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MC Methods

For option valuation, an expectation is the basic quantity

Vi = e (TS [p(Fr(U))]

For value-at-risk calculations, quantiles are the object of
interest

VaR, £ max{ X :P (> aVi>X | >pr—EF |> a3V

For simulation, the price path {F;, (U), Ft,(U), ...} is required

In all cases Monte Carlo simulation can assist
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Basic MC Methods

@ ldea: simulate from the distribution of relevant quantity and
compute average

@ Example: Price a 1-year floating strike Asian option on the
1.25-year forward contract with averaging occurring over the
last month of the contract using the Schwartz model

o The payoff of this option is

20
o= <F1(1-25) - Z F1+(/—2o)/251(1-25)>
+

i=1

Need to simulate the forward price for all days in final month
Simulate in one step the forward price at time 1 — 20/251
Simulate daily time-steps (At = 1/251) within month
Compute pay-off and discount

Average over many paths
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Brownian Bridges

@ Rather than simulating entire path, can simulate the path in a
progressive refinement manner

@ A Brownian bridge is a way of generating a Brownian path
conditional on the end points
o Given X(0) = xp and X(t) = x; generate X(s) for 0 < s < t.

@ The joint distribution of X(t), X(s) given X(0) is a bivariate

normal
(e )= (C2) (5 2))

@ Can then show that,

=)

S
X(S)‘X(O):XO,X(t):xt ~N <X0 + E(Xt - XO); o t
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Brownian Bridges

A Bridge refinement example: 4 refinement steps
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Brownian Bridges

Many Brownian Bridge paths: 6 refinement steps, 100 paths,

Xo=1 X1 =-1,0=02

Value
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Brownian Bridges

To generate Brownian sample paths using a Brownian Bridge:
© generate random sample of X(t) given X(0):
X(8)Ix(0)=x ~ N (x0; 1)
@ build bridge from X(0) = xp to X(t) = x¢
© repeat from step 1

Value
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Mean-Reverting Bridges

@ For mean-reverting process
dXt = I‘i(e — Xt) dt + o th
@ The joint of X, Xs given Xy, is
Xs 0 + e (50 (X,, —6)
~Y . Z
< Xfl > X N (( 0+ eiﬂ(tito)(xto - 0) ,
to

where

Y= 1 — e 26(s—t0) 1 _ g—2x(t—to)

o2 1— e 2% (s—t0) 1 _ e 2K (s—to)
2K < )
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Mean-Reverting Bridges

@ Can then show that
XS\Xthtl ~ N (m;v)
with
m = e "=0) | X5 4+ f(e"(7t) — 1)

g2k (s—t0) _1

—k(t1— 1 ke (t—t

+ m(e (t1—to) th — (Xto + 9(6 (ti—to) _ 1)))
2 2H(S—t0) _ 1
_ 1 2k (t—s) 6‘7
V=gl 1) o2 (t-t0) _ 1
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Mean-Reverting Bridges

Many Mean-Reverting Bridge paths: 6 refinement steps, 100 paths,
Xo:].,Xlz—].,Q:O,/{:].,O':OQ
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Mean-Reverting Bridges
To generate Mean-Reverting sample paths using a Mean-Reverting

Bridge:
© generate random sample of X(t) given X(0)
@ build bridge from X(0) = xp to X(t) = x;
© repeat from step 1
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Least Squares Monte Carlo

e Carrier(1994) and Longstaff & Schwartz (2000) developed
the least-squares Monte Carlo method for valuing early
exercise clauses.

@ Basic idea

@ Generate sample paths forward in time

@ Place payoff at end nodes

© Compute discounted value of option

@ Estimate conditional expectation by projection onto basis
functions

© Determine optimal exercise point using basis functions

@ Repeat from step 3
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Least Squares Monte Carlo

Example: American Put strike= 1, spot=1, r = 0.05:

Asset prices

Path t=0 t=1 t=2 t=3
1 1 095 094 0.82
2 1 097 121 1.15
3 1 096 091 0.87
4 1 084 120 0.87
5 1 093 090 0.91
6 1 103 099 1.01
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Least Squares Monte Carlo

Example: American Put strike= 1, spot=1, r = 0.05:

t=2 =3

asset prices payoff
0.94 0.18

1.21 0
091 0.13

1.20 0.13
0.90 0.09
0.99 0

o Compute payoff at t = 3

@ Focus only on paths which are in the money at t =2
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Least Square Monte Carlo

o Compute discounted value of payoffs at time t = 2

t=2 t=2 t=3

discounted payoff asset prices payoff
0.17 0.94 0.18

0 1.21 0

0.12 091 0.13

0.12 1.20 0.13

0.08 0.90 0.09

0 0.99 0

@ Regress discounted payoff onto asset prices at t = 2 using
basis functions (e.g. 1, S, S?):

V,(S) = —55.04 4 117.7S — 62.75 >

@ Regression gives estimate of E[e "2V, 4|S:]
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Least Square Monte Carlo

@ Compare estimate discounted expectation with immediate
exercise value

t=2 t=2 t=2 =2

est. disc. exp. asset prices exercise value est. option price
0.1697 0.94 0.06 0.17

- 1.21 0 0

0.1208 0.91 0.09 0.12

- 1.20 0 0.12

0.0795 0.90 0.10 0.10 x
0.0001 0.99 0.01 0.01 x

@ In this example last two branches are optimal to exercise

o Notice that the realized value at node t = 2 are used when
going backwards, not the estimate of the conditional
expectation
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Least Square Monte Carlo

@ Continue working backwards to obtain estimated prices at
t=1and thent=0

o Example: American put strike = 1, term = 1, r = 5%,
o =20%

O LS method
0,98} —— FST method
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Least Square Monte Carlo

@ Example: American put strike = 1, term =1, r = 5%, k = 1,
=0, o0=20%
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@ Binomial trees are not appropriate for commodities due to
mean-reversion

@ Trinomial trees are used instead
@ Branching probabilities choosing to match mean and variance

EfXerae = Xe] = (e DX 2 MX,
2
V?[Xt—&-At - Xt] = %(1 _ e*2l€At) sy
K
@ Branch steps set to AX = V3V

@ Tree is cut at high and low values to avoid negative
probabilities

Top of tree Middle of tree Bottom of tree

N< £

Numerical Methods



Tress

Zero mean-reversion level
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Tress

@ Middle of tree branching probabilities:

1 2M2+iM

= §+ij
2\ 12

1 2 M2 —jM
Pd = g+J 2j

@ Top and Bottom of tree branching probabilities:

Top Bottom
2M2 M -2M2_ iM
Py = % _|_ i +3J py= 14 LMo
Pm= —3 _2J22M2 2iM Pm = _% __2j22M2.+ 2iM
pa = _|_JI\/I+_/M pd = %+JM;3JM
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Shifted mean-reversion level

For simple mean-reversion will shift via 6 + (In So — 0)e "t + X;




Tress

Comparison of LSM and Trinomial model
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