STA 4508: Likelihood and derived quantities January 2022

Given a model for Y which assumes Y has a density f(y;6), 0 € © C R?, we have
the following definitions:

observed likelihood function L(0;y) = c(y) f(y;0)

log-likelihood function 0(0;y) =log L(0;y) = log f(y; 0) + a(y)
score function U(0) = 0l(0;y)/00

observed information function 7(0) = —0%(0;y)/0000"

expected information (in one observation) i(f) = EqU(0)U(0)T (called 7,(0) in CH)

When we have Y; independent, identically distributed from f(y;;#), then, denoting
the observed sample y = (y1,. .., y,) we have:

- 0;y) + a(y) Op(n)
= H(y) = argsup, £(0) 0+ Op(n_l/Q)
(0) =0(0) = 32 Ui(0) = Ur(6)  Oy(n''?)
9) —0"(0) = —L(6;Y O,(n)
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log-likelihood function

maximum likelihood estimate
score function U
observed information function

J
observed (Fisher) information j
expected (Fisher) information i(0) = E{U(0)U(0)T} = ni;(6) O(n),

where with the risk of some confusion we use the same notation. Sometimes the
expected Fisher information is defined instead as i(0) = Eo{—0U(0;Y)/06"} (e.g.
in BNC). In models for which we can interchange differentiation and integration in
[ f(y;0)dy = 1, these are the same due to the Bartlett identities:

E{U®)} = 0,
EQ{UI(9>}+E9{U2(6)} = 0,
EoU"(6)) + 3E,AU(O)U(60)} + EAU(0)} = 0

and so on, where the result applies to vector 8, but as presented here is for scalar 6.
(In the vector setting the second derivative of U is a d x d X d array.)



First order asymptotic theory

The following results are used for approximate inference based on the likelihood
function:

1. 0 is a scalar
%U(@)/i}m(e) KN N(0,1) by the central limit theorem
standardized score statistic 1, = U(0)/5/2(8) > N(0,1)

n(d — 0)it?(0) = L u) o
standardized m.l.e. re = (0 — 0)21/2(49) A N(0,1)

(log) likelihood ratio statistic —w(6

likelihood root r(6)
(6)

2. 6 a vector of length d

LA{U(0)} 5 No{0,i1(0)} by the central limit theorem
standardized score statistic w, = U(0)T{i(0)}~1U(0)

V(6 —0) = rit (OU(0){1 +0,(1)}

standardized m.l.e. we = (6 — 0)Ti(0)(6 — 0)

likelihood ratio statistic w=2{0(0) —£(0)} = (6 — 0)7i(0)(d — 6){1 + 0,(1)}
w(®) % X3

3. 0= (Y, \) = (¢1,...,%g, A1, ..., A\a—q) We partition the information matrices

compatibly and write
Uy (0)
U=,
() (U,\w))’
0= ) - (B )
Z(> (l,\q/; (29 j() Ixe  Jax

B >N N TN

i(0) = (iw M JH0) = ‘;,\w :;)\A .
The constrained maximum likelihood estimator of A is denoted by A, which
in regular models satisfies Uy (1), Ay) = 0.

and

Note that

i"(0) = {iyp(0) — ipa(0)ixa (0)irs(0)} ", (1)
using the formula for the determinant of a partitioned matrix. A similar result
holds for j.



The profile log-likelihood function is £p(1)) = £(1h, \,), and the (observed)
profile information function is jp(¢) = —€5 (1), a ¢ X ¢ matrix.

The limiting results above can be used to derive the following

wa (1) = Up(0, M) (% (0, Ap) YU (0, Ay) <~ X2
we(¥) = (b — P, N W — ) A K2
w(®) = 2{0(, A) — L, \p)} = 2{lp () — lo(¥))} ~ X%

see (52), (54) and (56) in CH §9.3.

This determines the following first-order pivotal quantities, for scalar 1):

re(W) = (b — )i () ~ N(0,1),

r(¥) = C()jp 2 (%) ~ N(0,1),

rW) = sign(d — )2 W) - fp(8)} ~ N(0,1)

w(yp) = 2{e(y) — ()} ~ X3,

where the third form follows from the fourth.
Measure theory

The likelihood function is defined as (proportional to) the density function, and this
is a density with respect to some dominating measure. Since 6 varies in ©, we need
f to be a density function with respect to the same dominating measure for each
value of 6. Schervish (p.13) states it this way:

Let (S,.A, ) be a probability space, and let (X, B) be a Borel space. Let X :
S — X be measurable. The parametric family of distributions for X is the set

{Py:VAe B, Py(A)=Pr(X € A),0 € ©}.

Assume that each Py, considered as a measure on (X, B) is absolutely continuous
with respect to a measure v on (X, B). We write

dPy

0 .
Fl:0) = S ),

this is the likelihood function for 6.



Some books describe the likelihood function as the Radon-Nikodym derivative of
the probability measure with respect to a dominating measure. Sometimes the
dominating measure is taken to be Py, for a fixed value 6, € ©. When we consider
probability spaces and/or parameter spaces that are infinite dimensional, it is not
obvious what to use as a dominating measure. For counting processes, this is done
rigorously in Ch.II of Andersen et al. The result is Jacod’s formula for the likelihood
ratio:

Suppose we have a counting process N(-) on [0,7], and a filtration F; = Fo U
o{N(s);s < t}, with F = F,. A counting process is a piecewise constant, non-
decreasing, stochastic process with jumps of size +1. It can be shown to be a local
submartingale, with compensator A. Suppose P and P are two probability measures
on F, for which the two compensators are A and A. Suppose P is absolutely
continuous with respect to P. If A and A are absolutely continuous a.s. P, then

[T, 7O exp{—A(r)}
L LA exp{=A()}

aP _ dP
dP  dP

Except for the somewhat unfamiliar notation, this is identical to the likelihood
function for the non-homogeneous Poisson process (SM, Ex.6.5),

n

H/\(tj)exp{—/T)\(u)du}, 0ty < <ty <

j=1
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