Project
O

» Project due (before) Wednesday, April 13 (5 pm)
» Two to three pages of write-up:

» introduction to data

» questions of interest

methods and models used

tables and figures

conclusions

code as Appendix
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Unsupervised Learning (Ch 14)

>

training sample (xi, ..., xy); each case has p
measurements (features); no response y

want information on the probability function (density) of

X = (Xy,...,Xp) based on these N observations

if p =1 or 2, can use kernel density estimation as in §6.6
we also used density estimation to construct a classifier,
via Naive Bayes

most unsupervised learning methods try to find regions of
feature space (RP) with high probability

this is called density modelling in Roweis’ CSC2515
Lecture 7

somewhat more specialized techniques are clustering:
classification with missing class variable or dimension
reduction: regression with missing response variable

no loss function to ascertain/estimate how well we’re doing
(exploratory data analysis)

STA 450/4000 S: March 30 2005: ,



Cluster Analysis (§14.3)

» discover groupings among the cases; cases within clusters
should be ’close’ and clusters should be 'far apart’ (Figure
14.5)

» many (not all) clustering methods use as inputan N x N
matrix D of dissimilarities

> require D;» > 0, Djy = Dyjand D; =0

» sometimes the data are collected this way (see §14.3.1)
but more often D needs to be constructed from the N x p
data matrix

» this can be done using dist or daisy (the latter in the R
library cluster)

» often (usually) D; = f:1 di(xj, xirj), where dj(-, -) to be
chosen, e.g. (Xj — Xxi)?, |X;j — Xij], etc.

> sometimes Djy = P, widj(xj, Xi;), with weights to be
chosen. (extensive discussion of weights on pp 457-9).
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Cluster Analysis (§14.3)

suppose number of clusters K is fixed (K < N), write C(i) = k
to mean observation i is assigned to cluster k

T= 23>
i=1i'=1
1 K
= EZ Z Z D,','/ + Z D,','/
k=1C(i)=k \C(I")=k C(/’);ﬁk

—

SIE Y S oYY S o

25 C(i)=k C(i")#k
= W(C) + B(C)

where W(C) is a measure of within cluster dissimilarity and

B(C) is a measure of between cluster dissimilarity. Since T is

fixed given the data, the goal of minimizing W(C) is the same
as that of maximizing B(C)
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Clustering methods (§14.3)

» unsupervised learning sometimes called exploratory
(multivariate) analysis, cf. VR (Ch. 11)

» well constructed pictures of the data often as informative

» other methods of unsupervised learning include projection
methods

» “classification” sometimes used to mean finding clusters;
e.g. Gordon

» Ripley 96 does not recommend using clusters as a
technique for classification

» partitioning methods: K-means, K-medioids, Vector
Quantization

» hierarchical methods; top-down or bottom-up

» both are combinatorial methods; in contrast to
model-based methods such as Gaussian mixtures.

» Note: VQ used in signal processing literature (and is the
same as ?) K-means clustering (Figure 14.9)
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Partitioning methods

» K-Means — uses the original data

> uses Euclidean distance Dj» = 327 (Xj — Xij)?

» requires a starting classification

» minimizes the within-cluster sum of squares

» maximizes the between-cluster sum of squares

» variables should be ’suitably scaled’ (Ripley): no mention
of this in HTF

» K-medioids: replace Euclidean by another dissimiilarity
measure

p
Dy = Z ‘Xij — X,'//" manhattan
j=1

Xii — Xir
Z‘ Y i | Canberra
|xij + X}l
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K-Means clustering (§14.3.6)

» most algorithms use a ‘greedy’ approach by modifying a
given clustering to decrease within cluster distance:
analogous to forward selection in regression

» K-means clustering is (usually) based on Euclidean
distance: D = ||x; — x#||?, so x’s should be centered and
scaled (and continuous)

» Use the result

*Z > Z 1% = x| = ZNK Z X — Xel[?

k=1 C(i)=k C(i")= k=1 C(i)=

where Ny is the number of observations in cluster k and
Xk = (X1k, ..., Xpk) is the mean in the kth cluster

» The algorithm starts with a current set of clusters, and
computes the cluster means. Then assign observations to
clusters by finding the cluster whose mean is closest.
Recompute the cluster means and continue.

STA 450/4000 S: March 30 2005: ,



K-Means clustering (§14.3.6)

» sometimes require cluster center to be one of the data
values (means that algorithm can be applied to
dissimilarity matrices directly)

» choose K by possibly plotting the total within cluster
dissimilarity vs. K; it is always decreasing but a 'kink’ may
be evident (see §14.3.11).

» hard to describe the results of partitioning methods of
clustering, although see Figure 14.6.
» Algorithm 14.1:

o for a given cluster assignment, minimize the total cluster
variance 5, Nk > c(iy=k [1Xi — mil[? with respect to
{my,..., mg}; this is easily achieved by taking each my to
be the sample mean of the kth cluster

e For a given set of {my}, minimize distance by letting
C(i) = argmin, . ||Xi — m|[?
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Example: wine data
O

STA 450/4000 S: March 30 2005: , 9



Example: wine data

linear discriminant analysis showed a good separation of the 3
classes. | ran K-means with a random choice of initial cluster

and got the following: =~~~ = =~ The
numbers show the classes in the original data, and the colors
show the K-means clusters. The overlap is not very good. Then
| standardized each column of the wine matrix to have mean
zero and variance 1, and ran K-means again.
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Example: wine data
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Here clustering has been
quite effective.
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Dissimilarities for categorical features

» binary: simple matching uses

Diy = (#{(1,0) or (0,1) pairs )/p

Jacard coefficient uses

Dir = (#{(1,0)0r(0,1) pairs )/(#{(1,0),(0,1) or (1,1) pairs )
» ordered categories — use ranks as continuous data (see
eq. (14.23))

» unordered categories — create binary dummy variables and
use matching

» mixed categories — Gower’s 'general dissimilarity
coefficient’ — see Gordon
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Constructing dissimilarity matrices

dist (x, method = c("euclidean", "maximum",
"manhattan", "canberra", "binary"))

where maximum is maxi<j<p(Xj — Xij) and binary is Jacard
coefficient.

daisy (x, metric=c("euclidean", "manhattan",
standardize=F, type=c("ordratio","logratio","asymm"

(see the help files)

STA 450/4000 S: March 30 2005: , 13



Hierarchical clustering

>

bottom up: each value is a cluster, iterate: find the ’closest’
pair of clusters C; and Cy merge them

need a measure for distance between points and between
clusters (the clusters needn’ tbe vectors)

single link clustering measures the distance between
clusters by the minimum distance

d(Cy, C2) = minjcc, irec, Dir

susceptible to 'chaining’; long strings of points assigned to
the same cluster

sensitive to outliers

not useful for segmentation

STA 450/4000 S: March 30 2005: , 14



Hierarchical clustering

>

has an invariance property: if two pairs of clusters are
equidistant it doesn’t matter which pair is merged first
complete linkage d(Cy, C2) = maxcc, icc, Dir

clusters then to be of equal size in 'volume of space’
occupied

useful for segmentation

group average intermediate between complete and single
linkage.

Hierarchical clustering is easily pictured in a dendogram,
see Figs 14.12 and 14.13. Note that the ’look’ is quite
different for different linkages. Implemented in R in
hclust and agnes.

STA 450/4000 S: March 30 2005: , 15



Height

120

100

60

Cluster Dendrogram

19

57

dist

{(wine.x)
holust (*, single”)



Height

600

500

400

300

200

100

Cluster Dendrogram

dist(wine.x)
helust (*, "average")




Height

400 600 800 1000 1200 1400

200

Cluster Dendrogram

st

dist(wine.x)
helust (*, "complete")




Height

600

500

400

300

200

100

Dendrogram of agnes(x = dist(wine.x), method

st

TS Rl e YR T TP RS RO PR SO B VRS

dist(wine.x)
Agglomerative Coefiicient = 0.98

R ]



Height

600

500

400

300

200

100

Dendrogram of agnes(x = wine.x, metric = "manhattan", method = "average")

h “alrao oo™ &
T gy recaf2egel™ Moo 9030etonnl” Hofhun o2 s Uged® oo

wine.x
Agglomerative Coefficient = 0.96

ooy ooy TN Ul



— top down starts with all observations in one cluster, and
amalgamate. Computationally more intensive, harder to find
optimal clusters. Implemented in R in diana.

Dendrogram of diana(x = wine.x, metric = "manhattan”)
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Association Rules (§14.2)

v vyyVvyy

assume each X; takes values in a set S;

let s; C S; be a subset of these values

example: age classes (0-14, 15-24, ...)

example: employment status (working full-time, working
part-time, seeking work, ...)

Goal: find s1, Sz, . . . Sp so that

Pr(Xj€ s, j=1,...,p) = Pr{nf_{(X; € 5)}

relatively large

Note if s; = S; then Pr(X; € s;) = 1, i.e. X; “does not
appear”

Simplification: s; either S; or a single value (called vy; on
p.440)

Then want to find subsets 7 C {1,...,p} and values
Voj,J € J so that Pr(NsS; = vy;) is large
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Association Rules (§14.2)

» Special case: each X; = 0,1 (binary features) then vp; = 1
and Njes(Xj=1) = [[jcs Xj =1

» If X; takes a finite number of values, v, ... Vin;» Say, then
create n; dummy variables Zj, Zp, . .. ,Zj,,l. that are binary

» Renumber these to Z, ..., Zk; goal is now to find a subset
K c {1,...K} to give a large value of

r([[Z=1)
kek

» This is estimated by

NZHZ,k—PrHZk—1 = )

i=1 ke

» Implementation: Find all sets C; so that T(K;) > t: this
reduces the number of possible item sets.
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Association Rules (§14.2)

» K is an item set.
| 2

2 \

N

i=1 kek

» prevalence of the item set K.

» §14.2.2 describes the APriori algorithm for implementing
this

» The item sets K, are described by a set of association

rules A= B example {peanut butter, jelly} = {bread}
» and summarized by estimates of

T(A=B) Pr(AnB)  ‘“support”
C(A=B) Pr(B|A) ‘“confidence”
Pr(ANB)
Pr(A)Pr(B)
» See §14.2.3 for an example (that gave 6288 rules!)

“lift”
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LAssociation Rules (§14.2)

8 )
Cla=B) m(BIA)
PANE)
FRAPHE)
» 5601423 for an example (tha gave 6288 rules’)

If we are interested in a particular consequence, P(B | A), we could
create a ‘response’ variable y = 1{x € B} and use methods for
supervised learning such as logistic regression, classification, etc.

A more clever use of supervised learning for association rules is
described in §14.2.4 and §14.2.5, suggestion in §14.2.6 to use CART
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