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SUMMARY

Longitudinal data with binary and ordinal outcomes routinely appear in medical applications. Existing
methods are typically designed to deal with short measurement series. In contrast, modern longitudinal
data can result in large numbers of subject-specific serial observations. In this framework, we consider
multivariate probit models with random effects to capture heterogeneity and autoregressive terms for
describing the serial dependence. Since likelihood inference for the proposed class of models is compu-
tationally burdensome because of high-dimensional intractable integrals, a pseudolikelihood approach is
followed. The methodology is motivated by the analysis of a large longitudinal study on the determinants
of migraine severity.

Keywords: Autoregressive errors; Composite likelihood; Longitudinal data; Migraine severity; Mixed models;
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1. INTRODUCTION

Pain severity is often measured on rating scales that involve 4–11 categories ranging from the absence
of symptoms to the most severe pain (e.g. Von Korff and others, 2000). For chronic and recurrent pain
conditions, such as migraine and back pain, studying the symptom severity over a time period is crucial to
detect common- and person-specific pain trigger conditions. To this aim, patients record the pain severity
in a diary over some time period. See Bolger and others (2003) for general design, technology, and anal-
ysis questions. With the availability of electronic data collection methods such as palmtop computers, the
frequency of such assessments can be very high. Thus, it is important to develop statistical methods that
are able to deal adequately with large longitudinal ordinal response data in cross-sectional setups.

There exist several methods to deal with short longitudinal setups involving ordinal responses mea-
sured typically over 4–7 time points. Many of them require the inclusion of random effects to deal with
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128 C. VARIN AND C. CZADO

the dependence between subject-specific measurements (e.g. Hedeker and Gibbons, 1994; Gibbons and
Hedeker, 1997; Liu and Hedeker, 2006; Todem and others, 2007). Estimation in such models are often
based on Gauss–Hermite quadrature for the integration of random effects. Another proposal involves the
global odds ratio suggested by Dale (1986) (see Molenberghs and Lesaffre, 1994; Williamson and others,
1995). Still another approach is based on Markov transition models. Lee and Daniels (2007) extend this
method from binary (Heagerty, 2002) to ordinal longitudinal data involving 6 time points. Böckenholt
(1999) uses a first-order Markov process on the category indicators to capture the time dependence. His
model is able to fit longer ordinal time series but requires that all time points are equidistant and common
to all units.

For studying binary time series, Piorecky and others (1996) use generalized estimating equations
(Liang and Zeger, 1986) to adjust for the dependency between measurements. Generalized estimating
equations could also be used for ordinal-valued time series if one is only interested in inference for
regression parameters (see, e.g. Liang and others, 1992; Lipsitz and Kim, 1994; Heagerty and Zeger,
1996; Fahrmeir and Pritscher, 1996; Delfino and others, 2001).

All the above approaches are limited by the number of person-specific measurements or by other re-
strictions such as common equidistant time points. Motivated by a longitudinal study on migraine severity
determinants, we propose a class of mixed ordered probit models with an autocorrelated component to
capture subject-specific time series variability. In Section 2, we describe the model class. In Section 3, we
develop a computationally convenient composite likelihood approach for inference and model selection.
Section 4 illustrates the application to the migraine pain severity data. The paper closes with some final
remarks.

2. MIXED AUTOREGRESSIVE ORDINAL PROBIT MODELS

Let Yi j represent a categorical response with h possible ordered categories and let xi j be a vector of p
exploratory variables observed at time ti j for observation j = 1, . . . , ni on subject i = 1, . . . , m. As usual
in longitudinal studies, the m subjects are assumed to be independent. The ordinal response Yi j may be
viewed as a censored observation from a hidden continuous variable Y ∗

i j ,

Yi j = yi j ↔ αyi j −1 < Y ∗
i j � αyi j , yi j ∈ {1, . . . , h},

where −∞ ≡ α0 < α1 < · · · < αh−1 < αh ≡ ∞ are suitable threshold parameters. The important case
of binary response corresponds to h = 2 and a single threshold parameter α1. Among several possible
specifications for the relationship between the unobserved Y ∗

i j and the vector of regressors xi j , a common
choice is a linear mixed model of type

Y ∗
i j = xT

i jβββ + Ui + εi j , (2.1)

where βββ is a vector of p unknown coefficients, also termed fixed effects, while the Ui are m mutually
independent random effects describing the heterogeneity among different subjects and the εi j are under-
lying errors. Popular assumptions for the marginal distribution of εi j are logistic and normal distributions,
leading to the cumulative logit and cumulative probit models for the observed Yi j , respectively. Addition-
ally, we assume independence between εi j and Ui . For more details, see Agresti (2002, section 7). Here,
we choose a probit model and assume that the random effects are normally distributed, Ui

i.i.d.∼ N (0, σ 2).
We consider these distributional assumptions for ease of interpretation and mathematical manageability,
although the methodology discussed in this paper holds more generally.

Model identifiability for the resulting multivariate probit model requires restrictions on both the lo-
cation and the scale of the unobserved process Y ∗

i j . These requirements are met when the errors εi j have
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Mixed autoregressive probit model 129

unit variance, and the first cut point α1 or, alternatively, the intercept β1 is fixed to zero (see, e.g. Chib and
Greenberg, 1998).

Probit models with random effects have a particularly convenient interpretation. In fact, it is straight-
forward to move from a subject-specific interpretation to a population-level interpretation. For example,
consider the probability that subject i experiences a certain level yi j at time ti j

pr(Yi j = yi j ; θθθ) = pr(Y ∗
i j ∈ (αyi j −1, αyi j ]; θθθ) = �

(
αyi j − xT

i jβββ√
σ 2 + 1

)
− �

(
αyi j −1 − xT

i jβββ√
σ 2 + 1

)
, (2.2)

where �(z) denotes the cumulative probability function of a standard normal variable and θθθ is the pa-
rameter vector, including the cut points ααα = (α2, . . . , αh)T, the regressor coefficients βββ, and the variance
component σ 2. While the subject-specific effect of the covariates on the response is described by βββ,
from expression (2.2), it follows that the average population effect is governed by the rescaled coefficient
βββpop = βββ/

√
σ 2 + 1.

Commonly, probit models with random effects are constructed by assuming that the underlying errors

εi j are mutually independent, εi j
i.i.d.∼ N (0, 1). It follows that the joint distribution of the hidden variables

for the i th subject (Y ∗
i1, . . . , Y ∗

ini
)T is multivariate normal with standardized mean vector

(
xT

i1βββ√
σ 2 + 1

, . . . ,
xT

ini
βββ√

σ 2 + 1

)T

(2.3)

and correlation matrix with constant nondiagonal entries given by σ 2/(σ 2 + 1).
Model fitting is typically performed by maximum likelihood. Denote by y = (yT

1 , . . . , yT
m)T the vector

of all observations, with yi = (yi1, . . . , yini )
T being the subvector of observations pertaining to the i th

patient. Similarly denote the vectors of the corresponding hidden variables Y∗ and Y∗
i , respectively. The

likelihood function for the usual probit model with underlying independent errors involves m intractable
integrals

L(θθθ ; y) =
m∏

i=1

∫ ∞

−∞

ni∏
j=1

pr(Yi j = yi j |xi j , ui ; θθθ) f (ui ; θθθ)dui

=
m∏

i=1

∫ ∞

−∞

ni∏
j=1

(∫ αyi j

αyi j −1

f (y∗
i j |xi j , ui ; θθθ)dy∗

i j

)
f (ui ; θ)dui

=
m∏

i=1

∫ ∞

−∞

ni∏
j=1

(�(αyi j − xT
i jβββ − ui ) − �(αyi j −1 − xT

i jβββ − ui ))φ
(ui

σ

)
dui , (2.4)

where φ(z) denotes the probability density function of a standard normal variable. This likelihood may be
approximated by Gauss–Hermite quadrature or, more accurately, by adaptive Gauss–Hermite quadrature
(see, e.g. Pinheiro and Bates, 2000).

Although the above described probit mixed model is widely used, its underlying equal correlation as-
sumption seems unsatisfactory for many longitudinal studies, especially for those characterized by mod-
erate to long subject-specific series. Better models should take into account the serial correlation within
each subject-specific time series. In this paper, we propose to model the within-subject serial correlation
by a smooth temporal decaying correlation function as, for example the exponential correlation model
(Diggle and others, 2002), corr(εi j , εik) = exp(−δ|ti j − tik |), where ti j denotes the measurement time
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130 C. VARIN AND C. CZADO

of observation yi j . This correlation function reduces to the autoregressive model of order 1, γ |ti j −tik |
with γ = e−δ, for equispaced observations times. Correspondingly, the correlation between 2 hidden
continuous variables is formed by a constant subject-specific level plus a smooth serial component

corr(Y ∗
i j , Y ∗

ik) = σ 2

σ 2 + 1
+ e−δ|ti j −tik |

σ 2 + 1
. (2.5)

Thus, by assuming serial correlation among the errors, we obtain a multivariate probit model with the
same marginal interpretation as in (2.2) but with a more realistic longitudinal structure. Thereafter, the
proposed class of models will be termed mixed autoregressive ordinal probit (MAOP) models.

Further, model flexibility may be obtained by allowing the parameter δ to depend on a subject-specific
factor Si with q different levels. Thus, the model may describe different memory effects in different groups
of subjects. For example, in the migraine data discussed in Section 4, different pain memory effects can
be postulated in patients taking medications or not or in patients with different headaches types.

The cost for the versatility of the MAOP model is paid in terms of computational difficulties. The
likelihood function still involves m intractable integrals but with dimensions corresponding to the cluster
sizes n1, . . . , nm . Denote always by θθθ the parameter vector that now contains also the autocorrelation
parameters δδδ. The likelihood function for the model with serially correlated errors is

L(θθθ ; y) =
m∏

i=1

∫ ∞

−∞

(∫ αyi1

αyi1−1

· · ·
∫ αyini

αyini
−1

f (y∗
i1, . . . , y∗

ini
|xi1, . . . , xini , ui ; θθθ)dy∗

i1, . . . , dy∗
ini

)
f (ui ; θθθ)dui .

By using the assumptions of normality for both the random effects Ui and the hidden errors εi j , the
likelihood may be rewritten as the product of m integrals of multivariate normal densities of dimensions
n1, . . . , nm

L(θθθ ; y) =
m∏

i=1

∫ α̃yi1

α̃yi1−1

· · ·
∫ α̃yini

α̃yini
−1

φni (zi1, . . . , zini ; Ri )dzi1, . . . , dzini , (2.6)

where α̃yi j indicates the standardized cut point, α̃yi j = (αyi j −xT
i jβββ)/

√
σ 2 + 1. The integrands φni (zi1, . . . ,

zini ; Ri ) are ni -dimensional multivariate normal densities with zero means and correlation matrix Ri

whose entries are given by expression (2.5). Except for longitudinal data with small numbers of observa-
tions per subject, the direct computation of likelihood (2.6) is time consuming and possibly numerically
unstable.

MAOP models for discrete-time observations are categorized Gaussian linear state space models. The
celebrated Kalman filter (Kalman, 1960) allows efficient iterative computation of the exact likelihood
function in Gaussian linear state space models but cannot be applied to censored observations. Reliable
approaches use several kinds of Monte Carlo approximations based typically on Kalman filter–type iter-
ations (see, e.g. Durbin and Koopman, 2001). A Bayesian analysis of binary time series allowing for co-
variates using Markov chain Monte Carlo methods and the simulation smoother of De Jong and Shephard
(1995) for block updates of the hidden process variables were developed in Czado and Song (2008). It
would be feasible to extend their approach to ordinal-valued time series models using ideas of Müller and
Czado (2005, 2009) to update the threshold parameters.

Unfortunately, these computer-intensive approaches may be difficult to apply in large longitudinal data
sets, such as the migraine data analyzed in Section 4. Moreover, even if the computational cost would be
tolerable, a full likelihood approach might be impractical due to the difficulty of assessing the adequacy of
the multivariate assumptions underlying the model. These considerations lead us to consider a composite
likelihood approach (Lindsay, 1988).
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Mixed autoregressive probit model 131

3. COMPOSITE LIKELIHOOD INFERENCE

The term composite likelihood denotes a rich class of pseudolikelihoods constructed by compounding
valid likelihoods based on data subsets. Recent applications include genetics, spatial statistics, time series,
and longitudinal data analysis (see Varin, 2008, for a recent review).

Here, we focus on the composite likelihood constructed combining likelihoods for pairs of observa-
tions, also called pairwise likelihood (Le Cessie and Van Houwelingen, 1994). Since pairs formed from
closest observations are likely to be more informative, it is convenient to restrict to the pseudolikelihood
constructed from the marginal probabilities of observed pairs of outcomes less distant than q units,

p
(q)(θθθ ; y) =
m∑

i=1

ni∑
j<k

log pr(Yi j = yi j , Yik = yik ; θθθ)1[−q,q](ti j − tik),

where 1A(x) is the indicator of the event {x : x ∈ A}. Note that p
(q)(·; y) is a weighted log-pairwise like-
lihood with dummy weights used to exclude pairs too far apart. A recent detailed discussion of weighted
versions of pairwise likelihood can be found in Joe and Lee (2009).

In contrast to a full likelihood approach, the pairwise likelihood for MAOP models involves only 2D
Gaussian integrals,

pr(Yi j = yi j , Yik = yik ; θθθ) =
∫ α̃yi j

α̃yi j −1

∫ α̃yik

α̃yik−1

φ2

(
zi j , zik ; σ 2

σ 2 + 1
+ e−δwi |ti j −tik |

σ 2 + 1

)
dzi j dzik .

The maximum composite likelihood estimator for θθθ solves the composite likelihood score equation,

u(q)(θθθ ; y) =
m∑

i=1

u(q)
i (θθθ ; yi ) =

m∑
i=1

ni∑
j<k

ui · jk(θθθ ; yi )1[−q,q](ti j − tik),

where ui · jk(θθθ ; yi ) = ∇ log pr(Yi j = yi j , Yik = yik ; θθθ). Since u(q)(θθθ ; y) is a linear combination of proper
score functions associated with each pairwise term forming the pseudolikelihood, it follows that, under
standard assumptions (Molenberghs and Verbeke, 2005, section 9), the maximum pairwise likelihood

estimator θ̂θθ
(q)

is consistent and asymptotically normally distributed. See also Cox and Reid (2004) for a
discussion on situations in which consistency of maximum pairwise likelihood estimators may not hold,
such as in long-memory temporal processes.

The asymptotic variance of θ̂θθ
(q)

assumes the typical “sandwich” form,

�(m)(θθθ) = H(q)(θθθ)−1J(q)(θθθ)H(q)(θθθ)−1,

where H(q)(θθθ) = −E{∇u(q)(θθθ ; Y)} and J(q)(θθθ) = cov{u(q)(θθθ ; Y)}. The inverse of �(q)(θθθ) is also termed

as Godambe information (Song, 2007, section 3). An empirical estimate of H(q)(θθθ) is −∇u(q)(θ̂θθ
(q); y).

Alternatively, exploiting the information identity for each pairwise term forming the pseudolikelihood,
H(q)(θθθ) may be conveniently estimated by

Ĥ
(q)

(y) =
m∑

i=1

ni∑
j<k

ui · jk(θ̂θθ
(q); yi )ui · jk(θ̂θθ

(q); yi )
T1[−q,q](ti j − tik), (3.1)

thus avoiding the need to derive Hessian matrices. The natural empirical estimate of J(q)(θθθ) is

Ĵ
(q)

(y) =
m∑

i=1

u(q)
i (θ̂θθ

(q); yi )u
(q)
i (θ̂θθ

(q); yi )
T. (3.2)
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132 C. VARIN AND C. CZADO

Matrices Ĥ
(q)

(y) and Ĵ
(q)

(y) are key ingredients for high-level inferential tasks such as hypothesis
testing and model selection. The composite likelihood information criterion (CLIC) by Varin and Vidoni
(2005) is a direct generalization of the Akaike (1973) criterion for model selection with composite likeli-
hoods. The CLIC suggests to prefer models with smaller values of the quantity

CLIC(q) = −2(p
(q)(θ̂θθ ; y) − d(q)(y)),

where d(q)(y) is an estimate of the effective number of parameters of the model. A consistent estimate

of d(q)(y) is given by the trace of the matrix �̂(q)(y)Ĥ
(q)

(y). This information criterion may be seen as a
form of the Takeuchi (1976) information criterion for model selection with misspecified likelihoods, being
the pairwise likelihood a misspecified likelihood under the working assumption of independent pairs.

Regarding the choice of the maximal admissible distance q between pairs used in the pairwise likeli-
hood, previous work on pairwise likelihood for temporal and spatial processes suggests that the inclusion
of too-distant pairs is not only computationally inefficient but may also not improve statistical efficiency
(see Varin, 2008). Here, we propose to choose the tuning parameter q as the value minimizing a global
fitting criterion, for example the generalized variance defined as the determinant of �̂(q)(y).

The supplementary appendix (available at Biostatistics online) contains details on a simulation study
carried out to evaluate the finite-sample performance of the proposed inferential methods. The results
suggest that maximum pairwise likelihood estimators behave well for all the parameters even in case
of strong serial correlation among the hidden variables. Computer code written in the R language (R
Development Core Team, 2008) is also included in the supplementary material (available at Biostatistics
online).

4. MIGRAINE SEVERITY DATA

Prince and others (2004) report that 45 million Americans seek medical attention for headaches yearly, at
an estimated labor cost of $13 billion. They show that only half of the migraine patients are affected by
weather conditions. In contrast, some studies show little or no effect of weather conditions on migraine
severity (see Cooke and others, 2000; Prince and others, 2004, for specific references). However, in these
studies, only the frequency of headache occurrences, and the daily maximum or total score of an ordinal
severity levels have been studied.

Current strategies for the analysis of pain severity data measured on an ordinal scale require aggregat-
ing over periods to achieve continuous average or total pain scores (e.g. Cooke and others, 2000; Prince
and others, 2004; Goldstein and others, 2005; Raskin and others, 2005). Such an approach ignores effects
occurring during the aggregation periods.

Here, we directly model the observed severity categories collected using a headache diary. In par-
ticular, we investigate the 4 daily ratings—recorded at morning, noon, afternoon, and bedtime—of the
headache intensity of 133 Canadian (Toronto) patients in a study conducted by psychologist T. Kostecki-
Dillon during the years 1993–1996. Records of the migraine severity were made on an ordinal scale with 6
categories described in Table 1.

In addition to a subject-specific questionnaire with personal and clinical information, weather con-
ditions were recorded. They were collected from the meteorological station closest to the place where
patients spends most of their time. The weather covariates include measurements related to sunshine,
humidity, wind direction and speed, windchill, pressure, air quality, and many others.

Patients with a very large number of missing observations in subsequent measurements, or with less
than 1 day of measurements, were omitted. The final data set comprises 119 patients with a total of 16 366
measurements, 1157 of which are missing. We assume an ignorable missing mechanism, and thus, we base
inference on the pairwise likelihood formed by pairs of observed outcomes. The numbers of observations
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Mixed autoregressive probit model 133

Table 1. Migraine data. Description of response categories with observed frequencies

Intensity Frequency Condition Description

0 9210 No headache
1 2455 Mild headache Aware of it only when attending to it
2 1685 Moderate headache Could be ignored at times
3 1156 Painful headache Continuously aware of it but able to start

or continue daily activities as usual
4 526 Severe headache Continuously aware of it, difficult to

concentrate, and able to perform only
undemanding tasks

5 177 Intense headache Continuously aware of it, incapacitating
unable to start or continue activity

Table 2. Migraine data. Observed 2-step transition proportions

0 1 2 3 4 5

0 0.83 0.10 0.04 0.02 0.01 0.00
1 0.35 0.37 0.17 0.08 0.03 0.01
2 0.25 0.22 0.33 0.14 0.05 0.01
3 0.20 0.15 0.22 0.30 0.10 0.03
4 0.15 0.10 0.14 0.27 0.27 0.07
5 0.10 0.05 0.10 0.16 0.24 0.35

per patient vary from 16 (4 days) to 1352 (338 days). Observations are not necessarily consecutive. Often,
the subject-specific observations are organized in separated measurement periods, each of them formed by
consecutive observations. The minimal measurement period is 1 day (4 measurements), while the maximal
one is 213 days (852 measurements).

Table 2 reports the observed proportions of the transitions between the ordinal categories in 2 consec-
utive measurements. Serial correlation in the data is suggested by the patterns of symptom persistence and
of transitions between adjacent categories.

For illustration, we study the relationship between headache severity using university degree status
and the usage of analgesics as base variables. Three weather covariates are additionally included. The first
is the change in atmospheric pressure from the previous day, categorized in 3 levels, namely from high
(>1013 hPa) to low pressure (�1013 hPa), from low to high pressure, and unchanged level of pressure
(from low to low or from high to high). The second weather covariate is the relative humidity index with
3 levels, that is less than 60% of humidity, between 60% and 80% of humidity, and more than 80% of
humidity. The last weather covariate is windchill categorized into 4 classes, between −50 ◦C and −10 ◦C,
between −10 ◦C and 0 ◦C, between 0 ◦C and 10 ◦C, and between 10 ◦C and 30 ◦C.

We consider the 2 binary covariates university degree and usage of analgesics as covariates of primary
interest, thus they are included in all considered models. The base model is

headache ∼ university + analgesics.

Furthermore, we consider 2 different autocorrelation parameters γ for subjects with analgesics intake
and those without.

For model comparison, it is necessary to fit all models of interest with a pairwise likelihood constructed
from the same pairs of observations, that is with the same distance q. We choose q as the value minimizing
the generalized variance for the larger model
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134 C. VARIN AND C. CZADO

headache ∼ university + analgesics + change + humidity + windchill.

According to this criterion, the overall best performance is obtained with q = 12. Thus, we fit all the other
(nested) models with this value for q.

Table 3 shows the 23 = 8 models obtained by adding all the possible combinations of the 3 weather
covariates to the base model. The relative performance of the kth model with respect to the alternative
models can be summarized by CLIC weights defined as wk = e−�k /

∑8
k=1 e−�k , where �k = (CLICk −

mini CLICi )/2.
Qualitative conclusions should take into account the fitted models with their relative importance ex-

pressed through the CLIC weights. In Table 4, for illustration, we show parameter estimates and standard
errors only for the 2 best models, namely the model including the change in pressure and the base model.

Table 3. Migraine data. Maximized log pairwise likelihoods with q = 12, CLIC statistics, and CLIC
weights for various models fitted to the migraine data

Change Humidity Windchill Log-pair CLIC Weights

— — — −2935.16 5917.15 0.27
∗ — — −2933.58 5916.30 0.41
— ∗ — −2934.36 5918.84 0.12
— — ∗ −2933.36 5922.53 0.02
∗ ∗ — −2932.90 5918.33 0.15
∗ — ∗ −2931.75 5921.93 0.02
— ∗ ∗ −2932.62 5924.59 0.01
∗ ∗ ∗ −2931.03 5924.20 0.01

The variables included in the models are indicated by symbol ∗

Table 4. Migraine data. Estimates and standard errors (SE) from the pairwise likelihood with q = 12 for
the base model (first 2 columns) and the best model accordingly to CLIC with different autocorrelation
parameters for analgesic users and nonanalgesic users (third and fourth column) and with a single com-
mon autocorrelation parameter (fifth and sixth column). The levels of the variable change are as follows:
1, change from low to high atmospheric pressure; 2, substantially unchanged atmospheric pressure; and
3, change from high to low atmospheric pressure. The baseline is “no university degree, no intake of

analgesics, change from low to high pressure”

Estimates SE Estimates SE Estimates SE

α2 0.588 0.046 0.588 0.046 0.589 0.046
α3 1.136 0.069 1.136 0.069 1.137 0.069
α4 1.786 0.079 1.787 0.080 1.788 0.080
α5 2.505 0.109 2.506 0.111 2.508 0.112

Intercept −0.474 0.226 −0.522 0.223 −0.517 0.223
University −0.523 0.172 −0.523 0.174 −0.525 0.173
Analgesics 0.558 0.202 0.561 0.205 0.557 0.205
Change 2 — — 0.031 0.051 0.031 0.051
Change 3 — — 0.164 0.053 0.164 0.053

γF 0.415 0.094 0.424 0.094 0.540 0.031
γT 0.556 0.030 0.557 0.030 0.540 0.031
γT − γF 0.142 0.098 0.133 0.098 0.000 0.000

σ 2 0.566 0.110 0.564 0.111 0.566 0.112
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Mixed autoregressive probit model 135

When considering also the other 6 fitted models, we obtain the following overall conclusions. Subjects
with university degree tend to suffer from lower levels of headache, while those taking analgesics have
stronger symptoms. These variables have more predictive impact on the headache symptoms than the
considered weather effects. Among the latter, only the change in the atmospheric pressure is significant
in that its decrease is associated with raised headache severity. The categorized relative humidity appears
weakly significant and the windchill covariate even less.

Finally, in all fitted models, there is no appreciable difference between the symptom persistence for
patients who took analgesics and those who did not. Indeed, the difference between the autocorrelation
parameters for the analgesic users (γT ) and the nonanalgesic users (γF ) for all models is estimated between
0.133 and 0.148 with standard errors ranging between 0.096 and 0.099. This is confirmed by refitting the
models with a common autocorrelation parameter γ for all patients: Table 4 reports the best model with
and without separate autocorrelation parameters. The models with common and separate autocorrelations
give CLIC = 5915.8 and CLIC = 5916.3, respectively.

5. CONCLUDING REMARKS

We have developed a pseudolikelihood approach for analyzing a large longitudinal study on migraine
severity symptoms. The proposed methodology is general and may be useful for other studies with ordinal,
as well as binary, outcomes.

The main advantage from pairwise likelihood inference is its computational simplicity. Moreover,
since only the specification of bivariate margins is required, our approach relies on model assumptions to
a lesser degree than any approach based on a full likelihood approximation. Some loss of efficiency may
be experienced for the composite likelihood method compared to a full likelihood, but full likelihood is
intractable for large numbers of observations per subject. The study of the efficiency of maximum pairwise
likelihood estimators is possible only with a small number of observations per patients as in Joe and Lee
(2009) whose results encourage the use of this pseudolikelihood.

The underlying normal assumptions leading to the multivariate probit model were considered mainly
for ease of interpretation. However, there are no theoretical restrictions against considering other dis-
tributional assumptions. An alternative of possible interest is a cumulative logit model (Agresti, 2002,
chapter 7) for the conditional distribution of the response given the random effects.

Other useful variants of the proposed class of models may involve robustification of the random effect
distribution, for example by using a Student t-distribution instead of the traditional Gaussian distribution.

Often, in longitudinal studies, the missing data mechanism may not be assumed ignorable and thus
likelihood-type analysis based on complete observations are not valid. Modifications of the pairwise like-
lihood for nonignorable missing data mechanisms are described in Parzen and others (2007).

As with standard likelihood inference, maximum pairwise likelihood estimators for variance com-
ponents fail to correct for the degrees of freedom lost for estimating fixed effects and thus are prone
to severe downward bias. When the number of covariates is not small compared to the number of sub-
jects, bias in the estimate of σ 2 can be worthy of attention. Among several bias correction procedures,
resampling methods such as jackknife and bootstrap are viable approaches given the low computational
cost of pairwise likelihood evaluations. Furthermore, computational saving may be obtained by using
first-order approximations instead of complete maximization of the pseudolikelihood for each resampled
data set.

Standard errors estimated from the empirical quantities (3.1) and (3.2) may be numerically imprecise
for longitudinal studies with few subjects, typically leading to overoptimistic standard errors. More robust
variance estimates for small numbers of subjects may obtained with resampling techniques such as the
jackknife or the bootstrap.
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SUPPLEMENTARY MATERIAL

Supplementary material is available at http://biostatistics.oxfordjournals.org.
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