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Black’s Forward Price Models

Basic Forward Price Models

e Basic Black(1976) Forward price model assumes

dF(T)
Fe(T)

:O'th

where W; is a Q-Wiener process
@ Each forward price evolves like a GBM on its own

@ Option prices are trivial. Here is a call price
G = e "TOIFr(U)d(dy) — Kd(d )}

In(Fr(U)/K) £ 302(T — t)

d. —
* 2(T — 0)
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Multifactor Forward Price Models

@ Multifactor forward price model assume instead

dFt(T (k)

Mx

k=1

where Wt(k) are correlated Q-Wiener process with
dW, w1 = py dt.

@ The covariance structure is estimated from principle
component analysis (PCA) of forward price curves

@ Volatility functions often assumed to be deterministic

@ A further simplifying assumption is often made:
dNT) = ge0(T = 1)
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Multifactor Forward Price Models

@ A principal component analysis on forward curves is used to
determine main factors

@ The forward prices at a constant set of terms {7y, 7,...,7h}
are interpolated from given data

Ftl(Tl) Ft1(72) Ff1(T3) Ft1(Tn)
Ffz(Tl) Ft2(7-2) Ft2(7—3) s th(Tn)
Fou(r) Foy(r2) Fea(r3) oo Foylra)
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Multifactor Forward Price Models

@ The daily returns are then computed

Fti+1(Tk) - Fti(Tk)

Ri(7¢) =
tr( k) Ftl(Tk)
@ The resulting time series used to estimate the covariance
matrix X
L
fik = N Z Re; ()
i=1
_ 1
i = = (Re(my) — 1) (Re (k) — fik)
i=1
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Multifactor Forward Price Models

@ Given the estimated covariance matrix, obtain eigenvectors
(vi,vo,...,Vvy) and eigenvalues (A1, A2, ..., Ap):

Y = VAVT

@ The eigenvectors corresponding to the first n-largest
eigenvalues are called the principal components

@ For crude oil and heating oil, first three components account
for 99% of variability:

o PC-1 accounts for parallel shifts
e PC-2 accounts for tilting
e PC-3 accounts for bending

@ For electricity more than 10 PCs are required to account for
99% of variability
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Multifactor Forward Price Models

Crude Oil first 3 Principal Components

0 ! ! ! !
al
04l 4
=
— OleﬁxXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX éé@gggéé’
S 0000000000088é
= 0000 nod
] o 00 m}
2 o 50 o0 ]
o o° DDDDD
O o © oo
o e} o0
o
—02| o Boggood B
[}
(e}
o4l 0 ]
o , , , . , ,
0 1 2 3 4 5 6 7
Term

ungal sebastian.jaimungal@utoronto.ca IMPA Commodities Course : Forward Price Models



Basic Model
Multifactor Forward Price Models Principal Component Analysis
Functional Principal Component Analysis

Multifactor Forward Price Models

Heating Oil first 3 Principal Components
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Multifactor Forward Price Models

Simulation of crude oil forward curves using 3 principal components

Forward Price

Time (years) Term (years)
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Multifactor Forward Price Models

Simulation of crude oil forward curves using 3 principal components

Forward Price
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Functional PCA

e Functional Principal Component Analysis(FPCA)
developed by Ramsay & Silverman (book in 2005) views the
data as sequence of random functions

@ Allows domain specific knowledge to augment PCs

@ Produces smooth PCs

@ Allows interpolation and extrapolation between observation
points

@ Easily handles non-equal spaced and non-equal number of
data per curve
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Functional PCA

e Jaimungal & Ng (2007) introduced a consistent FPCA
approach appropriate for commodity time-series:

e Project data onto a functional basis

o Fit a Vector Autoregressive (VAR) process to time-series
coefficients

o Detrend the coefficients

e Remove predictable part of VAR process to extract true
stochastic degrees of freedom

e Project covariance matrix onto a distortion metric associated
with basis functions

e Solve a modified eigen-problem for PCs of basis coefficients

e Weight basis functions according to eigen-vectors
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Consistent Functional PCA

e Project data points onto basis functions {¢1(7), ..., ok (7)}
for each trading date t1,...,ty

K
Fin(tm +71) = > Bk ¢x(77)
k=1
R N K 2
Bmi = ar% min Z Fi (tm +7i) — Z Brm.k Gk(Ti)
mi =1 k=1

to produce a time-series of fitting coefficient estimates Bm’,-
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t Functional PCA
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Consistent Functional PCA

e Estimate vector auto-regressive (VAR) on time-series of
projection coefficients

Bp=mtdt+AB, | +em

@ m is a constant mean vector
o d is a linear trend vector (any detrending is allowed)
e Aisa K x K cross-interaction matrix
o & are iid N (0, Q).
@ Extract “true” stochastic degrees of freedom, i.e. the
residuals R R
&m =B, — <r?1+dt+Aﬁm_1>
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Consistent Functional PCA

o Let E = (€182...€n)" denote the matrix form of the
residuals

@ Define a variance-covariance function
1
W(rim) £ 5 (Ed(r))TE(r2)

@ The eigen-function problem is now

< v, &> (1) = A¢(7)

A

where the inner product < f,g > (1) = [7™ f(1,s) g(s) ds

Tmin
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Consistent Functional PCA

@ To solve the eigen-function problem, expand £ onto the basis
functions

&(7) = z¢(7)

@ Then the eigen-problem becomes
1
7 (ES(7) TEWz = 267 (7)z

here W,'j L< (Z5,‘,(Z5J' >
@ Take inner product with ¢ to find that z satisfy the
eigen-problem

1 (WETE) (Wz) = \ (Wz)

=
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Consistent Functional PCA

Multifactor Forward Price Models

Basic Model
Principal Component Analysis
ional Principal Component Analysis

Fun
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Consistent Functional PCA

Principal component perturbations on a given curve

Std. Dev.
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t Functional PCA

Simulation forward curves using 3 principal components

Forward Price
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Consistent Functional PCA

Simulation forward curves using 3 principal components
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Multifactor Forward Price Models

Consistent Functional PCA

Basic Model
Principal Component Analysis
ional Principal Component Analysis

Fun

Simulation forward curves using 3 principal components
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HJM Forward Price Models

e Heath-Jarrow-Morton (HJM) inspired forward price models

T
const. X exp {/ ye(s) ds}
t

dyi(s) = pe(s)dt+ oe(s) dW,

Fe(T)

@ This is an infinite system of SDEs (one for every maturity).

@ The processes y:(s) are called forward cost of carry
— analogs of instantaneous forward rates of interest

@ To avoid arbitrage, the drift and volatility must satisfy the
HJM drift restrictions

.
1e(T) = —oo(T) /t oe(s) ds
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HJM Forward Price Models

@ Forward prices then evolve as

dF(T) _ F F / T
= T)dW, T)=
Fimy = ofMawe, of(N)= [ ous)as
@ Entire forward price curve is matched exactly

e With deterministic volatilities, the forward prices are GBMs

Ft(T):FtO(T)exp{—;/tt(af(T))zdu+/taf(T)th}

0 to
e Can match implied volatility term structure with constant
volatilities

@ Vol smiles will require state dependent vol or stochastic vol
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HJM Forward Price Models

@ Spot price models can be recast into forward price models
fairly easily

@ The Schwarz (1997) stochastic convenience model
corresponds to setting

1 — e~ (T—1)
ot (T) = 01— pos

05(2)(7') = —03y/1—p?

K
1— e—H( T—t)

K
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HJM Forward Price Models

Volatility components in the Schwartz model
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HJM Forward Price Models

@ Spot price models can be recast into forward price models
fairly easily
e The HJ (2007) two-factor spot model corresponds to setting

A AT) = (e —e)
2
05(2)(7') _ |:0,2e257' + 772,_)/2 <e*ﬂ7 . efm')
1/2
+pnoy (e‘ﬁT — e‘m) e‘ﬁT]

B
TS L
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HJM Forward Price Models

Volatility components in the HJ model
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Notice that only the tilting component is affected by correlation
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String / Market Models

A continuum of maturity dates do not exist

Model instead a discrete set of forward prices directly — not
through forward cost of carry
dFt( T,)

F
TR0 GF (T aW,
Ft(Ti) Gt’ ( ) t

Exactly fits market forward prices

Exactly fits a given term structure of at-the-money implied
volatilities

Easy to compute call / put options on forward contracts
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String / Market Models

Initial Formulations
String / Market Models

Another way to account for the discrete nature of available
maturity dates...

@ Between pairs of maturity dates (T;, T;11), define a discrete
forward cost of carry

() & 1 F:(T;)
vt Ti—Ti

-1
Fe(Ti-1) )
@ Then forward prices can be recovered as

n

Fi(To) = S T+ (Te = Tee)y™)
k=1

where Ty = t and recall that F(t) = S;
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String / Market Models

e Each yt(i) is martingale under a measure induced by the

Radon-Nikodym derivative process

(d@(i)) a (i) _ Fe(Tiza)
=M = =+
t

dQ

@ Then assuming a diffusive model, can write
dy? i i
o = awf)
Yi

where W,fi) are Q)-Wiener processes
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String / Market Models

o Further assuming ag') are deterministic (or even just constant)

provides Magrabe like formula for nearby calendar spread
options
EZ((Fr(Ti) = Fr(Ti-1))4]
()
EY [(FT(T:‘) — Fr(Ti—1))+ (Jé%) T}

e (),

Vi
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