UNIVERSITY OF TORONTO

Faculty of Arts and Science

Term Test, October 16th, 2012

ACT 460 / STA 2502

DURATION - 120 minutes

EXAMINER: Prof. S. Jaimungal

COURSE CODE (circle one):

ACT 460

STA 2502

LAST NAME: Solutions
FIRST NAME:
STUDENT #·

Each question is worth 10 points

- NOT ALL QUESTIONS ARE OF THE SAME DIFFICULTY .

Please write clearly!

NO AIDS ALLOWED - NO CALCULATORS

Recall that $\mathbb{E}[e^{uZ}] = e^{\frac{1}{2}u^2}$ where $Z \sim \mathcal{N}(0,1)$ is a standard normal random variable.

1 [10]	2 [10]	3 [10]	4 [10]	5 [10]	6 [10]	Total [60]

- 1. Write down concise (about 50 words) but precise responses to each of the following:
 - (a) /5/ What is the fundamental theorem of asset pricing?

(b) [5] What is unacceptable about the Ho-Lee model of interest rates?

it is normally districted and it's variouse grows with T

=> high prob of T < 0.

- 2. [10] Please indicate true or false. no explanations required
 - -1 for incorrect answer, +2 for correct answer, 0 for blank answer.
 - (a) [T] (F)

The price of a call option always decreases with increasing volatility.

(b) [T] (F)

If an interest rate model matches bond prices at all maturities, then the risk-neutral branching probabilities must equal $\frac{1}{2}$.

(c) [T] (F)
Suppose a risk-neutral measure exists, then the price of traded assets are unique.

(d) [T] (F)

The limiting distribution of a discrete time asset price model must always be log-normal.

(e) (T) [F]

A forward start call option price is linear in the current spot price.

3. Sketch each of the following:

(a) [5] The optimal exercise curves for an American put option with maturity T=1 and strike K=1 for three levels of volatility (i) low (ii) medium and (iii) high. [sketch the three curves on the same graph, clearly label them and any interesting points.]

(b) [5] The price of a portfolio consisting of 1 long put struck at \$1, and 2 short calls struck at \$1 for three maturities: (i) at maturity T = 0 (ii) maturity T = 1 and (iii) maturity T = 2. [sketch the three curves on the same graph, clearly label them and any interesting points.]

4. (a) You are given that the following 5 paths are the only possible paths of an asset price and that their risk-neutral probabilities are all $\frac{1}{5}$ and r=0.

- Write down values (don't carry out the arithmetic) for each of the following 1-year options
 - i. [1] a European call struck at 100.

ii. [1] a European Binary put struck at 110.

iii. [1] a down-and-in knock-in call with lower barrier of 80 and a strike of 70.

iv. [1] an up-and-out knock-out put with upper barrier of 110 and a strike of 100.

v. [1] an up-and-in knock-in binary put with upper barrier of 105 and strike 110.

(b) [5] Consider the interest rate tree shown diagram below $(r_u > r_d)$ – each time step is 1-year.

The rates correspond to effective discounting – e.g. discounting over the first period is 1/(1+r). You are told that a contingent claim maturing at t=1 paying 1 if the interest rates rise and 0 if they drop has value $C_0 = \frac{1}{4} \frac{1}{1+r}$. Derive an expression for the value of a 2-year zero coupon bond in terms of r, r_u and r_d only.

$$C_{\circ} = \frac{q}{1+r} \Rightarrow = \frac{1}{4} \frac{1}{1+r}$$

$$\Rightarrow q = \frac{1}{4}$$

- 5. Assume an equity price S_t is modeled as in the Black-Scholes model (i.e. the limiting case of the CRR model as $\Delta t \downarrow 0$ and interest rates are constant at r). For each of the following, write your answers terms of $\Phi(x) \triangleq \mathbb{Q}(Z < x)$ where Z is a standard normal random variable under the risk-neutral measure \mathbb{Q} .
 - (a) [5] <u>Derive</u> an expression for the (t = 0) price of an option with T-maturity payoff

$$\varphi = S_T \, \mathbb{I}_{S_T < K} \ .$$

Here K is a constant and, as usual, \mathbb{I}_{ω} is the indicator function of the event ω , i.e. equals 1 if ω occurs and 0 otherwise.

$$V_{\circ} = e^{-rT} \mathbb{E}^{\alpha} \left[Q \right]$$

$$= e^{-rT} \mathbb{E}^{\alpha} \left[S_{T} I_{S_{T}} K_{T} \right]_{\varepsilon}$$
and $S_{T} \stackrel{d}{=} S_{\circ} e^{\left(r - \frac{1}{2}\sigma^{2}\right)T + \sigma J_{T}} \stackrel{d}{=} \sum_{s} \mathbb{E}^{\alpha} \left[S_{T} I_{S_{T}} K_{T} \right]_{\varepsilon} = \mathbb{E}^{\alpha} \left[S_{\circ} e^{\left(r - \frac{1}{2}\sigma^{2}\right)T + \sigma J_{T}} \stackrel{d}{=} \sum_{s} e^{\left(r - \frac{1}{2}\sigma^{2}\right)T} \right]$

$$= \sum_{s} \mathbb{E}^{\alpha} \left[S_{T} I_{S_{T}} K_{T} \right] \stackrel{d}{=} \mathbb{E}^{\alpha} \left[S_{\circ} e^{\left(r - \frac{1}{2}\sigma^{2}\right)T + \sigma J_{T}} \stackrel{d}{=} \sum_{s} e^{\left(r - \frac{1}{2}\sigma^{2}\right)T} \right]$$

$$= \sum_{s} \mathbb{E}^{\alpha} \left[S_{\circ} e^{\left(r - \frac{1}{2}\sigma^{2}\right)T} \right] \stackrel{d}{=} \mathbb{E}^{\alpha} \left[e^{\sigma J_{T}} \stackrel{d}{=} I_{2 < 3}^{*} I_{2 < 3}$$

This page left intentionally blank... continue work here...

$$f = \int_{-\infty}^{\infty} e^{-5\pi 3} \frac{1}{3} (3^{*}) \frac{e^{-\frac{1}{2}3^{2}}}{\sqrt{2\pi}} d3$$

$$= \int_{-\infty}^{3^{*}} e^{-5\pi 3} - \frac{1}{2} 3^{2} \frac{d3}{\sqrt{2\pi}}$$

$$= \int_{-\infty}^{3^{*}} e^{-\frac{1}{2}(3 - \sigma)} + \frac{1}{2} \sigma^{2} T$$

$$= e^{\frac{1}{2}\sigma^{2}T} \int_{-\infty}^{3^{*}} -e^{-\frac{1}{2}3^{2}} dy$$

$$= e^{\frac{1}{2}\sigma^{2}T} \Phi(+3^{*} - \sigma)T$$

$$= S_{0} e^{\Gamma T} = \int_{0}^{\pi} e^{\Gamma T} dt = \int_{0}^{\pi} e^{\Gamma T} dt = \int_{0}^{\pi} \int_{0}^{\pi} \int_{0}^{\pi} dt = \int_{0}^{\pi} \int_{0}^{\pi}$$

(b) [5] <u>Derive</u> an expression for the (t=0) price of a forward starting option with T-payoff $\varphi = \max(S_T, \alpha S_U) - S_V.$

Here, 0 < V < U < T, $\alpha > 0$ is a constant.

What
$$C_0 = e^{-rT} |E^{\alpha}[Q]$$

$$= e^{-rT} (|E^{\alpha}[\max(S_T, \alpha S_N)] - |E^{\alpha}[S_N])$$

$$= e^{-rT} |E^{\alpha}[\max(S_T, \alpha S_N)] - e^{-rT} |e^{-rV}| S_0$$

$$= e^{-rT} |E^{\alpha}[\max(S_T, \alpha S_N)] - e^{-rT} |e^{-rV}| S_0$$

$$= e^{-rT} |E^{\alpha}[\max(S_T, \alpha S_N)] - e^{-rT} |e^{-rV}| S_0$$

$$= e^{-rT} |E^{\alpha}[\max(S_T, \alpha S_N)] - |E^{\alpha}[S_N]| S_0$$

$$= e^{-rT} |S_N]| S_0$$

$$= e^{-rT} |S_N]| S_0$$

$$= e^{-rT} |S_N]| S_0$$

$$= e^{-rT$$

This page left intentionally blank... continue work here...

hence,

$$g_1 = S_u e^{(-\frac{1}{2}\sigma^2)\tau} \int_{3^*}^{+\infty} e^{-\sqrt{2}s^2} \frac{e^{-\frac{1}{2}s^2}}{\sqrt{2\pi}} ds$$
 $= S_u e^{(-\frac{1}{2}\sigma^2)\tau} \int_{3^*}^{+\infty} e^{-\frac{1}{2}(3-\sigma^2\tau)^2} + \frac{1}{2}\sigma^2\tau} ds$
 $= S_u e^{-\frac{1}{2}\tau} \qquad \Phi(-3^* + \sigma^2\tau)$

and $g_2 = \alpha S_u | E^{\alpha}[I S_7 < \kappa S_u | S_u]$
 $= \alpha S_u | E^{\alpha}[I S_7 < \kappa S_u | S_u]$
 $= \alpha S_u | E^{\alpha}[I S_7 < \kappa S_u | S_u]$
 $= \alpha S_u | E^{\alpha}[I S_7 < \kappa S_u | S_u]$
 $= \alpha S_u | E^{\alpha}[I S_7 < \kappa S_u | S_u]$
 $= \alpha S_u | E^{\alpha}[I S_7 < \kappa S_u | S_u]$
 $= \alpha S_u | E^{\alpha}[I S_7 < \kappa S_u | S_u]$
 $= \alpha S_u | E^{\alpha}[I S_7 < \kappa S_u | S_u]$
 $= \alpha S_u | E^{\alpha}[I S_7 < \kappa S_u | S_u]$
 $= \alpha S_u | E^{\alpha}[I S_7 < \kappa S_u | S_u]$
 $= \alpha S_u | E^{\alpha}[I S_7 < \kappa S_u | S_u]$
 $= \alpha S_u | E^{\alpha}[I S_7 < \kappa S_u | S_u]$
 $= \alpha S_u | E^{\alpha}[I S_7 < \kappa S_u | S_u]$
 $= \alpha S_u | E^{\alpha}[I S_7 < \kappa S_u | S_u]$
 $= \alpha S_u | E^{\alpha}[I S_7 < \kappa S_u | S_u]$
 $= \alpha S_u | E^{\alpha}[I S_7 < \kappa S_u | S_u]$
 $= \alpha S_u | E^{\alpha}[I S_7 < \kappa S_u | S_u]$
 $= \alpha S_u | E^{\alpha}[I S_7 < \kappa S_u | S_u]$
 $= \alpha S_u | E^{\alpha}[I S_7 < \kappa S_u | S_u]$
 $= \alpha S_u | E^{\alpha}[I S_7 < \kappa S_u | S_u]$
 $= \alpha S_u | E^{\alpha}[I S_7 < \kappa S_u | S_u]$
 $= \alpha S_u | E^{\alpha}[I S_7 < \kappa S_u | S_u]$
 $= \alpha S_u | E^{\alpha}[I S_7 < \kappa S_u | S_u]$
 $= \alpha S_u | E^{\alpha}[I S_7 < \kappa S_u | S_u]$
 $= \alpha S_u | E^{\alpha}[I S_7 < \kappa S_u | S_u]$
 $= \alpha S_u | E^{\alpha}[I S_7 < \kappa S_u | S_u]$
 $= \alpha S_u | E^{\alpha}[I S_7 < \kappa S_u | S_u]$
 $= \alpha S_u | E^{\alpha}[I S_7 < \kappa S_u | S_u]$
 $= \alpha S_u | E^{\alpha}[I S_7 < \kappa S_u | S_u]$
 $= \alpha S_u | E^{\alpha}[I S_7 < \kappa S_u | S_u]$
 $= \alpha S_u | E^{\alpha}[I S_7 < \kappa S_u | S_u]$
 $= \alpha S_u | E^{\alpha}[I S_7 < \kappa S_u | S_u]$
 $= \alpha S_u | E^{\alpha}[I S_7 < \kappa S_u]$
 $= \alpha S_u | E^{\alpha}[I S_7 < \kappa S_u]$
 $= \alpha S_u | E^{\alpha}[I S_7 < \kappa S_u]$
 $= \alpha S_u | E^{\alpha}[I S_7 < \kappa S_u]$
 $= \alpha S_u | E^{\alpha}[I S_7 < \kappa S_u]$
 $= \alpha S_u | E^{\alpha}[I S_7 < \kappa S_u]$
 $= \alpha S_u | E^{\alpha}[I S_7 < \kappa S_u]$
 $= \alpha S_u | E^{\alpha}[I S_7 < \kappa S_u]$
 $= \alpha S_u | E^{\alpha}[I S_7 < \kappa S_u]$
 $= \alpha S_u | E^{\alpha}[I S_7 < \kappa S_u]$
 $= \alpha S_u | E^{\alpha}[I S_7 < \kappa S_u]$
 $= \alpha S_u | E^{\alpha}[I S_7 < \kappa S_u]$
 $= \alpha S_u | E^{\alpha}[I S_7 < \kappa S_u]$
 $= \alpha S_u | E^{\alpha}[I S_7 < \kappa S_u]$
 $= \alpha S_u | E^{\alpha}[I S_7 < \kappa S_u]$
 $= \alpha S_u | E^{\alpha}[I S_7 < \kappa S_u$

6. Consider the (discrete) model of short rate of interest r_{t_n} (at time step $n, t_n = n\Delta t$) given recursively by

$$r_{t_n} = r_{t_{n-1}} + \sigma \sqrt{\Delta t} \, x_n$$
 where x_n are (± 1) Bernoulli r.v. with $\mathbb{Q}(x_k = 1) = \mathbb{Q}$

(a) Determine q such that r_{t_n} has a drift of $\theta_{t_{n-1}}$, i.e. such that $\mathbb{E}^{\mathbb{Q}}[r_{t_n} - r_{t_{n-1}}] = \theta_{t_{n-1}} \Delta t$ and find the limiting distribution of r_T where $T = N \Delta t$ as $N \to +\infty$.

$$|E^{0}[\Gamma_{tn}-\Gamma_{tn}]|^{2} = \sigma \int \Delta t \left(+1 q_{n} + (-1)(1-q_{n}) \right)$$

$$= \sigma \int \Delta t \left(2q_{n} - 1 \right) = O_{tn-1} \Delta t$$

$$\Rightarrow q_{n} = \frac{1}{2} \left[1 + O_{tn-1} \int \Delta t \right]$$

clearly by ChT we'll have $\Gamma_{+} \stackrel{d}{\longrightarrow} \mathcal{N}(m, V)$, so need m and V.

$$M_{F} \mathbb{E}^{\mathbb{C}}[\Gamma_{tn}] = \sigma J\Delta t \sum_{n=1}^{N} \mathbb{E}^{\mathbb{C}}[\chi_{n}]$$

$$= \sum_{n=1}^{N} \Theta_{tn} \Delta t \longrightarrow \int_{0}^{T} \Theta_{s} ds = n_{t}$$

$$V^{0}[\Gamma_{t\nu}] = \sigma^{2}\Delta t \sum_{n=1}^{N} V^{0}[\times_{n}]$$
 Since $x_{i}, x_{i},...$ are independent

(b) [6] Determine the limiting (as $N \to +\infty$) joint distribution of r_T and $I_T = \int_0^T r_s ds$ where $T = N\Delta t$.

$$T_{T} = \sum_{n=1}^{N} \sum_{t_{n-1}}^{t_{n-1}} \Delta t = \sum_{n=1}^{N} \sum_{m=1}^{N-1} \sum_{m=1}^{N-1} \sum_{n=1}^{N-1} \sum_{m=1}^{N-1} \sum_{m=1}^{N-1} \sum_{n=1}^{N-1} \sum_{m=1}^{N-1} \sum_{m=1}^{N-1} \sum_{n=1}^{N-1} \sum_{m=1}^{N-1} \sum_{m=1}^{N-1} \sum_{m=1}^{N-1} \sum_{m=1}^{N-1} \sum_{n=1}^{N-1} \sum_{m=1}^{N-1} \sum_{m=1}^{N-1} \sum_{m=1}^{N-1} \sum_{m=1}^{N-1} \sum_{n=1}^{N-1} \sum_{m=1}^{N-1} \sum_{m=1}^{N$$

for
$$VII_7$$
 next e that:
 $\frac{N}{2} \sum_{n=1}^{N-1} x_n = (0)$
 $1 + x_1 + x_2 + x_3 + \cdots + x_{N-1}$

$$V[I_{T}] = \sigma^{2} A^{2} \sum_{n=1}^{N-1} (N-n)^{2} V[x_{n}] = \sum_{n=1}^{N-1} (N-n)^{2} \sigma^{2} A^{2}$$

$$\sum_{n=1}^{N-1} are independent} \sum_{n=1}^{N-1} \sum_{n=1}^{N-1} \Delta t \cdot \sigma^{2} A^{2}$$

$$\sum_{n=1}^{N-1} are independent} \sum_{n=1}^{N-1} (N-n)^{2} \delta_{n-1} \Delta t \cdot \sigma^{2} A^{2}$$

$$\sum_{n=1}^{N-1} are independent} \sum_{n=1}^{N-1} (N-n)^{2} \delta_{n-1} \Delta t \cdot \sigma^{2} A^{2}$$

$$\sum_{n=1}^{N-1} are independent} \sum_{n=1}^{N-1} (N-n)^{2} \delta_{n-1} \Delta t \cdot \sigma^{2} A^{2}$$

$$\sum_{n=1}^{N-1} are independent} \sum_{n=1}^{N-1} (N-n)^{2} \delta_{n-1} \Delta t \cdot \sigma^{2} A^{2}$$

$$\sum_{n=1}^{N-1} are independent} \sum_{n=1}^{N-1} (N-n)^{2} \delta_{n-1} \Delta t \cdot \sigma^{2} A^{2}$$

$$\sum_{n=1}^{N-1} are independent} \sum_{n=1}^{N-1} (N-n)^{2} \delta_{n-1} \Delta t \cdot \sigma^{2} A^{2}$$

$$\sum_{n=1}^{N-1} are independent} \sum_{n=1}^{N-1} (N-n)^{2} \delta_{n-1} \Delta t \cdot \sigma^{2} A^{2}$$

$$\Rightarrow V[I_7] \Rightarrow \lim_{N \to +\infty} \sigma^2 \Delta t^3 \frac{\sum (N-n)}{\sum (N-n)} = \lim_{N \to \infty} \frac{\sigma^2 \Delta t^3}{6} \frac{(2N-1)(N-1)N}{3}$$

$$= \frac{\sigma^2 T^3}{3}$$

This page left intentionally blank... continue work here...

next need
$$CT \Gamma_{H}, I_{T}$$
)

$$= CT \sum_{N=1}^{N} x_{N} \sigma_{N} \Delta t, \quad \sum_{N=1}^{N-1} (N-n) x_{N} \sigma_{N} \Delta t^{N}$$

$$= \sigma^{2} \Delta t^{2} \sum_{N=1}^{N-1} CT x_{N}, x_{N} CN-N$$

$$= \sigma^{2} \Delta t^{2} \sum_{N=1}^{N-1} (1 - \theta_{t_{N-1}} \Delta t) (N-n)$$

$$= \sigma^{2} \Delta t^{2} \sum_{N=1}^{N} (1 - \theta_{t_{N-1}} \Delta t) (N-n)$$

$$= \sigma^{2} \Delta t^{2} \sum_{N=1}^{N} (N-n) \theta_{t_{N-1}} \Delta t$$

$$\Rightarrow \frac{\sigma^{2} T^{2}}{2}$$

by CLT

$$\begin{bmatrix} \int_{0}^{T} \theta_{N} du \\ \int_{0}^{T} \int_{0}^{N} du du \\ \int_{0}^{T} \int_{0}^{N} du du du \\ \int_{0}^{T} \int_{0}^{N} du du du du du du du du} \end{bmatrix} = \sigma^{2} T^{2} \sum_{N=1}^{N-1} \frac{\sigma^{2} T^{2}}{2}$$