the end of it. Appendices to individual
chapters have the chapter number in front of the ‘A’, while the appendix at the end of
the book and sections in it start with letters.
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1.5 Another Example and a Special Case

Example 1.2

Consider the data of Exhibit 1.7 on the population of zones and the number
of telephones (household mains). We wish to see how population size affects
the number of telephones. (Models connecting these two variables have been
used to estimate population in small areas for non-census years.)

# of Residents 4041 2200 30148 60324 65468 30988
# of Household Mains 1332 690 11476 18368 22044 10686

EXHIBIT 1.7: Data on Population and Household Mains
SOURCE: Prof. Edwin Thomas, Department of Geography, University of Illinois
at Chicago.

150 o
(o)
o
[e)
v/ Mains 75 —
(o)
(o)
0 T T
0 125 250

v Residents

EXHIBIT 1.8: Plot of Square Root of Household Mains Against Square Root of
Residents

Again for reasons that we shall have to defer for the moment, we prefer
to take square roots of both variables and set

y; = (number of telephones)l/ 2 = (population size)l/ 2,
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A plot is shown in Exhibit 1.8. It appears to indicate a linear relationship
with the line passing through the point (0, 0), which is perfectly reasonable
since if there were no people in an area, there would usually be no household
phones! Thus we would postulate a model of the form

Yi = Piza + €, (1.20)
i.e., the constant or intercept term 3y would be missing. [}

Model (1.20) can be handled using least squares quite easily. Now we

would minimize
n

S= Z(yl - ,31.’1,‘,'1)2 (121)
i=1

with respect to 3;. Then, from equating to zero the derivative
dS/dpy = -2 (v — frza)zia,
=1

we get the least squares estimate by of 3; to be

n n
bl = Z yixil/ Z .’E?l. (122)
i=1 i=1

Since there is no Gy, the residuals are
e =Y — Ui = yi — bizxi1,

but here E?:l e; is not usually zero. For the data in Exhibit 1.7, b; turns
out to be 0.578.

1.6 When Is Least Squares a Good Method? The
Gauss-Markov Conditions

Perfectly reasonable questions to ask at this stage are: How good a proce-
dure is least squares and does it always estimate the (;’s well? We shall
have to defer a better answer to this question until Chapter 2, but for
the moment we can say that least squares gives good predictions if certain
conditions (called Gauss-Markov conditions) are met. In order to show the
need for these conditions let us consider situations where good estimates
would be difficult to get.

Exhibit 1.9a illustrates a case where a straight line is inappropriate and
as a result we are not likely to get good predictions. In order to exclude
such situations (i.e., force us to use models that are appropriate), we make
the condition that

E(e;) =0, for alli. (1.23)
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(a) (b)

EXHIBIT 1.9: Violations of Some Gauss-Markov Conditions

(a) (b)

EXHIBIT 1.10: Examples of Influential Points

This implies that the expectation E(y;) of y; actually is 8y + (171 in the
simple regression case or By + (1x;1 + - - - + Bk Tk in the multiple regression
case. As we shall see in Chapter 11, (1.23) can also be violated if necessary
independent variables are left out of the model.

Another type of problem we shall need to guard against is shown by
Exhibit 1.9b. Here assume that the true model is given by the dotted line
and (1.23) holds, but the variance, var (¢;) of ¢;, increases with x;. The few
points far from the dotted line can cause the least squares line, as shown
by a continuous line in Exhibit 1.9b, to be quite bad (for much the same
reasons as described in the next paragraph). This type of situation, often
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called heteroscedasticity, is prevented by imposing the condition
var (¢;) = E(e; — E(€;))? = E(¢?) = 02 (1.24)

(i-e., E(¢?) is a constant) for all 1.

Sometimes only a single point or a small number of points may violate
(1.23) and/or (1.24). In Exhibit 1.10a, if the point ‘7’ had been absent,
the regression line would have gone more or less through the remaining
four points. However, with the presence of ‘Z’ the regression line is as
shown. Many procedures would be affected by such a point but least squares
estimates are particularly affected. That is because the spacing between
squares of equispaced numbers increases with the size of the numbers (e.g.,
10292 = 19 while 22—12 = 3). Points such as ‘I’ are called outliers because
they are far removed from the regression line and, because they have a
large effect, they are also called influential points. They deserve significant
attention because frequently they represent a violation of (1.23). And when
they do, they do not belong in the analysis and, as we have already seen,
can hurt our analysis.

An even more potentially deadly situation is shown by Exhibit 1.10b. For
much the same reason as before, the point ‘Z’ can alter the entire direction
of the line and, what is worse, ‘Z’ would not even have a large residual to
draw attention to itself. Such a point is an influential point but is not an
outlier. Chapter 8 will be devoted to outliers and influential observations.

Yet another type of problem is perhaps best illustrated by an extreme
example. If we had only two observations we could draw a straight line
fitting them perfectly, but normally we would be reluctant to make a pre-
diction based on them alone. Suppose we made 20 copies of each of the
data points. We now have 40 ‘observations’, but are certainly no better off.
This is because our observations are related (to say the least!). We therefore
require our observations to be uncorrelated:

E(ee;) =0 for all ¢ # j. (1.25)

Conditions (1.23) , (1.24) and (1.25) are called the Gauss-Markov condi-
tions and it is gratifying to note that they assure that an appropriate pre-
diction made by a least squares fitted equation is good. ‘Goodness’ will be
defined in Chapter 2, where a proof of the fact will also be given. Through-
out the book, the Gauss-Markov conditions will be used as a benchmark.
When they hold, least squares estimates are good and when they do not,
we shall need to make appropriate changes which would cause approximate
compliance with the conditions.

1.7 A Measure of Fit for Simple Regression

As already noted, when we have a good fit the residuals are small. Thus we

can measure the quality of fit by the sum of squares of residuals > .., €.
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However, this quantity is dependent on the units in which y;’s are measured.
Thus, when Sy # 0, a good measure of fit is

R =1-3"¢/ i 9)” (1.26)
=1 i=1

This number lies between 0 and 1 (as will be shown in Section 2.8, p. 39)
and the closer it is to 1 the better the fit.
When [y = 0 as in Section 1.5 a measure of fit is

R2=1- ief/iyﬁ (1.27)

i=1 i=1

Since Y7, ¥? is usually much larger than }_._, (y; — 7)2, this definition of
R? is quite different from that in (1.26). Therefore, models with 3y cannot
be compared with those without By on the basis of R?.

Example 1.3
Running a regression of violent crimes (VIOL) against population (POP)
using the data of Exhibit 1.11, we get the regression equation

VIOL = 433.6 + .00011POP [R? = .486).
However, if New York is deleted, we get a substantial decline in R2:

VIOL = 447.9 + .000085 POP  [R? = .087].

This example serves to reminds us that R? depends not only on Y e?,

as we would wish, but also on Y- ; (y; —)?, and an increase in the value of
the latter can increase R?. The plot of Exhibit 1.12 illustrates the situation
and shows a picture somewhat reminiscent of Exhibit 1.10b. [ ]

1.8 Mean and Variance of by and b; Under
Gauss-Markov Conditions

Since by and b; depend on the y;’s, which are random variables, by and b;

are random variables. Their means and variances are given by
z?

iy (i — 1)?
E[b1] = (31, var [b1] = 02/2(1'1'1 - .’i‘l)z.

i=1

E[bo] = Bo, var[bo] = o? [n_l +
(1.28)
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Violent Property
Metro. Area Crimes Crimes Population
Allentown, PA 161.1 3162.5 636.7
Bakersfield, CA 776.6 7701.3 403.1
Boston, MA 648.2 5647.2 2763.4
Charleston, SC 851.7 5587.7 430.3
Corpus Christi, TX  611.5 6115.1 326.2
Elmira, NY 176.0 4693.5 97.7
Fort Lauderdale, FL. 732.1 8044.4 1014.0
Greely, CO 4349 5868.9 123.4
Jackson, MI 642.5 5402.4 151.5
La Crosse, WI 88.3 6261.3 91.1
Lexington, KY 338.2 4879.6 318.1
Madison, WI 177.4 659.2 323.5
Monroe, LA 472.6  3929.2 139.2
Norfolk, VA 500.9 5175.9 806.7
Peoria, IL 676.3 5146.1 365.9
Pueblo, CO 840.5 5709.1 126.0
Sacramento, CA 7247 8087.4 1014.0
San Jose, CA 416.1 6280.4 1295.1
South Bend, IN 354.8 5328.8 280.8
Texarkana, TX 402.7 4225.2 127.0
Washington, DC 693.0 5895.4 3060.2
Youngstown, OH 356.4 3524.3 531.4
New York, NY 1469.9 6308.4 9119.7

EXHIBIT 1.11: Data on Violent and Property Crimes in 22 Metropolitan Areas
SOURCE: Dacey (1983, Ch. 3).

In the case where 8y = 0, we have

E(b1) = By and var (by) = 0/ Y _ z. (1.29)

i=1

These formulz can be seen as special cases of Theorem 2.2 (p. 36) of Chap-
ter 2, or can be proved directly as in the appendix to this chapter.

Since the expected value E(bg) of the estimate by is B, bg is called an
unbiased estimator of By; similarly, b; is an unbiased estimator of 3;. This
is obviously pleasant.

In order to use the variances of by and b; we encounter a slight problem.
They depend on ¢?%, which is not known. However (as will be shown in
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EXHIBIT 1.12: Plot of Violent Crimes Against Population
Chapter 2), an unbiased estimator of o2 is
n
s2=(n-2)""1 Z e? (1.30)
i=1

and if we replace o2 by s? in (1.28) and (1.29) we get estimates of var (bg)
and var (by). Square roots of these estimates are called standard errors and
will be denoted by s.e.(bg) and s.e.(by). Thus

se.(bo) = s[n™! + 27/ (za — 21)]"/2 (1.31)
and "
se.(b1) = s/[Y_(zir — 71)%"/? (1.32)
i=1

when [y # 0; and when Gy = 0,
s.e.(b1) = S/[Z x2]'/? where s? = (n — 1)_12 e2. (1.33)
i=1 i=1

These quantities are routinely provided by computer packages.
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1.9 Confidence Intervals and Tests

Assume that the Gauss-Markov conditions (1.23), (1.24) and (1.25) hold,
and let us now make the additional assumption that the ¢;’s are normally
distributed. Then the ¢;’s are independently distributed as normal with
mean 0 and variance o2. We shall denote this fact as ¢; ~ N(0,0?), i.e., ‘~’
will stand for ‘has the distribution’. It follows that y; ~ N(Bo + S1zi1,02).
Then, the b;’s, being linear combinations of y;’s, are also normal with means
and variances as given in the last section. It may be shown that

(bj — Bj)/s-e.(bj) ~ tn—2 (1.34)

for the simple regression case with 3y # 0, where ¢,,_5 is the Student’s t dis-
tribution with n—2 degrees of freedom (Section B.5, p. 292, of Appendix B;
a table is given on p. 320). From (1.34) we may obtain a (1—a) x 100 percent
confidence interval (C.L.) for 3; as

by — 5.0.(0)tn-2,a/2 < Bj < bj +5.e.(b)tn_2a2  (135)

where j = 0 or 1 and t,_3 o/ denotes the upper a/2 point of the t distri-
bution with n — 2 degrees of freedom.

Example 1.2 ctd.

Consider now the data on telephones from Section 1.5 and let us consider
the model with By # 0 (we shall test the hypothesis H: 8y = 0 shortly).
Exhibit 1.13 shows a portion of a typical output from a regression package.

As we can see,
bg =1.30, b =.571,

and
s.e.(bg) = 4.28, s.e.(by) = .024.

Since t4,0.05 = 2.1318, the 90 per cent confidence intervals for So and ()

are respectively
(—7.8241,10.4241) (1.36)

and
(.5198,.6221). (1.37)

Since 0 is included in (1.36) we cannot reject the hypothesis Hy: Gp = 0,
but we can reject, say, Ho: 5, = .7. Exhibit 1.14 shows an output for when
the intercept term is missing. Now, using the fact ¢5 g5 = 2.0151, the C.I
for (3, is seen to be (.5583, .5973).

The test for §; = 0 is called for so often that most packages routinely
carry it out. The values of

t(bo) = bo/s.e.(bp) = 0.3037 and ¢(b1) = bi/s.e.(b1) = 23.955
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Variable bj |s.e(b;)| t(b;) | Pt > [t(b;)]

Intercept | 1.301| 4.280 | 0.3037 0.7763
[Mains]l/2 0.571| 0.024 | 23.955 0.0001

s =4.714 R? = 9931
EXHIBIT 1.13: Computer Output for Telephone Data

Variable bj |s.e.(b;)| t(b;) | P[lt] > |t(b;)]]
[Mains]!/2 | 0.578 | 0.0097 | 59.556 0.0001

s=4.264  R?®=.9986
EXHIBIT 1.14: Computer Output for Telephone Data When Gy Is Missing

are also given in Exhibit 1.13. The probability that the value of a t dis-
tributed random variable would be numerically larger than |t(bg)| = 0.3037
is .7763 and that of getting a t-value larger than |t(b;)| = 23.955 is .0001.
Thus we can reject H : 3 =0 at 5, 1 or even .1 per cent but cannot reject
H : By = 0 at any reasonable level of significance. |

1.10 Predictions

One of the principal purposes of regression is to make predictions. Suppose
o1 is a value of the independent variable z; for which we need to predict
the dependent variable y. Obviously, such a prediction would be

Yo = bo + b1zo1. (1.38)

Thus, using the output of Exhibit 1.13, if we wish to forecast the number
of telephones for an area with 10000 people, we would have yo = 1.301 +
.571(100) = 58.4 and the forecasted number of phones would be its square,
which is 3411.

Since, as shown in Section 1.8, E(bg) = (o and E(b;) = (1, we have

E(g0) = Bo + Brzo1. (1.39)

It has been shown in Appendix 1A (and may also be shown as a special
case of the formule in Section 3.8.1, p. 71) that

n

var (§o) = o2[n"! + (zoy — 1)/ Z(m,l —71)?]. (1.40)

=1

It might be noted in passing that var (fjp) obviously increases with (zo1 —
%1)2, that is, var (o) gets larger the farther zo; is from 7;.
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Let yo be the observation, corresponding to xg;, that we would have got
were we able to. Such a yg is called a future observation. Since we would
be forecasting yo with go we would be interested in the difference

Yo — Yo- (1.41)

In order to obtain the mean and variance of (1.41), we need to assume that
Yo is given by the same model as the observations on which the regression
equation is built, i.e.,

Yo = Bo + B1Zo1 + €0

where E(eg) = 0, E(€2) = 02, and E(epe;) = 0 for i = 1,...,n. Then, of
course,
E(y0) = Bo + B1zo1

and hence from (1.39)
E(yo — 90) = 0. (1.42)

The variance of (1.41) is
var (yo — Jo) = var (yo) + var (o)

=0?[1+n"t + (zo — 51)2/2(%1 — )2 (1.43)
i=1

Obviously, since o2 is not known, in practical applications we would
Y.

normally replace 0% by s? in both (1.40) and (1.43). Using s? = 22.22 in
Example 1.2, the standard error of 3y corresponding to a place with 10000
people turns out to be 2.39 and that of a future observation works out to
5.28.

If one is confused about the distinction between predicted value and
future observation, one may wish to consider that the predicted value g is
a point on the estimated regression line and its variance only reflects the
fact that by and b; are random variables. On the other hand, there is no
reason to believe that a future observation will necessarily be on the true
line y = By + Piz1 or on the fitted line. Indeed, yo — By — B1zo1 has the
variance 2. Thus the variance of yy — §p would be due to a combination
of both effects.
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Appendix to Chapter 1

1A SOME DERIVATIONS
PROOF OF (1.14): Since Y . ;(yi — §)T1 = Z1 Y1, (¥: — §) =0,

n n

Z(yi —§(za — 1) = Z(yﬂil —§Tia) — Z1 Z(:l,h -y

i=1 i=1
n n n (1.44)

= Zyimil - 372 Tip = Zyﬂil - nyz1,
i=1 i=1 i=1
and

n

2
E T —T1)° = E T2 — 2% E T + ni?
i=1

(1.45)
= Zzﬂ 2nz3 + nz: = Zmu nzs.
=1
Hence, the coefficient (1.13) may also be written as
n n
b= (% —9)(@a—21)/Y_(@a — %)%,
i=1 i=1
as stated on p. 8. m|

PROOF OF (1.28): Since > - ,(z;1 — Z1) = 0 and
Z(y ) (zi1 — Z1) Z.w Zi1 — Z1) Z 1 —Z1) = Zyi(l'il — ),
i=1 =1

=1

it follows from (1.14) that

=Y yi(ma - -'i'l)/z T — Z1)? Zc,y,, (1.46)
i=1 i=1

where ¢; = (zi1 — Z1)/ Y1y (zi1 — Z1)2. It is easy to verify that

and
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Hence, using standard results on means and variances of linear combina-

tions of random variables (a summary of these is presented in the appendix
to the book — see Section B.1.1, p. 284), we get

b) = eBly) =)o+ ) cima
-1 i=1 i=1

. (1.47)
=ﬁozci+ﬂ1 =0
i=1
and because var (y;) = var (B + f1Z:1 + €;) = var (¢;) = o2, we have

var (by) Zc var (y;) —O'ZZC ——02/2 Ty — )% (1.48)

Similarly, since

n n

E(j) =n"" Z E(y:) =n"" Z(ﬁo + Brzi1) = Bo + P,

i=1 i=1
it follows that
E(bo) = E(§—b1Z1) = Bo+51%1—Z1 E(by) = Bo+P1Z1—Z61 = Bo. (1.49)
Now, from (1.46) we can write

-t Zyz - Zczyz - Z -1 "i'lci)yi- (150)

i=1

Hence,
var (bg) Z[n — Z1¢)var ()
=
=g? Z —2n7 1% ¢ 4+ 72 (1.51)
i=1
=2
2|, -1 Ty
=0 (n "+ = .
[ Y (@i - $1)2]
This completes the proof. )

PROOF OF (1.29): In the case where 5y = 0, we have from (1.22)

n n n n n n
b= yiwa/ Y ach=pYy oh/) 7k + D aza/ ) zh
i=1 =1 i=1 i=1 i=1 i=1
n n
— 2
=0+ Zfﬂil/zmil-
i=1 i=1

(1.52)
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Hence,
var (by) :‘722-73121/(21?1)2 =‘72/ng1 (1.53)
i=1 i=1 i=1
and E(b) = ;. 0O

PROOF OF (1.40): Substituting the expression (1.11) for b in (1.38) and
using (1.46) we get

n
Jo =9 —bi1Z1 + bizor = § + b1(zo1 — Z1) = Z(n_l + (To1 — Z1)¢i)ys-
i=1
Therefore,
n
var (o) = 0% Y _(n™! + (201 — Z21)c:)’
i=1
n
=0’ Z["_z + 207} (zo1 — Z1)e; + (zo1 — 71)%¢]]
=1
n
=o’[n! + (w01 — 21)%/ ) (¢ — 71)7)
i=1

on substituting for ¢; from (1.46) and noting that Y ;. , ¢; =0. a



Problems 23
Problems

Exercise 1.1: Show that for the estimator b; in (1.22), E[b;] = §;.
Exercise 1.2: Prove (1.53).

Exercise 1.3: Let e; be the residuals defined in (1.18). Find var (e;).
Exercise 1.4: Let §; be as defined as in (1.17). Find E(§;) and var (%;).

Exercise 1.5: Suppose in the model y; = Bo+31x;1 +€;, wherei = 1,...,n,
E(e;) = 0, E(€?) = 02 and, for i # j, E(e;e;) = 0, the measurements x;;
were in inches and we would like to write the model in centimeters, say,
z;1. If one inch is equal to ¢ centimeters (¢ known), write the above model
as y; = g + Bfzi1 + €. Can you obtain the estimates of 8§ and 57 from
those of By and 3,7 Show that the value of R? remains the same for both
models.

Exercise 1.6: Suppose y1, ..., ¥y, are independently distributed and y; =
p+e fori =1,...,n. Find the least squares estimate of u if E(e;) = 0
and var (¢;) = o2. Give the variance of this estimate.

Exercise 1.7: Let (y1,21),. .., (Yn,Zn) and (wy,z1),..., (Wn,z,) be two
sets of independent observations where z,. .. ,x, are fixed constants. Sup-
pose we fit the model y; = a1 + Bz; + ¢; to the first data set and the model
w; = g + Bx; +1; to the second set. In each case i = 1,...,n, and assume
that all €;’s and 7,’s are independently distributed with zero means and
common variance ¢2. Find the least squares estimates of a;, ap and 3.

Exercise 1.8: For i = 1,...,n, let y; = By + B1x;1 + €; be the straight
line regression model in which z;;’s are such that Z?zl z;1 = 0, and ¢;’s
are independently distributed with mean zero and variance o2. What are
the least squares estimators of 8y and 31?7 Find the mean and variance of
these estimators.

Exercise 1.9: Stevens (1956) asked a number of subjects to compare notes
of various decibel levels against a standard (80 decibels) and to assign them
a loudness rating with the standard note being a 10. The data from this
experiment are summarized in Exhibit 1.15. Run a regression using log y
as a dependent variable and z as the independent variable.

Stimulus () 30 50 60 70 75 80 85 90 95 100
Median Response (y) 0.2 1.0 3.0 5.0 85 10.0 14.0 20.0 29.0 43.0
log(y) -70 .00 .48 .70 .93 1.00 1.15 1.30 1.46 1.63

EXHIBIT 1.15: Data from Stevens’ Experiment
SOURCE: Dacey (1983, Ch.1) from Stevens (1956). Reproduced with permission
from University of Illinois Press.
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Exercise 1.10: Using the data shown in Exhibit 1.16, obtain an equation
expressing stock prices as a function of earnings. At a 5 per cent level of
significance, test the hypothesis that stock prices are unrelated to earnings,
against the alternative that they are related.

1972 Earnings  Price (in $’s)
Company per Share (in $’s) in May, 1973
CROWN ZELLERBACH 1.83 28
GREAT NORTHERN NEKOOSA 3.35 45
HAMMERMILL PAPER 0.64 12
INTERNATIONAL PAPER 2.30 35
KIMBERLY-CLARK 2.39 45
MEAD 1.08 14
ST. REGIS PAPER 2.92 39
SCOTT PAPER 1.11 12
UNION CAMP 2.57 43
WESTVACO 1.22 23

EXHIBIT 1.16: Earnings and Prices of Selected Paper Company Stocks
SOURCE: Dacey (1983, Ch. 1) from Moody’s Stock Survey, June 4, 1973, p. 610.

Exercise 1.11: Exhibit 1.17 gives data on population density (pd) and
vehicle thefts (vtt) per thousand residents in 18 Chicago districts (D).
District 1 represents downtown Chicago. Run a regression with vtt as the
dependent variable and pd as the independent variable. Plot the residuals
against pd. Do you notice an outlier? If so, can you explain why it is so?
If appropriate, delete any outliers and re-estimate the model.

Now test the hypothesis that the slope is zero against the alternative
that it is different from zero. Use 5 per cent as the level of significance.

pd vtt | D pd vtt

D

1 3235 132.8|14 22919 13.3
2 24182 14.9[15 24534 15.1
3
6
7

20993 16.7 |18 24987 16.2
15401 20.0|19 21675 12.5
19749 14.2 20 22315 11.8
10 19487 13.5{21 18402 19.6
11 19581 16.5|23 33445 10.5
12 14077 22.2|24 27345 10.1
13 18137 15.8|25 15358 19.0

EXHIBIT 1.17: Data on Population Density and Vehicle Thefts
SOURCE: Mark Buslik, Chicago Police Department.
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Exercise 1.12: Exhibit 1.18 gives data on the number of marriages (ma)
that occurred between residents of each of 8 annular zones and residents of
Simsbury, Connecticut, for the period 1930-39. The number of residents of
each zone is given as pop and the midpoint of distance between Simsbury
and the band is given as d (e.g., the first annular zone represents a band 5-7
miles from Simsbury with a midpoint of 6). Run a regression of log[ma/pop]
against d. Write a sentence explaining your findings to a non-technical
audience.

d pop majd pop ma

6 3464 26 (14 15207 7
8 4892 12 (16 175458 49
10 2583 4|18 95179 18
1239411 12 |20 62076 7

EXHIBIT 1.18: Data on Simsbury Marriages
SOURCE: Dacey (1983, Ch. 4) from Ellsworth (1948).

Price P B|Price P B|Price P B|Price P B
10.25 112 p|24.50 146 ¢ |24.75 158 c|30.50 276 c
14.25 260 p|19.75 212 ¢ |16.50 322 p|22.75 264 ¢
29.25 250 ¢ |30.25 292 ¢ |12.50 188 p|17.75 378 p
17.50 382 p|16.25 340 p|16.75 240 p|29.50 251 ¢
12.00 175 p|29.00 252 c¢|17.50 425 p|27.50 202 ¢

EXHIBIT 1.19: Data on Book Prices, Pages and Type of Binding

Exercise 1.13: The data set given in Exhibit 1.19 was compiled by one
of the authors from the Spring, 1988, catalogue of American Government
books put out by a certain publisher. It lists prices, number of pages (P) and
the binding (B; p stands for paperback and c for cloth). Fit a straight line
to the paperback data, using price as the dependent variable and number of
pages as the independent variable. What do the parameters say about the
pricing policy of the publisher? Repeat the same exercise for cloth-bound
books. Estimate the price of a paperback book of 100 pages and a 400-page
cloth-bound book. Also estimate the prices of 250-page books with the two
types of binding. In each case give the 95 per cent confidence interval within
which the price of such a book when produced will lie.

Exercise 1.14: The data set in Exhibit 1.20 was given to us by Dr. T.N.K.
Raju, Department of Neonatology, University of Illinois at Chicago. Regress
each of the infant mortality rates (IMR) against the Physical Quality of
Life Index (PQLI — which is an indicator of average wealth). In each case
try taking logs of
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Comb- | Rural | Rural | Urban | Urban

PQLI| ined | Male | Female| Male | Female
State Score| IMR | IMR | IMR | IMR | IMR
UTTAR PRAD. 17 167 159 187 110 111
MADHYA PRAD. 28 135 148 134 88 83
ORISSA 24 133 131 142 78 81
RAJASTHAN 29 129 135 142 55 77
GUJARAT 36 118 120 135 92 84
ANDHRA PRAD. 33 112 138 101 79 46
HARYANA 55 109 107 128 57 60
ASSAM 35 118 133 106 87 85
PUNJAB 62 103 115 108 58 73
TAMILNADU 43 103 125 115 67 59
KARNATAKA 52 75 92 70 51 59
MAHARASHTRA 60 75 95 72 50 62
KERALA 92 39 42 42 22 30

EXHIBIT 1.20: Data on Physical Quality of Life Index (PQLI) Scores and Infant
Mortality Rates (IMR) for Selected Indian States

1. the independent variable only,
2. the dependent variable only, and
3. both independent and dependent variables.

Using suitable plots, visually judge which of 1, 2 or 3 above or the un-
transformed case gives the best fit.

L D| L D L D

1000 1259000 920 | 9400 2750
2000 2259250 1040|9375 3200
3000 325|9175 1320|9450 3750
4000 4259150 1500 {9500 4500
5000 5259150 1600 | 9600 5000
6000 625| 9000 1840|9700 6500
7000 7259250 2160|9900 8000
8000 8809125 2480|9900 9500

EXHIBIT 1.21: Data on Loads (L) and Deformation (D) of a Bar

Exercise 1.15: Exhibit 1.21 gives data on loads, in pounds, and corre-
sponding deformation, in inches, of a mild steel bar (of length 8 ins. and
average diameter .564 ins). The data were provided by M.R. Khavanin,
Department of Mechanical Engineering, University of Illinois at Chicago.
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1. Run a regression of the log of D against the log of L. Obtain a plot
of the residuals against the predicted values. What does the plot tell
you about the relationship between the two quantities?

2. Although, presumably, deformation depends on load, and not the
other way around, run a regression of the log of L against the log
of D. Plot residuals against the predicted and independent variables
and take whatever action you think is warranted to get a good fit.

Do you have a physical explanation for what you observed in doing this
exercise?



CHAPTER 2

Multiple Regression

2.1 Introduction

Formulae for multiple regression are much more compact in matrix nota-
tion. Therefore, we shall start off in the next section applying such notation
first to simple regression, which we considered in Chapter 1, and then to
multiple regression. After that we shall derive formulae for least squares
estimates and present properties of these estimates. These properties will
be derived under the Gauss-Markov conditions which were presented in
Chapter 1 and are essentially restated in Section 2.5.

2.2 Regression Model in Matrix Notation

We begin this section by writing the familiar straight line case of Chapter 1
in matrix notation. Recall that the regression model then was:

y1 = PBo+ Bir11 + e

(2.1)
Yn = Bo + B1Zn1 + €n.
Now if we set
n € 1 znn
Y2 €2 1 zn
v=| "= Tx=] D T e=(2) e
: : : : 1
Yn €n 1 zn
then it is easy to verify that (2.1) may be written as
y=XB+e. (2.3)
Now let us consider the case of more than one independent variable.
Suppose we have k independent variables z1,...,Zk; then the regression
model is
Y1 = Bo + Biz11 + a1z + - + BrTik + €1
................................... (2.4)

Yn = Bo + B1Tn1 + BTz + -+ + BkZnk + €n.
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Letting
1 z11 ... Zik Bo

wo | andB=| : |, (2.5)

1 zTp1 ... ZTpk Br

the model (2.4), called the multiple regression model, may also be written
in the form (2.3).

The matrix X is called a design matrix. As in simple regression, the
Bo term in (2.4} is often called the constant term or the intercept. Note
that the first column of X i.e., the column of 1’s, corresponds to it. If for
some reason we do not want to keep Gy in the model, we would delete this
column. As mentioned in the last chapter, the last k& elements in the ith
row of X constitute the sth design point of the model and an observation
y; together with its corresponding design point constitute the ith case or
data point.

GPA (max=4) 3.95 3.84 3.68 3.59 3.57 3.49 3.47 3.40 3.08
Verbal SAT (SATV) 74 76 66 76 76 66 71 71 57
Math. SAT (SATM) 79 71 75 74 70 67 73 79 76

EXHIBIT 2.1: Data on Grade Point Average and SAT Scores.
SOURCE: Dacey (1983).

Example 2.1
For the data presented in Exhibit 2.1, we may write a multiple regression
model to predict GPA on the basis of SATV and SATM as

y1 = 3.95 = By + G1(74) + 52(79) + &1
Y2 = 3.84 = By + 51(76) + B2(71) + ¢,

Yo = 3.08 = By + B1(57) + B2(76) + €o.
The values of y and X would be:

3.95 1 74 79
3.84 1 76 71
3.68 1 66 75
3.59 1 76 74
y=| 3.57 and X=1] 1 76 70
3.49 1 66 67
3.47 1 7 73
3.40 1 71 79
3.08 1 57 76
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2.3 Least Squares Estimates

We obtain the least squares estimate of 3 in the multiple regression model
by minimizing

n
S=3 (v — Bo - Bravi--- - Braix)’ = (y — XBY (y — XB)
i=’1 ! 3l ’ /3! (2'6)
=yy-fXy-yXB+BXXp3
=y'y - 20'(X"y) + B'(X'X)B,
since ¥’ X3, being a scalar, equals 3'(X’y). In order to minimize (2.6),
we could differentiate it with respect to each 3; and set the derivative

equal to zero. Or, equivalently, we can do it more compactly using matrix
differentiation (see Appendix 2A):

85/08 = —2X'y + 2X' X 3. (2.7)

Setting (2.7) equal to zero and replacing 3 by b, we see that the least
squares estimate b of 3 is given by

(X'X)b=X"y. (2.8)

That this indeed gives a minimum will be shown at the end of this section.
If X'X is non-singular, (2.8) has a unique solution:

b= (X'X)"'X'y. (2.9)

When (X'X) is singular (2.8) can still be solved by using generalized in-
verses (defined in Appendix A, Section A.12, p. 278). We get from Corol-
lary A.1:

b=X'X)"X'y=X"y. (2.10)
While this estimate is not unique, it follows from Corollary A.1(iii) that
X(X'X)~ X’ is unique, and consequently, Xb is unique. It is a simple
matter to see that if Gy is absent and the column of 1’s deleted from X,
(2.8), (2.9) and (2.10) continue to hold.

As for the simple regression case, we define residuals e; by

where

€1 Y1
e= : 9= : =Xb=X(X’X)‘1X’y:Hy, (2.12)

€n Yn
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and H=X(X'X)"*X'. Let M =1 — H. Then
MX=(I-HX=X-XX'X)"'XX=X-X=0.
Using M and (2.3) we can express e in terms of y or € as follows:

e=y—Hy=My

(2.13)

Theorem 2.1 The residuals are orthogonal to the predicted values as well
as the design matriz X in the model y = XB + €.

PROOF: Since

X'e=X'Me = 0e = o, (2.14)

the null vector, it follows that
Je=bXe=0, (2.15)
which proves the theorem. O

It follows from Theorem 2.1 that if By is in the model, and consequently
the first column of X is 1 = (1,...,1)’, then 3" e, =1'e =0.

To conclude this section we now show that the minimum of § = (y —
XB)'(y — XPB) is indeed attained at b = 3. Note that, from Theorem 2.1,

b-B)X'(y—Xb)=(y—-Xb)X(b-B)=€e'X(b-B)=0. (2.16)
Hence,
S=(y—Xb+Xb— XB) (y— Xb+Xb—Xp)
= (y — Xb)'(y — Xb) + (b - B) (X' X)(b - B).
Both expressions in the last line are quadratic forms and hence positive, and

the first of these does not depend on 3. Therefore, S attains its minimum
at b= 0.

2.4 Examples

Example 2.2

Several computer packages are available for computing b. From Exhibit 2.3,
which illustrates the result of applying such a program to the data of Ex-
hibit 2.2 (not all the variables shown in Exhibit 2.2 have been used), we
get the regression equation (with somewhat greater rounding than in Ex-
hibit 2.3)

PRICE = 18.48 + .018 FLR + 4.03RMS — 7.75 BDR

2.17
+2.20BTH + 1.37 GAR + .257LOT + 7.09FP + 10.96 ST. ( )
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Price | BDR |FLR |FP |RMS{ST |LOT|TAX|BTH|CON|GAR|CDN|L1|L2
53 2 967| O 5 0 39 652 | 1.5 1 0.0 0 11]0
55 2 815| 1 5 0 33 {1000| 1.0 1 2.0 1 110
56 3 900 O 5 1 35 8971 1.5 1 1.0 0 10
58 3 1007 O 6 1 24 964 | 1.5 0 2.0 0 1(0
64 3 1100 1 7 0 50 |1099| 1.5 1 1.5 0 1({0
44 4 897| O 7 0 25 960 | 2.0 0 1.0 0 1(0
49 5 1400| O 8 0 30 678 1.0 0 1.0 1 1(0
70 3 2261 O 6 0 29 (2700 1.0 0 2.0 0 110
72 4 1290 O 8 1 33 800 | 1.5 1 1.5 0 1[0
82 4 2104( O 9 0 40 (1038 2.5 1 1.0 1 110
85 8 2240 1 12 1 50 | 1200 3.0 0 2.0 0 1{0
45 2 641 O 5 0 25 860 | 1.0 0 0.0 0 0|1
47 3 862| 0 6 0 25 600 1.0 1 0.0 0 0|1
49 4 1043 0 7 0 30 676 | 1.5 0 0.0 0 011
56 4 1325 0 8 0 50 |[1287 ]| 1.5 0 0.0 0 0|1
60 2 7821 0 5 1 25 834 | 1.0 0 0.0 0 0|1
62 3 1126 | 0 7 1 30 7341 2.0 1 0.0 1 0]1
64 4 1226 | 0 8 0 37 551 2.0 0 2.0 0 011
66 2 929 1 5 0 30 |1355] 1.0 1 1.0 0 0|1
35 4 1137 O 7 0 25 561 1.5 0 0.0 0 0|0
38 3 743 0 6 0 25 489 | 1.0 1 0.0 0 00
43 3 596 0 5 0 50 752 1.0 0 0.0 0 00
46 2 803| O 5 0 27 774 1.0 1 0.0 1 010
46 2 696 0 4 0 30 440| 2.0 1 1.0 0 00
50 2 691 O 6 0 30 549 1.0 0 2.0 1 0|0
65 3 1023 0 7 1 30 900 2.0 1 1.0 0 110

PRICE = Selling price of house in thousands of dollars

= Number of bedrooms

= Floor space in sq.ft. (computed from dimensions of each room
and then augmented by 10%)

= Number of fireplaces

= Number of rooms

= Storm windows (1 if present, 0 if absent)

= Front footage of lot in feet

= Annual taxes

= Number of bathrooms

= Construction (0 if frame, 1 if brick)

= Garage size (0 = no garage, 1= one-car garage, etc.)

= Condition (1=‘needs work’, 0 otherwise)

= Location (L1=1 if property is in zone A, L1=0 otherwise)

= Location (L2=1 if property is in zone B, L2=0 otherwise)

BDR
FLR

FP
RMS
ST
LOT
TAX
BTH
CON
GAR
CDN
L1
L2

EXHIBIT 2.2: Data on House Prices

SOURCE: Ms. Terry Tasch of Long-Kogan Realty, Chicago.
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From this equation we can estimate the selling price of a house with 1000
square feet of floor area, 8 rooms, 4 bedrooms, 2 baths, storm windows,
no fireplaces, 40 foot frontage and a 1 car garage to be about $65,000, as
follows:

18.48 + .018(1000) + 4.03(8) — 7.75(4) + 2.2(2)+
1.37(1) + .257(40) + 7.09(0) + 10.96(1) = 64.73.

We can also see that, according to (2.17), adding a space for an additional
car in a garage would raise the price by about $1370, every square foot
increase in floor area would increase the price by about $18, etc. In each case
the assumption is that each of the above mentioned changes is marginal,
i.e., nothing else changes. Another way of putting this is to say that the
effect of adding an extra garage space is $1370, other things being equal,
i.e., for two houses which are otherwise identical (in terms of the other
variables in the model) but with one having space for an extra car in the
garage, the price difference would be estimated to be about $1370.

If the reader is disturbed by the negative sign associated with BDR,
he/she should note that the estimated loss of price occurs if we increase the
number of bedrooms without increasing the number of rooms or floor area.
If we also increased the number of rooms by one and added a bathroom and
some floor area to account for these additions, then the estimate of price
would go up. In a situation where there are several related variables, signs
which at first glance would appear counter-intuitive are not uncommon.
Here (as in many other of these cases) further thought shows that the sign
may be plausible. In addition, the reader should bear in mind that these
estimates are random variables, and even more importantly, that we may
not have considered important variables and may in other ways have fallen
far short of perfection. It is also too true that a perfect model is seldom
possible!

We draw the reader’s attention to the variable ST which takes only two
values, 0 and 1, and as such is called a dichotomous variable. Such vari-
ables, which are frequently used to indicate the presence or absence of an
attribute, are also called dummy variables or indicator variables and fall
in the general category of qualitative variables. The interpretation of the
coeflicients of such variables is about the same as for any other coefficient.
We shall consider indicator variables further in Chapter 4. Suffice it to say
for the moment that, that other features being equal, the presence of storm
windows seems to enhance prices by a whopping ten thousand dollars! m

(2.18)

Example 2.3 (Continuation of Example 1.1, Page 2)

As another example consider the data of Section 1.2 on speed of vehicles
on a road and density of vehicles. In that section we fitted an equation of
the form

(Speed)/? = By + B1(density) + B2 (density)® + e. (2.19)
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Variable | b; |s.e.(bj)|t(b;) | Pllt] > |t(b;)]]
Intercept | 18.48| 5.310 | 3.48 .0029
FLR 0.018| .0032 | 5.46 .0001
RMS 4.026 | 1.637 | 2.46 .0249
BDR |-7.752| 1.872 |-4.14 .0007
BTH 2.205| 2.646 | .833 4163
GAR 1.372| 1.453 | .944 .3584
LOT 0.257| 0.137 | 1.88 0775
FP 7.091| 3.190 | 2.23 .0401
ST 10.96 | 2.323 | 4.72 .0002

R%? =.9027 R?= 8568 s=4.780

EXHIBIT 2.3: Result of Applying a Least Squares Package Program on House
Price Data

Here all we needed to do was to create a second independent variable each
value of which is the square of each density. [ |

Example 2.4
Let us return to the data of Exhibit 2.1, p. 29. On applying the least squares

one gets
GPA =1.22 4+ 0.029 SATV + 0.00044 SATM.

This would seem to indicate that SAT mathematics scores have very little
effect on GPA. But we must not forget that when judging the effect of
one variable we must bear in mind what other variables are already in the
model. With SATM alone we get

GPA = 3.55 4+ .0001 SATM.

Thus, at least for these students, SAT mathematics scores are not very
good predictors of GPA. [ |

Users of some computer packages will notice that nowadays they provide,
in addition to the estimates we have mentioned, a statistic called standard-
ized coeflicients or betas. These are the regression coeflicients b; divided by
the sample standard deviation of the dependent variable values and multi-
plied by the sample standard deviation of the corresponding independent
variable values. This obviously renders the coefficients unit free. No further
mention will be made in this book of standardized coefficients.
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2.5 Gauss-Markov Conditions

In order for estimates of 3 to have some desirable statistical properties, we
need the following assumptions, called Gauss-Markov (G-M) conditions,
which have already been introduced in Chapter 1:

E(e;) = 0 (2.20)

E(&) = o2 (2.21)

E(eie;) = 0 wheni #j, (2.22)

forall i,5 = 1,...,n. We can also write these conditions in matrix notation
as

E(e) = 0, E(e€') = o°I. (2.23)

Note that o is the vector of zeros. We shall use these conditions repeatedly
in the sequel.
Note that G-M conditions imply that

E(y)=XpB (2.24)

and
cov(y) = E[(y — XB)(y — XB)'] = E(e€’) = 0°I. (2.25)

It also follows that (see (2.13))

Elee'| = ME[e€'|M = 0’ M (2.26)
since M is idempotent. Therefore,

var (e;) = 0°my; = 02[1 — hyg (2.27)

where m;; and h;; are the {jth elements of M and H respectively. Because
a variance is non-negative and a covariance matrix is at least positive semi-
definite, it follows that h;; < 1 and M is at least positive semi-definite.

2.6 Mean and Variance of Estimates Under G-M
Conditions

Because of (2.24)
E(b) = E[(X'X)"'X'y] = (X'X)"'X'XB =8 (2.28)

As discussed in Section B.1.1, p. 284, if for any parameter 6, its estimate t
has the property that E(t) = 6, then t is an unbiased estimator of §. Thus
under G-M conditions, b is an unbiased estimator of 3. Note that we only
used the first of the G-M conditions to prove this. Therefore violation of
conditions (2.21) and (2.22) will not lead to bias.
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Theorem 2.2 Under the first G-M condition (2.20), the least squares esti-
mator b is an unbiased estimator of (3. Further, under the G-M conditions
(2.20)-(2.22),

cov(b) = o(X' X)L

PROOF: We have already established unbiasedness. Let A = (X'X)~1X’,
then b = Ay and we get, from (2.25),

cov(b) = Acov(y)A' = 0?AITA = 02 AA’

= 0'2(X’X)‘1X/X(X/X)—1 — 0_2(X/X)..1’ (229)

which completes the proof. [}

Corollary 2.1 If tr[(X'X)™!] — 0 as n — oo, then the estimator b is a
consistent estimator of 3.

The proof follows from the fact that when (X'X)~! — 0, cov(b) — 0
as n — 0o. See Appendix 2A at the end of this chapter for a definition of

consistency.
From (2.13), E(e) = E(Me€) = 0. Therefore, it follows from (2.27) that

cov(e) = Elee'] = 6’ MM’ = 0*M. (2.30)
Writing the ith equation in (2.4) as
yi = z;B + €,
where x} = (1, z;1,. .., Zi ), the predicted value of y; can be defined as
9 = x;b.
Consequently the predicted value of y is
9= Xb.

From Theorem 2.2 we get, on using the results on the covariance of a
random vector (Section B.2, Page 286),

var (;) = ) cov(b)x; = o’z (X' X)) 'x; = o2hy
K] 1

and
cov(§) = X cov(b) X' = 02X (X'X) ' X' = o%H.

Obviously the first of the two results follows from the second. It also follows
that h;; > 0 and that H is at least positive semi-definite.
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2.7 Estimation of o2

To use several of the formulse of the last section, we need o2, which is
usually not known and needs to be estimated. This can be done using the
residuals e;. Because M = (m;;) is a symmetric idempotent matrix,

n n n
E el=e'e=€MMe=€eMe= E mi€: + E mije€e;.  (2.31)
i=1 =1 i,j=1

i

The quantity Y., €? is often called the residual sum of squares and is

denoted as RSS. It follows from (2.31) that

E E my; B E m;; E(eie;)

1= i,5=1
i#£]
n
= g2 E mi; =02trM=(n—Ic—1)(72
=1

when an intercept is present and there are k independent variables, since
then trM = trl, — trH = n— k— 1 — see (A.10) on p. 278. Therefore, if
we let

§? = zn:ef/(n —k—1) (2.32)
i=1

we see that s? is an unbiased estimate of ¢2. When an intercept term is
absent and there are k independent variables

n

st = Z e7/(n—k) (2.33)

=1

is an unbiased estimator of o2. The divisor n — k in the last formula and
n—k —1in (2.32) are the degrees of freedom.

Also, as shown in Appendix 2A, s> — o2 in probability as n — oo;
that is, s? is a consistent estimator of o2. Thus, when o2 is not known, a
consistent and unbiased estimator of cov(b) is given by

—

cov(b) = s*(X'X)™' = G = (g;), say. (2.34)

The matrix 2 19
1
(9:5/9:°9;]") (2.35)

is an estimate of the correlation matrix of b. Matrices (2.34) and (2.35) are
available from typical least squares computer packages. We can summarize
the above results in the following theorem:
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Theorem 2.3 Under G-M conditions, s is an unbiased and consistent
estimator of 02, and s%(X'X)™! is a consistent and unbiased estimator of

cov(b).

The residuals and the residual sum of squares play a very important role
in regression analysis. As we have just seen, the residual sum of squares
when divided by n — k — 1 gives an unbiased estimator of o2. In fact,
under the assumption of normality of observations this is the best unbi-
ased estimator in the sense that it has uniformly minimum variance among
all unbiased estimators which are quadratic functions of the y;’s (i.e., es-
timators of the form y’Ay, where A is a symmetric matrix; note that

2 = y’My/[n — k — 1]). This result holds for even more general distri-
butions (see Rao, 1952, and Hsu, 1938).

As we shall see later in the book, residuals are used to detect the presence
of outliers and influential points, check for normality of the data, detect
the adequacy of the model, etc. In short, they are used to determine if
it is reasonable to assume that the Gauss-Markov conditions are being
met. Residuals can, obviously, be used to determine the quality of fit of
the regression equation. In the next section we give such a measure of fit.
But first, we present the following theorem, which shows the connection
between the residual sum of squares, total sum of squares 2?21 y2 and the
predicted sum of squares Z?:l 92

Theorem 2.4 Lety=n"'>" y;. Then,
Set= 3= it = (S o) - (Lt o).
i1 =1 i=1 i=1 =1

PROOF: Since, from Theorem 2.1, §'e = > i, e;4; = 0,

n n

> ovi= Z(yi — 9 + i)

i=1 i

— ) +Zy, +2Z(yz 9:)9

4D 0 +2Zezyz Zef+2@f
=1 i=1 i=1 i=1

The second part of the theorem is obvious. O

i M: uM:

Corollary 2.2 If there is an intercept in the model, that is, if there is a
constant term By in the model, then

Zef = Z(yi -9)° - Z(ﬁi -
i=1 i=1 =1
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PRrOOF: Since there is a constant term in the model, we have, from Theo-
rem 2.1, 1'e = €'1 = 3 1 e; = 0. Hence, ».; ; yi = > i §i- Therefore,
in this case the mean of the observations is the same as the mean of the
predicted values. Hence, from Theorem 2.4

St (Sout ) - (it =) = ot~ -0

i=1 =1

which proves the corollary. O

2.8 Measures of Fit

The measure of fit R2, introduced in Section 1.7, p. 13, and given by (1.26)
when there is an intercept term and by (1.27) when there is no intercept,
is also appropriate for multiple regression. Its square root is the sample
correlation between y;’s and §;’s, i.e., in the case of a regression model
with an intercept,

R=

n
i=

— 9/l i 7)? i )%/ (2.36)

1 i=1

since, as we seen in the proof of Corollary 2.2, n ™1 3°0 v, =n~1 Y0 G
To see that the square of (2.36) is indeed (1.26), notice that because, by
(2.15), 320, et =0,
n
(vi —9) (@i —9) = Z(yi ~ G+ 9 -9 — )

i=1 i=1

M=

Therefore,
n
R=[Y (- 94"/ -9
i=1 i=1
and, because of Corollary 2.2, we get

R?=1- %}T))? (2.37)

From (2.37), on using Corollary 2.2 again, it follows that R? lies between
0 and 1, and, because R is nonnegative, 0 < R < 1. It is shown in Appendix
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2A.3 at the end of this chapter that R? is the sample multiple correlation
between the dependent variable y and the independent variables z1, . .., Zg
in the sense given in Section B.7 (Page 295) of Appendix B.

Some analysts prefer to use an adjusted R? denoted by R2 and given by

2 _ 1 _ [Z?:l(yi 3:)*/(n—k —1)] —1_¢2 - 2/ (n—
Ra =1 [Z:l 1( )2/(TL _ 1)] 1 /[;(yz y) /( 1)]

R2 adjusts for the sample size, since it is often felt that small sample sizes
tend to unduly inflate R%. However, R2 can take negative values.
Alternatively, s? can also be used as a measure of fit, smaller values of
2 indicating a good fit. A rough practical use of s? stems from the fact
that when the number of observations n is large, 4s is the approximate
width of the 95 per cent confidence interval for a future observation. When
we are primarily interested in prediction, this provides an excellent indica-
tion of the quality of fit. For example, in the house price example, if the
regression model were to be used to estimate the selling price of a house
not in the sample, we could be off by as much as +$9500 at a 95 per cent
level. Sometimes alternative estimates of o are available (see Chapter 6).
Then, s provides an excellent means of discovering how close our fit is to a
theoretical ideal. In most cases one needs to consider both R? (or R2) and
s in order to assess the quality of fit.
When the regression equation does not have an intercept, that is, when
Bo = 0, we define the square of the sample correlation between y;’s and ¢;’s

Zyigi:l /[(Z yf)(z yf)} (2.38)

Since
n
Youki =y =y Xb=yX(X'X)"'X'y
i=1

n
=y XX X)X X)(X'X) Xy =bX'Xb=9§=> i
=1
and, from Theorem 2.4,

Z Ze +Z Z; yz)2+2yz,

(2.38) becomes

< 2 z 1(%—3}1‘)2
; /(,Z_:y)—l R

Note that here too 0 < R<1land 0 < R?2< 1.
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2.9 The Gauss-Markov Theorem

In most applications of regression we are interested in estimates of some
linear function LB or £ 3 of B3, where £ is a vector and L is a matrix.
Estimates of this type include the predicteds §;, the estimate §o of a future
observation, ¢ and even b itself. We first consider below €' 3; the more
general vector function is considered subsequently.

Although there may be several possible estimators, we shall confine our-
selves to linear estimators — i.e., an estimator which is a linear function of
Yis- ., Un, Say c'y. We also require that these linear functions be unbiased
estimators of £ 3 and assume that such linear unbiased estimators for £' 3
exist; €' 3 is then called estimable.

In the following theorem we show that among all linear unbiased esti-
mators, the least squares estimator £'b = £ (X'X)~*X'y, which is also a
linear function of %1,...,yn and which in (2.28) has already been shown
to be unbiased, has the smallest variance. That is, var (£'b) < var(c'y)
for all ¢ such that E(c'y) = £ 3. Such an estimator is called a best linear
unbiased estimator (BLUE).

Theorem 2.5 (Gauss-Markov) Let b= (X'X)'X'y andy = XB+e.
Then under G-M conditions, the estimator €'b of the estimable function
€3 is BLUE.

PROOF: Let c'y be another linear unbiased estimator of (estimable) £'3.
Since ¢’y is an unbiased estimator of £'3, £/8 = E(c'y) = ¢/ X for all 8
and hence we have

cX=¢. (2.39)

Now,
2

var (¢'y) = ¢ cov(y)e = ¢/(6*I)c = o*Cc,
and
var (£'b) = £ cov(b)l = 020 (X'X) 1 = a* X (X' X) ' X'¢,
from (2.29) and (2.39). Therefore
var (c'y) — var (£'b) = ¢*[dc — ¢/ X(X'X) "' X'c]
=o?d[I - X(X'X)"'X'|lc >0,
since I ~ X(X'X)7'X’ = M is positive semi-definite (see end of Sec-
tion 2.5). This proves the theorem. a
A slight generalization of the Gauss-Markov theorem is the following:

Theorem 2.6 Under G-M conditions, the estimator Lb of the estimable
function LB is BLUE in the sense that

cov(Cy) — cov(Lb)
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1s positive semi-definite, where L is an arbitrary matriz and Cy is another
unbiased linear estimator of L3.

This theorem implies that if we wish to estimate several (possibly) related
linear functions of the §;’s, we cannot do better (in a BLUE sense) than
use least squares estimates.

PROOF: As in the proof of the Gauss-Markov theorem, the unbiasedness
of Cy yields L3 = CE(y) = CXg for all 3, whence L = CX, and since
cov(Cy) = a2CC’ and

cov(Lb) = S’ L(X' X)L’ = *’CX(X'X)71X'C,
it follows that
cov(Cy) — cov(Lb) = o°C[I — X(X'X)"1X'|C’,

which is positive semi-definite, since, as shown at the end of Section 2.5,
the matrix [I — X(X'X)~"'X'] = M is at least positive semi-definite. =~ O

If, in addition to the Gauss-Markov conditions, we make the further
assumption that y;’s are normally distributed, then it may be shown that
£'b has minimum variance in the entire class of unbiased estimators, and
that s? has minimum variance among all unbiased estimators of o2 (see
Rao, 1973, p. 319).

2.10 The Centered Model

Let 1—,‘]' =n1 Z?:l Tij and Zij = Tijj — 1—,‘]' for all 1 = 1,...,n and J =
1,...,k. Further, let Z be the matrix (z;;) of the z;’s and set vy =
Bo + B1Z1 + -~ + BrZx and B(g) = (B1,---,0k). Using this notation, the
regression model (2.3) can be written as

y=v1+2ZBp +e=(1 Z)(IB’Y((;))+6. (2.40)

The model (2.40) is called a centered model or, more specifically, the cen-
tered version of (2.3). The two models (2.3) and (2.40) are equivalent. From
Yo and By we can get 3 of (2.3) and vice versa. Viewing least squares es-
timation as a problem in minimization, we see that this correspondence
extends to the estimates as well. In particular, the estimate b of Bo)
consists exactly of the last k components of the estimate b of 3 of (2.3).

Since, obviously, Y7 | z;; = 0 for all j, it follows that 1’Z = o’ and
Z'1 = o. Hence, applying (2.9) to the model (2.40), we see that the least
squares estimates 49 of 9 and bg of B o) are given by

(m)=(5 %) (3)w=(" %) (5)
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Thus A _
Yo=Y
2.41
and b = (Z'2) ' Z'y=(2'Z2)'Z'(y — 17) (241)
since, as noted before, Z’1 = 0. Clearly, by = § — b1y — - — bpTp =
g — (Z1,...,Zx)b(). The covariance matrix of the least squares estimates

Yo and b(o) is

N -1
Yo 2 n o
Cov(b(0)>_a<° Z'Z) '

Thus 4o and b(g) are uncorrelated, which implies that they would be in-
dependent when they are normal. This makes the centered model very
convenient to use in tests involving the regression parameters (5, ..., Ot),
as we shall see in the next chapter.

In fact, often it is even more convenient to center the y;’s as well and
obtain the least squares estimates from the model

Yoy =Y —§=Bu(Ta —Z1) + - + Be(@ak — Zk) + (6 —€)  (2.42)

where € = n~! E?:l € and i = 1,...,n. Although, since the covariance
matrix of (€; —&,...,€, —&) is I —n~111/, the ¢; — &s are not uncorrelated,
it turns out that in this case proceeding as if the (¢; —€)’s were uncorrelated
and applying the least squares formula (2.9) yields estimates that are BLUE
(see Exercise 7.2, p. 146).

It is easily verified that the residual sum of squares for this estimate is

v (5 5) (3]

which simplifies to
Y[I-n"t11' - 2(2'2) 2y
=y -ng®) -y'2(2'2)' Z'y.
From (2.31) and (2.13) it follows that the residual sum of squares for the
uncentered model is

(2.43)

¥y My =y'y -y X(X'X)"'X'y.
Since the residual sum of squares given by the two methods must be the
same, we get

YX(X'X) ' X'y=9'2(2'2)"1Z'y + nj*. (2.44)

Hence
Y My = (y'y—ny*) - y'2(2'2)"'2'y. (2.45)
The first term in the last line of (2.43) is called the corrected total sum of
squares and the second term is called the sum of squares due to 34, ..., Bk.

It is also sometimes called the sum of squares due to regression or the model
sum of squares. The second term on the right side of (2.44) may be called
the sum of squares due to the intercept or the sum of squares due to fp.
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2.11 Centering and Scaling

2 1/2

Let s;; = Y1, 22 and D(gq) = diag (5147, ..., s1.). Define

6= D(Os),B(O) and Z(s) = ZD(_O‘IS).

It is easily verified that the model (2.40) is equivalent to

y=(1 Z(S))<?)+e

which is called a centered and scaled model or the centered and scaled
version of (2.3). It might be mentioned that if instead we had replaced Z
and z;;’s uniformly by X and z;;’s, we would have obtained simply a scaled
model. Notice that the diagonal elements of R = Zzs)Z(s) = D(_Oi)Z’ZD(_Oi)
are ones and the off-diagonal elements are the sample correlation coeffi-
cients (Section B.1.3, p. 285) between columns of X. Consequently ZES)Z(S)
is sometimes called the correlation matrix of the independent variables.

The least squares estimate of 7o in the centered and scaled model is g
and that of 8 is

d=[Z{Z(] " Z(oy-

As in the last section it may be shown that d remains unchanged if we
center the y;’s as well, and we could obtain estimates that are BLUE from
the model

Yo) = Z(s)6 + €(0) (2.46)

where y(9) = y—17 and €y = €—1¢, by applying least squares and treating
the components ¢(g);’s of €(q) as if they were independently distributed. The
covariance matrix of d is

COV(d) =g? [Zzs) Z(s)]_l

and, as in Section 2.10, 49 and d are uncorrelated.

2.12 *Constrained Least Squares

In this section we consider the case of computing least squares estimates
when they are subject to a linear equality constraint of the form

CB-d=0 (2.47)

where C is an m x (k+1) matrix of rank m with m < (k+1). For inequality
constraints, see Judge and Takayama (1966).
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We still minimize § = (y—~X3)' (y— X 3) but now we do it under the con-

straint (2.47). Therefore, using the Lagrange multiplier A = (A1,..., An)’
and differentiating with respect to A and 3, we have

0 '
xS +XN(@-CP)=d-CB (2.48)

%[S +N(d—CB)| = 2(X'X)B - 2X'y — C'A. (2.49)

Replacing B and A by 3 and X in (2.48) and (2.49) and equating the
resulting expressions to zero we get (assuming X’X to be non-singular)

C,f3=d and

B= (XX X'y + 50N =b+ SOX)TCA (250)
It follows that )
d=CB=Cb+ 5C(X’X)'IC’5\. (2.51)

Substituting the solution for A from (2.51) into (2.50), we get

B=b+(X'X)"'C'[C(X'X)"'C'"'(d — Cb). (2.52)
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Appendix to Chapter 2

2A.1 MATRIX DIFFERENTIATION

Let @ = (64,...,0x) and let f(0) be a real-valued function of k variables
61,...,0x. Then, the partial derivatives of f(@) with respect to 8 are

95(8)/06,

of(0) _
—50_- : . (2-53)
0f(0)/00k
Lemma 2.1 Letc= (c1, - +,ck), 8= (B, -, Bk) and f(B) = ¢'B. Then
of(B) _
B

PROOF: Since f(8) = ¢/B = Y.r_, cif: we find that 9f(8)/0B8; = ci.

Hence

1
op ’
Ck
0
Lemma 2.2 Let A = (a;j) = (@1,...,ax) be a k x k symmetric matriz

where a}, = (a;1,- .., k), the ith row of the matriz A. Let 8 = (81, -, Br)’
and f(B) = B'AB. Then
of(B)

PROOF: Since

k k
B'AB = Z a2 +2 Z ai; 0065,

i=1 i<j
we get
a(8' A : .
(g &) =2a1161 + 22‘“1’@' = 2Za1’ﬂj = 2a1f.
51 j=2 j=1
Hence '8 '
a; a;
0BAB) o . | o B =248
3 : '
P a8 a
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2A.2 CONSISTENCY OF s2

Obviously, it is most desirable that, as the sample size n gets large, an
estimate t of a parameter 6 be close to 6. A sequence 23, 22, ... of random
variables is said to converge in probability to a constant c if for every € > 0,

P(lzp, — ¢/ > €) > 0 as n — 0.

In the sequel we shall denote this fact as z, LA ¢, or where the context
makes the meaning obvious, as 2 LAY

The estimate t is said to be a consistent estimator of 8 if ¢ LA g, ie., if

for every € > 0,
Pllt— 0] > ¢ — 0,
as the sample size goes to infinity. Typically, consistency is established by
using Chebyshev’s inequality (see Rao, 1973, p.95) or by using Markov’s
inequality:
ElX]|"
ar ’

PlIX| > q] < for r > 1.

We shall use the latter to show the consistency of s2. From (2.32) and (2.13)
(M and H are defined just below equation (2.12)),

s2=m—-k—-1"lee=(n—k—1)"1€[I - Hle.

Because €’ He is a scalar, its trace is itself. Therefore, we get, on using
Property 3 of Section A.6, p. 271,

E(e'He) = E[tr(e'He)]
= E[tr(He€')] = tr[H E(e€’)] = o? tr(H) = 0?(k + 1)
(see Example A.11, p. 277). Hence, we get from Markov’s inequality

E(e¢H 2(k+1
Pln~'¢'He > ) < (€He) o(k+1) -0
nn nn

as n — 0o. From the law of large numbers n~'€’e — o2 in probability.
Hence, since n(n — k — 1)~! — 1, s — o2 in probability.
A random vector t is said to be a consistent estimator of 8 if x L 9, ie.,

if for every 6 > 0,
Pl(z - 6)(xz —0) > 6§ — 0.

2A.3 R? As SAMPLE MULTIPLE CORRELATION

We may write (2.37) in matrix notation as

R?=1-y'My/[y'y — ng]*.
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It, therefore, follows from (2.45) that
R =y'Z(Z'2)"' Z'y/ly'y — ny’]

which is the sample correlation between y and zi,...,z, as defined in
Section B.7 (p. 295).
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Problems

2 — var (4;).

Exercise 2.2: Suppose y = X3 + €, where E(e) = 0, cov(e) = 021,
the matrix X of dimension n x k has rank k¥ < n, and 8 is a k-vector
of regression parameters. Suppose, further, that we wish to predict the
‘(n + 1)st observation’ yn41 at Tr 11 = (Tnt1,1,-- s Tntl,k); 1€ Yngpl =
;.18 + €n41 Where €, has the same distribution as the other ¢;’s and
is independent of them. The predictor based on the least squares estimate
of B is given by n4+1 = @), b, where b = (X'X)"'X'y.

Exercise 2.1: Show that var (e;) = o

1. Show that ¢, is a linear function of y1,...,y, such that E(g,+1 —
Ynt+1) = 0.

2. Suppose §n+1 = @’y is another predictor of y,, 1 such that E(§,4+1 —
Ynt1) = 0. Show that @ must satisfy a’X ==, ;.

3. Find var (§n4+1) and var (§n+1)-

4. Show that var (§n+1) < var (Gn+1)-

Exercise 2.3: Let y; = @[3 +¢; with i = 1,...,n be a regression model
where E(e;) = 0, var (¢;) = o2 and cov(e;, €;) = 0 when @ # j. Suppose
e; = Y; — §i, where §; = x.b and b is the least squares estimator of 3. Let
X' = (®1,++,&,). Show that the variance of e; is [1 — /(X' X)) 1x;]0?.

Exercise 2.4: In the model of Exercise 2.3, show that the §; is a linear
unbiased estimator of @3 (that is, ; is a linear function of yy,...,y, and
E(3;) = «3). What is the variance of §;? Does there exist any other linear
unbiased estimator of x{3 with a smaller variance than the estimator g;?

Exercise 2.5: Explain what would happen to the estimate b; of 8; and to
its standard error if we express the jth independent variable x; in meters
instead of millimeters.

What would happen to b; and var(b;) in a model which includes an
intercept term if we replaced all the values of z1;,. .., z,; of z; by numbers
which were nearly constants?

[Hint: For the first portion of the problem multiply X by a diagonal
matrix containing .001 in the (j,j)th position and 1’s in other diagonal
positions. For the second portion center the model.]

Exercise 2.6: Consider the models y = X3+ € and y* = X*3+ €* where
E(e) = 0, cov(e) = 0?1, y* =Ty, X* =T'X, € =Te and I is a known
n X n orthogonal matrix. Show that:

1. E(e*) =0, cov(e*) = 021
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2. b=b" and s*2 = s%, where b and b* are the least squares estimates
of B and s? and s*2 are the estimates of ¢ obtained from the two
models.

Exercise 2.7: Let

Yij = B + €ij
fori=1,...,qg and j = 1,...,n, where ¢;;’s are independently and iden-
tically distributed as N(0,02), B is a k-vector and x;’s are k-vectors of
constants. Find the least squares estimates of 3. Using the residual sum of
squares, give an unbiased estimate of o2,

Exercise 2.8: Show that the residual sum of squares e’e = y'y—b'X'Xb =
Yy-bX'y=y'y-bX'y.
Exercise 2.9: Consider a house with 1200 square foot floor area, 6 rooms,
3 bedrooms, 2 baths and a 40 foot lot but no garage, fireplace or storm
windows. Estimate its selling price using Exhibit 2.3. Estimate the increase
in price if a garage were added. How about a fireplace and storm windows?
If the owner decides to add on a 300 square foot extension which adds a
bedroom and a bathroom, how much would that add to its price? Now can
you shed more light on the negative sign on the coefficient of bedrooms?
Assume that the cases given in Exhibit 2.2 were actually randomly drawn
from a much larger data set. If the regression were run on the larger data
set, would you expect s to increase, decrease or stay about the same? Give
reasons. Did you make any assumptions about the model?

Exercise 2.10: Obtain the least squares estimate of 3 in the model y =
X3 + € from the following information:

3.08651 —.0365176 —.0397747 —.051785
—0.03652 .0013832 —.0000994 .000332
—0.03977 —.0000994 .0018121 —.000102
-0.05179 .0003319 —.0001022 .002013

(X'X)™ =

and
660.1

13878.9
17274.5
15706.1

X'y =

If an unbiased estimate of the variance of the components y; of y is 50.5,
what are unbiased estimates of the variances of the components of the least
squares estimate you have obtained?

Exercise 2.11: Suppose that you need to fit the model y; = 8o + f1zi1 +
B2xi2 + €;, where E(e;) = 0, E(e;e;) = 0 for i # j and E(e?) = o2, to the
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following data:

Y T1 T2 Yy 1 T2
-43.6 27 34 59 40 30
3.3 33 30| -4.5 15 17
-12.4 27 33| 22.7 26 12
7.6 24 111 -144 22 21
11.4 31 16| -28.3 23 27

It turns out that
1.97015 —.056231 —.0157213

(X’X)"'={ -0.05623 .002886 —.0009141
—0.01572 —.000914 .0017411
and
—52.3
X'y=1| -1076.3 |,
—2220.2

where X and y have their usual meanings.

1. Find the least squares estimator of 3 = (8g, 1, 82) and its covariance
matrix.

2. Compute the estimate s? of o2.
3. Find the predicted value §; and its variance.

4. What is the estimated variance of e;, the residual corresponding to
the first case?

Exercise 2.12: The variables in Exhibit 2.4 are: cars per person (AO),
population in millions (POP), population density (DEN), per capita income
in U.S. dollars (GDP), gasoline price in U.S. cents per liter (PR), tonnes
of gasoline consumed per car per year (CON) and thousands of passenger-
kilometers per person of bus and rail use (TR). Obtain a linear model
expressing AO in terms of the other variables.

Quite obviously, bus and rail use (TR) is affected by car ownership. Does
this cause a bias in the model you have just estimated? Does this cause a
violation of any of the Gauss-Markov conditions?

Exercise 2.13: Strips of photographic film were identically exposed (same
camera, lens, lens aperture, exposure time and subject, which was a grey
card) and then developed for different times in different identical developers
at different temperatures. The light transmission (y) through each strip
was then measured and the values are shown in Exhibit 2.5. The units for
y are unimportant for the present, but as a point of interest, it might be
mentioned that an increase of 30 units implies a halving of the light passing
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Country AO POP DEN GDP PR CON TR
AUSTRIA 27 75 8 7.7 49 1.1 26
BELGIUM .30 9.8 323 98 59 10 16
CANADA 42 235 2 87 17 28 .1
DENMARK .28 51 119 11.0 56 12 1.9
FINLAND 24 48 16 71 49 12 2.2
FRANCE 33 5833 97 88 61 1.0 1.5
GERMANY 35 613 247 104 49 11 1.7
GREECE .08 94 71 3.4 56 1.7 .7
ICELAND .34 2 2 98 57 12 20
IRELAND .20 32 46 38 40 15 3
ITALY 30 56.7 188 4.6 61 6 1.8
JAPAN 18 1149 309 85 49 1.2 3.5
LUXEMBURG 43 4 138 98 44 1.6 8

NETHERLANDS .30 13.9 412 94 56 1.0 1.5
NEW ZEALAND .40 31 12 59 34 13 .2
NORWAY .28 41 13 98 61 1.0 1.7

PORTUGAL .10 9.8 107 1.8 68 7 .9
SPAIN 18  36.8 73 40 44 8 13
SWEDEN .34 83 18 106 42 13 1.7
SWITZERLAND .32 6.3 1563 133 56 13 2.0
TURKEY .014 42.7 55 1.2 36 3.3 .1
UK. 27 558 229 55 35 12 1.6
U.S.A. 832182 23 9.7 17 2.7 .3

YUGOSLAVIA 09 220 8 21 40 1.1 21

EXHIBIT 2.4: International Car Ownership Data
SOURCE: OECD (1982). Reproduced with permission of the OECD. All data
are for 1978.

Time
4 [ 65 9
60 | 43 | 68 | 97
Temp. | 68 | 73 | 101 | 130
76 | 94 | 127 | 155

EXHIBIT 2.5: Values of y for different combinations of development times (in
minutes) and temperatures (degrees Fahrenheit)

through. Without using a computer, fit a model expressing y as a linear
function of development time and developer temperature.

[Hint: Center the model. Incidentally, if a wider range of times or temper-
ature were taken, the relationship would not have been linear.]

Exercise 2.14: Exhibit 2.6 gives data on actual voltage V, and the cor-
responding value V, of voltage computed from the measured power output
(using light output from electronic flash ). A definition of efficiency (F) is
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the ratio V. /V,. Obtain a model which expresses F as a quadratic polyno-
mial in V, (i.e., a model in V, and V2). Examine the residuals. Is the fit
satisfactory?

Vo 354 321 291 264 240 219 200 183 167 153
Ve 354 315 281 250 223 199 177 158 150 125

EXHIBIT 2.6: Voltage Data
SOURCE: Armin Lehning, Speedotron Corporation.

Exercise 2.15: Exhibit 2.7, obtained from KRIHS (1985), gives data on
the number of cars per person (AQ), per capita GNP (GNP), average car
price (CP) and gasoline price after taxes (OP) in South Korea from 1974
to 1983. GNP and car prices are in 1000 Korean wons, while gasoline prices
are in wons per liter. Let D before a variable name denote first differences,
e.g., DAO; = AO;;1 — AO; where AQ; is the value of AO in the tth year.
Use DAO as the dependent variable and estimate parameters of models
which have:

1. GNP, CP and OP as the independent variables,

2. DGNP, DCP and DOP as the independent variables,
3. DGNP, DCP and OP as independent variables, and
4. DGNP, CP and OP as independent variables.

Examine the models you get along with their R2. Which of the models
makes the best intuitive sense?

[Hint: It seems intuitively reasonable that rapid increases in auto owner-
ship rates would depend on increases in income, rather than income itself.
The high R? for Model 1 is possibly due to the fact that DAO is, more or
less, increasing over ¢, and GNP is monotonically increasing,)

Exercise 2.16: Using the data of Exercise 1.12, run a regression of log[ma)]
against log[pop| and d. Explain why the value of R? is so different from
that obtained in Exercise 1.12. Do you feel the fit is worse now?

Exercise 2.17: Redo Exercise 1.11, p. 24, using an additional independent
variable which is 1 for the first district but zero otherwise. Plot residuals
and compare with the corresponding plot from Exercise 1.11.

Exercise 2.18: Exhibit 2.8 gives data on per capita output in Chinese
yuan, number (SI) of workers in the factory, land area (SP) of the factory
in square meters per worker, and investment (I) in yuans per worker for 17
factories in Shanghai.

1. Using least squares, fit a model expressing output in terms of the
other variables.
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Year AO GNP CP OP

1974 .0022 183 2322 189
1975 .0024 238 2729 206
1976 .0027 319 3069 206
1977 .0035 408 2763 190
1978 .0050 540 2414 199
1979 .0064 676 2440 233
1980 .0065 785 2430 630
1981 .0069 944 2631 740
1982 .0078 1036 3155 740
1983 .0095 1171 3200 660

EXHIBIT 2.7: Korean Auto Ownership Data

OQOutput SI SP 1 OQutput SI SP 1

12090 56 840 10.54| 18800 919 2750 14.74
11360 133 2040 11.11{ 28340 1081 3870 29.19
12930 256 2410 10.73| 30750 1181 4240 21.21
12590 382 2760 14.29| 29660 1217 2840 12.45
16680 408 2520 11.19| 20030 1388 3420 17.33
23090 572 2950 14.03| 17420 1489 3200 24.40
16390 646 2480 18.76| 11960 1508 3060 28.26
16180 772 2270 13.53| 15700 1754 2910 19.52
17940 805 4040 16.71

EXHIBIT 2.8: Data on Per Capita Output of Workers in Shanghai

2. In ¢ ldition to the variables in part 1 use SI?> and SP times I and
obtain another model.

3. Using the model of part 2, find the values of SP, SI and I that maxi-
mize per capita output.

This problem was suggested to one of the authors by Prof. Zhang Tingwei
of Tongji University, Shanghai, who also provided the data.

Exercise 2.19: Exhibit 2.9 gives information on capital, labor and value
added for each of three economic sectors: Food and kindred products (20),
electrical and electronic machinery, equipment and supplies (36) and trans-
portation equipment (37). The data were supplied by Dr. Philip Israelovich
of the Federal Reserve Bank, who also suggested the exercise. For each sec-
tor:

1. Consider the model
Vi = oK L{n,,

where the subscript t indicates year, V; is value added, K; is cap-
ital, L; is labor and 7; is an error term, with E[log(n:)] = 0 and
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Capital
‘207 ‘367 (377

Labor
(207 (36’ ‘377

Real Value Added
20 ‘3¢ 37

243462 291610 1209188
252402 314728 1330372
246243 278746 1157371
263639 264050 1070860
276938 286152 1233475
290910 286584 1355769
295616 280025 1351667
301929 279806 1326248
307346 258823 1089545
302224 264913 1111942
288805 247491 988165
291094 246028 1069651
285601 256971 1191677
292026 248237 1246536
294777 261943 1281262

708014 881231 1259142
699470 960917 1371795
697628 899144 1263084
674830 739485 1118226
685836 791485 1274345
678440 832818 1369877
667951 851178 1451595
675147 848950 1328683
658027 779393 1077207
627551 757462 1056231
609204 664834 947502
604601 664249 1057159
601688 717273 1169442
584288 678155 1195255
571454 670927 1171664

6496.96 6713.75 11150.0
5587.34 7551.68 12853.6
5521.32 6776.40 10450.8
5890.64 5554.89 9318.3
6548.57 6589.67 12097.7
6744.80 7232.56 12844.8
6694.19 7417.01 13309.9
6541.68 7425.69 13402.3
6587.33 6410.91 8571.0
6746.77 6263.26 8739.7
7278.30 5718.46 8140.0
7514.78 5936.93 10958.4
7539.93 6659.30 10838.9
8332.65 6632.67 10030.5
8506.37 6651.02 10836.5

EXHIBIT 2.9: Data on Capital, Labor and Value Added for Three Sectors

var {log(7;)] a constant. Assuming that the errors are independent,

and taking logs of both sides of the above model, estimate 3; and 5.

2. The model given in 1 above is said to be of the Cobb-Douglas form.
It is easier to interpret if 3; + B2 = 1. Estimate 3; and (B2 under this
constraint.

3. Sometimes the model

V, = o' K[ L2,

is considered where 7! is assumed to account for technological devel-

opment. Estimate 8; and 3, for this model.

4. Estimate 8; and B2 in the model in 3, under the constraint 81+0; = 1.

Exercise 2.20: The data set given in Exhibit 2.10 and in Exhibit 2.11
was compiled by Prof. Siim Soot, Department of Geography, University of

Illinois at Chicago, from Statistical Abstract of the United States, 1981,

U.S. Bureau of the Census, Washington, D.C. The variables are (the data

are for 1980 except as noted):

Total population (1000’s)

Per mil (per 10~3) of population living in urban areas

Per mil who moved between 1965 and 1970

Number of blacks (1000's)

Number of Spanish speaking (1000’s)

Number of Native Americans (100’s)

Number of inmates of all institutions (correctional,
mental, TB, etc.) in 1970 (1000’s)

POP

UR
MV
BL
SP
Al
IN
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PR
MH
B
HT
S
DI
MA
D
DR
DN
HS
CR
M
PI
RP
VT
PH
INC
PL

Chapter 2. Multiple Regression

Number of inmates of correctional institutions in 1970 (100’s)
Homes and schools for the mentally handicapped (100’s)
Births per 1000

Death rate from heart disease per 100,000 residents

Suicide rate, 1978, per 100,000

Death rate from diabetes, 1978, per 100,000

Marriage rate, per 10,000

Divorce rate per 10,000

Physicians per 100,000

Dentists per 100,000

Per mil high school grads

Crime rate per 100,000 population

Murder rate per 100,000 population

Prison rate (Federal and State) per 100,000 residents

% voting for Republican candidate in presidential election

% voting for presidential candidate among voting age population
Telephones per 100 (1979)

Per capita income expressed in 1972 dollars

Per mil of population below poverty level

and the cases represent each of the states of the United States.

1.

Run a regression with M as the dependent variable. Among the in-
dependent variables include MA, D, PL, S, B, HT, UR, CR and HS.
Explain the results you get. Some of the independent variables in-
cluded may have little effect on M or may be essentially measuring
the same phenomenon. If you detect any such variables, delete it and
rerun the model. On the other hand, if you think that some important
variable has been left out, add it to the model. Write a short report
(to a non-technical audience) explaining the relationships you have
found. Discuss the pro’s and con’s of including POP as an additional
variable in this model.

. Now try M as the dependent variable against INC, PL, VT and UR.

Compare the results with those from part 1 above. Can you offer any
explanations for what you observe?

. We know that doctors like to locate in cities. It is also likely that they

would tend to locate disproportionately in high income areas and
possibly where there would be more business for them (e.g., where
B and HT are high). Set up an appropriate model with DR as the
dependent variable. Run a regression and write a report.

. Choosing your own independent variables, run a regression with MA

as the dependent variable. If you included D as one of the predictors,
you would find it to be quite an important one. Can you explain why?
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5. Run a regression with S as the dependent variable and UR, D, CR,
PL, POP and MV as independent variables. Add and subtract vari-
ables as you think fit. Write a short report on the final model you
get.

6. Try any other models that you think might yield interesting results.
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State | POP |[UR|(MV| BL | SP | AI |IN |PR|{MH| B |[HT|{ S | DI
ME 1125 | 475 | 417 3 5 41| 11 7| 101149358 (139160
NH 921|522 450 4 6 14 9 5| 10[145|306 | 150|170
VT 5121338 | 451 1 3 10 5 4 6152 (341148136
MA 5237(8381409 | 221| 141 77| 77| 55| 82122357 89|164
RI 948 | 870 | 426 28 20 29| 11 5| 10 (128402 (115|224
cT 3107|788 425 | 217 124 45| 34| 36| 45124321103 143
NY |17757|846 | 404 | 2402|1659 | 387 (218|236 | 223 (134{396| 96 (177
NJ 7364|890 | 424 | 925 492 84| 60 88| 70132377 72183
PA 11867 | 693 | 363 | 1048 | 154 95(124 1127 | 146 | 135|414 119|211
OH |10797 (7334521077 | 120| 122107 |142| 89 |156 356|126 | 183
IN 5491 | 642 | 462 | 415 87 78| 51| 82| 71|162|334(119]203
IL 11419830 | 460 | 1675| 636 | 163 (119|122 | 106 | 164 |379 (100|153
MI 9259|707 | 447 | 1199 | 162 | 400| 86129122 157321 |123|169
WI 4706 | 642 | 422 | 183 63| 295| 58| 47| 68155]349|124|158
MN 4077 | 668 | 432 53 32| 350 50| 32| 51)161(307|102(119
IA 2914 | 586 | 429 42 26 55( 37| 23| 25|161|380|118 157
MO 4917|681 | 479 | 514 52| 123| 48] 68| 37|157(380|122(168
ND 654 | 488 | 436 3 4| 202 9 3| 13|179(313| 98153
SD 690 | 464 | 429 2 4| 451 11 5| 11|189|354 (117|148
NE 1570 | 627 | 461 48 28 92| 22| 17| 31|167|348| 92|134
KS 2363|667 | 489 | 126 63| 154| 31| 48| 15|165]345|108]165
DE 596 | 707 | 460 96 10 13 5 7 21153 (334146 | 252
MD 4216 | 803 | 485 | 958 65 80( 39| 89| 48)140|308|109 162
VA 5346 | 660 | 497 | 1008 80 93| 46{113 ! 37(148{295|141}121
wv 1950 | 362 | 396 65 13 16| 14| 23 1(159|431|140 208
NC 5874 | 480 | 462 | 1316 57| 646| 48108 | 52 |150(313|117|144
SC 3119|541 | 453 | 948 33 58| 23] 51| 11173(295|113|154
GA 5464 | 623 | 514 | 1465 61 76| 461441 19|172|301|136|130
FL 9739|843 | 559 | 1342 | 858 | 193 | 61162 | 59 {137|410(177|174
KY 3661 | 508 | 464 | 259 27 36| 27| 56| 13|167|379(125|173
TN 4591|604 | 474 | 726 34 51| 34| 67| 29|156|324|126|121
AL 3891|600 | 455 | 996 33 76| 31| 57| 25|166|304|105|170
MS 2520|473 | 446 | 887 25 62| 16{ 26| 12|189|320| 96167
AR 2285|516 | 494 | 373 18 94| 20| 21| 10|167|364|105|172
LA 4203 | 683 | 442 | 1237 99 121 32| 77| 34|197(317|118|186
OK 3026 | 673 | 523 | 205 571695 37| 60| 241170(364|135]151
TX |14228|796| 52517102986 | 401|116 (216 | 132 [ 190|267 {127 (127
MT 7871529 | 496 2 10| 373 8 6| 10(179|279|155|145
ID 945|540 | 513 3 37| 105 6 6 51221 (241(134|116
WY 471|628 | 519 3 24 71 4 3 0]217(233(176 139
CcO 2890 (806|571 | 102| 339| 181| 22| 30| 45)|170{229178)|105
NM 1299 | 722 | 503 24| 476 (1048 6| 15 81206 (168|171 | 140
AZ 2718 | 838 | 587 75| 441(1529( 11| 33| 12|191|265|193]120
uT 1461 | 844 | 461 9 60| 193 71 9 1(301]|198|128|128
NV 799|853 | 638 51 54| 133 3| 12 0176|246 |248| 99
WA 4130{736| 550 | 106| 120| 608 | 38| 59| 46 |164|284|142|129
OR 2632 (679 | 553 37 66| 273 24| 26| 22165296 (155|119
CA | 23669913 | 565 | 1819 | 4544 | 2013 | 214 | 499 | 137 | 167 | 278 | 163 | 107
AK 400|645 | 731 14 9( 640 1 3 1224 76|148( 27
HI 965 | 865 | 541 17 71 28 4 4 8 (1921156118127

EXHIBIT 2.10: Demographic Data for the 50 States of the U.S.
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State| MA | D [DR{DN|HS{ CR | M | PI |RP|VT|PH|INC |PL
ME 109| 56146 45 {678 4368 | 28| 61456 (648 | 54 | 4430|120
NH 102| 59159 | 53 | 703 [4680| 25; 35577578} 58 |5105| 79
vT 105| 46211 | 58 | 697 | 4988 | 22| 67444 |583| 52 | 4372|135
MA 78| 30(258| 71 |723|6079| 41| 561419593 | 58 [5660| 71
RI 79| 39(206| 56 | 6175933 44| 65(372|590| 57 5281 | 87
CT 82| 45242 73 |703|5882| 47| 68|482|612| 64 [6552| 67
NY 81| 37261 74 |662[6912|127|123|467(480| 54 {5736 | 94
NJ 75| 321|184 | 66 | 664 |6401| 69| 76|520|551| 66 (6107 | 81
PA 80| 34|183| 55 {648 3736 68| 68496 |520| 62 | 5273 | 97
OH 93| 55|157| 49 |677{5431| 81|125|515|554| 56 | 5289 | 94
IN 110 77126 43 |670(4930] 89(114|560(577| 57 | 4995} 81
IL 971 46182 54 | 661 5275|106 | 94496 | 578 | 66 | 5881 | 105
MIl 97| 48154 | 53 | 686 | 6676|102 | 163 490|598 | 60 | 5562 | 91
WI 84| 36|151| 58 | 7034799 | 29| 85|479(677| 55 | 5225 77
MN 91| 371185 62 | 7244799 | 26| 49]425|704| 57 [5436] 83
1A 96| 39122 50 (7234747 22| 86(513|629| 59 [ 5232 79
MO 109 | 57158 | 48 | 641154331111 112|512 |589| 58 | 5021|120
ND 921 32[126| 47 | 6762964 | 12| 28642651 | 63 4891|106
SD 130} 39102 43 [ 6893243 7|1 88605674 56 | 4362|131
NE 891 40)145| 61 | 743}14305| 44| 89|655|568| 61 |5234| 96
KS 105( 54150 46 | 7315379} 69106 |579[570| 61 | 5580 | 80
DE 75| 53160 46 | 695|6777| 69|183]472|549 ) 64 [5779] 82
MD 111 41257 59 | 6936630 95(183|442502| 62 | 5846 | 77
VA 113| 45|170| 49 |642]4620]| 86 |161 530|480 53 | 5250 | 105
WV 94| 53(133| 39 [533|2552| 71| 64452528 44 (4360|151
NC 80| 49150 38 | 553|4640|106 | 244 | 493 {439 | 53 [ 4371|147
SC 182} 47134 36 | 57115439114 238494407 | 50 | 4061|172
GA 134 65144 42 | 587 5604|138 219|409 |417| 55 | 4512|180
FL 117 79188 | 50 | 648 | 8402|145 | 208 [ 555|496 | 59 | 5028 | 144
KY 96| 45134 42 | 5333434 88| 99491 (500 | 48 | 4255|177
TN 135 68| 158 | 48 | 5494498 | 108 | 153 | 487|489 | 53 | 4315|158
AL 129 | 70124 35 | 555|4934|132]149|488|490| 50 | 4186 | 164
MS 112 56106 32 | 523 |3417}145)132]494]521 | 47 | 3677|261
AR 119 93(119( 33 |562|3811| 92128481 |516| 47 | 4062|185
LA 103 | 38149 40 | 58315454157 |211{512|5637| 52 | 4727193
OK 154 79128 42 | 656 {5053 100 (151|605 |528] 57 | 5095|138
TX 129 | 69152 42 | 645|6143|169 (210|553 {456 | 55 | 5336 | 152
MT 104| 65[127| 57 |725(5024| 40| 94| 568|652 | 56 | 4769 (115
ID 148 711108 55 |715|4782| 31| 87|665|685| 54 | 4502|103
WY 144} 78|107| 49 | 7534986 62|113 626|542 56 | 6089 87
CO 118 60(199| 61 |781|7333| 69| 96551568 | 57 | 5603 | 91
NM 131( 80{1471{ 41 |657|5979|1311106 549|514 | 46 | 4384|193
AZ 121 | 82187 49 |725|8171]103|160| 606|452 | 53 | 4915|138
uT 122 | 56}164| 64 |802|5881| 38| 64728 |655| 53 {4274 | 85
NV 14741168138 | 49 | 757 | 8854|200 |230|625|413| 63 | 5999 | 88
WA 120( 69178 68 |763[6915| 51 (106|497 580 56 | 5762| 85
OR 87| 70|177| 69 |755|6687| 51|120]|483[616| 55 | 5208 | 89
CA 88| 61226 63 [740|7833|145| 98(527495| 61 {6114(104
AK 123| 86118 | 56 | 796 (6210 97143 |543 |583| 36 | 7141 | 67
HI 128 551203| 68 |730(7482| 87| 65|425|436| 47 | 5645| 79

EXHIBIT 2.11:

Demographic Data for the 50 States of the U.S.ctd.
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CHAPTER 3

Tests and Confidence Regions

3.1 Introduction

Consider the example of house prices that we saw in the last chapter. It is
reasonable to ask one or more of the following questions:

(a) Is the selling price affected by the number of rooms in a house, given
that the other independent variables (e.g., floor area, lot size) remain
the same?

(b) Suppose the realtor says that adding a garage will add $5000 to the
selling price of the house. Can this be true?

(c) Do lot size and floor area affect the price equally?
(d) Does either lot size or floor area have any effect on prices?

(e) Can it be true that storm windows add $6000 and a garage adds $4000
to the price of a house?

For some data sets we may even be interested in seeing whether all the
independent variables together have any effect on the response variable.
In the first part of this chapter we consider such testing problems. In the
second part of the chapter we shall study the related issue of determining
confidence intervals and regions. In the last section we return to testing.

3.2 Linear Hypothesis

To formulate the above questions as formal tests let us recall the regression
model we used in the last chapter:

Yi =Bo+ Bz + -+ Pszis + & (3.1)

where 7 indexes the cases and z,;,...,T;s are as in Example 2.2 of Sec-
tion 2.4, p. 31. The variable zo was the number of rooms and if it had no
effect on the selling price, 3, would be zero. Thus, corresponding to (a)
above, our hypothesis would be

H:B,=0 (3.2)

which we would test against the alternative A : B2 # 0. In other situations
we might have chosen as alternative 82 > 0 (or, for that matter, 32 < 0).
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For (b) we would test

H: (35 =05 versus A: 35 # 5. (3.3)
For (c) we have

H:0(,— 086 =0 versus A: 8, — Gg # 0. (3.4)

For (d) the hypothesis would be H:8; = 0,86 = 0 and for (e) it would be
H:35 = 4, Bs = 6. If we were interested in testing whether all the indepen-
dent variables have any effect on the selling price, our hypothesis would
be

H:ﬁl=07ﬁ2:07"'7 8=0

considered simultaneously, i.e.,

and we would test it against A : B(;) # o, where B(g) = (81,...,0s)". We
may have been also interested in whether some of the factors, say the last
three, simultaneously affect the dependent variable. Then we would test
the hypothesis

H : (Bs,B7,0s) =0 versus A : (B, 87, 0s) # o. (3.6)

All these hypotheses, namely (3.2) through (3.6), are special cases of the
general linear hypothesis

H:CB—~=0. (3.7)
For example, if we choose
¢ =(0,0,1,0,0,0,0,0,0) and =~ =0, (3.8)

we get (3.2). Similarly (3.3), (3.4), (3.5) and (3.6) correspond respectively
to

C=(0,0,0,0,0,1,0,0,0) and =5, (3.9)
C= (010000 ~1,0,0) and =0, (3.10)
=(0 Ig) and Yy=o0 (3.11)

=(0 I3) and Y=o (3.12)

In the last two equations, C is a partitioned matrix consisting of the null
matrix 0 and the r dimensional identity matrix I,.

Under the assumption that ¢;’s are identically and independently dis-
tributed as N(0,02) (in the sequel we shall abbreviate this statement to
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‘¢; iid N(0,02)), the hypothesis H : C3 = 4, where C is an m x (k + 1)
matrix of rank m with m < (k + 1), is rejected if

m ! (Cb —7)'[C(X'X)"'C"|"1(Cb —7)

s2

b Fm,n—k—l,a (313)

where Fy, n—k—1,o 15 the upper 100 x o per cent point of the F distribution
with (m,n— k — 1) degrees of freedom (Section B.5, p. 292, of Appendix B;
tables are given on pp. 322 et seq.), and, as before,

b= (X'X)"'X'y, and s’=(n—k-1)"ly'[[-X(X'X)"'X'ly. (3.14)

Many statistical packages include this test which is shown in the next sec-
tion to be a likelihood ratio test. The distribution of the left side of (3.13)
is derived in Section 3.4.

3.3 *Likelihood Ratio Test

Assume that the Gauss-Markov conditions hold and the y;’s are normally
distributed. That is, the ¢;’s are independent and identically distributed
as N(0,02), i.e., ¢ iid N(0,02). Then the probability density function of
Y1,---,Yn 1S given by

(2r0%) "™/ expl~ 55 (y ~ XB)'(y ~ XB)). (3.15)

The same probability density function, when considered as a function of 3
and o2, given the observations y, .. .,Yn, is called the likelihood function
and is denoted by £(3,0?%|y). The maximum likelihood estimates of 3 and
o2 are obtained by maximizing £(3, 0%|y) with respect to 3 and o2. Since
log[2] is an increasing function of z, the same maximum likelihood estimates
can be found by maximizing the logarithm of L.

Since maximizing (3.15) with respect to 3 is equivalent to minimizing
(y — XB)'(y — XB), the maximum likelihood estimate of 3 is the same
as the least squares estimate; i.e., it is b = (X'X)'X'y. The maximum
likelihood estimate of o2, obtained by equating to zero the derivative of the
log of the likelihood function with respect to o2 after substituting b for 3,
is (see Exercise 3.5)

Ly xb)(y— Xb) = ~ele (3.16)

To obtain the maximum likelihood estimate of 3 under the constraint
CB = ~, we need to maximize (3.15) subject to C3 = . This is equivalent
to minimizing (y — XB)'(y — XB) subject to C3 — v = o. Thus, the
maximum likelihood estimate [3 g of B under the hypothesis H is the same
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as the constrained least squares estimate obtained in Section 2.12, p. 44,
ie.,

By =b+ (X'X) ' [C(X'X)"1C"]"HCb — 7).
The maximum likelihood estimate of o2 is given by
”‘AT?{ = (y_XBH)I(y—XBH)- (3.17)
Since
(¥~ XBu) =y - Xb- X(X'X)"'CIC(X'X)'C'|7H(Cb — 7)
and
(y — Xb)X(X'X)"'C'[O(X'X)71C']7H(Cb ~ )
=y [I - X(X'X)"'X|X(X'X)"'C'[C(X'X)"'C'H(Cb — ) = 0,
we get
né = (y — Xb)(y — Xb) + (Cb—7)'[C(X'X)~1C')7(Cb — 7). (3.18)

The likelihood ratio test statistic for testing the hypothesis H : C8—~ =
o versus A: CB3 — v # o is given by

max4 L(8,0°|y)

maxy L(B3,02|y)

where max 4 £(3,0%|y) and maxy £(3,02|y) are the maximum values of
the likelihood function under the alternative A and the hypothesis H re-
spectively. These maximum values are obtained by substituting the maxi-
mum likelihood estimates of 3 and o2 under the two hypotheses into the
respective likelihood function. Making these substitutions, we get

max £(8, 0°ly) = (2r5%) ™ expl-n/2),
max £(8,0°|y) = (2n5;) /* exp[-n/2].

Thus,

&2
A

_ ( y — Xb)'(y - Xb) + (Cb — 7)[C(X'X)~'C"| 7' (Cb ~ 7))"/2
(y — Xb)'(y — Xb)

_ (1 L (Cb— ) [e(X' X)) (Ch — w)"”
(y — Xb)'(y — Xb)

and the hypothesis H is rejected for large values of A, or equivalently for
large values of (3.13).
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This test has the following important and pleasant property. Let
8 = (CB—v)[C(X'X)~'C'1THCB — 7)/o.

Then 6§ = 0 if and only if C3 —+ = 0. It can be shown (using the results in
the next section) that this likelihood ratio test is uniformly most powerful
for testing the hypothesis § = 0 versus § > 0; that is, no other test has a
larger probability of rejecting the hypothesis when it is not true.

3.4 *Distribution of Test Statistic

In this section we show that under the assumption that the ¢;’s are iid
N(0,0?), (3.13) has the F distribution. The proof consists of showing that
the numerator and denominator are each o2 times averaged chi-square vari-
ables and are independent (see Section B.5, p. 292).

Since b = (X'X)~1X'y is a linear function of y1, ..., yn, it follows from
(2.29) that b ~ Ni41(8,0%(X’X)™"). Hence, for an m x (k + 1) matrix C
and a vector v,

Cb—~~ N,(CB —~,0*C(X'X)'C")
(see Theorem B.3, p. 288) and, therefore, under H : C38 — v = o,
[C(X'X)1C'7V2(Cb — ) ~ Nyp(0,0°1).
It follows that
Q= (Co- 7 [C(X'X)TICTH(Chb—7) ~ o (3.19)

where X2, denotes a chi-square distribution with m degrees of freedom.

Now consider the denominator. By (2.13), e = Me, which is a linear
function of €y, ..., €,. Hence, e ~ N, (0,02M). We have seen in Section 2.3
that M is symmetric and idempotent with rank n — k — 1. Thus, from
Example B.6, p. 291,

ee=€Me~a’x2__;.
Under the hypothesis H : C3 = =,
Cb—v=Cb-CB=C(X'X)'[X'y-X'XP)
=C(X'X)"'X'[y-XB)=C(X'X) ' X'e.
Thus, if P = X(X'X)"C'[C(X'X)"1C')71C(X' X)X, we get from
(3.19), Q = € Pe. But since X’M = 0, we have PM = 0. Hence, from

Theorem B.6, given on Page 292, Q and e’e are independently distributed
and under H (see Section B.5, Page 292)

n—k—lg

~Fpon—k—1- .
m ee m—k-1 (3.20)
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Similarly, it can be shown that under the alternative hypothesis A : C8—
~ # 0, the expression (n—k—1)m~1Q/e’e has a noncentral F distribution
with (m,n — k — 1) degrees of freedom and noncentrality parameter

82 =(CB-v[C(X'X)"'CHCB — 7)o"

Therefore, the power of the test can be calculated for specified values of
6%, m, and n — k — 1. Tabulated values of non-central F distributions are
available from statistical tables (see, for example, Tiku, 1975).

3.5 Two Special Cases

The test for the hypothesis By = (81, ...,0x)" = 0 against the alternative
Bioy # 0 is called for so often that several packages carry it out routinely.
Obviously, this hypothesis implies that our model is of little value. In order
to test it, we could have used (3.13) with C = (o, I;), but it is more
convenient to consider the centered model (2.40). The likelihood ratio test
would reject the hypothesis for large values of

k™ 'b0)(Z'Z)boy/[(n—k—1)" (y — 1 — Zb()) (y — §1 — Zb(p))]. (3.21)

The denominator is clearly the residual sum of squares (sometimes called
the error sum of squares) divided by n — k — 1. Using (2.41), the numerator
can be seen to be

k') (Z'Z)by = k'Y’ 2(Z'2)"' 2"y,

which is k7! times the sum of squares due to By — see (2.43). Since,
obviously,

I-n"t11'-2(2'2)"'22(2'2)"'2'] =0,

it follows from (2.43) and Theorem B.6 of Appendix B that the error sum
of squares and the sum of squares due to B(o) are independent under nor-
mality. Therefore, (3.21) has an F distribution with k£ and n— k —1 degrees
of freedom when € ~ N(0,02I) and B(g) = o.

Because of (2.43) the computation of the sums of squares is relatively
easy. The corrected total sum of squares > .., (y; — §)? is easy to compute
since, by (2.43), it is the sum of the error sum of squares and the sum of
squares due to B(g). The error sum of squares is just the sum of squares
of the residuals. The sum of squares due to B(y) can then be obtained
by subtraction. This computational ease made tableaus such as that in
Exhibit 3.1 useful computational devices in pre-computer days. However,
even today, several package programs print such tableaus routinely, usually
with an additional column. This column gives the minimum significance
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Sum of Mean
Source DF Squares Square F-value

Bo) k Q1 = by Z' Zb(y Q1 =Q1/k Q1/Q5
Error [n—k -1 Q2=¢€e Q5=Q2/(n—k—-1)

C.Total| n-1 Sy — )2

EXHIBIT 3.1: Tableau for Testing if All Coefficients Except the Intercept
Are Zero’s

level at which the hypothesis could be rejected. This level is often referred
to as a p-value.

The test for each 3; being zero is also routinely carried out. Here m = 1
and C(X'X)71C’ = CGC’ reduces to gj; where G = (X'X)~! = (g )-
Since sgjl-; 2 is the standard error of b;, (3.13) reduces to the square of

bj/s.e.(bj). (3.22)

The expression (3.22), called the t-value of b;, has a t distribution with
n — k — 1 degrees of freedom (Section B.5, p. 292).

As for the F test just mentioned, the minimum level at which the hypoth-
esis 3; = 0 can be rejected is also printed. This level is called the p-value
of b;. Notice that the probability is for a two-tailed test. If we are testing
against a one-sided alternative (e.g., /1 > 0 or 31 < 0 instead of 8; # 0)
we would halve the probability. If its p-value is less than «, we say b; is
significant at level a. Words like ‘quite significant’, ‘very significant’, etc.,
essentially refer to the size of the p-value — obviously the smaller it is the
more significant is the corresponding b;.

3.6 Examples

Example 3.1 (Continuation of Example 2.2, Page 31)
Now let us return to some of the specific questions posed at the begin-
ning of this chapter. The test statistic (3.13) can usually be obtained from
computer packages for most C and ~. As mentioned above, for the two
cases where we wish to test if a particular §; is zero and where we wish
to test whether all the B;’s, except [y, are zeros, these tests are routinely
carried out (without being asked for). The tests for individual 8;’s being
0 have been carried out in Exhibit 2.3, p. 34. For example, the t-value
corresponding to the hypothesis H : 5; = 0 is 5.461 and the p-value is
.0001.

Computations to test H : By = o versus A : B(g) # o are illustrated
in Exhibit 3.2. We do not need to actually look at the tables since the
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Sum of Mean
Source DF Squares Square F-value p-value
MODEL 8 3602.32 450.29 19.7 .0001
ERROR 17 388.488 22.852
C. TOTAL 25 3990.81

EXHIBIT 3.2: Tableau for Testing if All Coeflicients Except the Intercept Are
Zero’s for House Price Example

probability of getting a value of F larger than the one obtained under H is
also given. Here it is .0001, so that we can safely reject the hypothesis

P1=0,6:=0,...,0s =0.

Hypoth. NUM/DEN DF F-Value p-value
Bs=5 142.5/22.85 1,17 6.235 .0231
Be—PB1=0 69.60/22.85 1,17 3.046 .0990
B2=0 138.2/22.85 1,17 6.049 .0249
Bs=5& B =05 132.18/22.85 2,17 5.784 0121

EXHIBIT 3.3: Some Tests of Hypotheses

In other cases, the computation of (3.13) has to be asked for. Exhibit 3.3
shows results for a number of tests on the model of Example 2.2. For each
test the hypothesis H is given in the first column and the alternative is
simply its negation. NUM and DEN are the numerator and denominator
of (3.13); the other terms are obvious. ]

3.7 Comparison of Regression Equations

Sometimes we are faced with the problem of testing if regression equations
obtained from different data sets are the same against the alternative that
they are different. Such problems typically arise when data on the same
independent and dependent variables have been gathered for different time
periods, different places or different groups of people. We illustrate below
how such problems might be handled when there are two such equations;
more than two equations can be handled in the same way.
Let the two models be

y1= X181 + & (3.23)
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and
Yo = X2f3; + € (3.24)

respectively, where X7 is n; X p, X3 is ny x p and B; and 3, are p-
dimensional vectors. Suppose we are willing to assume that the first r
components of 3, and B, are the same. There is no loss of generality here
since we can permute the elements of (3; and 3, by permuting the columns
of X; and X,. Write

Jcie) Jc18)
where B(1) is r-dimensional and, obviously, 3, (?) and ﬁ2(2) are of dimension
(p — ). Partition X; and X5 in a corresponding way:

Xi=(xP x®), x=(xP x{)

where Xl(l) and Xél) have r columns each. Then (3.23) and (3.24) may be
written as

(1)
Y= ( x; 0 x,® ) < 5(2) ) +e = Xl(l)ﬁ(l) +X1(2),61(2) +6
1
(3.25)
and

(1)

¥ =( X2V X,@) ( ,(?(2) ) +e=X180 + X,P8,® +e,.
2

(3.26)
Define
_( Y _[ &
v=(n) =(2)
1)
x® x® B
(3 % ) mas-( o
2 2 ﬁz( )
Then it may readily be verified by multiplication that
y=XB+e (3.27)

is a combination of (3.25) and (3.26) Then, the hypothesis H : B;(3) —
B, = o is equivalent to H : C3 = o where

C=(0prr Ipor —Ipr ):(p—7)x(2p—T1),

with the subscripts of the 0 and I denoting matrix dimension. Now the test
can be carried out using (3.13). provided, of course, that € ~ N(o,02I).
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Example 3.2

The data in Exhibits 3.4 and 3.5 show world record times in seconds for
running different distances for men and women. Previous work has shown
that a model of the form

log(time) = By + B1 log(distance) (3.28)

fits such data reasonably well. We would like to examine how the 3’s com-
pare for men and women athletes.

Dist. Time | Dist. Time | Dist. Time
(m.) (secs.)| (m.) (secs.)| (m.) (secs.)

100 9.9 | 1000 136.0 | 10000 1650.8
200 19.8 | 1500 213.1 | 20000 3464.4
400 43.8 | 2000 296.2 | 25000 4495.6
800 103.7 | 3000 457.6 | 30000 5490.4
5000 1793.0

EXHIBIT 3.4: Men’s World Record Times for Running and Corresponding Dis-

tances
SOURCE: Encyclopzdia Britannica, 15th Edition, 1974, Micropzedia, IX, p. 485.
Reproduced with permission from Encyclopadia Britannica, Inc.

Dist. Time |Dist. Time |Dist. Time
(m.) (secs.)| (m.) (secs.)|(m.) (secs.)

60 7.2 | 200 221 | 800 117.0
100 10.8 | 400 51.0 {1500 241.4

EXHIBIT 3.5: Women’s World Record Times for Running and Corresponding

Distances
SOURCE: Encyclopadia Britannica, 15th Edition, 1974, Micropzedia, IX, p. 487
et seq. Reproduced with permission from Encyclopaedia Britannica, Inc.

Before embarking on the test it is perhaps interesting to examine each
data set independently first. On running regressions for the two sets indi-
vidually we get

log(time) = -2.823 + 1.112log(dist.

g(time) (06) (_00g7(8) ) (R? = 9995, 5, = .05),
and

log(time) = -—2.696 + 1.112log(dist.)

2 _ —
(183) (0317) (R? = .9968, 55 = .087)
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for men and women respectively, where the parenthetic quantities under the
coefficients are corresponding standard errors. Notice that the coefficients of
log(distance) are surprisingly similar. (This phenomenon has been noticed
before in both track and swimming — see Riegel, 1981.) Now let us test if
B’s for men and women are the same.

The design matrix X and the y vector that we need are

log(9.9) \ 1 log(100) 0 0 \
log(19.8) 1 log(200) 0 0
y=| log(5490.4) |, X =] 1 log(30000) O 0
log(7.2) 0 0 1 log(60)
log(241.4) \ 0 0 1 log(1500)

Writing 8; = (B10,011)" and By = (B20,021), we get as our vector of
parameters 8 = (810, 811,820, B21)'. Our model is y = X3 + € and least
squares yields

bio = —2.823(.0770)  byy = —2.696(.1299)
by = 1.112(.0097) by = 1.112(.0224),

where standard errors are given within parentheses, R? = .9997 and s =
.062. We wish to test if 819 = (20 and B11 = B21; i.e.,

H:CB8=0versus A:CB#0

where
1 0 -1 0
C= ( 01 0 -1 ) = (I, = I)-

This test yields an F-value of .5293, which is not even significant at a 40
per cent level — therefore, we are unable to reject the hypotheses that
B1o = B20 and fr11 = Pa1.

Simply testing (3190 = P20 yields an F = .7130, which also makes it
difficult to reject 819 = B20. In testing B11 = Bo21 against (511 # [21 we get
an F-value of .0001, which should come as no surprise and which, of course,
is very strong evidence in favor of the hypothesis!

Finally note that, although track times for men and women are usu-
ally different, here we could not reject their inequality (probably because
of the small size of the data set for women, which resulted in large stan-
dard errors). This serves to demonstrate that if we are unable to reject a
hypothesis it does not mean that it is true! [
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3.8 Confidence Intervals and Regions

Confidence intervals (C.1.) for individual 3;’s can be obtained in a straight-
forward way from the distribution of (3:22). Some other confidence intervals
and confidence regions that are often needed are presented in the sections
below, the first two of which contain simple generalizations of the material
of Section 1.10.

3.8.1 C.I. FOR THE EXPECTATION OF A PREDICTED
VALUE

Let i = (x00,%o1,---,Zok) represent a set of values of the independent

variables, where zgp = 1 if an intercept is present. Then the predicted

value of y at the point xg is §g = xpb. We can easily verify from (2.28) and
(2.29) that under the Gauss-Markov conditions,

E(jo) = 0B

var (o) = xf cov(b)xo = o[z (X' X)) (3.29)

Hence, if yq, ..., y, are normally distributed,
do — x(B ~ N(0,0%[x( (X' X) '),

and it follows that . ,
Jo — T3
slaf (X' X))~ 1ao]1/2
has a Student’s t distribution with n — &k — 1 degrees of freedom. Therefore,
an (1 —a) x 100 per cent C.I. for the mean predicted value z3 is given by

JoEt, a2 s[To(X'X) " @o) /2 (3.30)

where r =n — k — 1, and ¢, /5 is the upper (1/2) a x 100 per cent point
of the t distribution with r degrees of freedom.

3.8.2 C.I. For A FUTURE OBSERVATION

‘We have already seen future observations, in the simple regression case, in
Section 1.10, p. 18. Here we examine the multiple regression case. Let yg
denote a future observation at the point @y of the independent variables,
i.e., yo = xpB + €. Such a yo is estimated by go = xpb. Typically, yo
is independent of the observations yi, ..., yn. Making this assumption, we
can readily compute

var (Jo — yo) = var (yo) + var (%o)

3.31
:0’2+0'2$6(X/X)_1:110 202[1+:11IO(X/X)_1$0] ( )
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from (3.29). Since 02 can be estimated by s and since under the Gauss-
Markov conditions,

E(Jo — y0) = E(fo) — E(y) = o8 — o8 = 0,
it follows that )
Yo — Yo
s[1 + xf (X' X))~ ao]1/?
has a t distribution with r = n — k — 1 degrees of freedom. Hence a (1 —
a) x 100 per cent C.I. for yp is given by

’go + tr,a/zs[l + :vf,(X'X)_la:o]l/z.

Example 3.3 (Continuation of Example 2.2, Page 31)

A value of §o corresponding to &y = (1,1000,...,1) has been computed in
(2.18) on page 33. The variance of §jy and of yo — fo can be obtained from
most (not all) packages, from which confidence intervals can be obtained.
In SAS! PROC REG (SAS, 1985b), approximate 95 per cent confidence
intervals for gy and yg can be found, using the CLM and the CLI options,
by appending the appropriate independent variable values to the data and
declaring the dependent variable value as missing. For our example the
intervals are approximately (59.1, 70.3) and (52.9, 76.5). ]

3.8.3 *CONFIDENCE REGION FOR REGRESSION
PARAMETERS

Sometimes we wish to consider simultaneously several 3;’s or several lin-
ear combinations of 3;’s. In such cases, confidence regions can be found
in a fairly straightforward way from (3.20) — assuming, of course, that
the Gauss-Markov conditions hold and the ¢;’s are normally distributed.
Suppose we wish to find a confidence region for 3. Then setting C = Ix4,
in (3.20) and (3.19), and noting that s2 = (n — k — 1)"le’e, we get

(k+1)71s72(b— B) (X' X)(b— B) ~ Fry1n-k-1-

Therefore, a (1 — a) x 100 per cent confidence region for 3 is an ellipsoidal
region given by

R={B8:(b-8)(X'X)(b-B) < (k+1)s*Frr1n—k-1,a} (3.32)

The boundary for such a confidence region can be found by writing the
equation corresponding to the inequality in (3.32) and solving it. Unfor-
tunately, such regions, unless they are two dimensional, are difficult to

ISAS is a registered trademark of SAS Institute Inc., Cary, North Carolina
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visualize. Consequently, it may be preferable on occasion to replace such a
region by a less precise rectangular one using the Bonferroni inequality, as
we discuss in the next section.

3.8.4 *C.I.’s FOR LINEAR COMBINATIONS OF
COEFFICIENTS

In this section we present expressions for simultaneous (or joint) confidence
intervals for ¢ different linear combinations a}f3,...,a;3 of parameters
B = (Bo,--.,0k). We give below two different expressions. The first is
usually better when the number £ is small; the second when it is large. For
each case we assume that the Gauss-Markov conditions hold and the ¢;’s
are normally distributed.

Using the Bonferroni inequality (see below) a simultaneous (1 —«a) x 100
per cent C.I. for @18, ...,a;B may be shown to be given by

albtt, o) 20 5(a}(X' X) a;)'?,

where r =n —~k —1and i =1,...,¢ (The Bonferroni inequality may be
stated as follows: If Fy,..., Ey are k events, then

£
1-P{E\N---NE} <Y P(E)

1=1
where Ef is the complement of E; for i =1,...,£.)

When ¢ is large the rectangular confidence regions given above might

become rather wide. If £ is such that t,. o /20 > (k+1)l/2F,iﬁ‘r,a (see (3.30)),
it might be preferable to use the confidence region given by

albts(k + )Y k(X' X)) a] 2.

In practice, unless £ is quite small, it is desirable to compute both sets of
intervals and then decide which is better.
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Problems

Exercise 3.1: Consider the regression model
Yi = Bo + B1xi1 + - - + BeTie + €i, wherei=1,...,n

and ¢;’s are identically and independently distributed as N(0,0?). Define
the matrix C' and the vector =, in the notation of Section 3.2, in order
to test (against appropriate alternatives) each of the following hypotheses:
(@) Br =~ =P =0, (b) B1 = 5B, (c) B = 10, (d) B1 = B2, (e) B3 =
Ba + Bs.

Exercise 3.2: Consider the two sets of cases

(u1,21)y -+ -, (Un, zn) and (v1,21), ..., (Vn, 2p)
and the two models

u; = a1 + Bz + 1 and v; = ag + Boz; + 6;

for i = 1,...,n, where x;’s and z;’s are fixed constants and all 7;’s and
6;’s are independently distributed with zero means and common variance
o?. By defining y, X, 3 and € appropriately, write the two equations given
above as one regression model y = X3 + €.

Exercise 3.3: Consider two independent sets of observations. The first set
of observations are taken on n subjects who were not given any medication
and the model is assumed to be

y1: = Po + €15, wherei=1,...,n

and €;;1’s are iid N(0,02). For the second set of observations, the ith obser-
vation was taken on a subject who received a dose z; of a medication, and
the model is assumed to be

y2i = Bo + B1x; + €2 wherei =1,...,n
and ey;’s are iid N (0, 0?).
1. Find the least squares estimates of 8y and (; and their variances.
2. Estimate 2.

3. Write the test statistic for testing the hypothesis #; = 0 against the
alternative 5; > 0.

4. If the first set had n; independent observations and the second set
had ny # n; independent observations, what changes would you need
to make?
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Exercise 3.4: Suppose we need to compare the effects of two drugs each
administered to n subjects. The model for the effect of the first drug is

Y1 = Bo + Biz1i + €14

while for the second drug it is

y2: = Bo + Pazai + €2,

and in each casei = 1,...,n and Z; = Zs = 0. Assume that all observations
are independent and that for each i both ¢;; and €;; are normally distributed
with mean 0 and variance o2.

1. Obtain the least squares estimator for 3 = (8o, 81, 02)" and its co-
variance matrix.

2. Estimate o2.

3. Write the test statistic for testing 1 = (2 against the alternative
that 5, # fa.

Exercise 3.5: *For the likelihood function (3.15), find the maximum like-
lihood estimate of 2.

Exercise 3.6: Consider the two models y; = X18,+€; and y, = X38,+¢€2
where the X;’s are n; x p matrices. Suppose that €; ~ N(0,02I) where
i =1,2 and that €; and e; are independent.

1. Assuming that the o;’s are known, obtain a test for the hypothesis

,81 = ﬂz-

2. *Assume that 0; = o5 but they are unknown. Derive a test for the
hypothesis 3, = B,.

Exercise 3.7: Let y; = X108, + €; and y, = X203, + €2 where y; and
Y, are independently distributed, E(e1) = 0, cov(e1) = 021,,, E(e2) =0,
cov(ez) = 02I,,, and B; and B, are p; and p, vectors respectively. Let

B,M B,V
5= ( e ) wna 82= (Gl
where 8,() and B,(!) are r-vectors (which makes 8, a (p; — r)-vector

and B,(® a (pz — r)-vector). Write the two models above as one regression
model and give a procedure for testing H : 3,V = 3,1,

Exercise 3.8: Consider the model in Exercise 3.6 and assume that g1 =
g2 = o with ¢ unknown (notice that the situation is akin to that in Sec-
tion 3.7 with r = 0).
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1. Show that the test statistic for H : 3; = B, obtained using (3.13)
can be written as

By — B [(X1X1) ™" + (X3X2) '] 7 (By - Ba) /957,

where
(n1 +ng — 217)32 = y'1M1y1 + yéM2y2’

and for i = 1,2,
B; = (X/X;)'Xly;, and M; = I, — Xi(X|X;)™' X].
2. Show that

[(X1X1) ™+ (X5Xp) 1]
=X, X (X'X)" X5 Xy = X5 Xo(X'X) 71X X,

_( %

=% )

3. Let y = (9}, 95), B=(X'X)"1X'y and, for i = 1,2, let §; = Xi.
Show that

where

S

(y—XB)X =0 and (y, — 9,)' X1 + (y; — §2)' X2 = 0.
4. Prove that N o, X o
B1X1 X184+ B X3 X8 =B X' XB.
5. Prove that
~l ~ o~ ~
B, X1 X1(X'X) 1 X3 X283
Y ~ ~t A al ~ ~ ~
= B, X1X1B, — B1 X1 X18 + B X1 X1 (X' X) ™' X5 X2,

Exercise 3.9: *Show that the numerator in part 1 of Exercise 3.8 is equal
to each of the expressions in parts 1, 2 and 3 below.

L (B, - B (X1 X1)(B, - B) + (B, - B) (X3X2)(B, - B)
[Hint: Use the results in parts 2, 4 and 5 of Exercise 3.8.]
2. y' My -y Miy, — Y4 May, where M = Iy, 10, — X(X'X)7' X
[Hint: Use the results in part 1 above and part 3 of Exercise 3.8.]
3. (y1 — )" Xa[(X1X1) 71+ (X5X2) X (y1 — 91)
[Hint: Use the results in part 1 above and part 3 of Exercise 3.8.]
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Exercise 3.10: Suppose a regression model y; = o + 11 + BaTiz +
Bsxi3 + €;, where 1 = 1,...,10 and ¢;’s are independent and identically
distributed as N(0,02), is to be fitted to the following data:

Yy T1 T2 T3 y Ty T2 Z3

60.5 14 25 28(66.3 13 24 20
87.5 10 29 18(39.8 33 24 30
48.2 20 22 16(83.8 15 30 26
40.6 12 17 29(38.2 12 15 14
42.7 13 17 12|15.0 31 13 30

Here
2.8204  —.0284554  —.0758535  —.0264434
(X'X) = —.0284554  .00256363  .000971434 —.00165374
= | —.0758535 .000071434  .00363832 —.000876241
—.0264434 —.00165374 —.000876241 00331749
and
522.6
. 8084
Xy=1 193509
11413.6

1. At a 5 per cent level of significance, test the hypothesis that 8, =
B2 = B3 = 0 against the alternative that (3; # 0 for at least one j.

2. Test the hypothesis that 82 = 33 against the alternative that 5 # B3
at a 5 per cent level.

3. Find a 95 per cent joint confidence region for 3; and f2 — B3.

Exercise 3.11: Exhibit 3.6 provides data on salaries (Y84, Y83) for 1984
and 1983 for chairmen of the 50 largest corporations in the Chicago area.
Data are also provided on their age (AGE), the number of shares they hold
(SHARES) and the total revenues (REV) and the total income (INC) of
the companies they head. Based on the data write a report on the factors
that affect the raises given company chairmen.

Exercise 3.12: Using (3.22) explain why significance levels of SI and SP
increased so much when we went from the model of part 1 of Exercise 2.18
to that of part 2.

Exercise 3.13: (a) For the model given in part 1 of Problem 2.20, test
each coeficient to see if it could be zero against the alternative that it is
not zero, at a significance level of 5 percent. (All the numbers you will need
are routinely provided by most packages.) Write a short note explaining
why you think the variables that are significant are so.
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Y84 Y83 SHARES REV INC AGE
1481250 1425000 101037 38828 1454.8 65
1239402 1455350 5713459 558.4 29.7 44
1205181 1057707 18367 12595 479.0 60
1012500 862500 134713 4233.6 108.3 66

980000 871056 7896 8321.5 234.1 53
921213 817687 48722 3104 402.6 56
915600 1092570 78513 7000 188.0 47
912500 833000 73120 1245.8 161.6 56
863000 372645 57723 6661.8 490.8 57
882347 736883 38436 3429.8 38.0 55
890000 838462 8247 9758.7 455.8 57
815000 698333 22135 2001.8 109.8 55
748189 647988 50612 28998 2183.0 59
740500 728663 2331816 4907.0 117.7 66
706565 502400 22432 921.6 52.7 63
698923 630000 113906 1468.1 94.2 54
661958 660000 53162 1397.0 89.3 61
654936 350004 23925 875.8 36.7 50
620000 573500 205046 33915.6 206.1 62
607083 483542 224632 4159.7 145.5 64
606977 475176 25369 3344.1 134.8 46
583437 507036 56713 2139.8 36.6 62
567000 498960 379860 1314.8 142.5 53
566446 488543 139200 1794.4 103.0 59
559266 534004 60450 3738.8 141.0 57
551516 454752 232466 2744.6 85.4 49
551154 550000 63220 1041.9 66.4 58
550000 550000 100112 5534.0 387.0 62
545908 518177 25172 1814.5 134.0 50
545000 457375 13200 1374.6 123.4 67
540000 462000 92200 1070.8 41.7 65
499991 469873 180035 3414.8 389.1 52
495915 391035 1036286 1059.3 6.9 57
490000 372500 33002 267.6 16.8 54
489419 434008 1558377 348.6 4.5 65
480000 274820 146407 1365.5 106.2 56
475000 508333 40736 4802.0 55.0 66
473216 300000 2000 1177.2 27.2 47
465000 645000 72786 1800.4 29.1 50
464577 425654 37650 571.6 17.8 64
461250 350250 4826 1716.0 63.6 45
459352 402735 96431 592.3 60.0 54
455998 420422 72226 923.1 26.5 62
451667 371400 107233 590.5 39.7 52
450192 337533 1510150 437.8 13.8 58
450010 267510 2516958 252.2 38.2 47
450000 387500 3346 496.6 31.7 69
434487 313500 307120 220.0 19.0 56
432667 383333 26163 845.1 36.6 57
430000 396000 4022460 1287.7 162.2 47

EXHIBIT 3.6: Data on Corporations and Corporation Chairmen
SOURCE: Reprinted with permission from the May 13, 1985, issue of Crain’s
Chicago Business. (©) 1985 by Crain’s Communications, Inc. The data shown are
a portion of the original table.
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(b) We know that doctors tend to congregate in urban areas. For the model
you constructed in part 3 of Problem 2.20 test the hypothesis that the
coeflicients of all variables other than UR are all zero against the alternative
that they are not all zero.

(c) For the model in part 4 of Problem 2.20, test if any variable in the
model you constructed other than divorce rate affects marriage rate.

Exercise 3.14: Moore (1975) reported the results of an experiment to
construct a model for total oxygen demand in dairy wastes as a function of
five laboratory measurements (Exhibit 3.7). Data were collected on sam-
ples kept in suspension in water in a laboratory for 220 days. Although
all observations reported here were taken on the same sample over time,
assume that they are independent. The measured variables are:

y  log(oxygen demand, mg oxygen per minute)

z; biological oxygen demand, mg/liter

zo total Kjeldah! nitrogen, mg/liter

z3 total solids, mg/liter

x4 total volatile solids, a component of z3, mg/liter

z5 chemical oxygen demand, mg/liter

1. Fit a multiple regression model using y as the dependent variable and
all z;’s as the independent variables.

2. Now fit a regression model with only the independent variables z3
and z5. How do the new parameters, the corresponding value of R?
and the t-values compare with those obtained from the full model?

Exercise 3.15: Using the data of Exhibit 1.19 test if the slopes of least
squares lines expressing price in terms of number of pages for paperback
and cloth-bound books are different. (We know the intercepts are different.)
Examine the residuals from the model you used to carry out the test. Do
you feel that any of the conditions required for the test have been violated?
If so, which ones?

Most of the data are for books published in 1988. However, two of the
cloth-bound books were published in the 1970’s, one of the paperbacks in
1989 and another in 1984. Can you guess which ones? Delete these points
and repeat the problem described in the last paragraph.

If you were doing this problem for a client, what model(s) would you
deliver?

Exercise 3.16: The data in Exhibit 3.8 are for student volunteers who
were given a map reading ability test (scores given in column marked sc)
and then asked to find routes to given destinations on a transit route map.
Their ability in doing this was scored (y). Test if the relationship between
the two scores is the same for transit users as it is for non-users against the
alternative that the relationships are different.
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Day 1 2 x3 x4 5 Y

0 1125 232 7160 85.9 8905 1.5563

7 920 268 8804 86.5 7388 0.8976
15 835 271 8108 85.2 5348 0.7482
22 1000 237 6370 83.8 8056 0.7160
29 1150 192 6441 82.1 6960 0.3130
37 990 202 5154 79.2 5690 0.3617
44 840 184 5896 81.2 6932 0.1139
58 650 200 5336 80.6 5400 0.1139
65 640 180 5041 78.4 3177 -0.2218
72 583 165 5012 79.3 4461 -0.1549
80 570 151 4825 78.7 3901 0.0000
86 570 171 4391 78.0 5002 0.0000
93 510 243 4320 72.3 4665 -0.0969
100 555 147 3709 74.9 4642 -0.2218
107 460 286 3969 74.4 4840 -0.3979
122 275 198 3558 72.5 4479 -0.1549
129 510 196 4361 57.7 4200 -0.2218
151 165 210 3301 71.8 3410 -0.3979
171 244 327 2964 72.5 3360 -0.5229
220 79 334 2777 71.9 2599 -0.0458

EXHIBIT 3.7: Data on Oxygen Demand in Dairy Wastes
SOURCE: Moore (1975). Reproduced with permission of the author.

Exercise 3.17: Consider the data given in Problem 3.14. Suppose the
model is

Yi = Bo + b1zi1 + B2Ziz2 + B3%i3 + Patia + PsTis + €,
where i =1,...,n and € = (e1,...,€,) ~ N(0,0%I,).
1. Test the hypothesis 82 = 8; = 0 at the 5 per cent level of significance.
2. Find a 95 per cent C.I. for 3.
3. Find a 95 per cent C.I. for 83 + 20s.

Exercise 3.18: It has been conjectured that aminophylline retards blood
flow in the brain. But since blood flow depends also on cardiac output
(z1) and carbon dioxide level in the blood (x2), the following models were
postulated:

Without aminophylline: yi(l) =0+ ﬂlx“(l) + ﬂz.’l)z‘g(l) + ei(l)
With aminophylline: y;(® = 8, + Biz:i1 P + Bozin® + ¢,
Using the data of Exhibit 3.9 test, at a 5% level, the hypothesis 8 = [

against the alternative that 8 > [y assuming the observations are all in-
dependent. Actually the observations are not independent: Each row of
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Non-users Users
y sc y  sc
63 2 75 3
62 3 70 3
70 3 9 9
98 9 80 2
85 7 70 4
89 8 70 7
65 4 73 7
71 4 65 4
78 5 60 b5
65 3 70 4

EXHIBIT 3.8: Map Reading Test Scores and Route Finding Scores
SOURCE: Prof. Siim Soot, Department of Geography, University of Illinois at
Chicago.

No aminophylline With aminophylline
1 T2 Yy ry T2 Yy
265 32 9.2 252 35 19.1
348 35 19.3 411 35 20.1
244 43 16.9 229 36 08.1
618 41 22.1 761 29 35.6
434 44 15.6 541 40 22.1
432 28 10.9 313 38 24.7
790 48 16.7 873 52 21.0
245 43 13.0 359 45 14.9
348 36 20.9 433 32 18.3

EXHIBIT 3.9: Blood Velocity Data
SOURCE: Tonse Raju, M.D., Department of Neonatology, University of Illinois
at Chicago.

Exhibit 3.9 represents the same subject. Now how would you test the hy-
pothesis?

Exercise 3.19: In rural India, is the relation between IMR and PQL1
different for males and females? How about urban India? (Use the data in
Exhibit 1.20.)

Exercise 3.20: For a density of 100 vehicles per mile, what is the predicted
speed (Example 1.1, p. 2)? Find a 95 per cent confidence interval for it and
also one for the corresponding future observation. Use the model with both
density and its square.
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Exercise 3.21: Suppose a person has a house to sell in the area from which
the data of Exhibit 2.2, p. 32, were gathered. The house has 750 square feet
of space, 5 rooms, 2 bedrooms, 1.5 baths, storm windows, a 1-car garage,
1 fireplace and a 25 front-foot lot. What can you tell him about how much
he could expect to get for the house?

Exercise 3.22: In a study of infant mortality, a regression model was
constructed using birth weight (which is a measure of prematurity, and a
good indicator of the baby’s likelihood of survival) as a dependent variable
and several independent variables, including the age of the mother, whether
the birth was out of wedlock, whether the mother smoked or took drugs
during pregnancy, the amount of medical attention she had, her income,
etc. The R? was .11, but each independent variable was significant at a 1
per cent level. An obstetrician has asked you to explain the significance of
the study as it relates to his practice. What would you say to him?

Exercise 3.23: For the house price example (Example 2.2, p. 31), ob-
tain a 95 per cent (elliptical) confidence region for the coefficients of RMS
and BDR. Obtain the corresponding rectangular region using the Bonfer-
roni Inequality. Display both on the same graph paper and write a short
paragraph comparing the two.
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Indicator Variables

4.1 Introduction

Indicator or dummy variables are variables that take only two values —
0 and 1. Normally 1 represents the presence of some attribute and 0 its
absence. We have already encountered such variables in Example 2.2, p. 31.
They have a wide range of uses which will be discussed in this chapter. We
shall mainly be concerned with using them as independent variables. In
general, their use as dependent variables in least squares analysis is not
recommended. Nonetheless, we shall consider the topic further in the final
section of this chapter.

4.2 A Simple Application

To see the role dummy variables can play, consider the simplest case where
we have a single independent variable, z;;, which is a dummy, i.e., the
model

yi=Bo+bizan+e i=1,...,n (4.1)
where
0 wheni=1,...,n
Ti1 =
1 when i =n; +1,...,n,
and
€;'s are iid N(0,0?%), (4.2)

i.e., €’s are independent and identically distributed as N (0, 0?). Let x3 = (3o
and pg = Bp + B1- Then (4.1) becomes
+ €, i=1,...,n
Yi = {Nl 1 . ' (4.3)
U2 + €, i=ni+1,...,n.

This is the model for the familiar two-sample testing problem encountered
in a first course in statistics, where we would use the two-sample t test
to test H : pu; = po against, say, A : p1 # pe. Using model (4.1), the
equivalent test would consist of testing H : 3; = 0 against A : 8; # 0 and
this would give identical answers (see Problem 4.2).

Notice that we have two means but only one indicator variable, the pa-
rameter of which is a difference of means. Suppose, instead, we used a
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second indicator variable ;5 which takes the value 1 for i = 1,...,n; and
zero otherwise. Then the corresponding design matrix X would be

1n, o 1n,
ln-n; 1n-n, O

where 1,, is a vector of length n consisting only of 1’s. Since the columns 2
and 3 would sum up to column 1, we would get a singular matrix. While
such a design matrix X can be used, X’'X is not non-singular and param-
eter estimates b must be based on a generalized inverse (X'X)~ of X'X.
Therefore, b(= X’'X)~X'y) is not unique but testing of H : yu; = pa vs.
A py # po is still possible.

Year(t) 62 63 '64 65 66 ’67 68 69 70 71

Deaths (z;) per 108 49 51 52 51 53 5.1 49 4.7 4.2 4.2
vehicle-miles

DFRt=Zt—Zt_1 .2 1 -1 2 -2 -2 -2 -5 .0

EXHIBIT 4.1: Traffic Fatality Data for Illinois
SOURCE: Illinois Department of Transportation (1972).

Example 4.1

Exhibit 4.1 presents some data on traffic deaths in Illinois. We wish to test
if the annual increases (DFR;) in deaths per 100 million vehicle miles before
1966 are different from the rate after 1966, when there was an increase in
awareness of traffic safety and many traffic safety regulations went into
effect. The dependent variable is clearly DFR; and the values z;; of the
independent variable z; are

00 00 1111 1

On applying a linear least squares package, we get Exhibit 4.2.

Obviously, we wish to test H : 5; = 0 vs. A: 1 # 0 and such a test is
routinely carried out by most package programs. In this case, since there
is only one independent variable, the t test shown in the upper part of
Exhibit 4.2 and the F test shown in the lower part yield identical probabil-
ities. The reader might wish to verify that applying the usual two-sample
t test also yields the same t-value. [

4.3 Polychotomous Variables

Indicator variables, since they take only two values, may be called dichoto-
mous variables. Variables taking a finite number of values — but more than
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Variable | b; |s.e.(b;)| t(b;) |p-value
Intercept | .10| 0.0819 | 1.220| .2618
T -.32| 0.1099 | -2.911| .0226

R%? = 5476 RZ = 4830 s=.1639

85

Sum of Mean
Source DF Squares Square F value p-value
MODEL 1 .2276 .2276 8.473 .0226
ERROR 7 .1880 .0269
C. TOTAL 8 4156

EXHIBIT 4.2: Result of Applying a Least Squares Package Program to Illinois
Traffic Data

two — may be called polychotomous variables. An example of a polychoto-
mous variable is the variable ‘ownership’ which may take the three values,
‘public’, ‘private for-profit’ and ‘private not-for-profit’ (see Example 4.2 be-
low). Another example is a response to a questionnaire with values ‘strongly
agree’, ‘agree’, ‘disagree’, ‘strongly disagree’. Such polychotomous variables
are sometimes called factors and their values are called levels.

While polychotomous variables are usually qualitative (as in the exam-
ples just mentioned), they are sometimes useful in the study of numerical
variables. For example, in a study of the effect on birth weight of chil-
dren, the variable ‘number of cigarettes consumed by the mother during
pregnancy’ may be coded into categories (e.g., 0, 1-15, > 15). Often ordi-
nal variables are treated as polychotomous variables although no order is
assumed for the levels of such variables.

Consider now a case where we have a single factor with p levels 1,...,p.
For level 1, let there be n; observations yi, ..., Yn,; for level 2, let there be
ng — n; observations; and so on. Then we have the model:

/J'1+€ia i=1,...,n1
+ €, i=ni1+1,...,n
i = H2 i 1 2 (4‘4)
p + €, t=np_1+1,...,np=n

and assume that (4.2) still holds. Notice that here we have N1 = n; ob-
servations with mean p1 N2 = np — n; observations with mean pua, ...,
N, = n, — n,_1 observations with mean p,. If we wished to see if our
polychotomous variable affected the dependent variable at all, we would
test

Hipr=po=--=pp (4.5)

against A : p; # p; for at least one pair ¢, j with i # j.
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Let
Bo=p1 and Bj = pjp1 —py forj=1,2,...,p— L (4.6)

Now define x;;,...,z;p_1 as follows:

1 ifi:nj+1,...,nj+1
Tij = .
0 otherwise

where j =1,...,p — 1. Then (4.4) becomes
Yi = Bo + P1%i1 + BaZiz + - + Bp_1Tip-1 + € (4.7)

with ¢ = 1,...,n. This is a multiple regression model. Notice that the
reparameterization (4.6) to convert (4.4) into a regression model format is
far from unique. A slightly different one is illustrated in Example 4.2.

Notice also that here too, as in Section 4.2, and for much the same reasons
we have one fewer indicator variable than the number of means. If we had
more than one factor, then for each factor we would usually need one less
indicator variable than number of levels. Obviously, the hypothesis (4.5) is
equivalent to the hypothesis 8; =0 for j =1,...,p~ L

Service Psychometric Scores (QUAL)

Public 61.59, 79.19, 68.89, 72.16, 70.66, 63.17,
53.66, 68.69, 68.75, 60.52, 68.01, 73.06,
55.93, 74.88, 62.55, 69.90, 66.61, 63.80,
45.83, 64.48, 58.11, 73.24, 73.24, 69.94

Private 76.77, 68.33, 72.29, 69.48, 59.26, 67.16,
Non-profit 71.83, 64.63, 78.31, 61.48
Private 71.77, 82.92, 72.26, 71.75, 67.95, 71.90

EXHIBIT 4.3: Measures of Quality for Agencies Delivering Transportation for
the Elderly and Handicapped

SOURCE: Slightly modified version of data supplied by Ms. Claire McKnight of
the Department of Civil Engineering, City University of New York.

Example 4.2

Transportation services for the elderly and handicapped are provided by
public, private not-for-profit and private for-profit agencies (although in
each case, financial support is mainly through public funding). To see if
the quality of the services provided under the three types of ownership
was essentially the same, a scale measuring quality was constructed using
psychometric methods from results of questionnaires administered to users
of such services. Each of several services in the State of Illinois was scored
using this scale. Exhibit 4.3 shows the score for each agency.
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QUAL X; Xo| QUAL X; Xz
6159 0 0 | 5811 0 0O
7919 0 07323 0 O
6889 0 0| 7312 0 O
7216 0 0| 6994 0 O
7066 0 0| 7677 1 0
63.17 0 0] 6833 1 0
5370 0 0 (7229 1 O
6869 0 0 ]6948 1 0
68.75 0 0| 5926 1 0
6052 0 0| 6716 1 0O
6801 0 0| 718 1 0
7362 0 0| 6463 1 0
5593 0 0| 7831 1 0
7488 0 0| 6148 1 0
6258 0 0| 7177 1 1
69.90 0 0| 8292 1 1
6661 0 0| 7226 1 1
6380 0 0| 7175 1 1
4583 0 0 ]6795 1 1
6548 0 0| 7190 1 1

EXHIBIT 4.4: Values of z;1’s and z;2’s and Corresponding Values of QUAL

The dependent variable QUAL and the independent variables X; and X2
are shown in Exhibit 4.4. Notice that the definition of the independent vari-
ables is slightly different from that given by (4.6), although the latter would
have worked about as well. Here it made sense to first distinguish between
private and public and then between for-profit and not-for-profit. Portions
of the output from a least squares package are shown in Exhibit 4.5. Since
we wish to test the hypothesis that coeflicients of X1 and X2 are both zero
against the alternative that at least one is not equal to zero, the value of
the appropriate statistic is the F-value 2.51, which shows that we can reject
the hypothesis at a 10 per cent level but not at a 5 per cent level. We also
see that the least squares estimate for the mean level of quality of public
services (since this level corresponds to X1 = 0 and X2 = 0) is about
66.18. For private non-profit systems the estimated mean quality index
rises by about 2.78 and the quality index for for-profit organizations rises
an additional 4.13. However, neither factor is significant at any reasonable
level.

Given the nature of the results obtained, one might be tempted to con-
jecture that if more privately run services were represented in the data set,
stronger results might have been obtained. If this problem had been brought
to us by a client, we would then have recommended that they increase the
size of the data-set. While on the subject of making recommendations to
clients, we would also suggest that the client look into the possibility of
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finding other independent variables (e.g., was the driver a volunteer? Was
the transportation service the main business of the provider? etc.), which
by reducing s might help achieve significance. ]

Sum of | Mean
Source | DF | Squares | Square | F value | p-value

MODEL 21 243.81|121.91| 2.511 | 0.0950
ERROR | 37 | 1796.58 | 48.56
C. TOTAL | 39 | 2040.40

Variable | b; |s.e.(b;)| t(b;) | p-value

Intercept | 66.18 | 1.422 | 46.5( 0.0001
1 2.78| 2.623 | 1.060 | 0.2963
o 4.13| 3.598 | 1.148| 0.2583

R?>=.1195 R?=.0719 s=6.968

EXHIBIT 4.5: Analysis of Variance Table and Parameter Estimates for Quality
Data

4.4 Continuous and Indicator Variables

Mixing continuous and dichotomous or polychotomous independent vari-
ables presents no particular problems. In the case of a polychotomous vari-
able, one simply converts it into a set of indicator variables and adds them
to the variable list.

Example 4.3

The house-price data of Exhibit 2.2, p. 32, were collected from three neigh-
borhoods or zones; call them A, B and C. For these three levels we need to
use two dummy variables. We chose

11— { 1 if property is in zone A
0 otherwise

Lo = { 1 if property is in zone B
0 otherwise.

Obviously, if L1 = 0 and L2 = 0, the property is in C. Data for L1 and
L2 are also presented in Exhibit 2.2. A portion of the output using these
variables is given in Exhibit 4.6. As the output shows, if two identical houses
were in zones A and C, the former would cost an estimated $2700 more
and a property in zone B would cost $5700 more than an identical one in
zone C. Notice that simply comparing the means of house values in two
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Variable | b; |s.e.(b;)| t(b;) | p-value

Intercept | 16.964 | 4.985 | 3.403 | 0.0039
FLR 0.017| .0032 | 5.241| 0.0001
RMS 3.140| 1.583 | 1.984| 0.0659
BDR -6.702 | 1.807 |-3.708| 0.0021
BTH 2.466 | 2.462 | 1.002| 0.3323
GAR 2.253] 1.451 | 1.553| 0.1412
LOT 0.288 | 0.127 | 2.258| 0.0393

FP 5.612] 3.059 | 1.835) 0.0865
ST 10.017 | 2.318 | 4.320| 0.0006
L1 2.692| 2.867 | 0.939] 0.3626
L2 5.692| 2.689 | 2.117} 0.0514

R?=.9258 RZ= 8764 s=4.442
EXHIBIT 4.6: Output for House Price Data When L1 and L2 Are Included

areas would give us a comparison of house prices in the areas, not the price
difference between identical houses. The two comparisons would be quite
different if, say, on the average, houses in one of the two areas were much
larger than in the other. For this reason, had we included only L1 and L2
in the model, and no other variables, the meaning of the coefficients would
be quite different.

If we wished to test if location affects property values, we would test
the hypothesis that the coefficients of L1 and L2 are both zero against the
alternative that at least one of the coefficients is non-zero. The value of the
F test statistic turns out to be 2.343 for which the p-value is .13. u

4.5 Broken Line Regression

Exhibit 4.9 illustrates a plot of points which would appear to require two
lines rather than a single straight line. It is not particularly difficult to
fit such a ‘broken line’ regression. Let us assume the break occurs at the
known value x of the independent variable and define

5 { 1 if ;) >x
‘1o if £;7 <z
Then the model
Yi = Bo + b1z + B2(zi1 — z)é; + €& (4.8)

suffices, as can be readily verified. Situations when x is treated as an un-
known can be handled using nonlinear regression (see Appendix C, partic-
ularly Example C.4, p. 313).
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Obs Country LIFE INC |Obs Country LIFE INC
1 AUSTRALIA 71.0 3426 | 52 CAMEROON 41.0 165
2 AUSTRIA 70.4 3350 | 53 CONGO 41.0 281
3 BELGIUM 70.6 3346 | 54 EGYPT 52.7 210
4 CANADA 72.0 4751 | 55 EL SALVADOR 58.5 319
5 DENMARK 73.3 5029 | 56 GHANA 37.1 217
6 FINLAND 69.8 3312 | 57 HONDURAS 49.0 284
7 FRANCE 72.3 3403 | 58 IVORY COAST 35.0 387
8 WEST GERMANY 70.3 5040 | 59 JORDAN 52.3 334
9 IRELAND 70.7 2009 | 60 SOUTH KOREA 61.9 344

10 ITALY 70.6 2298 | 61 LIBERIA 44.9 197
11 JAPAN 73.2 3292 | 62 MOROCCO 50.5 279
12 NETHERLANDS 73.8 4103 | 63 PAPUA 46.8 477
13 NEW ZEALAND 71.1 3723 | 64 PARAGUAY 59.4 347
14 NORWAY 73.9 4102 | 65 PHILLIPPINES 51.1 230
15 PORTUGAL 68.1 956 | 66 SYRIA 52.8 334
16 SWEDEN 74.7 5596 | 67 THAILAND 56.1 210
17 SWITZERLAND 72.1 2963 | 68 TURKEY 53.7 435
18 BRITAIN 72.0 2503 | 69 SOUTH VIETNAM 50.0 130
19 UNITED STATES 71.3 5523 | 70 AFGHANISTAN 37.5 83
20 ALGERIA 50.7 430 71 BURMA 42.3 73
21 ECUADOR 523 360 | 72 BURUNDI 36.7 68

22 INDONESIA 475 110| 73 CAMBODIA 43.7 123

23 IRAN 50.0 1280 | 74 CENTRAL AFRICAN 34.5 122

24 IRAQ 51.6 560 REPUBLIC

25 LIBYA 52.1 3010 | 75 CHAD 32.0 70

26 NIGERIA 369 180 | 76 DAHOMEY 37.3 81

27 SAUDI ARABIA 42.3 1530 | 77 ETHIOPIA 38.5 79

28 VENEZUELA 66.4 1240 | 78 GUINEA 27.0 79

29 ARGENTINA 67.1 1191 | 79 HAITI 32.6 100

30 BRAZIL 60.7 425 | 80 INDIA 41.2 93

31 CHILE 63.2 590 | 81 KENYA 49.0 169

32 COLOMBIA 45.1 426 | 82 LAOS 47.5 71

33 COSTA RICA 63.3 725 | 83 MADAGASCAR 36.0 120

34 DOMINICAN REP. 57.9 406 | 84 MALAWI 38.5 130

35 GREECE 69.1 1760 | 85 MALI 37.2 50

36 GUATEMALA 49.0 302 | 8 MAURITANIA 41.0 174

37 ISRAEL 71.4 2526 | 87 NEPAL 40.6 90

38 JAMAICA 64.6 727 | 88 NIGER 41.0 70

39 MALAYSIA 56.0 295 | 89 PAKISTAN 51.2 102

40 MEXICO 61.4 684 | 90 RWANDA 41.0 61

41 NICARAGUA 499 507 | 91 SIERRA LEONE 41.0 148

42 PANAMA 59.2 754 | 92 SOMALIA 38.5 85

43 PERU 54.0 334 | 93 SRI LANKA 65.8 162

44 SINGAPORE 67.5 1268 | 94 SUDAN 47.6 125

45 SPAIN 69.1 1256 | 95 TANZANIA 40.5 120

46 TRINIDAD 642 732 96 TOGO 35.0 160

47 TUNISIA 51.7 434 | 97 UGANDA 475 134

48 URUGUAY 68.5 799 | 98 UPPER VOLTA 31.6 62

49 YUGOSLAVIA 67.7 406 | 99 SOUTH YEMEN 42.3 96

50 ZAMBIA 43.5 310|100 YEMEN 42.3 77
51 BOLIVIA 49.7 193 | 101 ZAIRE 38.8 118

EXHIBIT 4.7: Data on Per-Capita Income (in Dollars) and Life Expectancy
SOURCE: Leinhardt and Wasserman (1979), from the New York Times (Septem-
ber, 28, 1975, p. E-3). Reproduced with the permission of the New York Times.
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Example 4.4

Usually poorer countries (i.e., those with lower per capita incomes) have
lower life expectancies than richer countries. Exhibit 4.7 gives life expectan-
cies (LIFE) and per capita incomes (INC) in 1974 dollars for 101 countries
in the early 70’s. Exhibit 4.8 shows a plot which is difficult to read. Tak-
ing logarithms of income ‘spreads out’ the low income points and (see
Exhibit 4.9) we discern a pattern that seems to consist of two separate
lines: one for the poorer countries, where LIFE increases rapidly with LINC
(= log(INC)), and another for the richer countries, where the rate of growth
of life expectancy with LINC is much smaller. Therefore, we fitted an equa-
tion of the form (4.8) with §; = 1 if LINC > 7 and §; = 0 otherwise, and
obtained

LIFE = -240 + 9.39LINC — 3.36[6(LINC - 7)]

(4.73) (.859) (2.42) (4.9)

(R% = 752, s = 6.65)

where, as before, the parenthetic quantities are standard errors. The 7 was
found by inspecting Exhibit 4.9. We shall return to this example in future
chapters. ]

4.6 Indicators as Dependent Variables

While it is not desirable to use dichotomous dependent variables in a linear
least squares analysis (typically logit, probit or contingency table analysis
is used for this purpose), if we are willing to aggregate our data, least
squares analysis may still be used. The example below illustrates such a
case. Another case is illustrated in Chapter 9.

Example 4.5

An interesting problem for political scientists is to determine how a partic-
ular group of people might have voted for a particular candidate. Typically
such assessments are made using exit polls. However, with adequate data,
regression procedures might be used to obtain estimates.

Consider the data of Exhibit 4.10 in which the columns Garcia, Martinez
and Yanez give the total votes for each of those candidates. (Note that votes
for the three candidates may not add to the total turnout because of write-
in votes, spoilt ballots, etc.) Let py, be the probability that a Latino casts a
valid vote for (say) Garcia and py the probability that a non-Latino casts
a valid vote for him. If LATV,; and NONLYV, are, respectively, the total
Latino and non-Latino votes cast in each precinct 4, the expected number
of votes for Garcia is

PL LATVZ +pN NONLVz
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Since we have the total vote count for Garcia, pr, and py can be readily
estimated by least squares and we obtain

GARCIA = .37LATV + .64 NONLV
(.043) (.052)

(R? = .979,s = 18.9).

Therefore, we estimate that roughly 37 per cent of the Latinos voted for
Garcia and about 64 per cent of the others voted for him. [ |

Variables such as all those in Exhibit 4.10 will be called counted variables
since they are obtained by counting. We might prefer to use as dependent
variable the proportion of all voters who voted for Garcia. Such a variable
will be called a proportion of counts. Both counted variables and propor-
tions of counts usually require special care, as we shall see in Chapters 6
and 9.
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Pr.| LATV | NONLV | TURNOUT | GARCIA | MARTINEZ | YANEZ
1] 114 78 192 95 59 15
21 143 100 243 120 74 41
3| 105 91 196 120 58 18
4| 176 97 273 138 71 26
5| 169 141 310 143 85 48
6| 190 110 300 158 97 29
7 1 305 306 206 15 11
81 190 132 322 128 125 43
91 120 62 182 79 70 27

10 | 186 224 410 169 158 49

11| 152 85 237 105 81 24

12| 164 89 253 124 60 29

13| 168 64 232 111 89 13

14 75 157 232 143 27 25

15| 177 60 237 98 87 21

16 | 140 121 261 128 92 40

17| 178 115 293 150 66 52

18 | 157 85 242 108 78 31

19 76 124 200 124 24 14

20 | 120 59 179 73 70 11

21 84 65 149 52 65 12

22| 119 92 211 123 55 15

23 | 172 144 316 136 127 30

24 87 59 146 118 21 7

25| 134 59 193 114 55 20

26 | 137 60 197 83 67 39

27 | 167 131 298 147 112 42

EXHIBIT 4.10: Votes from Chicago’s Twenty-Second Ward by Precinct (Pr.)
SOURCE: Ray Flores, The Latino Institute, Chicago.
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Problems

Exercise 4.1: The number of buses y assigned to an urban bus route is
usually based on the total number (z) of passengers carried by all buses
during the rush hour at a point on the route called the peak load point.
Providers of bus service claim that, for a predetermined level (L) of z, a
certain fixed number (1) of buses is assigned as long as ¢ < L, and when
x > L, y is a linear function y = a + bz of z, i.e.,

{;L when o < L
y:

(4.10)
a+br whenz>1L

where y = a + bL. If L is known, write (4.10) in a form so that the other
parameters can be estimated using linear least squares. The function (4.10)
is called a transit supply function (see Sen and Johnson, 1977).

Exercise 4.2: Let 3; and s; be the sample mean and standard deviation
of the first n; of the y;’s in the model (4.1) and let §» and sy be those of
the last ng = n — n; of the y;’s. Show that

by Y2 —

s-e.(b1) \/[nls% + n2s3)[ny? +n§l]/[n—2].

[Hint: The design matrix X corresponding to (4.1) is
1,, O
1p, 1n, /

1 -1

(X’X)“1=< Mo, o™ ) b=(X’X)“1X’y=( o )

-n; - nf(ning) P2 —

Hence

and it follows that

_ nytip, 1/ 0
X(XIX) IXI — ( 1 611 ni n2_11 1/ ) .
n2 +ng

Therefore
ee=y[I-X(X'X)'X'|y
= Y [In, =17 10,10, 1Y1 + Y5[Tn, — 15 ' 10,10, )05
= nlsf + ngsg,
where y' = (¥}, ¥5)]

Exercise 4.3: Consider the model y; = By + 5121 + - - - + BixTix + 62; + €5
where i = 1,...,n and

1 ifi=1
Zj = .
0  otherwise,
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and ¢;’s are independently and identically normally distributed with mean

0 and variance o2.

1. Obtain explicitly the least squares estimate of 6.

2. Obtain a relationship between the residual sum of squares of the
model given above and that of the same model with § = 0.

3. Obtain a test of hypothesis for § = 0 against the alternative § # 0.

Exercise 4.4: An experiment was conducted to examine the effects of
air pollution on interpersonal attraction. Twenty-four subjects were each
placed with a stranger for a 15 minute period in a room which was either
odor free or contaminated with ammonium sulfide. The stranger came from
a culture which was similar or dissimilar to that of the subject. Thus, there
were four possible environments for each subject:

1. Culturally similar stranger, odor-free room;
2. Culturally dissimilar stranger, odor-free room;

3. Culturally similar stranger, room contaminated with ammonium sul-
fide;

4. Culturally dissimilar stranger, room contaminated with ammonium
sulfide.

At the end of the encounter, each subject was asked to assess his degree of
attraction towards the stranger on a Likert scale of 1-10 with 10 indicating
strong attraction. The full data set is given in Srivastava and Carter (1983).
A portion of the data set is reproduced below with the permission of the
authors (the numbers are values of the Likert Index).

Culturally Culturally
Similar Stranger Dissimilar Stranger
Odor-free Room 9,10,4,7,8,9 2,2,1,6, 2,2
Contaminated Room 6,9,7,8,7,3 1,3,3,2,2,3

Set up a regression model to estimate the effects of cultural similarity
and room odor on interpersonal attraction. Conduct appropriate tests and
report your findings.

Exercise 4.5: Using Exhibit 4.10, estimate the support for Yanez and
Martinez among Latinos and others.

Exercise 4.6: Data on the cost of repairing starters, ring gears or both
starters and ring gears are presented in Exhibit 4.11. Define the variables

1 if starter repaired
-
o 0 otherwise,
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Part Repair Cost in $’s

Starter 37 127 118 75 66 59 499 420 526 141 126 142 137
471 172 149 315 506 575 81 67 36 130 110 126 189
27 88 67 13 432 148 94 432 108 648 81 108 150 79
420 34 236 27 67 42 161 506 468 97 189 551 79 40
420 220 126 261 192 202 101 180 58 61 72 49 189 73
236 306 64

Ring gear | 425 474 276 229 256 431 252 1069 190 765 621 310
604 540 81 641 432 252 431 310 256 236 276 609 472
603 431 304 414 241 741

Both 499 420 526 229 471 315 506 575 67 431 190 765 621
432 540 432 648 81 420 310 236 276 506 468 609 472
603 431 551 304 414

EXHIBIT 4.11: Data on Cost of Repairing Starters, Ring Gears or Both Starters
and Ring Gears in Diesel Engines

SOURCE: M.R. Khavanin, Department of Mechanical Engineering, University of
Illinois at Chicago.

and
1 if ring gear repaired
Ti2 =

0 otherwise.

Obtain a regression model, with no intercept term, expressing cost in terms
of z;1, T;2 and the product z;;z;o. Give a physical interpretation of the
parameter estimates.

Exercise 4.7: Using the data set in Exhibit 1.20, construct a single model
for infant mortality rate (IMR), using suitably defined indicator variables
for rural-urban and male-female distinctions.

Exercise 4.8: Exhibit 4.12 gives data on numbers of patient contacts
for April 19-25, 1987, on screening (SC), diet class (DC), meal rounds
(MR) and team rounds (TR) for 11 professional dietitians and 13 dietitian
interns. The sum of the times taken for all of these activities is also given.
Use a suitable model to estimate the average time taken for each activity
by professional dietitians. Make a similar estimate for interns. Test if these
average times are the same for the two groups.

Note that dietitians perform several other activities which are not given
in the tables. The data were made available to one of the authors by a
student.

Exercise 4.9: Exhibit 4.13 presents data on the sex, the attending physi-
cian (MD), severity of illness (Svty), total hospital charges (Chrg) and age
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Professional Dietitians Dietitian Interns
Time SC DC MR TR| Time SC DC MR TR
219 3 3 77 29| 316 3 4 163 30
264 3 3 95 27| 251 2 1 141 16
226 6 2 68 24| 216 4 2 135 16
242 6 5 8 25 303 13 3 135 16
220 7 1 70 19| 280 4 3 138 18
2290 3 1 66 30| 285 6 2 141 22
253 7 2 81 24| 268 2 4 139 25
233 3 2 8 27| 269 2 3 152 18
260 4 6 8 25| 307 5 3 143 16
235 8 2 72 211|204 5 0 135 17
247 8 0 8 26| 283 4 4 151 16
233 3 2 126 25
266 4 1 148 20

EXHIBIT 4.12: Time Taken by Professional Dietitians and Interns for Four Pa-
tient Contact Activities

for 49 patients, all of whom had an identical diagnosis. Estimate a model
expressing the logarithm of charges against age and the other variables
expressed as suitable indicator variables. Test the hypothesis that the at-
tending physician has no effect on the logarithm of hospital charges against
the alternative that this factor has an effect.
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EXHIBIT 4.13: Data on Hospital Charges
SOURCE: Dr. Joseph Feinglass, Northwestern Memorial Hospital, Chicago.
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CHAPTER 5

The Normality Assumption

5.1 Introduction

In much of the work presented in the last four chapters we have assumed
that the Gauss-Markov conditions were true. We have also sometimes made
the additional assumption that the errors and, therefore, the dependent
variables were normally distributed. In practice, these assumptions do not
always hold; in fact, quite often, at least one of them will be violated. In
this and the next four chapters we shall examine how to check whether
each of the assumptions actually holds and what, if anything, we can do if
it does not. This chapter is devoted to the normality assumption.

In Section 5.2 we present three methods to check whether the errors ¢; are
approximately normal. One of the methods is graphical and the other two
are formal tests. Graphical methods give a greater ‘feel’ for the data and, if
the problem lies with a few of the observations, such methods help identify
them. Formal tests require less ‘judgment’ on the part of the analyst, but
even they cannot be considered totally objective in this context.

When we accept a hypothesis, all we can say is that there was not enough
evidence to reject it; we cannot say that the €’s are, in fact, normal. But
we can possibly say that they are close enough to being normal so that our
inferences under that assumption are valid. This introduces a subjective
element. In general, sample sizes need to be fairly large for us to make that
claim. On the other hand, with large enough sample sizes, normality could
get rejected even when the distribution is nearly normal. Then we need to
be somewhat loose in our interpretations. Similar discussions also apply to
like tests in the following chapters.

The methods we use to check for normality assume that no Gauss-Markov
violations exist. In fact, in Chapter 9 (see Section 9.4.3, p. 204), we use
methods, which were originally developed to change non-normal data to
nearly normal data, in order to achieve compliance with Gauss-Markov con-
ditions. In the next few chapters which are devoted to the Gauss-Markov
conditions, when we check for violations of one of these conditions, we as-
sume that the others hold. Thus outputs from the methods given in this
and the following chapters need to be considered simultaneously rather
than sequentially. Regression is an art and its practice is fraught with mis-
diagnoses and dead ends. Fortunately, with experience, diagnoses get better
and the number of dead ends declines.

In the experience of the authors, failure of G-M conditions affects tests for
normality more than failure of normality affects the diagnoses of violations
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of G-M conditions. In that sense, this chapter is inappropriately located.

Notice that in the last two chapters it was really the normality of b;’s
rather than the y;’s that was required. Since b;’s are linear combinations
of y;’s, under certain conditions, we are able to invoke the central limit
theorem to show that b;’s are approximately normal even when y;’s are
not. These conditions are presented in Section 5.3. If even the b;’s are not
normal, we can get an approximate idea of their distribution and use it to
make inferences. A method of doing this, called bootstrapping, is discussed
in Section 5.4. Another method, called the transform-both-sides method
(Carroll and Ruppert, 1988, Ch. 4), which applies Box-Cox transformations
(see Section 9.4.3, p. 204) to both sides of a regression model, is not treated
in this book.

5.2 Checking for Normality

For all methods presented below, the underlying assumptions are that the
errors are identically distributed and that if the vector of errors € is non-
normal, the vector of residuals e = Me = (I — H)e will be too (by (2.3)
and (2.13)).
If H= (hl, . .,hn)l and H = (hi]'), then
€; — € — h'-e. (5.1)

1
Since H is an idempotent matrix, HH' = H, and h.h; = h;;. Hence,
var (hi€) = hih;0* = h;;0° — 0 as h;; — 0. (5.2)

Therefore, from Chebyshev’s inequality (p. 284), the second term of (5.1)
goes to zero in probability. Thus, when h;;’s are small, e;’s may be used in
lieu of ¢;’s. However, as we shall see in the next section, if h;;’s are small,
we might not need the normality of €;’s.

5.2.1 PROBABILITY PLOTS

Let Z(1) < ... < Z(y) be the ordered values of n independent and identically
distributed N(0,1) random variables Zi, ..., Z,; here due regard is given to
the sign of an observation. Then the mean value of Z(;) can be approximated
by

E(Z) ~vi = ®7(i — 3/8)/(n + 1/4)] (5.3)

(see, e.g., Blom, 1958), where ®~! is the inverse function (®(z) = a = z =
®~1(a)) of the standard normal cdf
T 1,

®(z) = (27r)—%/ e 2

hade @l

dt.
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If u) < ... < u(n) are ordered values of n independent and identically
distributed (i.e., iid) N(x, 0?) random variables, then E([u(;) — p]/0) ~ 7.
Consequently,

E[u(z)] R+ 0,

and a plot of u(;)’s against «; would be taken to be approximately a straight
line. We shall call such a plot a rankit plot, although it would be more pre-
cise to call it an approximate rankit plot, given the approximation in (5.3).

In order to check if the residuals are approximately normally distributed,
we would plot e(;y against v; = ®![(¢ — 3/8)/(n + 1/4)] where e;)’s are
the ordered values of e;. Alternatively, and preferably, ordered values of the

standardized residuals e
1

Sy 1-— h,‘i ’
i.e., the residuals divided by their standard errors (see (2.27)), could be
plotted against -y;’s. Rankit plots of the Studentized residuals®, to be dis-
cussed in Section 8.3, p. 156, could also be used. If the plot is approximately
a straight line, the residuals would be taken to be approximately normally
distributed, and, by the assumption discussed above, we would also con-
sider the €’s to be approximately normal. (These plots have been discussed
in detail in Madansky, 1988, Ch. 1)

Rankit plots are available from several statistical packages, although,
frequently, they are not available from the regression portion of the pack-
age (e.g., in SAS, 1985a, it is an option within PROC UNIVARIATE).
Programs can be readily written to draw rankit plots and this is often
preferable when plots provided by a package are too small and cluttered to
be easily read. In the Linear Least Squares Curve Fitting Program that is
a companion to Daniel and Wood (1980) such plots are routinely given.

e;(®) = (5.4)

Example 5.1

Exhibit 5.1 shows the rankit plot of the standardized residuals from a re-
gression of the log of charges against sex, age, severity of illness and attend-
ing physician, this last factor being expressed as two indicator variables.
The data are those given in Exhibit 4.13, p. 99. The plot is fairly straight
but not entirely so, indicating that the residuals are close to normal but
are probably not normal.

‘Reading’ such plots requires some experience. Daniel and Wood (1980,
see especially pp. 33-43) have given a large number of rankit plots of ran-
dom normal data which the reader might wish to examine in order to
develop a feel for them. ]

IThere is some confusion in the literature about names. What we have called stan-
dardized residuals is sometimes called Studentized; then what we have called Studentized
residuals (and also RSTUDENT) is called R-STUDENT or RSTUDENT.
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EXHIBIT 5.1: Rankit Plot of Standardized Residuals from Medical Charge Data

Example 5.2 (Continuation of Example 4.4, Page 92)
Exhibit 5.2 shows a rankit plot for the standardized residuals from the
model (4.9). The plot does not show a straight line. We then removed
the cases corresponding to the four smallest and the two largest residuals,
reran the regression and constructed the plot shown in Exhibit 5.3. This
one is much straighter, indicating that much of the apparent non-normality
indicated in Exhibit 5.2 was due to the presence of outliers.

However, given the very large number of data points, Exhibit 5.3 still
indicates the possibility of slight non-normality. n

While the computations for the rankit plot can be carried out on a com-
puter, they can also be done by hand quite easily on a special graph paper
called normal probability paper. On such paper the axes have been scaled
in such a way that plotting e(;) against 100 [i — 3/8]/(n + 1/4)] or some
approximation of it (100i/n, 100(¢ — £)/n and 100i/(n + 1) are commonly
used) results in approximately a straight line if e;’s are normal. Although,
properly, such plots are called normal plots, the expression normal plots is
sometimes used for what we have called rankit plots.
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EXHIBIT 5.2: Rankit Plot of Standardized Residuals from Life Expectancy Data
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EXHIBIT 5.3: Rankit Plot of Standardized Residuals from Life Expectancy Data
after Deletion of Outliers
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5.2.2 TESTS FOR NORMALITY

Among several tests for normality, the Shapiro-Wilk (1965) test has become
somewhat standard for small sample sizes (e.g., < 50) and is given in many
statistical packages. The test can be described as follows.

Let uq,...,u, be independently and identically distributed and assume
that u(1) < ... < () are their ordered values. Set s* = (n — 1)~ > (u; —
#)2, where @ = n~! ) u;. Then the Shapiro-Wilk test statistic is given by

W= Zaiu(i)/s, (5.5)

where aq, ..., a, depend on the expected values of the order statistics from
a standard normal distribution and are tabulated in Shapiro and Wilk
(1965), Madansky (1988) and elsewhere. The null hypothesis of normality
is rejected if W < W,,, where W, is a tabulated critical point. Tables of
W, are also given in Shapiro and Wilk (1965) and in Madansky (1988),
although computer packages which provide this statistic provide the a;’s
as well as the p-values. The test statistic W takes values between 0 and 1,
with values close to 1 indicating near-normality. The residuals e; replace
the u;’s in usual applications of the Shapiro-Wilk test to regression. An
alternative to the Shapiro-Wilk statistic is the square of the correlation
coefficient between wu;)’s and ;’s (see Shapiro and Francia, 1972), which
was originally suggested as an approximation to the Shapiro-Wilk statistic.

Another alternative to the Shapiro-Wilk test is Kolmogorov’s test, the
latter being used most frequently when n is large, since then (5.5) is dif-
ficult to compute. Kolmogorov’s test is actually quite general and may be
used to test if a set of observations u, ..., u, come from any specified dis-
tribution function Fg(z). Let F(z)be the empirical distribution of the u;’s,
i.e., F(z) = ug/n, where u, is the number of u;’s that are not greater than
z. Then Kolmogorov’s statistic is

D =sup |F(z) — Fu(z)|, (5.6)

and the hypothesis that the u;’s have the distribution given by Fpy is re-
jected for large values of D. In our case, of course, Fy(z) is the distribution
function of the normal distribution. The mean is the same as that of the
residuals (which, of course, is zero if there is a constant term) and the vari-
ance is s2. This test is also widely available in packages which also provide
corresponding p-values.

These tests are rather fully discussed in Madansky (1988, Ch. 1).

Example 5.3 (Continuation of Example 5.1, Page 102)

The value of W for the standardized residuals from the hospital charge data
is .926 and the probability of getting a smaller value under the hypothesis
of normality is less than .01. Therefore, it would appear that the residuals
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are not normal. However, they are fairly close to being normal since W is
so near 1. ]

Example 5.4 (Continuation of Example 5.2, Page 103)

The value of D corresponding to Exhibit 5.2 is .105, which is significant at
the 1 per cent level. For Exhibit 5.3 it is .077, which is not significant at a
.15 level. [ ]

5.3 Invoking Large Sample Theory

As mentioned in Section 5.1, if the number of cases is large, we might
be able to test hypotheses or obtain confidence regions using the methods
discussed in Chapter 3, even if y;’s are not normal. The exact condition is
given in the following theorem, due to Srivastava (1971), which is proved
in Section 5.5.

Theorem 5.1 Let b be the least squares estimate of B in the usual multiple
regression model and assume that Gauss-Markov conditions hold. If, in
addition, the observations are independent and

max hii — 0, (57)

1<i<n
where hi; are the diagonal elements of the matriz X (X'X)™1X’, then
sT2(Ch-CBY[C(X'X)7C'1H(Cb-CB) — x2 asn — 00,  (5.8)
where C is an r x (k + 1) matriz of rank r < (k+1).

However, we suggest using
—(Cb~ CBYIC(X'X) " CT (Cb~ CB) ~ Frnir (59)

in place of (5.8) since it appears to yield a better approximation. Notice that
the statistic given in (5.9) is the one on which all our tests and confidence
regions are based (see Chapter 3). Thus, all these procedures may be used
without change if the h;;’s are small.

By (A.9) of Appendix A (Page 278),

> hi=trH =k +1 (5.10)

i=1

if X is of dimension (k + 1) X n. Therefore, max h;; is small if n/k is large
and a few h;;’s are not much larger than the rest of them. In Section 8.2,
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we shall see that y;’s corresponding to relatively large values of h;; tend
to have larger weights in the computation of b;’s. Therefore, the condition
(5.7) is eminently reasonable in the context of the central limit theorem
that is used to prove Theorem 5.1. Because h;;’s often identify unduly
influential points, they are frequently available from packages. The matrix
H is sometimes called the hat matrix and h;; the leverage.

It is difficult to specify a number such that if max h;; falls below it we can
safely carry out our tests. Apart from the fact that such a number would
depend on how critical we wish to be, it would also depend on how non-
normal the distribution of ¢;’s is. However, as a very rough rule of thumb,
max h;; < .2 may be taken as small enough for most applications if the
original distribution of €’s is not too ‘horrible’ (e.g., excessively long-tailed,
or J-shaped).

Example 5.5 (Continuation of Example 5.3, Page 105)

For the regression model described in Example 5.1, max h;; = .266. Since,
as we have already seen, the residuals, and therefore the errors, are near
normal already, we feel that assuming normality would not lead to conclu-
sions which are too far wrong. [

Example 5.6 (Continuation of Example 5.4, Page 106)

Before deleting the outliers, the independent variables in the model (4.9)
yielded max h;; = .0985. In our judgment this is small enough that we could
have carried out the usual F tests had normality been the only concern we
had. After deleting the outliers, we get max h;; = .10. [ |

5.4 *Bootstrapping

When h;;’s are small and the sample size large, (5.8) and (5.9) would give
reasonably good approximations. However, when the sample size is not too
large (and h;;’s are small), an improvement in the above approximation
can be made by a method called bootstrapping. This method, which is due
to Efron (1979), is based on resampling from the observed data which are
considered fixed. In our case, since ¢;’s are unknown, we resample from the
e;’s, which are considered fixed or population values. The exact steps, for
cases when the model contains an intercept term, are described below. A
theoretical justification is given in Freedman (1981).

Step (i) Draw a random sample of size n with replacement fromey, ..., e,.
. * * * * * 13
Denote its members as ef,;, ..., €(, andlet e* = (e(q)l, R e(q)n) .

Step (ii) Based on this sample calculate
() X(X'X) I C([CX' X)) C(X'X) T X el /sl (5:11)
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where
n

*2 (TI, - 1)_1 * —x \2
Sy =11 D€l — €lp)*
i=1
% __ —1 n *
and €, =n"" 3 e,
Step (iii) Repeat steps (i) and (ii) Q times, i.e., for ¢ = 1,2,...,Q. In
most studies, the value of @ is set between 200 and 1000. From these

iterations obtain an empirical distribution of (5.11). Obtain the nec-
essary significance points from this empirical distribution.

For testing the hypothesis H : C3 — d = o, calculate the statistic
(Cb—d)[C(X'X)~'C')7(Cb — d)/s*

and use the significance points obtained in Step (iii).
If there is no intercept term Jy in the regression model, Y e; may not be
zero. Hence, we center these e;’s and define

é;=e; —é¢€, foralli=1,...,n.

Then steps (i) to (iii) are carried out with €i,..., €&, replacing ey, ..., e,.

5.5 *Asymptotic Theory

To prove Theorem 5.1, we need the central limit theorem. The following
version, proved in Gnedenko and Kolmogorov (1954), is convenient.

Theorem 5.2 Let Z,,...,Z, be independently and identically distributed
with mean zero and variance o2. Fori = 1,...,n let {a,,} be a sequence
of constants such that

n

2
Jpax, |an,| — 0 and Eam — 1, as n — oo.

i=
Then, as n — o0, > i an,Z; — N(0,0%), t.e., Y. | an,Z; converges
to a random variable which has a normal distribution with mean 0 and

variance o2.

PRrROOF OoF THEOREM 5.1: For the sake of convenience in presentation, we
set C = I. The proof for the general case is similar.
We first derive the asymptotic distribution of

o (b - B)(X'X)(b-B)
= o ?[(X'X)" ' X'y - A (X' X][(X' X)Xy - B
= o2 [(X'X)TH X'y - X'XB) X' X][(X'X) " (X'y -~ X' X))
=0 %X (X'X) ' X'e =072’ He.
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Let L = (£i;n) = (£9,... (M) = (X'X)"7X’. Then H = L'L. and
LL = Iy,

Consider the linear combination a’Le, where a’a = 1. Let bsf ) = a’Kff).
Then a'Le =Y}, be; and

6P| = |a'?| < (a'a)? (69" £D)3 = (£ ¢D)3 S0

when maxi<i<n hii = MaXi<i<n Kff)'lg) — 0. Moreover, Zle(bsf))z =
a'LL'a = 1. Therefore, it follows from Theorem 5.2 that a’Le — N(0,02).
Since a’Le — N(0, 0?) for every vector a, it follows that (see Appendix B,
just above Lemma B.1, p. 289) Le — N(o0,02I). Hence, if maxi<i<n hi; —
0, as n — oo, then as n — oo

a72(b - B3)(X'X)(b-B) = Xii1-
Equivalently, since s> — ¢ in probability,

s7*(b - B)'(X'X)(b - B) > Xiy1-
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Problems
Exercise 5.1: Consider the regression model
Ye=0Bo+Pit+e fort=1,...,n
(This model is called a linear trend model.) The design matrix X for this

model is given by
(1 1 ... 1
X_<1 2 ... n)

Show that n™1(X’'X) — oo (i.e., at least one element of X’X — 00) as
n — oo but that h;; — 0 as n — oo.

Exercise 5.2: Would it be appropriate, as far as normality is concerned,
to use the F test given in Chapter 3 to test hypotheses about B in the
problem considered in Example 4.3, p. 88.

Exercise 5.3: Examine the residuals and h;;’s from the model of Exer-
cise 4.4, p. 96. Discuss the appropriateness of the conclusions you reached
when you did Exercise 4.4.

Exercise 5.4: From the point of view of normality, comment on each of
the tests you ran in Exercise 3.13, p. 77.

Exercise 5.5: For the two regressions in Exercise 3.14, p. 79, can one
assume normality of the errors?

Exercise 5.6: Test for normality of observations in the data set used for
Exercise 2.15, p. 53.

Exercise 5.7: *Using a bootstrap sample size of 200, obtain the 90 per
cent point of the distribution of the test statistic in Exercise 1.11, p. 24
(after removing the outlier). Compare it with the one you obtained using
a t distribution.

Exercise 5.8: *Using bootstrapping, obtain the 90 per cent points of the
distributions of the parameter estimates you obtained in part 1 of Exer-
cise 3.14, p. 79. Use a sample size of 500.



CHAPTER 6

Unequal Variances

6.1 Introduction

One of the great values of the Gauss-Markov theorem is that it provides
conditions which, if they hold, assure us that least squares is a good pro-
cedure. These conditions can be checked and if we find that one or more
of them are seriously violated, we can take action that will cause at least
approximate compliance. This and the next few chapters will deal with
various ways in which these G-M conditions can be violated and what we
would then need to do.

This chapter is devoted to the second G-M condition, which states that
var (€;) = var (y;) is a constant, o2. Violation of this condition is often called
heteroscedasticity, while compliance is referred to as homoscedasticity. Re-
call that heteroscedasticity does not bias the least squares estimates of 3;’s,
but it causes variances of parameter estimates to be large and can affect
R?, s? and tests substantially. The test of the general linear hypothesis
(Chapter 2) is affected also because under heteroscedasticity, s2(X’'X)~!
need no longer be an unbiased estimate of the covariance matrix of 3.

6.2 Detecting Heteroscedasticity

Very frequently, we can determine if heteroscedasticity is likely to be present
from an understanding of the underlying situation and also (as we shall
see in later sections) determine what corrective measures might be taken.
For example, if the dependent variable is a counted variable, it is likely
to have approximately a Poisson distribution (as in the case of telephone
mains in Example 1.2, p. 10); then the variance o2 of the ith observation is
approximately E(y;). If y; = m;/n; is a proportion of counts m; and n;, its
variance would probably be close to E(y;}{(1 — E(y;))/n;. When y; is the
mean Y ', 2,/n; of homoscedastic variables z1,.. ., zn,, then 02 o n; '

Even where the distribution cannot be guessed, some idea of the variance
can be. Consider house prices for an entire metropolitan area. It would ap-
pear less likely that a house worth $50,000 would sell for $100,000 than that
a million dollar one would sell for $1,050,000. To continue this intuition-
based discussion, it appears to be more likely that the less expensive house
would sell for $60,000 than the more expensive one for $1.2 million. Thus,
the standard deviation of the selling price is not constant, nor does it vary
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in proportion to the intrinsic value. Rather, it is something in between.

At this stage the reader might wish to recall some of the random variables
he/she might have encountered and see if their variances (or quantities
proportional to them) can be guessed (the reader might be surprised at
how often this is possible!).

Another way of checking to see if heteroscedasticity is present is through
plots. If 02 = var (e;) varies with E(y;), a plot of the residuals (which are
estimates of ¢;’s) against the §;’s (which are estimates of E(y;)’s) might
show the residuals e; to be more spread out for some values of §; than
for others. Standardized or Studentized residuals (see Section 8.3, p. 156)
could also be used and might even be preferable (see Cook and Weisberg,
1982).

d. sp.{d. sp.|d. sp.| d. sp.
4 4|14 10|29 18| 57 27
2 5|17 10|34 18| 78 27
4 5|11 1247 18| 64 28
8 5|19 12|30 19| 84 28
8 5|21 12(48 20| 54 29
7 7|15 13139 21| 68 29
7 7|18 13|42 21| 60 30
8 8|27 13|55 21| 67 30
9 8|14 14]56 24|101 30

11 8|16 14|33 25| 77 31

13 8|16 15|48 25| 85 35
5 9114 16|56 25|107 35
5 9119 16|59 25| 79 36

13 934 16|39 26138 39
8 10|22 17|41 26|110 40

29 17 134 40

EXHIBIT 6.1: Data on Automobile Speed (sp.) and Distance Covered to Come
to a Standstill After Braking (d.)

SOURCE: Ezekiel and Fox (1959). Reproduced, with permission, from Ezekiel,
M. and F.A. Fox, Methods of Correlation and Regression Analysis. © 1959 John
Wiley & Sons, Inc.

Example 6.1
Exhibit 6.2 illustrates a plot of ¢;’s against g; after fitting an ordinary least
squares model

distance = 3; speed + (2 speed? (6.1)

to the data in Exhibit 6.1. The plot here would seem to indicate the ex-
istence of heteroscedasticity. (By contrast, Exhibit 6.6 seems to indicate
virtually no heteroscedasticity.)
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If there are enough data points, plots like Exhibit 6.2 can also give us
an idea of how the variance of the y;’s varies with the E(y;)’s. Divide
the range of the ¢;’s into three portions, making a reasonable compromise
between getting portions of roughly equal widths and getting roughly equal
numbers of points in each portion. In the case of Exhibit 6.2, suitable break
points might be 25 and 72. Let the medians of the §;’s within each such
partition be y(1), %) and y® and let the corresponding inter-quartile range
of the e;’s be QM), Q@ and Q®. A plot of the Q*)’s against the y*)’s
can help identify a relationship between var (y;} and E(y;). In the case of
Exhibit 6.2 such a plot is approximately a straight line, suggesting that
the standard deviations of y;’s are roughly proportional to E(y;)’s and,
therefore, var (y;) o< [E(y:)]%2. The reader is requested to carry out these

steps in Exercise 6.9. »
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EXHIBIT 6.2: Plot of Residuals against Predicted for Speed-Braking Distance
Data

Sometimes o; varies with one or more z;;’s. For example, if we were
regressing total hospital charges against severity of illness, the attending
physician and the sex and age of the patient (as in Exercise 4.9, p. 97), it is
not unlikely that the variance of charges might vary with one or more of the
independent variables. Some physicians might order essentially the same
set of preliminary laboratory and other medical tests for all patients, while
others might tailor the order to the individual case. As people get older
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they become more susceptible to a wider range of diseases. Consequently,
whether certain medical tests are more likely to be ordered for older patients
and whether they are ordered or not affect variability of charges. However,
it should be emphasized that it is the variation in the variance of the
dependent variable that is a violation of the second G-M condition.

It is also possible that the variance of the y;’s could vary with changes
in variables not included in the model. For example, it is known that some
respondents inflate their income when they are attracted to the interviewer.
Then the variance of income would vary with the interviewer. Similarly,
different laboratory equipment, different machines, etc., can affect variance.

In such cases, it may be useful to examine plots of residuals against
each independent variable and each variable that we expect affects the
variance. Many careful analysts routinely obtain plots of e; against all the
z;;'s and against ;. However, none of these plots are entirely safe in that
heteroscedasticity can be present and not be apparent from them.

A number of other plots have also been suggested in the literature, in-
cluding plotting the absolute values, squares or logarithms of the absolute
values of residuals or the Standardized residuals against predicted values,
other variables and even (1 — h;;)s. One advantage cited is that some of
these plots make identification of the nature of the heteroscedasticity (e.g.,
the relationship between var (y;) and E(y;)) easier. For example, since the
log of the absolute values of residuals may be considered to be a proxy for
the log of standard deviations of y;’s, and log of the predicteds that for
the log of the expectation of the y;’s, the slope of a line fitting their plot
would yield o when heteroscedasticity is described by var (y;) o< [E(y:)]%®.
For further discussion of these and other methods, see Carroll and Ruppert
(1988, p.29 et seq.) and Cook and Weisberg (1982).

6.2.1 FoORMAL TESTS

A number of formal tests have also been proposed. A large number of
them essentially test whether the variances o2 of individual ¢;’s are related
to some other variable(s), e.g., the independent variables or functions of
them. A fair number of these approaches attempt to relate |e;|’s, €2’s or
the rank of |e;|’s to other variables. A review of several procedures is given
in Judge et al. (1985, see especially pp. 446-454) and Madansky (1988, p.
75 et seq.). One such test consists of testing for significance the correlation
between the ranks of the absolute values of the residuals with the ranks of
9;’s or those of individual independent variable values (such a correlation
between ranks is called the Spearman correlation).

Another such test is that given by White (1980). It may be shown
that under homoscedasticity, if each h;; — 0, S1 = n71sX’X and S, =
n~1Y " | e?x;x) are asymptotically equivalent, while the presence of het-
eroscedasticity can cause them to be quite different. Therefore, one can
base a test on the comparison of S; and S;. Such a test is available, for
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example, in SAS. A relatively simple test statistic based on this principle
(and also, incidentally, on the principle mentioned in the last paragraph)
is nR?h), where R?h) is the usual R? from a regression of the e?’s against
the independent variables z;;’s and all their square and product terms (in-
cluding a constant term even if one is not present in the original model and
with any redundant variables eliminated). Under the hypothesis of no het-
eroscedasticity and provided the fourth moment of all the observations are
the same, nR%h) has asymptotically a chi-square distribution with degrees
of freedom equal to one less than the number of independent variables in
the above mentioned regression.

Like many other tests for violations of specific Gauss-Markov conditions,
White’s test is also sensitive to other violations. Therefore, one needs to
examine plots or in other ways assure oneself that it is indeed heteroscedas-
ticity that is causing nR?h) to be high.

It might be noted in passing that S2, which is provided by SAS, can
be used to estimate the covariance matrix of b when heteroscedasticity is
present — see White (1980) and SAS (1985b).

6.3 Variance Stabilizing Transformations

When heteroscedasticity occurs we can take one of two types of actions to
make the o;’s approximately equal. One consists of transforming y; appro-
priately when the variance of y; depends on its mean; the other involves
weighting the regression. We consider the former in this section; the latter
will be examined in the next section.

For any function f(y) of y with continuous first derivative f'(y) and finite
second derivative f”(y), we know from elementary calculus that

fi) = Fmi) = (yi —m) f'(ms) + %(yi - m:)?f"(0), (6.2)

where 8 lies between y; and 7;, and n; = E(y;). Thus, when (y; — n;)? is
small, we have

Flyi) = f(mi) = ' (m)(y: — mi)- (6.3)
Squaring and taking expectations of both sides of (6.3), we get approxi-
mately,

var (f(yi)) = (f'(m:))*0? (), (6.4)
where o2(n;) is the variance of the random variable y; with mean 7.
Thus, in order to find a suitable transformation f of y; which would make
var (f(y;)) approximately a constant, we need to solve the equation

() = c/ai(m), (6.5)

where c is any constant. Such a transformation f is called a variance sta-
bilizing transformation.
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As an example, consider the case where y; is a counted variable. Then
a2(n;) o n; and we need an f such that

f'm) = c/ni”. (6.6)

Clearly, if we choose ¢ = 1/2, then f(n;) = nil /% solves (6.6); and therefore
. . 1/2 . . e .

in this case y;’“ is a variance stabilizing transformation. Suppose now we
have y; = m;/n; which is a proportion of counts and hence has a binomial

distribution. Then var (y;) = n; 'n;(1 — n;), where n; = E(y;). Thus, we

need to solve ‘
Fm) = eny?? (0% (1 = m2)'72). (6.7)
Integrating both sides with respect to n;, we get

Y= [ ) = en/? dni — 9en /2 sin=1 ./
f(Th)—/f(Th)dTh cn; /1/2(1 2 2cn;’“sin” "/

yielding nll /2 gin—1 /¥ as an appropriate transformation. As another ex-
ample, if o; = 7;, then (6.5) yields f(n;) = log(n;).

The Box-Cox transformations, which will be described in Section 9.4.3,
p. 204, are often useful for alleviating heteroscedasticity when the distri-
bution of the dependent variable is not known.

Example 6.2 (Continuation of Example 1.1, Page 2)
In Example 1.1 we took the square root of the dependent variable. That
was an attempt at a variance stabilizing transformation, since we expected
that o; and n; were related although it was not immediately obvious what
the relationship was. Exhibit 6.3 shows a plot of e;’s against y;’s when such
a transformation was not made. The right hand mass of points is much
more spread out (in terms of size of residuals) than the mass on the left.
Exhibit 6.4, which is the same as Exhibit 1.5, shows the plot corresponding
to the square root transformation. Now the two masses have more nearly
equal spreads. Therefore, Exhibit 6.3 illustrates greater heteroscedasticity
than does Exhibit 6.4. Exhibit 6.5 gives a similar plot, when log (speed)
is the dependent variable. Now we seem to have slightly overdone it. The
appropriate choice would appear to be between the square root transfor-
mation and the log transformation, or perhaps something in between.
Note, however, that the comparisons made above are not entirely fair,
since we are changing more than just the variance of the y;’s. As men-
tioned below, this is one reason why variance stabilizing transformations
are sometimes not very useful. [ |

While variance stabilizing transformations are sometimes very useful —
particularly in simple regression — quite often they are not. As an example,
consider house prices again. Since they are usually based on lot prices plus
improvements, one would expect that y; is a linear combination of at least
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EXHIBIT 6.3: Residual vs. Predicted Plot for the Regression of Speed Against
Density and Density?
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EXHIBIT 6.4: Residual vs. Predicted Plot for the Regression of Square Root of
Speed Against Density and Density?
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EXHIBIT 6.5: Residual vs. Predicted Plot for the Regression of Logarithm of
Speed Against Density and Density?

some of the z;;'s. This simple relationship would be lost if we replaced y;
by, say, \/¥;. In other cases, a transformation of y which is not variance
stabilizing may be desirable for other reasons (see Chapter 9). In some
situations we may expect that o; is a function of one of the independent
variables and it is this relationship we wish to exploit. Fortunately, in such
cases, homoscedasticity may be achieved in another way, as we shall see in
the next section.

6.4 Weighting

Suppose var (¢;) = o2 = c?0? where ¢? are known constants. Then con-

stancy of variance can also be achieved by dividing both sides of each of
the equations of the regression model,

¥ =Bo+Bizin + -+ BrTik +€, i=1,...,n,
by ¢;, i.e., by considering
y,-/ci:,Bo/ci+---+ﬂkwik/ci+ei/ci, i=1,...,n. (68)

Model (6.8) is clearly homoscedastic. Each w; = (¢;)™2 is called a weight,
the nomenclature coming from the fact that now we are minimizing a
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weighted sum of squares,
sz‘(yz‘ — Bo — Brza -+ — Brzar)’. (6.9)

Obviously, when the o;’s (or a quantity proportional to them) are known,
weights are not difficult to compute.

The estimate of 3 obtained from the model (6.8), i.e., by minimizing
(6.9), is called a weighted least squares (WLS) estimate of 3 and will be
denoted by by s. When ¢; = 1, i.e., when least squares is not ‘weighted’, we
call it ordinary least squares (OLS) — which is what we have been doing
until this point in the book. Nowadays, WLS estimates can be obtained
from just about all statistical packages.

Example 6.3
Suppose for each value x; of the independent variables, w; observations y;e,
are taken. Assume that the model is y;p, = @8 + €, where £, = 1,...,w;,
i =1,...,n and €;,’s meet the Gauss-Markov conditions. In particular, let
var (e;0,) = 02. Write §; = > t.—1 Yie,/w;. Suppose that only these averages
have been recorded, i.e., the individual observations y;¢, are not available.
Then, since E[g;] = x3, one might be tempted to use OLS in order to
obtain an estimate of 3, i.e., to implicitly minimize 3. ,(g; — =;3)°. But

var (g;) = 2 E var (yie,) 2 E var (e;0,) = 02 /w;.

;=1 ;=1

Therefore, this approach would violate Gauss-Markov conditions and could
lead to inferior estimates. Intuitively speaking also, the approach violates
the principle of ‘one observation — one vote.’

Obviously, it would be preferable to minimize Y7 | >3, (yie, — ©;0)%.
But since 3, [(yie, — %:)] = 0, this equals

SN @i -G+ 5 -2 =30 (e, - 50 + (@ — @)
i=1¢;=1 i=1£;=1
ZZ Zz(yw - 4)? +sz v — x8)?
i=1 £;=1

Since the first term in the last expression does not include 8, minimizing
it is equivalent to minimizing

> wilg - xi8)°.
i=1

Since var (3;) = 0%/w;, we see from (6.9) that this yields the appropriate
WLS estimate.
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It should be pointed out that while the OLS estimate of 3 using all the
observations is the same as the WLS estimate using the means j;’s, the
estimates of the error variances from the two models could be different. If
all the observations were used in an OLS model, then an unbiased estimate
of 0% would be

n Ln ow
(Z w; —k - 1) D e —9:)° + B —idbwrs)’,  (6.10)

i=1¢£;=1

when 3 is a (k + 1)-vector. On the other hand, if the averages were used in
a WLS procedure, an unbiased estimator of the error variance would be
(n — k- 1)—1 Zwi(gji - wngLg)z,
i=1

as we shall see shortly. [ ]

In order to obtain expressions for various estimates, let us now describe
weighting in matrix notation. Let {2 be a diagonal matrix with diagonal
elements c2,...,c2. When we do weighted regression, the original model
y = XB+e€, with E(e) = o0 and cov(e) = ¢2Q, is transformed to the model
Yy = X3 4+ €@ where y = Cy, X = CX and € = Ce and C
is a diagonal matrix with non-zero elements cl'l, ...,c; . Since CQC' =1,
it follows that cov(e(¥) = o%I. Hence, the variables with superscript (£2)
satisfy the Gauss-Markov conditions, and least squares analysis can be
carried out using them.

However, if we prefer to work with the original variables, we may write
the estimate of 3 as (since CC’ = C'C = Q1)

bwrs = (XX Xx@y@ < (X'~ X)71X'Q 7y, (6.11)

Therefore,

cov(bwrs) = (X'Q7'X)" 1 X'Q (200 X (X'Q1x)!

=o?(X'Q7tX)!

The residual vector is

el =y — @ = 4@ _ xDpy, ;¢ = Cy — CXbws

=C(y — Xbwirs) =C(y — Ywrs),

where 9y 15 = Xbwrs. Hence,

() = (yi — Gi,wrs)/ci = Vwi(yi — §i,wiLs),

where §; wirs is the ith component of ¢y, ¢. Thus, an unbiased estimate
of o2 is given by

n

(n - k—1) 12 (9) —k—l)—lzwi(yi—?]i,WLS)2~

i=1 i=1
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EXHIBIT 6.6: Residual vs. Predicted Plot for the Weighted Regression of
Braking Distance Against Speed

Had we ignored the presence of heteroscedasticity, and obtained the OLS
estimator bors = (X'X)"! X'y, then

cov(bors) = (X' X) 1 X' ()X (X' X)) ! = 2(X'X) 1 X' QX (X' X) ™.
From the Gauss-Markov theorem, it follows that for a non-null vector a,
var (@'bwrs) < var(a'boLs),

where, of course, a’bw s and a’'bors are estimates of a’B3. Therefore, un-
der heteroscedasticity, appropriate weighting yields preferable estimates.
Weighted least squares is a special case of generalized least squares consid-
ered in Chapter 7.

Example 6.4 (Continuation of Example 6.1, Page 112)

Exhibit 6.6 shows the residual versus predicted plot resulting from running
a regression on the data of Exhibit 6.1 using speed™2 as weight. (This
weight has also been suggested in Hald, 1960; it is equivalent to using

distance/speed = 831 + (2 speed

as the model.) The reader is invited to compare Exhibit 6.6 with Ex-
hibit 6.2.
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The ‘residuals’ in Exhibit 6.6 are /w;[y; — §;, wrs| which, apart from
being theoretically appropriate, are also the ones to plot if one wishes to
check if homoscedasticity has been approximately achieved. "

When running WLS, the user of regression packages needs to bear in
mind the fact that usually packages will give y; —§; wLs as residuals instead
of v/w,(y;—9i,wrs), which we have seen are the appropriate ones. Moreover,
some packages respond to a command to weight with integer-valued w;’s by
making each data point (y;, ;) into w; copies of it. (If w;’s are not integers,
some packages will truncate the w;’s to their integer values.) When w;’s are
integers this form of weighting yields the same estimates we would get had
we done the weighting the usual way (by minimizing (6.9)). The estimate
of by s is the same and the covariance matrix of by s is 0?(X'WX)™!
where W = diag (wy, ..., w,). However, we need to be careful regarding
the estimate of 02. As we have already seen, an unbiased estimate of o2
is Y wi(yi — 9i,wers)?/(n — k — 1), but if an OLS package program is
used unaltered, it would compute the estimate of o2 to be Y 7 w;(y; —
9iwrs)?/ (3, wi — k — 1), which would be wrong and will frequently be
extremely small (See also Example 6.3 and Exercise 6.6).

Example 6.5 (Continuation of Example 6.3, Page 119)

The reason why ‘brute force’ application of OLS, after making copies of the
data points, yields a poor estimate of 02 can be seen from the discussion
of Example 6.3. The ‘brute force’ application is the same as the problem
considered there, if we set y;o, = §; for ¢; = 1,...,w; and each i. But this
makes the first term in (6.10) equal to zero and yields a (frequently severe)
underestimate of o2. The fact is that we would be treating each set of w;
¥i’s as independent observations, when they are not! |

In Example 6.4, we weighted with a function of the independent vari-
able; we may also weight using the dependent variable. For the reader’s
convenience, Exhibit 6.7 presents a table of weights for various types of
dependent variables and various transformations of them (weights for the
transformations were computed from variances obtained by using (6.4)).
However, we should point out that in practice the theoretical distribution
of the dependent variable is not the only cause of heteroscedasticity. The
error term can be affected by variables left out. For example, consider the
dependent variable average household size by state and assume that the
data were obtained from the census. Although this is a mean of n; counted
variables, the n;’s are so large that the appropriate formula in Exhibit 6.7
would give variances which would be nearly zeros. Therefore, if we en-
counter a non-zero s, it would imply that the reason for the variance is not
just the theoretical distribution of average sample size.

Weighting with functions w[E(y;)] of E(y;) presents a problem since
E(y;) is not known. On occasion one might be able to use y; as an estimate
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Type of Untransformed

Variable Yi VY, log(y;)
Counts (Poisson) P 1 (i.e., apply 2

ordinary least
squares)

Proportion of niz; (1 —z)7 Y| na(l—2)7 | naz(l - z1)7 !
counts
(of form y; = m;/n;)
Homoscedastic 1 2 22
variable (obviously)
Means of n; n; niz; n;z?
homoscedastic
variables
Mean of n; counted n;z; ! n; n:2;
variables

LEGEND AND NOTES: z; = E(y:). Columns for /y; and log(y;) were computed
using the approximate formula

var (f(y)) = (var ())(f'(2));

where f' represents the derivative, and z represents the mean of y. The entries
in the table are the reciprocal of the variances.

EXHIBIT 6.7: Suggested Weights

of E(y;) and weight with w{y;]’s but this usually leads to bias. Frequently,
a better approach is to obtain ordinary least squares estimates, compute
;’s, and then run a least squares procedure using as weights wigi]’s.

Of course, this would usually give different, and presumably better, es-
timates of 8 and E(y;)’s. One could then use the most recently obtained
estimates of E(y;)’s to compute weights and run a weighted least squares
procedure again. These iterations can be continued until some convergence
criterion is satisfied. This procedure is often called iteratively reweighted
least squares. Computer programs for it are also available, although most
common linear least squares packages do not include it. Since nonlinear
least squares involves iterative procedures anyway, they can often be used
to advantage to carry out such iterations (see Appendix C, especially Sec-
tion C.2.4, p. 305; also see SAS, 1985b, especially pp. 597-598; and Wilkin-
son, 1987, especially p. NONLIN-25). As discussed in Section C.2.4, when
some nonlinear least squares programs are applied to weighted linear least
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squares, the iterative steps are exactly the same as repeated applications
of OLS as described earlier in this paragraph. One difficulty with all these
procedures is that, on occasion, weights might turn out to be negative, in
which case it is not always clear what needs to be done.

Example 6.6

The data shown in the left part of Exhibit 6.8 were collected in 1976 by
Louise Stanten-Maston, a student of one of the authors, from 54 dial-a-ride
systems in the U.S. and Canada. The variables were the number of riders
(RDR) using the system, the number of vehicles (VH) in operation, hours
of operation (HR), the fare (F) and the population (POP) and area (AR) of
the place where the service was provided. In addition, there is a subjective
rating called IND. Dial-a-ride services can vary in several ways. They can
provide service from several points to several other points (many-many
service) or connect several points to a few or one point (many-one); they
can provide door to door service or to designated stops; they may require
advance registration. Some of these features increase ridership while others
may provide better quality. IND is a composite measure which is 1 when
several ridership enhancing features were present and is 0 otherwise.

The reason for collecting the data was to construct a travel demand
model, i.e., a model that expresses number of riders in terms of other vari-
ables. Such models are used to forecast ridership when new systems are
planned. For reasons that will be discussed in Chapter 9, it seems desirable
to take logarithms of all variables except, obviously, IND. Set

LRIDERS = log[RDR + 1] LPOP = log[POP] LAREA = log[AR|
2

LVEHS = log[VH] LFARES = log[F] LHOURS = log[HR]

The reason behind the use of % in the definition of LRIDERS also will be
discussed in Ch. 9 (see p. 185). Because logarithms were being taken, three
of the fares were set at one cent; the services were actually free in those
cases.

Since the number of riders is a counted variable, its logarithm, which is
the dependent variable, would call for weighting by E(RDR) (Exhibit 6.7).
Exhibit 6.9 shows the parameter estimates obtained for the first few it-
erations (It.# 0 through It.# 3) and after 14 iterations (It.# oo) when
some rather stringent convergence criteria were met. Computations for the
first few iterations were made using a least squares program, simply us-
ing the predicteds from each step to compute weights for the next. In the
multiple iterations case we used PROC NLIN in SAS, but the computa-
tions are essentially identical to those of repeating a linear least squares
procedure several times (See Appendix C, Section C.2.4, p. 305). It.# 0 rep-
resents ordinary least squares. Weights used for each iteration are shown
in Exhibit 6.8, with the column labeled w giving weights for the fourteenth
iteration.
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Obs| POP | AR |RDR|HR |VH| F |IND|uw® [w® [4G)] o
1 [100000] 13.6] 2718 [18.5] 22 .25] 1 [2050(2545] 2624 | 2652
2| ss872| 23| 250|12.0| 3| .35| o | 149| 133 132] 132
3| 17338 4.3] 350|12.0] 2! 60| 1 | 225 220 217 215
4| 26170| 4.6 186|12.0] 4| 50| o | 216] 201 198] 196
5| 60000| 17.0| 600|12.0| 14| 50| o | 543| 550] 546] 546
6 | 40000, 7.0| 420|120 s5{ .50 1 | 493] 529/ 531 531
7| 30850 3.9| 249|12.0| 2| 50| 1 | 253| 253 250( 248
8| 25000| 6.5| 350|13.0| 8| .25 o | 335| 323| 322| 322
9| 44000| 10.9| 925|24.0| 19| .30 0o }1019]|1091|1100|1103
10 | 24300| 6.4| 514|24.0| 12| 60| 0 | 750| 783| 791| 794
11 | 21455| 26| 117 8.0| 4 50| o [ 177 167| 167| 168
12 | 47000| 7.0| 450|12.0] 7| 50| o | 351] 345| 342 342
13 | 45000| 7.0| 275|12.0| 5| 50| 0 | 268| 254| 249 247
14 | 23000| 6.0 360|12.0] 6| 25| 1 | 478| 510] 515] 518
15 | 20476| 3.8| 307[11.0| 4| 50| 1 | 379| 401| 406| 408
16 | 20504| 5.1 227]12.0] 5| 50| 0 | 240( 225| 222| 222
17 | 71901| 15.8| 208|12.0| 4| .60| o | 219| 199| 190| 185
18 | 70000| 12.0| 700[16.3| 13[1.00| 0 | 743| 784| 784| 784
19 | 30000| 10.0] 440}12.0] 7|1.00] 0 | 326| 313| 309| 308
20 | 26689 3.5| 275|15.0] 4| .01} 1 | 310| 309| 308| 305
21| 9790 46} 201]155| 3| .50f o | 165] 145 141| 139
22 | 19805 10.4| 314|140 5| .50] 1 | 436| 450| 447] 444
23| 5321| 47| 95|150| 2| 500 o | 103] 85| 82| 80
24 | 56828| 51.6| 679]12.0] 15] 60] 1 | s96| 982] 973| 969
25 | 11995| 5.1| 224012.0] 4| 50] o | 180| 162 159 158
26 | 10490 6.1| 277|120 4] .50] 1 | 319| 322 321 323
27| 7883| 41| e7|100] 2| 50| 0 g9| 74| 71| 7o
28 | 3025 2.4| 83| 80| 2| 50| o 69| 57| 56| 56
20 | 17074| 75| 245)12.0] 4| 50| 1 | 341| 347 345} 344
30| 7728| 43| 148|12.0| 3| 50| o | 135| 117| 114| 114
31 | 27137| 14.2| 266]12.0] 6| 50| 0 ]| 244| 223| 216 214
32| 12087 4.1 270l12.0] 4| 50| 1 | 355| 368| 371 374
33 | 24090 (568.0| 56(105| 3| 50| © 66| 46| 40| 37
34| 9521| 4.3| 236|12.0] 4| 50| 1 | 333 341| 345 347
35 | 18404 408.0| 2511201 5| 50| 1 | 202| 170| 154| 147
36| 7253| 4.6| 150|12.0] 3] 50| o | 131] 113] 111] 110
37 | 28500 10.0| 370|100 5| .25] 1 | 353 360| 358 356
38 | 35176 24.9| 464 |16.8| 10| .50| 0 [ 430| 410| 398| 392
39 | 12988 5.2| 260|12.0| 5| .50| 0 | 217| 200] 198| 198
40 | 9892|251.0| 63|12.0| 3| .50| O 68| 48| 43| 40
41 | 15136| 15.7| 341|145] 6| .50| 1 ] 451| 460| 455| 452
42 | 26321 17.8| 222]12.0| 6| 50| o | 233( 210| 203| 200
43 | 18000 10.0| 200|10.0| 3| 50| 1 | 233| 226| 221 219
44| o9500| 55| 228|11.5] 3] 25| 1 | 228| 220| 218] 218
45 | 27600 9.0 900|12.0| 4| .10( 1 | 302| 298| 293| 290
46 | 24127| 7.2] 199|12.0| 6| 60| o | 275] 260} 257| 256
47 | 14000| 4.0| 600]20.0] 6| 25| 1 | 639| 696| 709] 713
48 | 53860| 3.0 300(17.0| 10| .01| o | 434 433| 436| 436
49 | 18000| 28.0| 310|145| 9| 25| o | 2821 253 244| 240
50 | 20103 2.5| 369]152] 4| .20] 1 | 484| 525| 534! 536
51 |102711| 9.5} 400]16.0] 11| 01| o ]| 420| 406| 398{ 393
52 | 25000| 5.0 140) 5.07 2| .35) 1 | 127] 121] 119 118
53 | 32000 5.0|3400]18.7| 12| .35] 1 |1256]1498]1555 1580
54 | 35000] 7.0f 200| 40| 4| 35| 1 | 192]| 192] 193] 194

EXHIBIT 6.8: Dial-a-Ride Data and Weights
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One purpose for showing results from several iterations is to demonstrate
that obtaining weights from a single OLS run is usually not good enough,
but if a suitable iterative program is not available, running a few iterations
of a weighted least squares program may not be too bad. The t values
given show that running OLS when weighting is required could lead to
different conclusions (this example was not specially selected to show this;
in extreme examples very different conclusions can come from weighting).
Notice that in neither case is the distribution of ¢(b;) a t distribution. In the
OLS case it is not a t distribution because the standard errors, computed
as they are as the diagonal elements of s?(X’X)~!, are incorrect because
of heteroscedasticity. In the case of weighted least squares, weighting by
¥i,wrs's which are functions of the observations gives rise to a more com-
plicated distribution than the t. However, use of t tables in the latter case is
usually not too far wrong for moderate to large samples (see, for example,
Carroll and Ruppert, 1988, p. 23 et seq.).

As a practical matter, after suitable weights have been found, they can
simply be appended to the data and used in future computations, e.g.,

variable search computations of Chapter 11. a
It.#0 It.#1 | Tt.#2 | It.#43 It.#o00
Variable b]' t(bj) b]' bj bj bj t(b]')
Intercept 0.911 0.920 | 0.358| 0.364| 0.396( 0.415 0.278
LPOP 0.213 2.320 | 0.248| 0.246| 0.244| 0.243 1.845

LAREA -0.179 -4.419 |-0.232|-0.257 | -0.266 | -0.270 -3.356
LVEHS 0.782 6.128 | 0.882| 0.916| 0.929| 0.936 5.170
LFARES 0.120 2.388 | 0.141| 0.145| 0.147| 0.148 2.419
LHOURS | 0.633 3.324 | 0.666| 0.660| 0.651| 0.647 2.343
IND 0.636 7.136 | 0.765| 0.787| 0.793| 0.796 7.631

EXHIBIT 6.9: Coefficients and t-values for Selected Weighting Iterations for Dial-
a-Ride Data

We have only considered the case where c;’s were known functions of
either the z;;’s or of E(y;)’s. Weights can be constructed under less re-
strictive conditions. While a complete discussion of this subject is beyond
the scope of this book, we discuss one particular case of common occurrence
below and another in Section 7.3.1, p. 134.

Suppose the variance of y;’s is a step function of some other known
variables. Then we could divide our observations into several subsets and
the variance of y;’s would be a constant for each subset. If each of these
subsets contains enough observations, then variances can be estimated for
each subset separately and used to compute weights. This estimation would
be based on residuals from an OLS procedure. Either the sum of squares
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of residuals in each subset divided by the number of cases in the subset
could be used or the interquartile range for residuals in each subset, as a
quantity proportional to the standard deviation, could be used.

Alternatively, if the ratio of the number of observations to the number of
independent variables is large enough, we could run least squares on each
subset separately and use the estimates of the error variance from each
to obtain weights. For a review on the performance of this procedure, see
Judge et al. (1985, p. 428 et seq.)
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Problems

Exercise 6.1: An analyst is conducting a study of factors affecting waiting
times. He assumes that his dependent variable waiting time (y;) has a
negative exponential distribution for which E(y;) = A; and var (y;) = A2.
Obtain a variance stabilizing transformation for y;.

Exercise 6.2: Show that if instead of weighting by cl”z, ...,¢72, we had
weighted by acl_2, ...,ac;? where o is any positive number, then by g
and its covariance matrix would be unaffected.

Exercise 6.3: Discuss how you would estimate the variance of a future
observation (Section 3.8.2, p. 71), in the case of weighted regression.

Exercise 6.4: Consider the model y; = (x;+¢;, where ¢;’s are independent
and distributed as N(0,02z2). Find the weighted least squares estimator
for 3 and its variance. Give reasons why you would not wish to use ordinary
least squares in this case.

Exercise 6.5: Suppose y1,...,¥y, are independently distributed and y; =
Bx; + €; with z; > 0, E(e;) = 0, var (¢;) = o%z; and i = 1,...,n. Find the
best unbiased estimator of # and its variance.

Exercise 6.6: Consider the model y; = 3 +¢€;, where i = 1,...,n, x;’s
are k+1-vectors, the ¢;’s are independently distributed with means zero and
variances w; ‘02 and the w;’s are known positive integers. Show that the
weighted least squares estimate of B3 can be obtained using ordinary least
squares in the following way: Construct a data set in which each of the cases
(yi, x;) is repeated w; times. Show that the ordinary least squares estimate
of B obtained from this data set is (X’WX)~!X’Wy, and an unbiased
estimate of 02 is > ., wi(y; — 9:)2/(n — k — 1), where X' = (z1,...,Tn)

and W = diag (w1, ..., ws). (These estimates are therefore the same as the
corresponding weighted least squares estimates using the w;’s as weights.)
[Hint: Let 1, = (1,...,1)" be a vector of 1’s of dimension w;. To obtain

the OLS estimator, we are using the model Dy = DX + De, where

1 o o
o 19 o] n
D={| .............. :Zwi xn]
.............. =1
o o 1n

Exercise 6.7: Consider Exercise 4.8. Assuming that the time taken for
each contact of each type is independent of the others, would you expect
heteroscedasticity to be present in the model you constructed to carry out
the test? Draw various residual plots to check if your conjecture is true.
Write a paragraph discussing your findings.
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Exercise 6.8: Each case in Exhibit 6.10 represents a pair of zones in the
city of Chicago. The variable x gives travel times which were computed from
bus timetables augmented by walk times from zone centroids to bus-stops
(assuming a walking speed of 3 m.p.h) and expected waiting times for the
bus (which were set at half the headway, i.e., the time between successive
buses). The variable y was the average of travel times as reported to the
U.S. Census Bureau by n travelers. The data were selected by one of the
authors from a larger data set compiled by Caesar Singh from Census tapes,
timetables and maps.

Plot y against x. What do you notice? In order to obtain a linear ex-
pression for perceived travel time in terms of computed travel times, what
weights would you use? Carry out the appropriate regression exercise and
plot suitable residuals. Ignoring the outlier(s), do you think you have ade-
quately taken care of heteroscedasticity?

Obs# n =z y Obs# n =z y
1 1 26 35.0 17 5 25 34.0
2 1 40 57.0 18 4 29 325
3 7 32 34.3 19 3 24 283
4 3 36 38.3 20 6 34 40.8
5 2 27 375 21 7 28 293
6 4 39 36.3 22 5 21 26.0
7 4 29 31.3 23 4 40 470
8 3 22 35.0 24 2 35 40.0
9 1 34 30.0 25 3 24 30.0

10 1 25 30.0 26 2 35 45.0
11 10 37 40.5 27 2 31 375
12 2 36 475 28 9 21 250
13 1 20 300 29 17 36 51.1
14 2 26 40.0 30 2 36 425
15 2 31 30.0 31 1 35 45.0
16 3 22 26.7 32 3 24 250

EXHIBIT 6.10: Data on Perceived (y) and Computed (z) Travel Times by Bus

Exercise 6.9: Carry out the steps, discussed in Example 6.1, to graphically
determine a relationship between var (y;) and E(y;).

Exercise 6.10: For the OLS model used in Example 6.1, plot
1. the absolute values of the residuals against predicted values, and

2. the logarithm of the absolute values of the residuals against the log-
arithm of predicted values.

In each case, devise and demonstrate the efficacy of a method for deter-
mining what the correct weights should be.

Exercise 6.11: As noted in Chapter 1, a classical problem in regression
is that of relating heights of sons to heights of fathers. Using the data of
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Exhibit 6.11, obtain an appropriate relationship. Obviously, one needs to
weight. If the number of sons for each height category were available, that
variable would have provided the appropriate weights (why?). What would
you do with the data given and why?

Height of Father 62 63 64 65 66 67 68 69 70 71 72 73
(nearest inch)

Average Height 65.5 66.5 66.8 66.8 67.6 67.8 68.6 69.1 69.5 70.6 70.3 72.0
of Sons (ins.)

# of Fathers 2 6 12 19 27 26 26 26 20 15 8 5

EXHIBIT 6.11: Heights of Fathers and Sons
SOURCE: Dacey (1983, Ch. 1) from McNemar (1969, p. 130). Reproduced, with
permission, from McNemar, Q., Psychological Statistics. © 1969 John Wiley &
Sons, Inc.

Exercise 6.12: Would you guess that heteroscedasticity would be a prob-
lem in the model of Exercise 4.6, p. 967 Examine the residuals and also
carry out a test to see if your conjecture is correct. What action, if any, is
required?

Exercise 6.13: Do you think the least squares exercise of Example 4.5,
p- 92, should have been weighted? If so, carry out the appropriate least
squares exercise. In this case are the estimates very different? Comment.

Exercise 6.14: Plot residuals against predicted values and each indepen-
dent variable for Model 2 of Exercise 2.15, p. 53. Would weighting help? If
so, what weights would you apply?

Now, instead of DAO, consider log[DAOQO] as the dependent variable (and
the same independent variables as in Model 2 of Exercise 2.15). Does it
now appear that weighting is called for?

Compute the variance of a future observation for DAO, corresponding
to GNP=1500, CP=3500 and OP=700, for each of the models: Model 1
of Exercise 2.15, Model 2 of Exercise 2.15 and the model with the logged
dependent variable that you just constructed. Which has the best variance?

Exercise 6.15: Construct appropriate residual plots and check if house
prices (Example 4.3; the data are on p. 32) seem to be heteroscedastic.
When such data are collected from a small area, as these data are, variance
is usually small for houses of the predominant price range (because it is easy
to get selling price information for ‘comparables’) and is larger for other
houses. Check if this is the case here. If so, find appropriate weights and
obtain weighted least squares estimates comparable to those in Exhibit 4.6,
p- 89. Also run the tests we ran in Chapter 3. Compare the results and state
any conclusions you come to.

Exercise 6.16: Do you feel the variances of the raises given company
chairmen (Exhibit 3.6, p. 78) are equal? If you feel they are not equal,
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what transformation could be used to improve matters? Make appropriate
plots and give your conclusions.

Exercise 6.17: For the models in Exercise 2.20, p. 55, which ones call for
weighting? Construct appropriate plots to verify your conjectures. When
weighting is indicated carry out the appropriate weighted procedures. Ver-
ify, using residual plots, if heteroscedasticity has been rendered negligible.
If not, choose better weights and repeat the exercises.



CHAPTER 7

*Correlated Errors

7.1 Introduction

Continuing with our examination of violations of Gauss-Markov conditions,
in this chapter we examine the case where

E(e€') = 0°Q (7.1)

could be non-diagonal; i.e., some E(eje;)’s may be non-zero even when
i # j. Cases of this kind do occur with some frequency. For example, ob-
servations of the same phenomena (e.g., per capita income) taken over time
are often correlated (serial correlation), observations (e.g., of median rent)
from points or zones in space that are close together are often more alike
than observations taken from points further apart (spatial correlation), and
observations from the same production run or using the same laboratory
equipment often have more semblance than those from distinct runs.

While a non-diagonal © does not bias the estimates (as we saw in Sec-
tion 2.6, p. 35), even fairly small non-diagonal elements can cause the vari-
ance of estimates to increase substantially. Consider the estimate €'b of £'3
(Section 2.9, p. 41). If y has covariance matrix o2, then the variance of
£'b is of the form 02¢/Qc with ¢/ = £/ (X’'X)~'X’. This contains n(n — 1)
terms involving non-diagonal elements of (2. Therefore, even if each such el-
ement is small, their combined effect can be considerable. Even worse is the
fact that, when we use ordinary least squares, computer packages typically
compute estimates of variance under the assumption that G-M conditions
hold, i.e., = I. Therefore, unaccounted for non-diagonal elements can
substantially affect any inferences we reach.

Unfortunately, since there are n(n+1)/2 distinct elements in €, it would
be impossible to reliably estimate all of them on the basis of n obser-
vations. Consequently, general methods of handling the model (7.1) are
not available. However, if there are known relationships involving very few
parameters among the elements of 2, then estimation procedures become
available. But each type of relationship usually requires a distinct approach
and this leads to a vast number of cases. In this chapter we consider a few
such cases which we think are of relatively common occurrence. A larger
number of them are examined in more advanced (typically econometrics)
texts, e.g., Judge et al. (1985). A fairly general treatment of the subject is
Rao’s theory of MINQUE (minimum norm quadratic unbiased estimators;
see Rao, 1970), which is beyond the scope of this book.
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Even when methods are available they are not always foolproof. For ex-
ample, sometimes we get negative estimates of variances. While for the
cases we consider we have sometimes been able to suggest methods of cir-
cumventing this problem, in general, the ingenuity of the user is the only
recourse. Therefore, it is usually preferable to collect data in such a way
that errors can be considered uncorrelated.

In the next two sections we examine fairly general 2's. In subsequent
sections the above mentioned special cases are considered.

7.2 Generalized Least Squares: Case When (2 Is
Known

Consider the usual regression model
y=XB+e, (7.2)

where y is the response vector of n observations, X is an n x (k+ 1) matrix
of known constants and 3 is the (k + 1)-vector of unknown regression
parameters. But now assume that, while E(e) = o, E(e€’) is given by (7.1)
with Q a known symmetric, positive definite matrix of order n. In this
section we show that under these conditions, a preferred estimate of 3 is
the generalized least squares estimator

bors = (XIQ_1X)_1XIQ_1y. (7.3)

From Section A.13, p. 279, we know that we can write Q as Q = T'DIY =
' where T' is orthogonal, D is a diagonal matrix of positive diagonal
elements and = = I'D'/2. Pre-multiplying both sides of equation (7.2) by

E-1 we get

—r—
)
—_—

Ely=2"1XB+="e

Therefore, if we let Yy = 21y, X = 571X and € = Z-1¢, we get
the model
Yy = XVg 4D, (7.4)

where E(e(®) = E(Z~l€) = o, and
cov(e®) = cov(E~le) = 271 cov(e)(E') !
= 2Z71Q(ETY) = 22T YEE)E) T = o°LL
Thus, we see that the G-M conditions hold for model (7.4). Consequently,
the BLUE estimator for 3 is the ordinary least squares estimator which is

bors = (X X ®)=1 x (1)
— (Xl(EI)——lE—lX)—IXI(EI)—lghly — (XIQ_IX)_lXIQ—ly.



134 Chapter 7. *Correlated Errors

It is easy to verify that cov(bgrs) = o2(X'Q71X)L.
The vector of residuals may be written as

e = 4@ _ 5@ _ (@) _ (@) (x(@) x (@)1 () (@)
= [I — X (X x (@)=1 x (V)7),,(D)
and an estimate of o2 is given by s? = (n — k — 1)~1e(®"e(®. Using the
new variables 4™, X(® and e(?), all procedures on testing and confidence

intervals can be carried out without any change. For example, if we wish
to test the hypothesis

H:CB=0vs A:CB +#o,
where C is an r x (k + 1) matrix with » < k + 1, then H is rejected if
(BorsCCX'QX)71C 7 (Cbos) 2 8 Frnir
where

sP=mn—-k—-1)"1e@e® = (n -k -1)[yQ 'y — by s X'yl

7.3 Estimated Generalized Least Squares

Unfortunately, the matrix € is not usually known and needs to be esti-
mated. If Q2 is an estimate of Q, then bggrs = (X071 X)"1 X'~y has
been called an estimated generalized least squares estimate (or an EGLS
estimate) of 3. In general, small sample properties of such estimates are
hard to come by, except by model-specific Monte Carlo methods. However,
fairly general asymptotic properties are available. For example, under cer-
tain conditions, given in Theil (1971, Ch. 8) and in Judge et al. (1985,
p-176), bgrs and bpgLs are both consistent and have the same asymp-
totic distribution. Moreover, both estimates are asymptotically normal with

. . _ _ P
mean B3 and covariance matrix n"1o?¥~! and v/n(begrs — bars) — 0.
Under some further conditions,

62 = (y - XbEGLS)’Q_l(y - XbEGLS)/(n - k)

is a consistent estimator of o2.

7.3.1 A SPECIAL CASE: ERROR VARIANCES UNEQUAL
AND UNKNOWN

A special case where we need to consider empirical estimation of €2 occurs
when the non-diagonal elements of (2 are zero and the diagonal elements
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are unknown. That is, 02Q = diag (02,...,02) and the o2 are unknown.
This is a case of heteroscedasticity with unknown variances.

There is now one unknown variance corresponding to each observation.
Such situations do not lend themselves well to reliable estimation proce-
dures, but let us examine this case anyway. Suppose we apply ordinary
least squares and obtain the vector e of residuals e;. It is reasonable to
base any estimation of o2 on these residuals. A standard method consists
of considering e® = (e?,...,e2). Since e = Me, where, as in (2.13),
M = (my) = I - X(X'X)"1X', it follows that e; = Z;Zl myj€;, and
hence, since for i # j, Ele;e;] =0,

Ele?] Zm”a] fori=1,...,n. (7.5)

Let M® = (m%) and ¢® = (02,...,02)". Then we may write the system
of equations (7.5) as

E(e®)=MPe®, (7.6)

Replacing E(e?) by its estimate e and o by its estimate (2 =
(63,...,62%) we get
e? = M3, (7.7)

We can solve this set of equations to get the required estimates 2. These
estimates are also known to be MINQUE.

A major difficulty with these estimates is that some ;s can turn out to
be negative. Some alternative estimates of o2 have also been proposed (see
Judge et al., 1985).

Although, as mentioned earlier, it is not desirable to estimate individual

02’s in this way, the method can be useful if there is a relationship among
the 02’s. For example, assume that

22

2 7

0',,: = zia
for 1 = 1,...,n where z; is an m-dimensional known vector, with m < n,
and « is a vector of parameters. Let Z' = (21,..., 2,). Then from (7.6),
E(e®) = M?® Za, (7.8)

which prompts the estimation of a as
&= (ZMIOIMPZ2)1Z2' MDD e, (7.9)

which in turn can be used to estimate 0?’s. Since (M(?)~1E(e?) = Za,
another estimate of a is

&= (2'2)12'(MP)"1e®, (7.10)
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The difference between the two estimates stems obviously from different
error distributions for the model (7.8). Yet another alternative (which, in-
cidentally, is a MINQUE — see Froehlich, 1973) is

a=(ZMP2)17'e?, (7.11)

For none of these estimators is there any guarantee of positivity of estimates
of the 0%’s. Judge et al. (1985) have given other methods of estimation in
this case as well as for situations where o has other algebraic forms.

7.4 Nested Errors

Suppose that out of the total of n = mM observations yi, ¥2, - - ., each of the
M sets of m observations, yi,...,Ym; Ym+1,---rY2m; -+« -- was obtained
in some common way. For example, each set could have been obtained
from a common production run, or result from experiments using common
equipment, or be obtained by the same survey-taker. Then these sets could
contain mutually correlated observations.

A simple case of this occurs when all the correlations within each group
are the same and we can write Elee’| = 0%(1 — p)I + 02® where

o= . . 1
and
1 .-~ 1
T=pu'=p| 1 -
1 ... 1

Since m~'11’ is clearly idempotent with trace 1, its eigenvalues consist
of 1 one and m — 1 zeros. The eigenvalues of X, therefore, consist of m — 1
zeros and one pm. Let G be an orthogonal matrix that diagonalizes %, i.e.,

GEG' =D and GG' =1

where D is a diagonal matrix D = diag (dy, ..., d,,) of the eigenvalues of %,
which are d; = pm and dy = 0 when £ # 1. An example of such a matrix G
is the matrix with first row m~1/2(1,...,1) = m~/21’ and the remaining



7.4. Nested Errors 137

(m — 1) rows

1 1
7 2 0 0,
1 1 =2 0
6 NG 6 ’
1 . . .1 .. \ o . ;n_—l
\/m(m—l) \/m(mvl) \/m(m—l) m(m—1)’

although one would typically use a matrix program like SAS PROC MA-
TRIX (SAS, 1982b), or MINITAB! (MINITAB, 1988) to obtain a suitable
G. Let I" be the n dimensional matrix with G’s on its diagonal and 0’s
elsewhere, i.e.,

G 0 - 0
0 G --- 0
r=1 . . . )
0 0 - @

If we multiply both sides of our original model y = X3 + € by I" on the
left, we get
w=2Z8+n

where w = T'y, Z =T'X and = Te. It is straightforward to verify that
E[nm’] is a diagonal matrix with diagonal elements 61, ..., 8,, where M of
the 6;’s (one corresponding to each block of m observations) are 72 + pm
and the remainder are 72 where 72 = ¢2(1 — p). In the case of the example
of G given above,

2

6_{7.2_+_pm wheni:tm—+—1Wheretzo,'-~,M_1
L otherwise.

Thus we have removed all non-diagonal terms in the error covariance matrix
and are left with a situation with two subsets of observations within each of
which the variances are the same. If a computer program is used to obtain
G, an examination of the eigenvalues will show which observation belongs
to which subset.

Then we can apply any of the methods mentioned at the end of Sec-
tion 6.4, p. 118. Alternatively, if M is not too large, we could lose a few
observations by simply deleting M cases, wyp+1, where t =0,..., M — 1,
and thereby reducing the model to a purely homoscedastic model. The
above discussion can be extended to the case when the M subsets are of
unequal size (Srivastava and Ng, 1988).

IMINITAB is a registered trademark of MINITAB, Inc., State College, PA
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7.5 The Growth Curve Model

When nothing is known of the form of Q, it is still possible to estimate it,
if the experiment can be replicated an adequate number of times, i.e., if we
have the model

y=XB+e
where X is an m X p matrix, t =1,2,..., M, E(e;) = 0 and cov(e;) = Q.
Here y,,...,y,, are independent m dimensional vectors and 02 has been

absorbed in Q.
Let g =M™ y,ande= MY ¢. Then

§=XB+e

where E(€) = o0 and cov(y) = cov(e) = M~1Q. Hence, the generalized
least squares estimate of 3 is given by

bors = (X/Q_lX)_l.X/Q_lg.

However, 2 is not known. But since E(y, —y) =0, forallt =1,..., M,
an unbiased estimator of {2 is given by

M
Q=M-1)"Y (4, -9y -9

Therefore, an estimated generalized least squares estimate of 3 is
bepgrLs = (X/Q_IX)_IX/Q_I"I_/.

Under the assumption that €; is multivariate normal, it can be shown that
this bggrs is an unbiased estimator (see Exercise 7.3).

Under normality, the hypothesis H : C3 = 0 against A : C83 # 0 (where
C is r x p dimensional with r < p) is rejected if

M -r—m +p bIEVGLSc,(CECI)_ICbEGLS
(M —1)r 1+ (M —1)-1T2

Fr,M—r—m+p,a

where E = (X'Q"1X)~1, T? = My'G/'(GQG') "Gy and G : (m—p) xm is
such that GX = 0. Alternatively, if it is inconvenient to find a suitable G,
one could use T? = Mg'[Q~! — Q-1 X (X'Q1X)~1X'Q~!]g. (This result
is obtained with the help of Lemma A.1, p. 279, of Appendix A).

Example 7.1

Exhibit 7.1 shows dental measurements for girls from 8 to 14 years old.
Each measurement is the distance, in millimeters, from the center of the
pituitary to the ptery-maxillary fissure. Suppose we wish to relate these
measurements to age and write our model as

Yts = Bo + P1T41 + €4,
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where x;; = age — 11. Then
1 11 1Y
X = ( -3 -1 1 3 ) )
Clearly, for the same subject s the m = 4 measurements y; are not inde-

pendent and
cov(e,) = €2, where €, = (€15, ...,€45)

However, we have M = 11 replications of the experiment.

Age Subjects

in Years| 1 2 3 4 5 6 7 8 9 10 | 11

8 21.0(21.0/20.5(23.5(21.5{20.0|21.5|23.0| 20.0| 16.5| 24.5
10 20.0]21.5]24.0}24.5|23.0]21.0|22.5{23.0{21.0|19.0| 25.0
12 21.5[124.0}24.5|25.0(22.5(21.0|23.0(23.5|22.0|19.0( 28.0
14 23.0(25.5|26.0(26.5|23.5{22.5|25.0{24.0|21.5|19.5(28.0

EXHIBIT 7.1: Data on Dental Measurements
SOURCE: Pothoff and Roy (1964). Reproduced from Biometrika with the per-
mission of Biometrika Trustees.

Since y = (21.2,22.2,23.1,24.1)’, an estimate of  is given by ) =
Ezlil(yz - y)y; —9)'/10
4.51 3.36 4.43 4.36
3.36 3.62 4.02 4.08

4.33 4.03 559 547
4.36 4.08 547 5.94

Hence

_ rA&—1 —1yv/&—1+ _ 22.70
bepcrs = (X'Q7° X)) X'Q y‘(0.482)'

Suppose we wish to test the hypothesis that the linear term is zero. That
is, H : 31 = 0 against A : B; # 0. In this case, C = (0,1),r =1, p =2 and

3.807 0.160 )

B=(X'a7x)7 = ( ~0.160 0.160

and C EC' = 0.045. The matrix
1 -1 -1 1
G = ( -1 3 =31 )
is such that GX = 0. Therefore, T2? = 119'G'(GQG’)~'Gy = 0.11 and
M —r—m+pbpgsC'(CEC') 'CbggLs
(M -1)r 1+72/10
Therefore, at 1 and 8 degrees of freedom, we reject the hypothesis at a 5
per cent level. |

=45.94.

F =
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7.6 Serial Correlation

Frequently when the observations y; are taken over successive time inter-
vals, the €;’s are correlated. This type of correlation is called serial corre-
lation. We consider the particular case where the ¢;’s follow a first order
autoregressive (often called AR(1)) process:

€ = pe_1 + Uy, (7.12)

where |p| < 1 and for all t =1,...,n, u;’s are independent and identically
distributed with mean 0 and variance 2. The model (7.12) is called au-
toregressive since ¢; is linearly related to lagged values of itself. It is said
to be of first order because the maximum lag is one.

The AR(1) is only one possible model of serial correlation. Other models
include higher order autoregressive, AR(r), processes given by

™
€ = E Ps€t—s T Uy,
s=1

moving average, MA(m), processes

m—1

€ = U + E QsUt—g,

s=1

and mixtures, ARMA (r,m), of autoregressive and moving average pro-
cesses. Typically, analysis consists of first identifying the kind of process,
its order (r,m) and then the relevant parameters p, ps or/and as. The
literature on such time series processes is huge, much of it stemming from
the seminal work of Box and Jenkins (1970), and a reasonably complete
treatment of it is well beyond the scope of this book. Consequently, we
shall briefly discuss the AR(1) process, which is by far the most popular of
these processes. We refer the interested reader to Judge et al. (1985) and
to Anderson (1971) for a fuller treatment of the AR(1) and other models.

If the AR(1) process has been in operation since the indefinite past, then
by repeated application of (7.12) we have, since |p| < 1,

n o0
€ = lim (pn+1€t_nw1 + ZPSUt_s) == Zpsut-—s.
s=0

n—oo
=0

Hence -
E(e) = 0, var(e) = 02 3 (6%)° = o2/(1 - ?)
s=0

and
o0

covler,ceir) = 3 P02 = p"o2/(1 - p?).
=0
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Therefore, cov(e) = 020 is

1 P p2 pn—l
p2 1 p PEPIN pn_3
2(1—p)" | P p L pt . (7.13)
pn‘—l pn‘—2 pn.—S . 1
Let e1,...,e, be the usual ordinary least squares residuals from the
model
y=XB+e
Then

/3 = Zeiei_l/Ze? (714)
=2 1

is an estimate of p which may be shown to be consistent if for all ¢, h;; — 0
where, as in Section 5.2, p. 101 h;’s are the diagonal elements of H =
X(X'X)"1X’. Let Q1 be the result of replacing p by / in the matrix € in
(7.13). Then an estimated generalized least squares estimator of 3 in the
model is given by

bpars = (X'Q71X)7 1 X' Oty (7.15)

This-two step method of first estimating p using (7.14) after running ordi-
nary least squares and then using the resulting residuals to obtain an esti-
mated generalized least squares estimate is often called the Prais-Winsten
(1954) procedure.

Since Q is a matrix of typically fairly large dimensions, it is computa-
tionally preferable to obtain the estimate (7.15) in a different way. Let

VIZZ 0 0 -~ 0 0

—p 1 0 --- 0 O
. 0 -5 1 ... 0 0
= . o o
0 o 0 --. 1 0
0 0 0 -« —p 1

Then it may be verified that ¥’'¥ = (1—52)Q~1. Since least squares estima-
tion is unaffected by scalar multiplication, we may apply the transformation
X =X,y = by and € = Ve in (7.15) and get

brcLs = (X(Q)’X(Q))*lx(ﬁ)'y(ﬁ) (7.16)
which is an OLS estimator. This transformed model may be written as
k
Yt — PYt-1 = Z(ﬂvzj — pTi-1,5)Bj + u (7.17)

j=0
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for t = 2,...,n where, as before, n is the total number of observations, k
is the number of independent variables and ;0 = 1. When t = 1,

k
\/1 - p”2y1 = \/1 — /32 Z,Bj(l?lj + 41— ﬁ261. (718)
=0

Therefore, all one need do is to apply ordinary least squares to the model
consisting of (7.17) and (7.18), which is roughly equivalent to what most
computer packages (e.g., SAS PROC AUTOREG — SAS, 1982a) do for
the AR(1) model. Notice that the models (7.17) and (7.18) could also have
been directly obtained from (7.12). An alternative to this approach is to
apply maximum likelihood estimation directly, as illustrated on p. 144 for
the case of spatial correlation.

7.6.1 THE DURBIN-WATSON TEST

A test of the hypothesis p = 0 against the alternative p # 0 is based on the
Durbin-Watson statistic,

d= Z(et - et_1)2/Zef.
t=2 t=1

While this test is primarily to detect the existence of the AR(1) process, it
is frequently used, in practice, to detect the presence of any kind of serial
correlation, under the assumption that most serially correlated data would
exhibit, at least partially, the behavior of an AR(1) process. Notice that
d =0 when e; = ¢;_1, d = 4 when e¢; = —e; 1, while a value of d close to
2 indicates a low or zero valued p.

Unfortunately, the percentage points of d cannot be given in tables since
its distribution depends on X. However, for any chosen level of significance,
numbers dr, and dy independent of X have been tabulated (and are given
on p. 326 for the 5 per cent level) such that, when ¢; are normal,

1. if dy < d < 4 — dy, the hypothesis H is accepted,
2. ifd <dp ord>4—dp, it is rejected, and
3. ifdr <d<dyord—dy <d<4-dy, the test is inconclusive.

However, given X, the distribution of d under H can be computed. For
example, methods have been given by L’Esperance et al. (1976), Koerts
and Abrahamse (1969), White (1978) and Srivastava and Yau (1989), and
one of these can be used to give appropriate probability values. Also, d is
asymptotically normal (see Srivastava, 1987; also see Section 7.7.1), which
can also be used to obtain approximate critical values.
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7.7 Spatial Correlation

Just as when data are taken over time we frequently have serial correlation,
when data are taken over contiguous geographical areas (e.g., census tracks,
counties or states in a country) we frequently encounter spatial correlation.
This is because nearby areas are often much alike; e.g., mean household
income for some city block will usually not be too different from that for a
neighboring block.

7.7.1 TESTING FOR SPATIAL CORRELATION

One can use an obvious generalization of the Durbin-Watson statistic to
test for spatial correlation. This test, known to geographers as Geary’s
(1954) test, is based on the statistic

o> wiles - e5)2/5” (7.19)

i,j=1

where ¢ is a constant and w;; is a monotonically declining function of the
distance between the ith and jth regions. Both ¢ and w;;’s are chosen by
the user so that w;; = wj; and wy;; = 0. The most common choice (see
Haggett et al., 1977, and Bartels, 1979) of w;; is to set w;; = a;; where

1 if { and j are contiguous
a;; =
“ 0 otherwise.

An alternative to (7.19) is the statistic
cZeriej/sQ (720)
i,J

which is often called Moran’s (1950) statistic. Both (7.19) and (7.20) can
be written in the form
ce'Ve/s? (7.21)

where V is a suitable n X n matrix.

When € ~ N(0,02I), an exact distribution of (7.21) can be obtained
(using methods in Sen, 1990, or procedures similar to those in, say, Koerts
and Abrahamse, 1969), but it is unreasonable to expect to find tabulated
values since we would need such values for each of many possible V’s, which
would vary from application to application. Consequently, most users of
these statistics invoke the fact that (7.21) is asymptotically normal (Sen,
1976, 1990, Ripley, 1981, p. 100 et seq.) with mean ctrB and variance
2¢(n —k+1)"Y[(n — k — 1) trB? — (trB)?] where B= M'VM and M =
I-X(X'X)" X'
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If € is not normal, but the Gauss-Markov conditions continue to hold,
(7.21) is still asymptotically normal (under some mild conditions — see
Sen, 1976) with mean ctrB and variance 2c? trB2.

For more on the properties of these and other tests of spatial correlation
see Cliff and Ord (1981).

7.7.2 ESTIMATION OF PARAMETERS

Unlike serial correlation, the literature on estimation in the presence of spa-
tial correlation is relatively sparse although spatial correlation frequently
has more serious effects than does serial correlation (owing to the larger
number of non-zero elements in the error covariance matrix — see also
Kramer and Donninger, 1987).

The first order spatial autoregressive model for the error vector €, a
generalization of the serial correlation model, is

€=pAec+u (7.22)

where E[u] = 0, the components u; of u are uncorrelated, i.e., E[uu'] =
0?1, and A = (a;;) with a;; = 1 if ¢ and j represent contiguous zones and
a;; = 0 otherwise. The model (7.22) implies that each ¢; is p times the sum
of €,’s of contiguous zones plus an independent disturbance. Assuming that
I — pA is nonsingular, (7.22) can be written as € = (I — pA)~1u and hence

Ele€'] = o?(I — pA)~2. (7.23)

One method of estimating the model y = X3 in this case is to use
generalized least squares. The estimate is b, = [X'(I — pA)2X|~1X'(I —
pA)%y. The catch is that we do not know p. If € is normally distributed,
what may be done now is to run distinct generalized least squares for
several values of p (say between 0 and .25 in increments of .01) and select
that which yields the smallest value of

(y - Xb,) (I - pA)*(y - Xb,) — 2log(det[(I — pA)]).  (7.24)

This criterion is, of course, based on maximum likelihood (see also Ord,
1975; Warnes and Ripley, 1987).

Alternatively, we could proceed as follows. Since A is symmetric, there
exists an orthogonal matrix I" such that

TAlY = diag (A1, .., An)

where A;’s are the eigenvalues of A and I is a matrix of the corresponding
eigenvectors. Then I'(I — pA)T"” is also diagonal and has diagonal elements
1 — p);. Furthermore, I'(I — pA)~!T" is diagonal, as is I'(I — pA)~2I", and
this last matrix has diagonal elements (1 — p);)~2. Thus if X(4) = I'X,
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y@) =Ty and €4) = I'e, we can write our regression model y = X3+¢

as
Y@ = XA g 4 A, (7.25)

But now, because of (7.23),
E(e®e®) = TE(ee)I' = T(I — pA) I’

— di 1 1
TR T L= p)?

is diagonal. Therefore, we can perform a weighted regression on the trans-
formed model (7.25), using as weights 1 p/\ Again, an estimate of p could
be obtained by comparing, for several p’s, the values of (7.24) — which,
in this case, is e(4)e(4) — 2log(det[(I — pA)]), where e(4) is the vector of
residuals. Macros for spatial correlation for use with MINITAB have been
written by Griffith, 1989. A spatial equivalent of the Prais-Winsten pro-
cedure (p. 141) for serially correlated AR(1) models is also possible as an
alternative.

The first order spatial moving average model is written as € = (I +aA)u
where A is as in (7.22). It can be easily verified that for this model E[ee’ ]=

o?(I+2aA+a? A?%). Since it may be shown that if A” = (af;), then aj; is the
number of sequences of exactly 7—1 zones one must traverse in gettlng from
i to 7, a higher order spatial moving average model is € = [/ +Ze 1 agAfu.
For this model, the covariance of € takes the form

E(e€') = 0> (I + prA+ paA® + - + pg A7), (7.26)

where the pi’s are unknown parameters.
It can readily be verified that

TAT = TAD'TALY = diag ()2,...,)2),

and in general
TA*T = diag (\F, ..., \5).

Consequently,

q
TE(e'e)I" = odiag ( 1+Zpk)\1, 14> pRAR). (7.27)
k=1

Thus, again we have reduced the spatially correlated case to one that only
requires weighted regression, but here, because of the large number of pa-
rameters, it might be difficult to estimate weights by minimizing (7.24).
But weights may be obtainable using (7.9), (7.10) or (7.11).

For more on these methods, as well as other methods of estimation under
spatially autoregressive errors, see Anselin (1988), Griffith (1988), Mardia
and Marshall (1984), Cook and Pocock (1983), Haining (1987) and Vecchia
(1987). Mardia and Marshall have established consistency and asymptotic
normality for a wide range of procedures.
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Problems

The time series computations can be done using just about any of the
major statistical packages, as well as one of the many special purpose time
series packages. All of the exercises can be done quite easily using a matrix
program like SAS PROC MATRIX (SAS, 1982b) or PROC IML (SAS,
1985¢) or MINITAB (MINITAB, 1988).

Exercise 7.1: For the model (7.2), show that:

1. The estimators bors and bgrs are unbiased estimators, where bor s
is the OLS estimator.

2. COV(bGLs) = JQ(X/Q_IX)_l.
3. COV(bOLs) ZJQ(X,X)_l(X/QX)(X/X)-I.

Using the Gauss-Markov theorem, state which of the two following numbers
is bigger:

(X' X)) 1 X'QX)(X'X) eor £(X'Q71X)7 e,
where £ is a non-null p-dimensional vector.

Exercise 7.2: Show that for the model (2.42) on page 43, OLS and GLS
estimates are identical.

[Hint: Let A=1—-n""'11". Then A~ = A and AZ = Z where Z is as in
(2.40).]

Exercise 7.3: Show that bggrs in Section 7.5 is an unbiased estimator of
B under the assumption of multivariate normality.

[Hint: Under the assumption of normality, {2 and gy are independently
distributed. Take the expectation given £1.]

Exercise 7.4: The data of Exercise 3.14, p. 79, were collected over time.
At a 5 per cent level, test the hypothesis that there is no serial correlation
against the alternative that there is serial correlation.

Exercise 7.5: Apply the Durbin-Watson test to each of the models con-
sidered in Exercise 2.19, p. 54. When can you accept the hypothesis of no
serial correlation?

Exercise 7.6: In Exercise 2.15, p. 53, we suggested taking first differences
of the dependent variable as an attempt to combat serial correlation. For
each of the models described, compute the Durbin-Watson statistic and
explain if we succeeded. In the cases where we did not succeed, can you do
better using a first order autoregressive model?

Exercise 7.7: U.S. population (y;) in thousands for the years 1790, 1800,
..., 1970 is:
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Year OQil Gas Bit. Anth.| Year Oil Gas Bit. Anth.

1950 80.7 11.7 34.5 69.9|1966 64.7 18.5 23.3 43.9
1951 76.4 11.6 32.9 70.4{1967 63.6 18.3 23.3 43.9
1952 75.3 12.1 323 67.2[1968 61.4 17.8 225 45.6
1953 78.5 139 32.0 68.3 (1969 61.4 174 230 48.7
1954 80.4 153 29.1 59.8 1970 59.9 16.9 27.9 515
1955 78.6 153 28.4 53.6 1971 60.8 17.2 304 53.5
1956 76.6 154 29.6 54.5{1972 584 169 31.9 529
1957 82.1 15.7 30.2 57.911973 63.5 18.7 33.6 55.7
1958 78.6 16.2 28.3 56.5 (1974 102.9 24.1 57.7 85.5
1959 74.0 17.2 275 51.9 (1975 105.1 32.3 65.9 109.6
1960 72.3 183 26.6 48.0 1976 106.7 40.1 63.4 112.6
1961 71.8 19.6 25.8 48.8|1977 105.5 51.6 62.3 1074
1962 70.8 19.8 24.8 46.5| 1978 103.2 55.3 64.6 99.7
1963 69.5 20.0 24.0 49.8 1979 133.3 66.0 64.1 106.5
1964 68.3 19.2 24.0 50.8|1980 204.5 81.7 59.4 105.5
1965 66.3 19.1 23.5 47.5|1981 273.6 96.0 57.4 104.0

EXHIBIT 7.2: Prices of Crude Oil, Natural Gas, Bituminous Coal and Lignite,
and Anthracite by Year
SOURCE: Darrell Sala, Institute of Gas Technology, Chicago.

3929, 5308, 7239, 9638, 12866, 17069, 23191, 31443, 39818, 50155, 62947,
75994, 91972, 105710, 122775, 131669, 151325, 179323, 203211.
Fit a model of the form

VUi = Bo + Bit + Bat® + Bat?

to these data, assuming the errors to be first order autoregressive. Why did
we take the square root of the dependent variable?

Exercise 7.8: In Exercise 7.7, y;+1 — ¥: is approximately equal to the
number of births less deaths plus net immigration during the period ¢ to
t + 1. Since births and deaths are approximately proportional to y;, it is
reasonable to propose a model of the form

2y = Ye+1 — Ye = Bo + Brys + €.

Assuming ¢; to be first order autoregressive, estimate 3y and ;. How would
you forecast the 1980 population?

In this exercise we have ignored the fact that y; is possibly heteroscedas-
tic. Can you suggest a way to, at least crudely, compensate for it?

Exercise 7.9: It is usually conjectured that, over the last several years,
prices of other fuels have been determined by the price of oil. Exhibit 7.2
gives prices for crude oil, natural gas, bituminous coal and lignite, and
anthracite in 1972 cents per 1000 BTU. Assuming first order autoregressive
errors, estimate a model expressing bituminous coal and lignite prices in
terms of oil prices. Since it would appear that after the ‘energy crisis’ of
1973-74, the price of bituminous coal and lignite responded over about two
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years, introduce suitable lagged variables to take this into account. Test the
hypothesis that the price of this energy source is determined by oil prices.

Do the same for anthracite and natural gas prices. Can the use of broken
line regression be helpful in the latter case?

Exercise 7.10: The data set in Exhibit 7.3 gives ratios u; of fluid intake to
urine output over five consecutive 8-hour periods (t = 1,...,5) for 19 babies
divided into two groups (G). The babies in group 1 received a surfactant
treatment. The seven babies in group 2 were given a placebo and constitute
a control group.

1. Estimate a model expressing u; as a linear function of ¢ for the control
group.

2. Assuming that the covariance matrix is the same for both groups,
test if the same linear function suffices for both groups against the
alternative that the functions are different.

3. An examination of a plot of the means of u; for each time period over
all surfactant subjects will reveal that the plot is not quite a straight
line. Can you find a more appropriate function?

Exercise 7.11: Human immuno-deficiency virus (HIV) infection causing
acquired immuno-deficiency syndrome (AIDS) is known to affect the func-
tioning of a variety of organ systems, including the central nervous system.
In order to test its effect on the developing brain, the following study was
carried out.

Five baby chimpanzees were injected with a heavy dose of HIV intra-
venously at 1 hour of age, subsequent to which the babies were allowed
to be nursed by the mother. After six months, under general anesthesia,
the radio-active microspheres technique was used to measure brain blood
flow. Since there is a federal restriction on the use of this primate model,
only a limited number of studies could be done. Therefore, the investi-
gators obtained biopsies from five regions of the brain and measured the
radioactive counts; the results (y) were expressed as cerebral blood flow in
ml/100 grams of brain tissue. The partial pressure (z) of carbon dioxide
in millimeters of mercury (also called PCO3) was also obtained. After the
biopsy, the animals were returned to their cages for future studies.

Assume that all pairs of observations for the same chimpanzee have the
same correlation, while observations for different chimpanzees are uncorre-
lated. With y as the dependent variable and z as the independent variable,
test the hypothesis that the slope is the same for all regions of the brain
against the alternative that region 2 and 4 observations have different slopes
than those from other regions.

Exercise 7.12: Trucks can be weighed by two methods. In one, a truck
needs to go into a weighing station and each axle is weighed by conventional



Problems 149

Uy (5] us Uy Us

0.26 0.23 0.38 0.38 0.35
0.00 0.28 0.14 0.47 1.17
0.72 1.00 0.27 0.56 0.64
1.81 0.72 1.02 0.68 1.00
0.43 0.80 0.87 1.99 0.68
0.16 0.24 0.40 0.39 1.02
0.03 0.36 0.52 0.93 1.25
0.09 0.19 0.37 0.57 0.78
0.53 0.58 0.44 1.64 0.82
0.19 0.30 0.53 0.69 0.93
0.32 0.32 0.20 1.08 1.17
0.60 0.49 0.80 1.20 1.11
0.46 0.46 1.20 0.63 0.40
0.00 0.58 0.89 0.50 0.96
0.29 041 0.79 1.68 2.70
0.00 0.33 0.34 0.28 0.73
0.29 0.62 0.40 0.67 0.41
0.80 0.60 0.62 0.85 1.38
0.62 0.17 0.46 0.63 0.79

NN NDNDNDDNE ==

EXHIBIT 7.3: Data on Intake/Output Ratio
SOURCE: Rama Bhat, M.D., Department of Pediatrics, University of Illinois at
Chicago. This data is a part of a larger data set. A full discussion of how the
data were gathered is given in Bhat et al. (1989).

means. The other is a newer and a somewhat experimental method where a
thin pad is placed on the highway and axles are weighed as trucks pass over
it. Former weights are called static weights and are given in Exhibit 7.5 as
sw, while the latter are called weight in motion or wim. The parenthetic
superscripts in the exhibit are the axles: 1 represents axle 1, 23 the combi-
nation of axles 2 and 3 and 45 the combination of 4 and 5. Obviously, one
would expect the axle weights for the same truck to be correlated. Assume
that the off-diagonal terms of the correlation matrix are the same and the
matrix is the same for all trucks.

1. Assuming weight in motion to have the same variance for all axles or
axle pairs (i.e., wim, wim®® and wim*5 have the same variance),
estimate a linear model of the form wim — sw = 3y + Brsw. Test the
hypothesis #; = 0 against the alternative that it is not zero.

2. If you cannot assume that the variances are the same, but assume
instead that the variance of each wim is proportional to a function
of sw, how would you proceed?

3. Examine suitable residuals from the results of part 1 above to verify
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Chimp. | Frontal Parietal | Occipital | Temporal | Cerebellum
# (Region 1) | (Region 2) | (Region 3) | (Region 4) | (Region 5)

T y z y T y T y T y
30.3 64.3|30.3 99.6 | 30.3 71.7|29.3 86.5| 30.3 61.8
35.1 56.8|34.0 62.3|34.4 40.1 | 35.2 97.0| 35.0 47.1
36.1 624368 929349 516|374 83.0|37.2 750
35.1 60.535.8 95.136.0 70.7(36.1 97.5| 334 55.7
31.0 43.6 |29.6 73.2 | 28.7 44.5|285 79.1|30.2 422

TR W N =

EXHIBIT 7.4: Data on PCO2 (z) and Cerebral Blood Flow (y) for Five Regions
of the Brain of Each of Five Chimpanzees

SOURCE: Tonse Raju, M.D., Department of Pediatrics, University of Illinois at
Chicago.

if the variance of wim is indeed a function of sw and, if necessary,
re-estimate 3y and (.

Consider a model of the form wim — sw = ag + a1t + ast? where t
is the axle order, i.e., t = 1 for axle 1, t = 2 for axle 23 and t = 3 for
axle 45. Estimate the a’s and obtain a confidence region for them.

Exercise 7.13: Exhibit 7.6 provides data on median family income for
34 Community Areas in the northern half of Chicago. Also given are the
percentages of population who are black (PB), Spanish speaking (PS) and
over 65 (PA). The contiguity matrix A is given in Exhibit 7.7. Both data sets
were constructed by Prof. Siim Soot, Department of Geography, University
of Illinois at Chicago.

1. Assume a first order spatial autoregressive model, estimate p and

use it to estimate parameters in a model with income as the depen-
dent variable and PB, PS and PA as independent variables. Are the
coefficients of the independent variables significant?

. Assume that the covariance matrix is of the form (7.26) with g = 4.

Apply (7.9) to estimate parameters.

. Under the same assumptions as part 1 above, apply (7.10) and (7.11)

to estimate variances. Use these estimated variances to estimate pa-
rameters (making reasonable assumptions when the estimated vari-
ances turn out to be negative).

4. Try other values of gq.

Test residuals (in each case) for the presence of spatial correlation and
comment.
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sw®  wim® | sw®  wim® | sw*®  wim49)

8660 5616 | 11920 15600 8520 10608
8820 6448 | 17040 19344 19480 18512
8780 6448 | 33040 34944 | 30040 29744
11180 9152 | 27840 33072 | 29040 31824
10680 10192 | 20200 30576 | 20300 30784
10820 7072 | 27200 29952 | 31900 29952
9500 7072 | 33200 34112 | 31820 29952
9660 6448 | 24000 19760 | 33200 16640
11320 9568 | 29520 33280 | 34100 34320
10460 6240 | 31640 30576 | 31620 27040
10720 5616 | 33560 42016 | 33720 35776
12740 9152 | 29720 30160 | 24380 23088
10920 9152 | 26560 29952 15280 14144
8720 6240 | 12880 14352 9920 11323
10380 6448 | 27260 29952 | 23020 20592
8980 5824 | 14160 13312 11340 11024
8780 7072 | 31280 37648 | 30000 37024
9160 6240 | 13900 13104 9660 9984
10220 7072 | 32820 36192 | 32740 35152
8820 6240 | 13940 13936 12300 12480
9460 6240 | 20640 26624 18680 19552
10120 8320 | 24700 18928 | 23200 20176
9500 6656 | 27240 35984 | 23460 25792
9820 7072 | 20740 20800 19280 17264
8760 7488 | 17660 21840 14500 16640
11360 8320 | 32380 37856 17480 17888

EXHIBIT 7.5: Data on Static Weights and Weight in Motion of Trucks
SOURCE: Saleh Mumayiz, Urban Transportation Center, University of Illinois
at Chicago, who compiled the data from a data set provided by the Illinois De-
partment of Transportation.
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Obs # Area Name PB PS PA Income
1  ROGERS PARK 9.41 11.92 14.96 18784
2 WEST RIDGE 0.72 3.71 22.68 25108
3 UPTOWN 15.06 23.26 13.88 14455
4 LINCOLN SQ. 0.54 11.31 17.98 20170
5 NORTH CENTER 1.17 19.01 13.61 19361
6 LAKE VIEW 6.93 18.80 14.77 20716
7 LINCOLN PARK 8.59 10.48 9.94 24508
8 NEAR N. SIDE 32.75 2.89 13.01 23395
9 EDISON PARK 0.00 0.96 18.64 27324

10 NORWOOD PARK 0.02 0.96 19.38 27595
11 JEFFERSON PK. 0.02 1.61 20.42 25082
12 FOREST GLEN 0.06 1.55 19.03 31651
13 NORTH PARK 094 5.54 17.95 25975
14 ALBANY PARK 0.61 19.69 11.14 19792
15 PORTAGE PARK 0.09 2.59 19.06 23402
16 IRVING PARK 0.13 8.62 15.59 21088
17 DUNNING 0.48 1.61 18.29 24445
18 MONTCLARE 0.00 1.66 20.47 24005
19 BELMONT 0.08 5.76 18.82 22245
20 HERMOSA 0.38 31.21 12.86 19118
21 AVONDALE 0.18 20.47 13.61 19144
22 LOGAN SQUARE 2.64 51.70 9.39 16224
23 HUMBOLT PARK 35.57 40.73 6.45 14461
24 WEST TOWN 8.99 56.72 8.56 12973
25 AUSTIN 72.45 590 6.10 16566
26 W GARFLD PK. 98.55 0.82 4.96 10922
27 E GARFLD PK. 99.00 0.83 7.81 9681
28 NEAR W. SIDE 76.45 9.96 8.14 7534
29 N. LAWNDALE 96.48 2.69 6.55 9902
30 LOWER W. SIDE 1.06 77.57 7.01 14486
31 LOOP 19.05 3.44 21.26 26789
32 NEAR S. SIDE 94.14 1.49 9.44 7326
33 ARMOUR SQUARE 25.35 4.83 14.77 15211
34 EDGEWATER 11.12 13.33 18.40 19859

EXHIBIT 7.6: Community Area Data for the North Part of the City of Chicago



Problems 153

0100000000000000000000000000000001
1001000000001000000000000000000001
0001110000000000000000000000000001
0110110000001101000000000000000001
0011011000000101000011000000000000
0011101000000000000000000000000000
0000110100000000000011010000000000
0000001000000000000000010001001000
0000000001000000000000000000000000
0000000010100000000000000000000000
0000000001010010000000000000000000
0000000000101111000000000000000000
0101000000010100000000000000000000
0001100000011011000000000000000000
0000000000110101101100000000000000
0001100000010110001110000000000000
0000000000000010011000000000000000
0000000000000000101000001000000000
0000000000000011110100101000000000
0000000000000011001011101000000000
0000101000000001000101000000000000
0000101000000000000110110000000000
0000000000000000001101011110000000
0000001100000000000001100011000000
0000000000000000011100100100100000
0000000000000000000000101010100000
0000000000000000000000110101100000
0000000100000000000000010010111100
0000000000000000000000001111010000
0000000000000000000000000001100110
0000000100000000000000000001000100
0000000000000000000000000001011010
0000000000000000000000000000010100
1111000000000000000000000000000000

EXHIBIT 7.7: The Contiguity Matrix A for the 34 Community Areas in Northern
Part of Chicago



CHAPTER 8

Outliers and Influential
Observations

8.1 Introduction

Sometimes, while most of the observations fit the model and meet G-M
conditions at least approximately, some of the observations do not. This
occurs when there is something wrong with the observations or if the model
is faulty.

As far as the observations are concerned, there could have been a mis-
take in inputting or recording data. A few observations might reflect con-
ditions or situations different from those under which other observations
were obtained. For example, one or two of the observations from a chem-
ical experiment may have been affected by chemical contamination or by
equipment malfunction. If the data set on house prices were to include one
or two observations where either the properties were particularly run-down
or where for unusual circumstances they were sold at prices that did not
reflect their ‘true value’, these points would most likely not belong to the
model for houses.

Observations that do not fit the model might point also to deficiencies
in the model. There could be an independent variable which should have
been included in the model but was not. Such data points might also show
us that the algebraic form of the model is incorrect; e.g., we might need
to make some transformations to the data (Chapter 9) or consider forms
which require the use of non-linear regression.

Because there are two main reasons for the existence of observations
that do not belong to the model, there are two principal purposes in trying
to identify them. One is obviously to protect the integrity of the model
from the effects of points that do not belong to it. The other purpose is to
identify shortcomings in the model. The latter point, which is particularly
important, is often ignored by inexperienced analysts. In some sense the
postulated model reflects what we already know or think we know; other-
wise we would not have formulated the model the way we did. Points that
do not conform to it are the surprises and can tell us things we did not
know. This information can lead to substantial improvements in the model.
It can also lead to discoveries which are valuable in themselves. As Daniel
and Wood (1980, p. 29) put it, “Numerous patents have resulted from the
recognition of outliers.”

Observations that do not belong to the model often exhibit numerically
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large residuals and when they do they are called outliers. As described in
Section 1.6, p. 11, outliers frequently have an inordinate influence on least
squares estimates although not all influential points have large residuals.
Although observations that do not fit the model do not necessarily have
large residuals, nor are they necessarily influential, there is little hope of
finding such non-conforming points if they do not stand out either as out-
liers or as influential points. Therefore we shall confine our attention in this
chapter to outliers and influential points. Besides, a particularly influential
point should be scrutinized simply because it has so much effect on the
estimates.

A point has undue influence when it has a large residual or is located
far away from other points in the space of the independent variables (Ex-
hibit 1.10b, p. 12). A measure of this latter remoteness is the leverage h;;,
which we have already encountered in Section 5.3 (p. 106). Indeed, the
residuals and the leverages constitute the blocks used in building virtually
all measures to assess influence. Because of their importance, we shall ex-
amine leverages and residuals in the next two sections before proceeding
to discuss how these measures might be used to identify influential points.

8.2 The Leverage

As stated in Section 5.3, the leverages h;; are the diagonal elements of
the hat matrix H = X(X'X)~'X’. Consequently, an individual h; =
zi(X'X) 'x; where z is a row of the design matrix X and, therefore,
corresponds to a single observation. The key feature of a leverage h;; is
that it describes how far away the individual data point is from the cen-
troid of all data points in the space of independent variables, i.e., how far
removed x; is from & =n~! 3 | x;. We shall show this in the subsection
below.

In the case of a lever, greater influence can be generated at a point far
removed from the fulcrum, than at a point closer to it. This is because
for a given change at a point remote from the fulcrum the corresponding
changes in close-in points are relatively small. The situation is similar for
the leverage h;; with the fulcrum at the centroid when 8y # 0. When Gy = 0
the fulcrum is obviously the origin and leverage measures the distance from
the origin.

Since, as shown in Section 5.3, Z?zl hi;; = k+ 1, if we had the option of
choosing independent variable values we would choose them so as to make
each h;; = (k + 1)/n. However, such a choice is seldom ours to make. But
if all h;;’s are close to (k + 1)/n and if all the residuals turn out to be
acceptably small, no point will have an undue influence. Belsley, Kuh and
Welsch (1980, p. 17) offer 2(k+1)/n as a possible cut-off point for h;;, but
note that this criterion tends to draw attention to too many points.

A slight shortcoming of the leverage as a diagnostic tool is that it treats



156 Chapter 8. Outliers and Influential Observations

all independent variables the same regardless of how each one affects the
dependent variable. For example, a variable that we might ultimately dis-
card from the model because of its inefficacy (Chapter 11) would affect
hi; as much, or as little, as if it were the most important predictor. The
DFFITS and DFBETAS described in Section 8.5 are more sensitive to the
importance of an individual b;.

8.2.1 *LEVERAGE AS DESCRIPTION OF REMOTENESS

Let Z be the centered version of X, i.e., Z'=(x; —Z,...,x, — ). Then
the diagonal elements of H = Z(Z'Z)~*Z’ are
iLii = (il!z — i),(ZIZ)Wl(wi - .’i) (81)

Since (n — 1)~ Z'Z is sample covariance matrix of the ‘observations’ x;, it
is easy to see that (8.1) is a standardized form of squared distance between
x; and Z. Apart from rendering (8.1) unit-free, this form of standardization
also takes into account any relationship between independent variables.

Let § = 1 where § =n~' ) !, y;. Since the vector of predicted values
is y = Hy,

g-yg=Hy-n"tu1'y=(H-n"111)y.

On the other hand, since 1’Z = o, it can be shown (using the centered
model (2.40) on p.42) that i — § = Hy. It follows that

h“' - n_l = il,‘,‘. (82)

Therefore, h;; also describes distance between x; and .
Equation 8.2 also shows that n=! < h;; < 1, which is why we took pains
not to refer to h;; as a distance.

8.3 The Residuals

For the purpose of detecting observations that do not belong to the model

(and also influential points), more valuable than the residuals are the Stu-

dentized residuals, often called RSTUDENT and defined by

€

ef = ————— 8.3
S(i) 1-— hii ( )

where e; is, as before, a residual and s(;) is equivalent to s if least squares

is run after deleting the ith case. Denote as y(i) and X(;) the results of

removing the ith row from y and X and let b(i) be the least squares

estimate of 3 based on y(i) and X(;), i.e., b(i) = (X X)) ' X(;)y(9).

Clearly,

(n—k=2)sy =Y [ye — yb(i))?
¥
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has essentially the same statistical properties as s?, and, in particular,
under G-M conditions szi is an unbiased and consistent estimate of o?2.

An alternative expression for it follows from
(n—k-— 2)5%1‘) =(n—-k-1)s*—e2(1-hy)* (8.4)

which is proved in the appendix to this chapter. Obviously, (8.3) is most
similar to the standardized residuals (5.4) and frequently will also be nu-
merically similar. Since in either case, each residual is being divided by
an estimate of its standard error, it is fairer to make comparisons between
Studentized or standardized residuals than among the residuals themselves.
However, analysts who have used residuals to identify outliers and watched
the maximum of their numerical values decline as outliers are eliminated
might find Studentized or standardized residuals a bit disconcerting. Since
typically, s% or s2i will decline as outliers are eliminated, the maximum of
such residuals wili not always decline. They are essentially relative mea-
sures.

The e}’s are fascinating quantities. It is shown in the appendix to this
chapter (and slightly differently in Cook and Weisberg, 1982, p. 21) that
if we append to our list of independent variables an additional one — an
indicator variable z which is 1 for the ith case but is zero otherwise —
then the t-value associated with this variable is exactly ef. This means
that e} has a t distribution when the errors are Gaussian and has a near t
distribution under a wide range of circumstances (see Section 5.3; also see
Exercise 8.2). With the presence of z in the model, the estimates of the
coefficients of the other independent variables and the intercept are not
affected by ith observation. Therefore, €] is a standardized measure of the
distance between the ith case and the model estimated on the remaining
cases. Therefore, it can serve as a test statistic to decide if the ith point
belongs to the model (see also Exercise 8.3).

8.4 Detecting Outliers and Points That Do Not
Belong to the Model

Any one of the plots of the residuals — against ;’s or against any of the
x;;'s or even against the case numbers — will show us which residuals (if
any) are large. And because these plots are easily drawn and also used for
other purposes, this is possibly what is done most often.

However, for a search for points that might not fit the model, the Stu-
dentized residuals are much more useful. One could examine a listing or a
plot of these against, say, case numbers. One can easily identify from these
which e} are significant at some given level, e.g., 5 per cent, and flag the
corresponding observations for further scrutiny.

But this process can be pointlessly tedious. For example, if there are
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a hundred normally distributed observations all belonging to the model,
then there would be naturally about five observations for which e} would
be significant at a 5 per cent level. Therefore, it would be useful to have
methods for judging if outliers are present at all.

Several methods are possible. If the number of observations is small,
the Bonferroni inequality can be used (see Section 3.8.4, p. 73). For larger
numbers of observations the significance levels can be raised to reflect the
number of observations, but this is not entirely satisfactory. A much better
alternative is to use a normal plot (Section 5.2.1, p. 101) of the e}’s. If
there are vertical jumps near either end of such a plot, or even if the plot
turns sharply upwards or downwards near the ends, we might have points
which should be flagged for further investigation.

As alternatives to the normal plot, some analysts use various other types
of univariate displays like histograms, stem-and-leaf displays and box plots.
It should be noted that causes other than outliers also can give disturbing
shapes to normal plots (as well as other displays of Studentized residuals).
One is heteroscedasticity; however, if the variance varies as a function of
E(y;) or one of the independent variables, other plots can be used to detect
its presence. But if the cause is a fluctuation in variance which is not a
function of a known variable, or if the cause is an extremely long-tailed
distribution of the y;’s, there is probably no simple way to distinguish their
effects from those caused by the presence of outliers.

Some analysts treat each y; as if it were a missing future observation
and construct a confidence interval for it based on corresponding xi;'’s (as
described in Chapter 3). If the observed y; falls outside this interval, it could
then be tagged for future study. Finally, the partial regression leverage plots
described in Section 11.3.3, p. 243, have also been proposed as means for
outlier detection.

8.5 Influential Observations

Despite the conclusions of Exercise 8.4 at the end of this chapter, not all
influential points have large e}’s. But such points do need to be examined
simply because they are influential and a bad observation that is influential
will hurt the model more than a bad but less influential one. For such
examinations, what better measures can we have than ones that tell us how
much b or § would change if a given point were to be deleted? Therefore,
a crucial formula is (X7X)1
, Ti€;

where, as in Section 8.2, b(¢) is the least squares estimate of 3 obtained
after deleting the ith case. A proof of (8.5) is given in the appendix to this
chapter. The vector b — b(7) is often called DFBETA,.
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Let
(XIX)—I:E,‘ = (aoz', cen ,ak,-)'.
Then, an individual component of DFBETA; is

aji€i

fori=1,...,nand j=0,...,k. From (8.5) we also get
DFFIT; = jj; — (i) = )b — 2}b(i) = hises /(1 — hay) (8.7)

which tells us how much the predicted value ¢;, at the design point x;,
would be affected if the ith case were deleted.

In order to eliminate the effect of units of measurement, standardized
versions of these statistics are often used. Since by Theorem 2.2, p. 36,
the covariance matrix of b is 02(X’X)~!, the variance of an individual
component b; of b is the jth diagonal element o2g;; of 02(X’'X)™!, where
qi; is the (i,j)th element of (X’X)~!. It is appropriate to estimate 0% by
s%i) since we are examining the ith observation and it may be suspect.
Therefore, dividing the right side of (8.6) by the square root of S?i)qjj we
get the standardized DFBETA;;, which is

aji€;
12
S(i)(l - hii)qj;
Since the covariance matrix of § = Xb is 02X (X'X)"'X’' = 0%H, the

variance of g; may be estimated by s%i)h“. Hence, the standardized version
of DFFIT; is

DFBETAS;; = (8.8)

1/2
DFFITS, = — it ¢
() (1 — hii)
Obviously, these standardized forms are unit-free.
It is a relatively easy matter to express them as functions both of the
leverage and the Studentized residuals. DFBETAS;; can be written as
[g;;(1 = hi)]7*/2a;;er and DFFITS; as

(8.9)

[his/ (1 — hai)) %€}, (8.10)

Therefore, if either the leverage increases or the Studentized residual in-
creases, both measures of influence will increase.

A natural question that arises at this stage is how we use these measures
to decide which of the data points is to be flagged for scrutiny. There are
several possible approaches to answering this question and in a practical
application one generally follows all of them; how one weights the evidence
provided by each defines the analyst’s style. If one is very familiar with
the substantive application then one develops a feel for what is too large.
Another approach is to run down the list of the measures of influence and
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identify those which are much larger than the others. Here, the types of
plots that we described in connection with e}’s could be useful. It should
be pointed out in this context that it is desirable to give some attention to
DFBETAS’s (or DFBETA’s), tedious though it might be, since sometimes
a point could be influential on a single b; and not affect §;’s very much.
A third approach is to use some criterion level. For DFFITS, Belsley, Kuh
and Welsch (1980, p. 28) use h;; = (k + 1)/n (see the paragraph just
preceding Subsection 8.2.1) and e} = 2 (since under normality e} has a t
distribution and under a wide range of circumstances e} has approximately
a t distribution) in (8.10) to arrive at the criterion 2[(k+1)/(n—k—1)]}/2,
or when n is much larger than k, the criterion 2[(k 4+ 1)/n]'/2. A larger
value would tag the point for further examination. A criterion of 2n~1/2
for DFBETAS’s has been suggested by Belsley, Kuh and Welsch (1980).

All four measures of influence examined in this section combine leverages
and Studentized residuals to give expressions that are physically meaning-
ful. Therefore, although the above-mentioned criteria are often useful, it
is the physical meaning rather than criteria that is key here. In fact, we
can write DFBETA;; as oyje;, where a;; = a;;/(1 — h;;) is a function
only of the independent variable values. Consequently, the standard error
of DFBETA;; is a;;0(1 — hii)l/ 2. Therefore, if, instead of standardizing
DFBETA by division by the standard error of b;, we had standardized it
by division by an estimate of its own standard deviation, we would have
got exactly e}! The same is true of DFFIT.

8.5.1 OTHER MEASURES OF INFLUENCE

The measures given in the last section are by no means the only ones
available for detecting influential observations. Some measure the effect on
the estimated covariance matrix of b. One such measure is the ratio of
the determinants of the estimated covariance matrix of b(i) and b. This is
called the covariance ratio and is given by

det[s?i)(xl X(i))——l]

0K (8.11)

Covariance Ratio =

A value of this ratio close to 1 would indicate lack of influence of the ith
data point. It follows from (8.14) given in the appendix to this chapter and
formulae in Section A.8, p. 272, of Appendix A that

det(X (;)' X (5)) = det(X'X — ;x)) = det(X'X) det[I — (X' X) ™ (z;x))]
= det(X'X) det[I — /(X' X) *x;] = (1 — hy;) det(X'X).

Therefore, (8.11) can be written as [s(;)2/s*]**!(1 — h;;)~! and, by (8.4),
it can be shown to equal the reciprocal of

(n—k—24+e2* 11 - hy)(n—k—1)"F1
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which is a function of Studentized residual and leverage.

Another set of measures, which we will also see in Chapter 11, Sec-
tion 11.3.1, p. 239, are the PRESS residuals e; 1 = y; — §;(¢). Obviously,
an individual e; _; shows how well an observation is predicted by a model
based on the other observations. From (8.7), it is easy to see that

ei—1— € =Y —Ui(8) — ¥ + 0 = 0i — 9:(%) = huei/(1 — hii).

Hence
€i,—1 = hiie;/(1 — hy) +e; = e /(1 — hy). (8.12)

A very frequently used measure of influence can be defined as the distance
between the vectors b and b(i) ‘standardized by’ the estimated covariance
matrix s2(X’X)~! of b. This distance, known as Cook’s (1977) distance, is
given by

(b—b(1)) X' X (b - b(i))/[(k + 1)s?. (8.13)

From (8.5) it follows that (8.13) equals
€Z2h”/[(k + 1)82(1 — h“)z]

Hence, it is essentially the same as the square of the DFFITS,;. Another
useful measure of distance has been given by Andrews and Pregibon (1978).

Actually, the number of measures available in the literature for iden-
tifying outliers and influential points verges on being mind-boggling. A
partial list, with very readable explanations, is given in Chatterjee and
Hadi (1986) and the discussion following it. Also see Cook and Weisberg
(1980) and (1982), Cook (1986) and Lawrence (1988).

8.6 Examples

Example 8.1
Exhibit 8.1 shows some of the outlier and influential point diagnostics from
a weighted regression (with weight n) of y on = using the data of Ex-
hibit 6.10. From this and from the residual plot of Exhibit 8.2 we see that
there is one very influential point (#29), which also has an unusually high
RSTUDENT value. A possible reason for the great influence of the point
is the large weight it receives, but this would not totally account for the
RSTUDENT value. While weighting does affect RSTUDENT, it only com-
pensates for the rather small variance one would expect from the mean of
so many observations. Since a single value of slightly over 2 from among
the 31 remaining observations is not so noteworthy, no other point seems
to stand out.

Examination of a map showed that to make the bus trip corresponding
to case #29, one has to transfer, i.e., change buses. This is a very plausible
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Obs # e; er Aj | Obs # e; er Ag
1 3.28 0.32 0.04 17 3.41 0.79 0.22
2 9.43 095 0.16 18 -2.61 -0.53 -0.10
3 -4.22 -1.16 -0.29 19 -1.16 -0.20 -0.05
4 -4.74 -0.83 -0.18 20 0.02 0.00 0.00
5 464 066 0.10 21 -4.69 -1.30 -0.35
6 -10.14 -2.27 -0.74 22 -0.06 -0.02 -0.01
7 -3.82 -0.77 -0.15 23 -0.57 -0.12 -0.04
8 7.80 1.43 0.40 24 -1.91 -0.27 -0.04
9 -10.78 -1.09 -0.11 25 0.54 0.09 0.02

10 -0.59 -0.05 -0.01 26 3.09 0.44 0.07
11 -3.67 -1.29 -0.59 27 0.12 0.02 0.00
12 446 0.63 0.11 28 -1.06 -0.36 -0.21
13 5.07 0.50 0.09 29 8.06 5.27 3.05
14 827 1.19 0.19 30 -0.54 -0.08 -0.01
15 -7.38 -1.05 -0.14 31 3.09 031 0.03
16 -0.50 -0.09 -0.02 32 -4.46 -0.79 -0.18 |

EXHIBIT 8.1: Residuals (e), Studentized Residuals (e¢*) and DFFITS (Ag) for
Travel Time Example

reason for a large residual. If buses keep to schedule, half the time between
buses (the headway) is the expectation of waiting time. But if they do not,
the expected waiting time increases, since more people arrive during the
longer gaps and consequently have to wait longer. In fact, it can be shown
that the expected wait for randomly arriving buses is approximately the
average headway. Moreover, waiting for buses is possibly so onerous that
the time taken may be perceived as longer. Of course, one also waits for a
bus at the beginning of a trip, but that affects all observations equally.

Unfortunately, case numbers 2 and 23 also require transfers. These points
are not outliers. One possible reason is that the very influential point #29
may have pulled the regression line up so much that the residuals for points
2 and 23 were considerably smaller than they would otherwise have been
(the x values are very close for all three points). At any rate, we found the
argument of the last paragraph so compelling that we decided to explore
the matter further.

On deleting case number 29 and rerunning the regression, the residual for
observations 2 and 23 increased to about 13 and 3 respectively with RSTU-
DENT values of 1.9 and .89. While this was not a resounding confirmation
of our conjecture, we nevertheless decided to go ahead and append to our
model an indicator variable T" which took the value of 1 for those cases
which involved a bus transfer. Exhibit 8.3 provides parameter estimates
and t-values while Exhibit 8.4 shows a residual plot. The R? value increased
from about .66 to about .83 when the variable T' was added. However, ob-
servation number 29 remained quite influential (DFFITS29=2.8, e5q = 1.5)
although the residual e39 = 1.2 was quite small — not too surprising given
the concentration of 17 trip makers (n — see Exhibit 6.10) at that point. It
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EXHIBIT 8.2: Residuals from a Weighted Regression of y on x Using Travel Time
Data

Variable | b, |s.e.(b;) | t-value

Intercept | 10.169| 3.60 2.82
x 0.812| 0.12 6.70
T 10.488 | 1.94 5.41

EXHIBIT 8.3: Parameter Estimates, Standard Error of Parameters and t-Values
When the Variable T Was Included in Travel Time Model

would appear from these results that our course of action was reasonable.
Indeed, the outlier led us to a conclusion which we might otherwise have
overlooked.

If we examine Exhibit 8.4 using inter-quartile ranges (as in Example 6.1,
p- 112), we might notice very slight heteroscedasticity. But we are getting
a bit carried away at this stage! The model of Exhibit 8.3 is adequate for
any purpose we can think of. [ |

Example 8.2 (Continuation of Example 4.4, Page 92)

In Examples 5.2, p. 103, and 5.4, p. 106, we have already examined the
residuals from the model that we constructed in Example 4.4, p. 92, of
LIFE against a piecewise linear function of the log of income for 101 coun-
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EXHIBIT 8.4: Residuals from a Weighted Regression of y on z and the Indicator
Variable T Using Travel Time Data

tries. Exhibit 8.5 shows a normal plot of the Studentized residuals. (Readers
preferring stem-and-leaf diagrams or other plots are invited to construct
them.) Just like the plot in Exhibit 5.3, this plot also seems to show the pos-
sibility of outliers near both the top and the bottom. Exhibit 8.6 presents
Studentized residuals e}’s, h;;’s, DFFITS;’s (Ay) and DFBETAS;;’s (Ab;).
Four observations — Iran (Observation 23), Libya (25), Saudi Arabia (27)
and Ivory Coast (58) — have Studentized residuals less than —2 and two
countries — Yugoslavia (49) and Sri Lanka (93) — have Studentized residu-
als above 2. Therefore, it is quite possible that some, though not necessarily
all, of these observations do not fit the model (see Section 8.3). A point
with a high Studentized residual does not necessarily have to be eliminated.
Much depends on whether there are other reasons to believe that the point
does not belong in the analysis.

While several of the h;;’s are relatively large (e.g., greater than .06, using
the criterion of Section 8.2), none is excessively so and for all six countries
with numerically large Studentized residuals, the value of leverage is quite
low. This is basically why only five countries have values of DFFITS ex-
ceeding in absolute value the cut-off mentioned in Section 8.5, which in this
case works out to .345. All are among the six with large e}’s. The largest
DFFITS corresponds to Saudi Arabia, which is indeed influential. Deleting
it would change the predicted value at its GNP level by .67 standard error,
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EXHIBIT 8.5: Normal Plot of Studentized Residuals from Life Expectancy Model

which can be shown to equal about 4.4 years; the change in the coefficients
bo, b1 and by would be about half a standard error each. No other point
comes close to having so much influence, although the deletion of some
would have a fair amount of effect on one or other of the estimate of 3;’s.
Most such points belong to the list of six given earlier. Some exceptions are
Guinea, Laos, Uruguay and Portugal.

From the above discussion, it is obvious we should examine Saudi Arabia
carefully. Its oil has made it a recently and suddenly rich country (note that
the data are from the seventies). Its social services, education, etc., have
not had time to catch up. This would also be true of Iran and Libya. Ivory
Coast is another example of recent wealth although not because of oil (in
the mid-70’s). “Since the country attained independence from France in
1960, the Ivory Coast has experienced spectacular economic progress and
relative political stability” (Encyclopsedia Britannica, 1974, Macropadia,
v. 11, p. 1181). In the early seventies this country of less than four million
was the world’s second largest producer of tropical hardwoods, the third
largest producer of cocoa and a major producer of coffee.

All these countries have recently become rich. Therefore, we could in-
troduce into the model per capita income from, say, twenty years before.
Instead, we simply chose to eliminate these obviously unusual points since
we decided that they should not be considered in an attempt to find a
general relationship between average wealth and longevity.
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Obs e7 hii Ay Abp Aby Abz |[Obs e hi; A Aby Aby Ab:
1 119 .044 .026 -.001 .001 .012| 51 .402 .013 .046 .016 -.009 -.004
2 .048 .043 .010 -.001 .001 .005| 52 -.689 .014 -.083 -.042 .030 -.004
3 .080 .043 .017 -.001 .001 .008 | 53 -1.456 .013 -.168 .011 -.037 .073
4 -.030 .077 -.008 -.001 .001 -.005| 54 .736 .013 .083 .022 -.009 -.014
5 .120 .084 .036 .007 -.007 .025| 55 1.022 .014 .123 -.025 .043 -.065
6 -.033 .042 -.007 .000 -.000 -.003 | 56 -1.686 .012 -.190 -.043 .013 .038
7 .325 .044 .070 -.002 .003 .033 | 57 -.250 .013 -.029 .002 -.007 .013
8 -.351 .084 -.106 -.019 .021 -.073 | 58 -2.923 .017 -.384 .143 -.197 .248
9 .561 .025 .090 -.050 .056 -.021 | 59 .017 .015 .002 -.000 .001 -.001
10 .423 .026 .069 -.029 .032 -.001 | 60 1.438 .015 .178 -.049 .075 -.104
11 493 .041 .103 -.006 .007 .045] 61 -.350 .013 -.040 -.013 .007 .004
12 .385 .060 .097 .008 -.009 .058 | 62 .001 .013 .000 -.000 .000 -.000
13 .058 .051 .013 .000 -.000 .007 | 63 -1.333 .021 -.197 .101 -.126 .143
14 .401 .060 .101 .009 -.010 .061 | 64 1.039 .015 .129 -.036 .055 -.076
15 .929 .046 .204 -.156 .174 -.171 | 65 .364 .012 .041 .006 -.000 -.011
16 .240 .098 .079 .017 -.019 .057 | 66 .093 .015 .011 -.003 .004 -.006
17  .420 .035 .080 -.012 .013 .027 | 67 1.256 .013 .142 .037 -.015 -.024
18 .558 .028 .095 -.031 .034 .010| 68 -.146 .019 -.020 .009 -.012 .014
19 -.283 .097 -.093 -.020 .022 -.066 | 69 1.014 .018 .137 .092 -.076 .032
20 -.584 .019 -.081 .036 -.047 .056 | 70 -.244 .030 -.043 -.037 .033 -.020
21 -.089 .016 -.011 .003 -.005 .007 | 71 .671 .034 .127 .112 -.101 .063
22 .873 .022 .130 .099 -.084 .043 | 72 -.081 .037 -.016 -.014 .013 -.008
23 -2.238 .041 -.462 .360 -.400 .353 | 73 .136 .019 .019 .013 -.011 .005
24 -827 .026 -.134 .080 -.096 .103 | 74 -1.253 .019 -.175 -.125 .104 -.049
25 -2.743 .036 -.530 .073 -.081 -.186 | 75 -.842 .036 -.163 -.145 .132 -.084
26 -1.443 .014 -.169 -.071 .046 .004| 76 -.240 .031 -.043 -.037 .033 -.020
27 -3.751 .031 -.672 .496 -.551 413 | 77 -.021 .032 -.004 -.003 .003 -.002
28 .353 .043 .075 -.059 .065 -.059 [ 78 -1.799 .032 -.325 -.282 .253 -.155
29 498 .046 .110 -.086 .096 -.088 [ 79 -1.261 .024 -.198 -.158 .138 -.076
30 .948 .019 .131 -.058 .076 -.090 | 80 .155 .026 .025 .021 -.018 .011
31 863 .027 .144 -.089 .106 -.113 | 81 .484 .014 .058 .028 -.020 .002
32 -1.430 .019 -.198 .088 -.114 .136 | 82 1.520 .036 .292 .260 -.235 .149
33 .585 .034 .110 -.076 .088 -.090 | 83 -.998 .020 -.141 -.102 .050 -.040
34 .587 .018 .079 -.032 .043 -.053 | 84 -.730 .018 -.099 -.067 .054 -.023
35 .439 .027 .073 -.048 .054 -.032 | 8 .439 .051 .102 .096 -.089 .060
36 -.338 .014 -.040 .006 -.012 .020 | 8 -.765 .014 -.090 -.041 .028 -.001
37 .458 .029 .078 -.024 .027 .010| &7 .111 .027 .019 .016 -.014 .008
38 .780 .034 .147 -.102 .118 -.120 | 88 .533 .036 .103 .092 -.084 .053
39 .752 .014 .088 -.010 .024 -.042 ;| 89 1.557 .024 .242 .191 -.166 .090
40 .378 .032 .069 -.046 .054 -.055| 90 .734 .042 .153 .140 -.129 .084
41 -.944 .023 -.144 .079 -.097 .108 | 91 -.534 .016 -.068 -.040 .031 -.010
42 -.097 .036 -.019 .013 -.015 .015| 92 -.126 .029 -.021 -.018 .016 -.010
43  .274 .015 .033 -.008 .013 -.019 | 93 3.238 .015 .394 .204 -.149 .027
44 501 .042 .104 -.081 .090 -.080 | 94 .703 .019 .097 .068 -.056 .025
45 .756 .042 .159 -.124 .138 -.123 | 95 -.313 .020 -.044 -.032 .027 -.013
46 .709 .035 .135 -.094 .108 -.109 | 96 -1.568 .015 -.191 -.101 .074 -.015
47 -.445 .019 -.062 .028 -.037 .043 | 97 .589 .017 .078 .052 -.042 .017
48 1.249 .038 .249 -.179 .204 -.205| 98 -.730 .041 -.151 -.138 .126 -.082
49 2.112 .018 .285 -.116 .156 -.190 | 99 .277 .025 .045 .036 -.031 .018
50 -1.212 .014 -.144 .025 -.047 .074 | 100 .594 .032 .109 .095 -.085 .053
101 -.547 .020 -.078 -.057 .048 -.023

EXHIBIT 8.6: Influence Diagnostics for Life Expectancy Model
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On the positive residual side, both Sri Lanka and to a lesser extent
Yugoslavia have a fair amount of influence. With over 300 hospitals in a
country of 13 million (1 bed per 330), an excellent public health program, a
literacy rate of over 70 per cent (80 per cent for males), and ‘senility’ as the
major cause of death (all information taken from Encyclopadia Britannica,
1974, Micropadia, v. 9. pp. 506-507), Sri Lanka was rather unique among
less developed countries of the early seventies. While Yugoslavia is not
too influential, it is the only Socialist country on our list and for such
countries the relationship between income and social services might be
different from that for more free-enterprise countries. For this reason we
decided to eliminate these two points as well.

Exhibit 8.7 shows a normal plot of the e}’s obtained after deletion of
the points. It is fairly straight. There are still Studentized residuals with
numerical values greater than 2 (there are 8 of them). One also finds large
DFFITS’s: the largest is —.44 for Ethiopia, followed, in order of absolute
values, by —.41 for Cambodia (not shown in an exhibit). However, the
value of s shrank from about 6.65 to about 4.95 when the outliers were
deleted. Since except for hy;, all statistics we are considering have s(;) in
the denominator, the reduction of s implies, typically, a commensurate
magnification. Therefore, a DFFITS; of .44 at this stage implies less effect
on the b;’s than a .44 value before deletion of points. This is important
to note, since after the deletion of points other points will appear with
seemingly high influence. However, Cambodia did have rather a unique
recent history and perhaps should be deleted.

But a more serious problem has also emerged. Exhibit 8.8, which shows
a plot of residuals against predicteds after deletion of points, also shows
the existence of more than moderate heteroscedasticity. In Exercise 8.11
the reader is requested to take necessary action to reduce the effect of
heteroscedasticity and then to check to see if new outliers or influential
points emerge. ]

Example 8.3 (Continuation of Example 6.6, Page 124)

Let us return to the dial-a-ride example introduced in Chapter 6 (see Ex-
ample 6.6). To save space, we shall display only the diagnostics we refer
to. Therefore, Exhibit 8.9 shows only the values of RSTUDENT, h;; and
DFFITS,.

It can be seen that there are two very large e}’s (Cases 53 and 45) and two
others (10 and 24) which are just under 2. Using the criterion mentioned
in Section 8.2, which is 2(k + 1)/n ~ .26 (in this case), we find that h;;
exceeds this value in 8 cases, but in only four is it even higher than .3. The
largest, .57, is for Case 1 (one of two services in Ann Arbor, Michigan).
It is simply a large service with many vehicles serving a big population.
The other three points with leverage greater than .3 are Case 24 (Benton
Harbor, Michigan), Case 48 (in Buffalo) and Case 51 (in Detroit). The last
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EXHIBIT 8.7: Normal Plot of Studentized Residuals from Life Expectancy Model
Estimated After Deleting 6 Cases
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EXHIBIT 8.8: Plot of Studentized Residuals Against Predicteds for Life Ex-
pectancy Model with 6 Cases Deleted
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Obs e* hii A:l} Obs e* hii A:Ij Obs e* h“' A:Ij
1 .263 .572 305 | 19 .880 .064 231 | 37 102 .059 .025
2 1.026 .046 226 | 20 -.282 .256 -.165 | 38 474 094 .153
3 1.029 .107 357 | 21 601 .047 134 | 39 539 .052 127
4 -101 .049 -.023 | 22 -1.026 .066 -.272 | 40 407 .084 123
5 328 .158 142 | 23 217 044 047 | 41 -.855 .107 -.296
6 -.775 .116 -.281 | 24 -1.942 .366 -1.474 | 42 211 .040 .043
7 .018 .208 009 | 25 .607 .037 118 | 43 -178 .047 -.040
8 213 .069 .058 | 26 -381 .071 -.105 | 44 101 .055 .024
9 -929 .276 -574 | 27 -047 .024 -007 | 45 2945 .077 .849

10 -1.975 .248 -1.133 | 28 420 .060 106 | 46 -553 .044 -.118

11 -.660 .101 -.221 | 29 -868 .046 -.191 | 47 -.693 .200 -.347
12 722 .080 212 | 30 392 .037 .076 | 48 -1.333 .362 -1.005
13 .244 .080 072 | 31 443 .037 .087 | 49 571 113 .204
14 -1.169 .070 -.321 ( 32 -880 .073 -.247 [ 50 -1.299 .175 -.598
15 -.806 .075 -.230 | 33 370 .101 124 | 51 065 .353 .048
16 .051 .040 .011 | 34 -1.018 .094 -.328 | 52 262 .093 .084
17 .240 170 109 | 35 1.057 .294 682 | 53 6.995 .201 4.483
18 -489 .240 -.275 | 36 .454  .038 .090 | 54 .069 .291 .044

EXHIBIT 8.9: Influence Diagnostics for Dial-a-Ride Model

two charge no fares and since we set the fare at 1 cent for the purpose of
taking logs, the value of this variable became a large negative number and
contributed to the high leverage. Benton Harbor has an enormous service
area. Although there are three much larger areas in the data, they are all
counties, and since each had 3 or 4 vehicles, it might be conjectured that
service was restricted mainly to their densest parts.

Using the criterion for DFFITS mentioned in Section 8.5, which is 2{(k +
1)/n]!/2 = .72, we see that five of the values shown are large, four of them
being those we flagged above as having large |e}|’s. Of the points mentioned,
Case 53 obviously stands out. It has by far the highest ej and DFFITS;.
Its DFBETAS for IND (2.12) compared with the standard error of IND
(.104) shows that its deletion would change the coefficient of IND (.80)
by more than 20 per cent. Case 53 corresponds to Regina, Saskatchewan,
which was well known in transportation planning circles as an extremely
unusual service. Therefore, we had no difficulty in deleting the point. Case
45 was from Xenia, Ohio. and it too had a very high load factor — 225
trips per vehicle for a 12 hour day. But we decided to eliminate Regina only
at this stage, since sometimes the deletion of one point can substantially
change the influence statistics for other points and because Regina was such
an unusual service. Ann Arbor (Case 1) does not have a large influence
(DFFITS;=.3), but because of its high leverage we should keep a close eye
on it.

As feared, after Regina was eliminated, the DFFITS for Ann Arbor shot
up. While the residual was low, RSTUDENT became 4.38 and DFFITS
almost 6. We had to drop Ann Arbor because it just had too much influence
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and we were reluctant to let one point be so dominating. On the next
round Xenia (RSTUDENT=6.1, DFFITS=1.7) was dropped. The normal
plot of Studentized residuals after running a weighted least squares on the
remaining points is shown in Exhibit 8.11 and appears to be fairly straight.
RSTUDENT’s and DFFITS’s are given in Exhibit 8.10. While there are still
fairly large DFFITS values, we did not seek to eliminate any other cases,
largely because, after eliminating the three cases, the value of s dropped
from 7.35 to 3.28 (see end of the discussion of Example 8.2).

Each of the three cases we eliminated represented a very unusual dial-a-
ride system. If we assume that we are constructing this model in order to
forecast ridership, we are implicitly assuming that these deleted points are
sufficiently unusual that any system to which we would apply our model
would not resemble them. Originally, these data were used to construct a
model to predict ridership for yet to be started small dial-a-ride systems in
the Chicago area. We were confident that such systems would not resemble
the large and/or heavily used systems of Ann Arbor, Regina or Xenia.

Obs e* hii Ag Obs e* hii Aﬁ Obs e* h,,;,,; Ag
1 — — — {19 1.678 .070 .459 | 37 1.000 .066 .266
2 1.978 .068 534 | 20 .558 .253 .324 | 38 690 .091 .219
3 2,567 .113 917 | 21 .680 .074 .192 | 39 .798 .064 .209
4 -901 .059 -.225 | 22 -996 .071 -275 | 40 -900 .169 -.407
5 1.100 .179 .514 | 23 -512 .086 ~-.157 | 41 -.632 .103 -.215
6 -.048 .127 -.018 | 24 -.855 .438 -.755 | 42 -455 .048 -.102
7 .288 .210 148 | 25 793 052 .186 | 43 -.367 .050 -.084
8 .486 .068 132 | 26 053 .073 .015 | 44 .563 .060 142
9 .861 .325 598 | 27 -1.245 .054 -.298 | 45 — — —

10 -2.194 .263 -1.312 | 28 221 107 .077 | 46 -1.789 .047 -.398
11 -2.191 .110 -769 [ 29 -1.049 .050 -.241 | 47 1.599 .211 .828
12 1.487 .081 444 | 30 .148 .063 .038 | 48 -1.686 .357 -1.258
13 -.068 .091 -.022 | 31 234 .043 .049 | 49 .594 125 .225
14 -553 .083 -.166 | 32 -586 .076 -.168 | 50 -.447 .169 -.202
15 -.339 .075 -.097 [ 33 -1.384 .223 -.741 | 51 .366 .404 .301
16 -.340 .046 -.074 | 34 -951 .093 -.305 | 52 271 114 .097
17 -.861 .229 -469 | 35 1.214 .333 .858 | 53 — — —
18 .091 .268 .055 [ 36 .284 .065 .075 | 54 293 .301 .192

EXHIBIT 8.10: Influence Diagnostics for Dial-a-Ride Model After Deleting 3
Points

Other analysts might continue with the process of eliminating points
or try new variables (e.g., an indicator variable for free fare services). We
recommend to the reader that he or she retrace our steps and then try
other alternatives. We also tried other alternatives, although to save space
we did not report on them here. When we had used these data to construct
a model to forecast ridership for new services in the Chicago area, we had
deleted six cases.

We should mention that the computations for this exercise were made
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EXHIBIT 8.11: Normal Plot for Studentized Residuals from Dial-a-Ride Model
Estimated After Deleting 3 Points

using the SAS NLIN procedure to compute the weights, which were as in
Example 6.8, p. 125, followed by the REG procedure to get the influence
diagnostics, the two procedures being put together in a single program.
While the residuals printed out by SAS PROC REG are not weighted, the
other statistics (RSTUDENT, DFFITS, DFBETAS) do take weighting into
account. ]

The tedium of applications like these might be alleviated if we had a pro-
cedure that would remove alternative sets of cases in a single computer run
and show us the effects of each alternative choice. Moreover, sometimes in-
dividual observations might not be too influential, but two or three together
might turn out to have undue influence. Not much work has been done on
this subject. One possibility is to use the indicator variable interpretation
of Studentized residuals presented in Section 8.3. Then one would append
an indicator variable corresponding to each of a limited number of obser-
vations and use a variable choice procedure (Chapter 11). Some techniques
also exist for obtaining the combined influence of several data points. These
procedures are described in detail in Belsley, Kuh and Welsch (1980), Cook
and Weisberg (1980, 1982) and Hadi (1985; see also Chatterjee and Hadi,
1986, particularly the discussions following the paper).

Notice that in each of the three examples presented, we carefully exam-
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ined the outlier or influential point. In one case, this led to the inclusion of
an additional variable; in other cases we eliminated the points after decid-
ing that they did not belong in the model we were seeking to construct. In
‘real life’ practical problems, it is not desirable to eliminate, without care-
ful examination, every point with a large amount of influence or a large
RSTUDENT value, although during diagnostic analysis one often needs to
delete points temporarily and then bring them back in later. In textbook
exercises, where the substantive background of data sets is not adequately
known, it is also sometimes necessary to discard points that are suspected
of not belonging to the model without fully understanding the underlying
reasons.
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8 A SoME PROOFS

PROOF OF (8.5): By considering X and X(;) as partitioned matrices with
each row forming a separate submatrix, we see that X'X = Y} | x,x} and
that

n n

XipXay =Y mewd =) mwy — zx; = X'X -z}, (8.14)
=1 =1
2#£4

Therefore, from Theorem A.1, p. 275, in Appendix A, we get (see also
Example A.8)

(X(Ii)X(i))_l = (X'X ~z2)) !
! ~1. pf 'xX -1
— (X/X)—l + (X X) wlwz(X ) )
1—h
Similarly,
X(’i)y(i) = Z TiY; — T3Yi = le — LiYi- (8.15)
j=1
From (8.14) and (8.15) we get
/ _1il'b XI _lil'X,X_lii
1- hii 1-— hu
_ (X'X) lwaib Pyy=1 hii
=b+ T (X'X) a:,y,(l-}—l_h“)
B (X' X) tzy(xlb — y;) _ (X' X) lxse;
—b+ 1—hii =t 1—h“
and (8.5) follows. a

PROOF OF (8.4): Since H is an idempotent matrix we have 3_,_; h?, =
hii. From (2.13) it follows that He = H[I — H]e = o and therefore, we
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have Y, hiee¢ = 0. Applying these results along with (8.5) we get

ye — x,b(i) Z — x)b + xb — x,b(i)]?
971

6g+:1:l (X'X) xiei(1 — hy) )2 = Z lee + hie(1 — hys) " tes)?
7_&

2l
Hl 3

Z[ee + hie(1 — hyi) " rei)® — [es + his(1 — hy;) 7Le)?
=1

n
= ? 1_ zz -2 2Zh +261(1— u lzelhil_(l‘—hii)_Qe?
=1

—Zel—(l— ii) m

and (8.4) follows. O

3

PROOF OF INDICATOR VARIABLE INTERPRETATION OF RSTUDENT:
For convenience of presentation and without loss of generality, we con-
sider the case of the RSTUDENT for the first observation and show that it
is the same as the t-value for an indicator variable z; which takes the value
1 for the first case and is zero otherwise. This variable z; is considered to be
an additional independent variable, i.e., we append it to the original model

Yi = Bo + brzir + - + Brwar + € (8.16)
and consider the model
= Bo + B1zi1 + - + BrTik + 62 + €, (8.17)

where ¢ = 1,...,n. This model, which has also been called the mean shift
operator model, can be written as

y=[1* X |B"+¢,

where 1* = (1,0,...,0)" and 8" = (6,8, .-..,0k)’. Let

1* (1* X)_I_ 1 T _1_ 11 €y
X’ Tz X'X ez Cxn )’

where @ is the first row of X. Then, from the formuls contained in Ex-
ample A.8, on p. 276, we get c11 = (1 — h11)7 !, Coz = (X'X — xy)) !
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and
Cpp = (X' X — z12)) 7!
(X'X)_l:l:l:lt'l(X'X)"1 :_:1:'1(X'X)_1

— st [+

where h1; = &/ (X'X)"'z,. The least squares estimate of 3* is given by
1

pr = [ 1 cr () y=| Cl2 v
ciz2 Cx X’ ci2 C2 X'y )’

Therefore, the least squares estimate of ¢ is
b= ciiyh + €1, X'y
= (1= hu) y ~ (X' X)Xy = (1= haa) (g — §1)

where 91 = )b and b = (X'X)~!X'y. Since y; — 9 is the usual residual
e1, its variance is 0%(1 — h1;). Consequently,

6/\/var (6) = e /[o(1 — h11)'/?).

Therefore, in order to show that e is the same as the t-value corresponding
to the variable z; in (8.17), all that remains to be done is to show that the
usual unbiased estimate of o2 from the model (8.17) is the 3%1) from the

model (8.16).
Notice that

’ * x ' el Cho Y1
v X)r=(n yX)(Cm C22)(X'y)

=cnyi +2ny Xewr + Yy XCn X'y

=1 =hp) 2 +2(1 - b))ty X (X' X)Ly
+yY X(X'X —x2)) " Xy

= (1= k1) 'y +2(1 - h1) 'oadin

(X'X)—lwlwg(X'X)—l] Xy
1—-hy

=1 =hu) 'Y +2(1 = ki) 'y + Y XD+ G5(1 — hay) !
= (1-hu) "y - §1)? +y' Xb.

Hence the residual sum of squares for (8.17) is

Yy—-y'(1* X W =y'y—y'Xb—(1-hu) (g — i)
== Zef - (1 - hu)'lef.
=1

It then follows from (8.4) that the usual unbiased estimate of o2 from the
model (8.17) is the desired s7,). O

+y' X [(X'X)7H +
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Problems

Exercise 8.1: Let
X'y = (@1, Tic1, Tit1,. .., Tn)
and Py = X ()’ X (;). Show that
hi=1—[1+aPu  a] ™t

Thus, points with large values of wQP(i)"lwi have a large effect on the
estimates.

Exercise 8.2: *Show directly (i.e., without using the indicator variable
interpretation) that e} has Student’s t distribution with n — k — 2 degrees
of freedom.

[Hint: Note that b(z) and s(;)> and y; are independent. Show that

9 = i[I + (X () X () " wawi] 710(0) + huigyi-
Hence show that e; is independent of s(;2.]

Exercise 8.3: *A method of determining if the first observation belongs
to the model y; = x;8 +¢; with ¢ = 2,...,n is to test the hypothesis
E[y1] = =18 against the alternative E[yi] # x18. Under the assumption
that € ~ N(o0,0%I), show that the likelihood ratio test would reject the
hypothesis for large values of (e})2.

Exercise 8.4: Fit a line by least squares to the following points: (4,.9),
(3,2.1), (2,2.9), (1,4.1) and (20,20). Obtain Studentized residuals and also
plot the points and the estimated line. Does the point (20,20) appear as an
outlier? Using a suitable indicator variable, numerically demonstrate the
indicator variable interpretation of RSTUDENT’s. Also demonstrate that
DFFIT and the DFBETA’s do indeed measure what has been claimed for
them.

Exercise 8.5: Investigate the presence of outliers and influential points
using hi;, e, DFBETAS;; and DFFITS; for the model you fitted in Exer-
cise 2.11, p. 50.

Exercise 8.6: Redo Exercises 1.12, p. 25, and 2.16, p. 53, after deleting
the fourth case. Explain why, in both cases, the RSTUDENT value of the
first observation changed so much on deleting the point.

Exercise 8.7: Run a least squares program on the data in Exhibit 1.11,
p. 15, to obtain a regression of property crime rate on population. Exam-
ine various influence diagnostics and discuss what you would do. Regress
violent crime rate on property crime rate and obtain influence diagnostics.
State your conclusions. Do the same for a regression of violent crime rate
against property crime rate and