IMPA Commodities Course : Numerical Methods

Sebastian Jaimungal sebastian.jaimungal@utoronto.ca

Department of Statistics and Mathematical Finance Program, University of Toronto, Toronto, Canada http://www.utstat.utoronto.ca/sjaimung

February 22, 2008

Table of contents

- Monte Carlo Methods
 - Basic MC Methods
 - Monte Carlo Bridges
 - Least Squares Monte Carlo
- 2 Trees

Basic MC Methods

For option valuation, an expectation is the basic quantity

$$V_t = e^{-r(T-t)} \mathbb{E}_t^{\mathbb{Q}} \left[\varphi(F_T(U)) \right]$$

 For value-at-risk calculations, quantiles are the object of interest

$$VaR_p \triangleq \max \left\{ X : \mathbb{P}\left(\sum_i a_i V_i > X\right) > p \right\} - \mathbb{E}^{\mathbb{P}}\left[\sum_i a_i V_i\right]$$

- ullet For simulation, the price path $\{F_{t_1}(U),F_{t_2}(U),\dots\}$ is required
- In all cases Monte Carlo simulation can assist

Basic MC Methods

- Idea: simulate from the distribution of relevant quantity and compute average
- Example: Price a 1-year floating strike Asian option on the $\overline{1.25}$ -year forward contract with averaging occurring over the last month of the contract using the Schwartz model
 - The payoff of this option is

$$\varphi = \left(F_1(1.25) - \sum_{i=1}^{20} F_{1+(i-20)/251}(1.25)\right)_{+}$$

- Need to simulate the forward price for all days in final month
- Simulate in one step the forward price at time 1 20/251
- ullet Simulate daily time-steps ($\Delta t=1/251$) within month
- Compute pay-off and discount
- Average over many paths

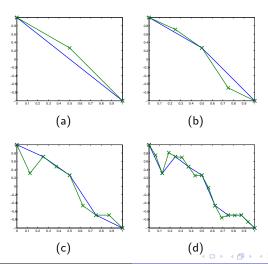
- Rather than simulating entire path, can simulate the path in a progressive refinement manner
- A Brownian bridge is a way of generating a Brownian path conditional on the end points
 - Given $X(0) = x_0$ and $X(t) = x_t$ generate X(s) for 0 < s < t.
- The joint distribution of X(t), X(s) given X(0) is a bivariate normal

$$\left(\begin{array}{c} X(s) \\ X(t) \end{array}\right)\bigg|_{X_0=x_0} \sim \mathcal{N}\left(\left(\begin{array}{c} x_0 \\ x_0 \end{array}\right); \left(\begin{array}{cc} s & s \\ s & t \end{array}\right)\right)$$

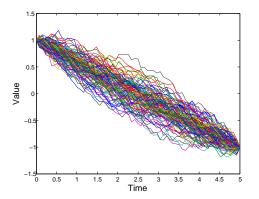
Can then show that,

$$X(s)|_{X(0)=x_0,X(t)=x_t} \sim \mathcal{N}\left(x_0 + \frac{s}{t}(x_t - x_0); \sigma^2 \frac{(t-s)s}{t}\right)$$

A Bridge refinement example: 4 refinement steps

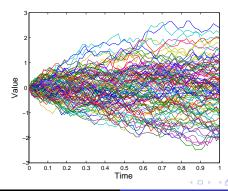


Many Brownian Bridge paths: 6 refinement steps, 100 paths, $X_0=1,~X_1=-1,~\sigma=0.2$



To generate Brownian sample paths using a Brownian Bridge:

- **1** generate random sample of X(t) given X(0):
 - $X(t)|_{X(0)=x_0}\sim \mathcal{N}(x_0;t)$
- 2 build bridge from $X(0) = x_0$ to $X(t) = x_t$
- repeat from step 1



For mean-reverting process

$$dX_t = \kappa(\theta - X_t) dt + \sigma dW_t$$

• The joint of X_{t_1}, X_s given X_{t_0} is

$$\left(\begin{array}{c}X_{s}\\X_{t_{1}}\end{array}\right)\bigg|_{X_{t_{0}}}\sim\mathcal{N}\left(\left(\begin{array}{c}\theta+e^{-\kappa\left(s-t_{0}\right)}(X_{t_{0}}-\theta)\\\theta+e^{-\kappa\left(t-t_{0}\right)}(X_{t_{0}}-\theta)\end{array}\right);\;\Sigma\right)$$

where

$$\Sigma = \frac{\sigma^2}{2\kappa} \left(\begin{array}{cc} 1 - e^{-2\kappa(s - t_0)} & 1 - e^{-2\kappa(s - t_0)} \\ 1 - e^{-2\kappa(s - t_0)} & 1 - e^{-2\kappa(t - t_0)} \end{array} \right)$$

Can then show that

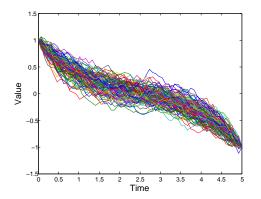
$$X_{s}|_{X_{t_0},X_{t_1}} \sim \mathcal{N}(m;v)$$

with

$$m = e^{-\kappa(s-t_0)} \left[X_0 + \theta(e^{\kappa(s-t_0)} - 1) + \frac{e^{2\kappa(s-t_0)} - 1}{e^{2\kappa(t-t_0)} - 1} (e^{-\kappa(t_1-t_0)} X_{t_1} - (X_{t_0} + \theta(e^{\kappa(t_1-t_0)} - 1))) \right]$$

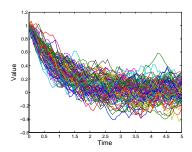
$$v = \frac{\sigma^2}{2\kappa} (e^{2\kappa(t-s)} - 1) \frac{e^{2\kappa(s-t_0)} - 1}{e^{2\kappa(t-t_0)} - 1}$$

Many Mean-Reverting Bridge paths: 6 refinement steps, 100 paths, $X_0 = 1$, $X_1 = -1$, $\theta = 0$, $\kappa = 1$, $\sigma = 0.2$



To generate Mean-Reverting sample paths using a Mean-Reverting Bridge:

- **1** generate random sample of X(t) given X(0)
- ② build bridge from $X(0) = x_0$ to $X(t) = x_t$
- repeat from step 1



6 refinement steps, 100 paths, $X_0 = 1$, $\theta = 0$, $\kappa = 1$, $\sigma = 0.2$

- Carrier(1994) and Longstaff & Schwartz (2000) developed the least-squares Monte Carlo method for valuing early exercise clauses.
- Basic idea
 - Generate sample paths forward in time
 - ② Place payoff at end nodes
 - Ompute discounted value of option
 - Estimate conditional expectation by projection onto basis functions
 - Oetermine optimal exercise point using basis functions
 - Repeat from step 3

Example: American Put strike= 1, spot= 1, r = 0.05:

Asset prices

Path	t=0	t=1	t=2	t=3
1	1	0.95	0.94	0.82
2	1	0.97	1.21	1.15
3	1	0.96	0.91	0.87
4	1	0.84	1.20	0.87
5	1	0.93	0.90	0.91
6	1	1.03	0.99	1.01

Example: American Put strike= 1, spot= 1, r = 0.05:

t=2	t=3
asset prices	payoff
0.94	0.18
1.21	0
0.91	0.13
1.20	0.13
0.90	0.09
0.99	0

- Compute payoff at t = 3
- Focus only on paths which are in the money at t = 2

• Compute discounted value of payoffs at time t = 2

t = 2	t=2	t=3
discounted payoff	asset prices	payoff
0.17	0.94	0.18
0	1.21	0
0.12	0.91	0.13
0.12	1.20	0.13
0.08	0.90	0.09
0	0.99	0

• Regress discounted payoff onto asset prices at t = 2 using basis functions (e.g. 1, S, S^2):

$$\overline{V}_2(S) = -55.04 + 117.7 \, S - 62.75 \, S^2$$

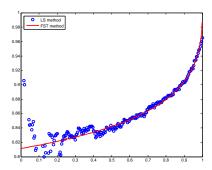
• Regression gives estimate of $\mathbb{E}[e^{-r\Delta t}V_{t+dt}|S_t]$

• Compare estimate discounted expectation with immediate exercise value

t = 2	t=2	t=2	t=2
est. disc. exp.	asset prices	exercise value	est. option price
0.1697	0.94	0.06	0.17
-	1.21	0	0
0.1208	0.91	0.09	0.12
-	1.20	0	0.12
0.0795	0.90	0.10	0.10 x
0.0001	0.99	0.01	0.01 x

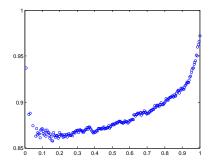
- In this example last two branches are optimal to exercise
- Notice that the realized value at node t=2 are used when going backwards, not the estimate of the conditional expectation

- Continue working backwards to obtain estimated prices at t=1 and then t=0
- Example: American put strike = 1, term = 1, r = 5%, $\sigma = 20\%$



• 250 steps, 300,000 sample paths

• Example: American put strike = 1, term = 1, r = 5%, κ = 1, θ = 0, σ = 20%



• 250 steps, 300,000 sample paths

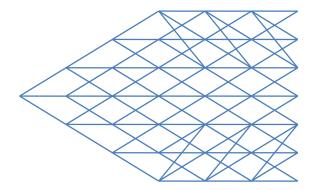
- Binomial trees are not appropriate for commodities due to mean-reversion
- Trinomial trees are used instead
- Branching probabilities choosing to match mean and variance

$$\mathbb{E}_{t}^{\mathbb{Q}}[X_{t+\Delta t} - X_{t}] = (e^{-\kappa \Delta t} - 1)X_{t} \triangleq MX_{t}$$

$$\mathbb{V}_{t}^{\mathbb{Q}}[X_{t+\Delta t} - X_{t}] = \frac{\sigma^{2}}{2\kappa}(1 - e^{-2\kappa \Delta t}) \triangleq V$$

- Branch steps set to $\Delta X = \sqrt{3V}$
- Tree is cut at high and low values to avoid negative probabilities

Zero mean-reversion level



Middle of tree branching probabilities:

$$p_{u} = \frac{1}{6} + \frac{j^{2}M^{2} + jM}{2}$$

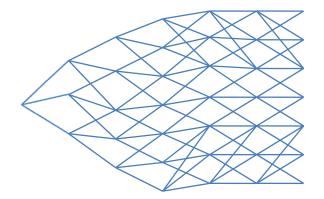
$$p_{m} = \frac{2}{3} - j^{2}M^{2}$$

$$p_{d} = \frac{1}{6} + \frac{j^{2}M^{2} - jM}{2}$$

• Top and Bottom of tree branching probabilities:

$$\begin{array}{lll} & \textit{Top} & \textit{Bottom} \\ p_u = & \frac{7}{6} + \frac{j^2 M^2 + 3jM}{2} & p_u = & \frac{1}{6} + \frac{j^2 M^2 - jM}{2} \\ p_m = & -\frac{1}{3} - j^2 M^2 - 2jM & p_m = & -\frac{1}{3} - j^2 M^2 + 2jM \\ p_d = & \frac{1}{6} + \frac{j^2 M^2 + jM}{2} & p_d = & \frac{7}{6} + \frac{j^2 M^2 - 3jM}{2} \end{array}$$

Shifted mean-reversion level



For simple mean-reversion will shift via $heta + (\ln S_0 - heta)e^{-\kappa\,t} + X_t$

Comparison of LSM and Trinomial model

