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Topics

1. Inference based on the likelihood function: derived quantities, limiting distributions, approximations to posterior distributions;

2. Likelihood for semi-parametric and non-parametric models: proportional hazards regression, partially linear models, penalized
likelihood;

3. Composite likelihood: definition, summary statistics, asymptotic theory; applications

4. Likelihood inference for p > n;

5. Simulated likelihoods, indirect inference and approximate Bayesian computation

Running list of references and background reading
Review Papers

* Reid, N. (2013) Aspects of likelihood inference Bernoulli19, 1404-1418.
* Reid, N.(2010) Likelihood Inference Wiley Interdisciplinary Reviews in Computational Statistics 5, 517-525.
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Likelihood Basics

 Varin, C,, Reid, N.and Yi, G. (20xx). (VRY) Ch 1
* Davison, A.C.(2003) Statistical Models (SM) Cambridge University Press. -- Ch 4
* Barndorff-Nielsen, O.E. and Cox, D.R. (1994) Inference and Asymptotics (BNC) Chapman and Hall. -- Ch 2.2
* Cox, D.R. and Hinkley, DV. (1974) Theoretical Statistics (CH)
Chapman and Hall. -- Ch 2.1 (i), (i)
* Cox, D.R.(2006) Principles of Statistical Inference (Cox) -- Ch.2.1
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Various ‘types’ of likelihood

-

. likelihood, marginal and conditional likelihood, profile likelihood, adjusted profile

2. semi-parametric likelihood, partial likelihood

3. quasi-likelihood, composite likelihood misspecified models
4. empirical likelihood, penalized likelihood

5. simulated likelihood, indirect inference

6. bootstrap likelihood, h-likelihood, weighted likelihood, pseudo-likelihood, local
likelihood, sieve likelihood
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« Principle: “The probability model and the choice of [parameter] serve to translate a
subject-matter question into a mathematical and statistical one” Cox, 2006, p.3

- likelihood function is proportional to the probability model

« inference based on the likelihood function is widely accepted
« provides more than point estimate or test of point hypothesis

« models needed for applications are more and more complex

 need some analogues to the likelihood function for these complex settings
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The likelihood function

« Parametric model: f(y;0), ye€),0€© CRP
« Likelihood function

L(0;y) =f(y:0), or L(6;y)=c(y)f(y:0), or L(6;y)xf(y:0)
- typically, y = (y1,...,¥n) X1, X i=1,...,n
« f(y;0) orf(y | x;0) is joint density
« under independence L(6;y) o< [Tf(y; | x;; 0)

« log-likelihood £(0;y) = log L(6;y) = >_ logf(y; | X;; 0)

- § could have dimension p > n (e.g. genetics), or p 1 n, or
+ 6§ could have infinite dimension e.g.

« regular model p < n and p fixed as n increases

STA 4508 January 12 2022 4



° y,'NN(/j,,O‘z): n
L(Oy) = [[ o " expi— 5 0 — 0P}

- E(yi) = x] : )
L(0:y) = Lo " el —5s (i = [6)°}
 E(yi) = m(x;), m(x)=X_ ¢B;(x):

L(O:y) = [L o " expl— 55 0 — T 05B(x))7)
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.. examples

*Vi=p+p(Vi-a—p)te, €~ N0

L(O:y) = [[F Wi | Yiea: 0)fo(Vo: 6)

i=1

* Va,...,Yn i.i.d. observations from a U(0, 0) distribution:

n
Le:y)=]]07" o<yum < - <ym <
i=1
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* Y1,...,Yn are the times of jumps of a non-homogeneous Poisson process with rate
function A(-):

CRY) =Y log (M)} - / MU, 0<yi<<yn<r

Davison, §6.5
« multinomial: y; = (Vi,---,Vix), VYic = 1,Yic =0,C #¢
n R
6(9; y) = Z Zyic |0g(pic)
i=1 =1
negative cross-entropy Hastie et al., Ch. 7

Pic = p(Xic; 0), as above
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Figure 4.1 Likelihoods
for the spring failure data
at stress 950 N/mm?. The
upper left panel is the
likelihood for the
exponential model, and
below it is a perspective
plot of the likelihood for
the Weibull model. The
upper right panel shows
contours of the log
likelihood for the Weibull
model; the exponential
likelihood is obtained by
setting & = 1. that is,
slicing L along the
vertical dotted line. The
lower right panel shows
the profile log likelihood
for @, which corresponds
to the log likelihood
values along the dashed
line in the panel above,
plotted against &r.
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Complicated likelihoods

« example: clustered binary data Renard et al. (2004)
- latent variable: z; = x! 8+ b; + ¢, bj ~ N(0,02), €~ N(0,1)
« r=1,...,n;: observations in a cluster/family/school... i=1,...,n clusters

+ random effect b; introduces correlation between
observations in a cluster
« observations: y;, = 1ifz;, > 0, else 0

* Pr(yiy = 1| b)) = d(] 3+ b)) = p; ®(2) = [* e ~/2dx
n oo Ni
L(&y) = H/ L1 p?r (1= p)'Yré(bi, o3)db;
j=17 7% r=1

- more general: z;, = x! 8+ W/, b; + €

Renard et al. (2004) Multi-level probit models CSDA
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... complicated likelihoods

- generalized linear geostatistical models
E{Y(s) | u(s)} = g{x(s)"B+u(s)}, seScCR%d>2

Diggle & Ribeiro, 2007
- random intercept u is a realization of a stationary GRF, expected value o,
covariance Gaussian random field

cov{u(s),u(s’)} = o’p(s — '; a)
* n observed locations y = (y, ..., yn) With y; = y(s;)
« likelihood function
n
L) = [ T | wi)f(wis0)dus....du,
Rn i ——
Nd(O,Z)

* no factorization into lower dimensional integrals, as with previous example

STA 4508 January 12 2022 Diggle & Ribeiro (2007) Model-based Geostatistics Springer 1



Non-computable likelihoods

* Ising model:

F(y:0) = exp( Y eijyiyj)ﬁ
(ij)eE

* y; = £1; binary property of a node i in a graph with n nodes
* 0;; measures strength of interaction between nodes i and j

E is the set of edges between nodes

+ partition function Z(0) = 3=, exp(}_ i jyce OiiViVj)

Davison §6.2
Ravikumar et al. (2010).

High-dimensional Ising model selection... Ann. Statist. p1287
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know nothing whatever. We must return to the actual fact that one value of p, of
the frequency of which we know nothing, would yield the observed result three times
as frequently as would another value of p. TIf we need a word to characterise this
relative property of different values of p, I suggest that we may speak without confusion
of the likelihood of one value of p being thrice the likelihood of another, bearing always
in mind that likelihood is not here used loosely as a synonym of probability, but simply
to express the relative frequencies with which such values of the hypothetical quantity
p would in fact yield the observed sample.
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Why likelihood?

+ makes probability modelling central
- emphasizes the inverse problem of reasoning from y° to 6 or f(-)
« suggested by Fisher as a measure of plausibility

Royall, 1994
L(B)/L(9) € (1,3) very plausible;
L(9)/L(9) € (3,10) implausible;
L(A)/L(0) € (10,00) very implausible Statistical Evidence: A likelihood paradigm

- converts a ‘prior’ probability = (0) to a posterior (0 | y) via Bayes’' formula

- provides a conventional set of summary quantities for inference based on properties
of the postulated model
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... why likelihood?

« likelihood function depends on data only through sufficient statistics
« “likelihood map is sufficient” Fraser & Naderi, 2006

- gives exact inference in transformation models

« “likelihood function as pivotal” Hinkley, 1980
« provides summary statistics with known limiting distribution
- leading to approximate pivotal functions,

based on normal distribution

- likelihood function + sample space derivative gives better approximate inference
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Likelihood inference

« direct use of likelihood function
« note that only relative values are well-defined

+ define relative likelihood RL(6) = _Le) L)

supg, L(07)  L(A)

1> RL(®) > 1, 6 strongly supported,
1> RL®) > 15, 6 supported,
& = RL(6) > {}5, 6 weakly supported,
15 = RL(6) > 135 6 poorly supported,
1
Too0 = RL(6) > 0, @ very poorly supported.

SM (4.11)
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... likelihood inference

« combine with a probability density for

v 0)r(0)
") = Ty o)n(6)do

inference for 6 via probability statements from = (6 | y)

e.g., “Probability (¢ > o | y) = 0.23", etc.

- any other use of likelihood function for inference relies on derived quantities
and their distribution under the model

« the Likelihood Principle states two experiments with proportional likelihood functions
lead to the same inference about the same parameter C& H, 1974, p.39 (strong likelihood)

STA 4508 January 12 2022 19



Derived quantities, single observation handout

observed likelihood  L(6;y) = c(y)f (v;0)

log-likelihood 00;y) =logL(0;y) = logf(y;0) + a(y)

score u(0) = 0¢(0;y)/00

observed information  j() = —9%4(0;y)/0000T

expected information () = EoU(0)U(A)" called i;(0) in CH
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... derived quantities, i.i.d. sample

observed likelihood L(0;y) oc [T, f(vi; 0)
log-likelihood 00;y) =1 logf(y; 0)+a(y)
score U(0) = 00(0;y)/00 = Op(+/n)

maximum likelihood estimate  § = A(y) = argsup, £(6;y)
Fisher information j(B) = —020(0;y) /9006 = Op(n)
expected information i(0) = EqU(O)U(H)" = O(n)
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1= / £(v: 0)dy

o — o [fuody = [ Loy
_ %6(6; YIF(v; 6)dy = Eg{U(6; )}

o = 5 [ s5Owioy
= [l )+ (O g Oy )y

2

= (U ()} = Byl gz (0:y)} = i(6) = By ()}
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... Bartlett identities

You can keep going, as long as the endpoints don't depend on 6, the log-density is
differentiable, and the required moments exist.

From the book Tensor Methods by McCullagh:

Or when 6 is a vector:
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Limiting distributions

IOEDYNVIC)

E{U(0)} =0
< var{U(#)} = ni,(0)
- U(0)/v/n % N{o,i,(6)} need 0 < ir(8) < oo

 Note that could have not i.d., or not independent, if we can still prove the limiting
normality of the sum. E.g. Lindeberg-Feller type conditions, or weak dependence
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... limiting distributions

« U(6)/vn % N{o,i(6)}
< U(B) =0 =U(H) + (6 — O)U'(0) + Ry
» (0 0) = {U(B)/i(6)}{1 + 0p(1)}

- /(0 —0) % N{o.i;(0)}
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... limiting distributions

« Vn(6—0) % N{o,i; ()}
- 0(0) = L(0) + (0 — 0)'(0) + 2(0 — B)2¢"(H) + Rn
- 2{0(0) — £(0)} = (0 — 0)2i(0){1+ 0p(1)}

= 2{0(0) — 1(0)} & 3

STA 4508 January 12 2022
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Inference from limiting distributions

= 0~ Na{0,j77(0)} j(6) = —£"(B;y)
-+ “g is estimated to be 21.5 (95% Cl 19.5 — 23.5)" 6+ 26

= w(0) = 2{¢(0) — £(0)} ~ xj
“likelihood based CI for # with confidence level 95% is (18.6,23.0)"

log-likelihood function

log-likelihood

I I o "
T T T T T T T T
16 17 18 19 20 21 22 28
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p-value functions of ¢

r(9) = U(B)2(d) ~ N(o,)
re(f) (6—0)"(9),
r(0) = sign(d - 0)[2{¢(9) - €(0)}]"?
+ approximate pivotal quantities
Priru(6) < ri(0)} = &{rj(0)}
under sampling from the model f(y; 0) = f(y1,...,Y¥n; 0)

« p-value function (of 6, for fixed data)

pu(0) = ®{ri(0)}
« similarly pe(0) = ®{re(6)}, pr(0) = ®{r(0)} are also p-value functions for 6

based on limiting dist'ns
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14 CHAPTER 2. UNCERTAINTY AND APPROXIMATION
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Significance function
0.4

Figure 2.2: Approximate pivots and P-values based on an exponential sample
of size n = 1. Left: likelihood root (@) (solid), score pivot s(6) (dots), Wald
pivot t(6) (dashes), modified likelihood root r*(#) (heavy), and exact pivot
03" y; (dot-dash). The modified likelihood root is indistinguishable from
the exact pivot. The horizontal lines are at 0, £1.96. Right: corresponding
significance functions, with horizontal lines at 0.025 and 0.975.



o -

s

o _|

o 4
c !
9 h
5 I r
g © - p—
30 ] Lugannani-Rice
s --- root
= ——- score
3~ _| N
a2s A -—-— Wald
] AN
a Sso

o S

Sh Shem

0 _

o

T T T T
0 5 10 15

BDR, Ch.3.2, Cauchy, distribution functions (y) até =0,n =1



Example: Exponential

* flyi;0) =0e %% i=1,...,n

- 0(0) =

expand log(6y) around 1 to get asymptotic equivalence to re, ry
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Example: Exponential

* flyi;0) =0e %% i=1,...,n

((6) = nlog 6 — ny

= (0) =G —ny =y
S (0) =g

s r(0) = Jrl'(0)i2(0) = Vn(gy — 1)

* re(6) = (6 - 0)/*(8) = n(1 - 06)

» r(0) = v/(2n){6y — 1 — log(67)}"/?
expand log(6y) around 1 to get asymptotic equivalence to re, ry
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Example: Poisson

* fyin0) = 0e="/y;!

0(0) =

< 0(0) =

- 0"(0) =

* re(0) = (s —nb)/v/s

* Pr(Ss<s)#1—Pr(S>5s)

« upper and lower p-value functions: Pr(S <s), Pr(S<s)

 mid p-value function: Pr(S < sr) + 0.5Pr(S =s)
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30

Cumulative distribution function

CHAPTER 3. SIMPLE ILLUSTRATIONS

20 25 30

Figure 3.2: Cumulative distribution function for Poisson distribution with
parameter 6.7 (solid), with approximations ®{r*(y)} (dashes) and ®{r*(y +
1/2)} (dots). The vertical lines are at 0.5,1.5,2.5, ...



- for inference re 0, given y, plot p(#) vs 0
« for p-value for Ho : 6 = 65, compute p(6,)

- for checking whether, e.g. ®{r.(0)} is a good approximation,
« compare p(0) = ®{re(0)} to pexact(#), as a function of ¢, fixed y

+ or compare p(fo) to pexact(fo) as a function of y
* if Pexact(0) not available, simulate

- if 0 is a vector, choose one component at a time
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Nuisance parameters

s 0=, \) = (1/)1,...,1,/)q,)\1,...,/\d_q)
L (o) - (“j“”) . U =0
o= () o= ()

- R LR W juv e
- i7Y(0) = (,‘)«:,b ,-,\,\> J7(0) = (j,w j’\’\)’
< 19Y(0) = {iyy(0) — ipa(0)ia(0)ixg(0)} 7,

< lp(y) =0, X)), jp(v) = —LE(Y)
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Inference from limiting distributions, nuisance parameters

Wy (¥) = Uy (8, Ap) {7 (0, 8 JUu (8, Ay) <~ X3
We(v) = (P — )P (. N} W —v) ~ 3
W) = 2{0(sh, N) — (3, Ap)} = 2{lp (D) — Lo (¥)} ~ X&i

Approximate Pivots, g =1

r($) = G)p(d)"? < N(0,1),
re(v) = (& —¥)je(d)"? <~ N(0,1),
W) = sign(d — v)R{6k ) — te(¥)}]'2 ~ N(0,1)
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2.3. SEVERAL PARAMETERS 19
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Figure 2.3: Inference for shape parameter ¥ of gamma sample of size n =
5. Left: profile log likelihood £, (solid) and the log likelihood from the
conditional density of u given v (heavy). Right: likelihood root r(¢) (solid),
Wald pivot () (dashes), modified likelihood root r*(3/) (heavy), and exact
pivot overlying 7*(3). The horizontal lines are at 0, +1.96.



