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Given a model for Y which assumes Y has a density f(y; θ), θ ∈ Θ ⊂ Rd, we have
the following definitions:

observed likelihood function L(θ; y) = c(y)f(y; θ)
log-likelihood function ℓ(θ; y) = logL(θ; y) = log f(y; θ) + a(y)
score function U(θ) = ∂ℓ(θ; y)/∂θ
observed information function j(θ) = −∂2ℓ(θ; y)/∂θ∂θT

expected information (in one observation) i(θ) = EθU(θ)U(θ)T (called i1(θ) in CH)

When we have Yi independent, identically distributed from f(yi; θ), then, denoting
the observed sample y = (y1, . . . , yn) we have:

log-likelihood function ℓ(θ) = ℓ(θ; y) + a(y) Op(n)

maximum likelihood estimate θ̂ = θ̂(y) = arg supθ ℓ(θ) θ +Op(n
−1/2)

score function U(θ) = ℓ′(θ) =
!

Ui(θ) = U+(θ) Op(n
1/2)

observed information function j(θ) = −ℓ′′(θ) = −ℓ(θ;Y ) Op(n)

observed (Fisher) information j(θ̂)
expected (Fisher) information i(θ) = Eθ{U(θ)U(θ)T} = ni1(θ) O(n),

where with the risk of some confusion we use the same notation. Sometimes the
expected Fisher information is defined instead as i(θ) = Eθ{−∂U(θ;Y )/∂θT} (e.g.
in BNC). In models for which we can interchange differentiation and integration in"
f(y; θ)dy = 1, these are the same due to the Bartlett identities:

Eθ{U(θ)} = 0,

Eθ{U ′(θ)}+ Eθ{U2(θ)} = 0,

Eθ{U ′′(θ)}+ 3Eθ{U(θ)U ′(θ)}+ Eθ{U3(θ)} = 0,

and so on, where the result applies to vector θ, but as presented here is for scalar θ.
(In the vector setting the second derivative of U is a d× d× d array.)
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First order asymptotic theory

The following results are used for approximate inference based on the likelihood
function:

1. θ is a scalar
1√
n
U(θ)/i

1/2
1 (θ)

d→ N(0, 1) by the central limit theorem

standardized score statistic ru = U(θ)/j1/2(θ̂)
d→ N(0, 1)

√
n(θ̂ − θ)i

1/2
1 (θ) =

1√
n

U(θ)

i
1/2
1 (θ)

{1 + op(1)}

standardized m.l.e. re = (θ̂ − θ)j1/2(θ̂)
d→ N(0, 1)

(log) likelihood ratio statistic w(θ) = 2{ℓ(θ̂)− ℓ(θ)} = (θ̂ − θ)2i(θ){1 + op(1)}
w(θ)

d→ χ2
1

likelihood root r(θ) = sign(θ − θ̂){w(θ)}1/2

r(θ)
d→ N(0, 1)

2. θ a vector of length d

1√
n
{U(θ)} d→ Nd{0, i1(θ)} by the central limit theorem

standardized score statistic wu = U(θ)T{i(θ)}−1U(θ)√
n(θ̂ − θ) = 1√

n
i−1
1 (θ)U(θ){1 + op(1)}

standardized m.l.e. we = (θ̂ − θ)T i(θ)(θ̂ − θ)

likelihood ratio statistic w = 2{ℓ(θ̂)− ℓ(θ)} = (θ̂ − θ)T i(θ)(θ̂ − θ){1 + op(1)}
w(θ)

d→ χ2
d

3. θ = (ψ,λ) = (ψ1, . . . ,ψq,λ1, . . . ,λd−q) We partition the information matrices
compatibly and write

U(θ) =

#
Uψ(θ)
Uλ(θ)

$
,

i(θ) =

#
iψψ iψλ
iλψ iλλ

$
j(θ) =

#
jψψ jψλ
jλψ jλλ

$

and

i−1(θ) =

#
iψψ iψλ

iλψ iλλ

$
j−1(θ) =

#
jψψ jψλ

jλψ jλλ

$
.

The constrained maximum likelihood estimator of λ is denoted by λ̂ψ, which

in regular models satisfies Uλ(ψ, λ̂ψ) = 0.

Note that
iψψ(θ) = {iψψ(θ)− iψλ(θ)i

−1
λλ (θ)iλψ(θ)}−1, (1)

using the formula for the determinant of a partitioned matrix. A similar result
holds for j.
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The profile log-likelihood function is ℓP(ψ) = ℓ(ψ, λ̂ψ), and the (observed)
profile information function is jP(ψ) = −ℓ′′P(ψ), a q × q matrix.

The limiting results above can be used to derive the following

wu(ψ) = Uψ(ψ, λ̂ψ)
T{iψψ(ψ, λ̂ψ)}Uψ(ψ, λ̂ψ)

.∼ χ2
q

we(ψ) = (ψ̂ − ψ){iψψ(ψ̂, λ̂)}−1(ψ̂ − ψ)
.∼ χ2

q

w(ψ) = 2{ℓ(ψ̂, λ̂)− ℓ(ψ, λ̂ψ)} = 2{ℓP(ψ̂)− ℓP(ψ)}
.∼ χ2

q;

see (52), (54) and (56) in CH §9.3.
This determines the following first-order pivotal quantities, for scalar ψ:

re(ψ) = (ψ̂ − ψ)j
1/2
P (ψ̂)

.∼ N(0, 1),

ru(ψ) = ℓ′P(ψ)j
−1/2
P (ψ̂)

.∼ N(0, 1),

r(ψ) = sign(ψ̂ − ψ)

%
2{ℓP(ψ̂)− ℓP(ψ)}

.∼ N(0, 1)

w(ψ) = 2{ℓP(ψ̂)− ℓP(ψ)}
.∼ χ2

1,

where the third form follows from the fourth.

Measure theory

The likelihood function is defined as (proportional to) the density function, and this
is a density with respect to some dominating measure. Since θ varies in Θ, we need
f to be a density function with respect to the same dominating measure for each
value of θ. Schervish (p.13) states it this way:

Let (S,A, µ) be a probability space, and let (X ,B) be a Borel space. Let X :
S −→ X be measurable. The parametric family of distributions for X is the set

{Pθ : ∀A ∈ B, Pθ(A) = Pr(X ∈ A), θ ∈ Θ}.

Assume that each Pθ, considered as a measure on (X ,B) is absolutely continuous
with respect to a measure ν on (X ,B). We write

f(x; θ) =
dPθ

dν
(x);

this is the likelihood function for θ.

3



Some books describe the likelihood function as the Radon-Nikodym derivative of
the probability measure with respect to a dominating measure. Sometimes the
dominating measure is taken to be Pθ0 for a fixed value θ0 ∈ Θ. When we consider
probability spaces and/or parameter spaces that are infinite dimensional, it is not
obvious what to use as a dominating measure. For counting processes, this is done
rigorously in Ch.II of Andersen et al. The result is Jacod’s formula for the likelihood
ratio:
Suppose we have a counting process N(·) on [0, τ ], and a filtration Ft = F0 ∪
σ{N(s); s ≤ t}, with F = Fτ . A counting process is a piecewise constant, non-
decreasing, stochastic process with jumps of size +1. It can be shown to be a local
submartingale, with compensator Λ. Suppose P and P̃ are two probability measures
on F , for which the two compensators are Λ and Λ̃. Suppose P̃ is absolutely
continuous with respect to P . If Λ and Λ̃ are absolutely continuous a.s. P , then

dP̃

dP
=

dP̃

dP

&&&&&
F0

'
t λ̃(t)

△N(t) exp{−Λ̃(τ)}'
t λ(t)

△N(t) exp{−Λ(τ)} .

Except for the somewhat unfamiliar notation, this is identical to the likelihood
function for the non-homogeneous Poisson process (SM, Ex.6.5),

n(

j=1

λ(tj) exp{−
) τ

0

λ(u)du}, 0 < t1 < · · · < tn < τ.
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