Separating hyperplanes (4.5)

» assume two classes only; change notation so that y = 41
» use linear combinations of inputs to predict y
y_{—1 Bo+xTp <0

1 T3 ixT3>0

» misclassification error D(3, 30) = —ZicmYi(Bo + X 3)
where

> M = {j;y(fo + x7 ) < 0}

» note that D(3) > 0 and proportional to the 'size’ of 3y +x,Tﬁ

» Can show that an algorithm to minimize D(3, ) exists and
converges to the plane that separates y = +1 from y = —1
if such a plane exists

» But it will cycle if no such plane exists and be very slow if
the 'gap’ is small

STA 450/4000 S: March 16 2005: ,



Separating hyperplanes (4.5)

» Also if one plane exists there is likely many (Figure 4.13)
» The plane that defines the "largest” gap is defined to be
"best”
» can show that this needs to
o1 5
min 515
st. yi(Bo+x'p)>1, i=1,...N (4.44)

» See Figure 4.15

» the points on the edges (margin) of the gap called support
points or support vectors; there are typically many fewer of
these than original points

» this is the basis for the development of Support Vector
Machines (SVM), more later

» sometimes add features by using basis expansions; to be
discussed first in the context of regression (Chapter 5)
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Support vector machines (§12.2, 12.3)

» plane in RP defined by f(x) = G+ 3 x =0
» call this plane £
1. For any Xp € ﬁ,ﬂo = —ﬁTXO
2. if X1,Xo € L then ﬁT(X1 — X2) =0,i.e. ﬁL(X1 — Xg), i.e.
Ll
3. if x € RP the distance to the closest point in L, xp, say, is

g7 87X+ 6o _ ()
[IEL 181~ Tiall

T (X = Xo) =

> a perceptron returns sign(3y + 47 x)

» The perceptron learning algorithm tries to find £ by
minimizing the number of misclassifications

min D(3, 50) = — > yi(x] + Bo)

iemM
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Support vector machines (§12.2, 12.3)

» Algorithm based on derivatives of D: visit points in M in
some order

» update using

s s ( YiXi >
= _) |+
<5(()t) Béf 1) p Vi
» p called the learning rate

» if classes are linearly separable, this converges in a finite
number of steps

» the separating hyperplane with the largest margin has

max C s.t. vixT3+ S C Vi
3,60,1181=1 yi(X 8+ Po)
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Support vector machines (§12.2, 12.3)
O

x1
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Support vector machines (§12.2, 12.3)
O

Finding the optimal separating plane: a quadratic programming

problem:
max C st . yi(x/B+50)>Clal
max ﬁ st yi(x'B+pB)>C

1
max &l sit. yi(x B+ Bo) > 1

min||8]] st yi(x] B+ 5o) > 1

o1
min §||5||2 st yi(x/ B+ Bo) > 1
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Support vector machines (§12.2, 12.3)

>

vVvyyvyy

v

Allowing overlap:
min[|3]| st yi(x8+Bo)>1-¢& Vi (12.7)
with
£ >0, Zéi < constant
&; called slack variables
note equivalent to y;(x 8 + o) > C(1 — &)
some points allowed to cross into the margin
some points allowed to cross to the wrong side of the
margin (see Figure 12.2)
the number of & > 1 is the number of misclassified points
> &; is the total proportional amount by which predictions
are on the wrong side
new optimization problem

N

o1
?'g§‘|ﬁ|‘2+725i st. &>0, yi(x/B+06)>1-¢
0 i—1
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Quadratic programming algorithm

| 4
1 N N N
Lp =318l Pty ) &= aifyilx! B+50)—(1-6) =D piti
i=1 i=1 i=1
» to be minimized over 3, By, &i: «;, pj are Lagrange

multipliers
Bo= D ayix
0 = > aw
aj =y —pi, Vi
as well as positivity constraints on «;, uj, &. Substitute into Lp:

Lp = Z o — 2 Z Z ajairYiyin X; X/’

i=1i'=1
to be maximized subject to 0 < «; < v and 2,-:1 a;y; = 0. plus

i : i
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Quadratic programming algorithm

v

the solution for 5 has the form

N
B="aiyix
i=1

v

i.e. linear combinations of x; (y; = £1)

v

only some of the &; are nonzero: those where the lower
bound is exact (12.14)

these observations are called the support vectors
Figure 12.2

the “Bayes optimal” classifier is based on the exact

posterior probabilities (unknown in general; this example is
simulated data)

v

v

v
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Beyond linear (§12.3)

» use basis function expansions to create more flexible
boundaries
> f(x) = h(x)T8 + fo
> new Lp = Yo — 5 3 2 ajeryiyrh(x) Th(xir)
» solution looks like (12.20)
f(x) = >_ aiyi < h(x), h(x;) > 4050
» i.e. depends only on inner products; alternatively depends
on h(-) only through its Kernel function
K(x,x") =< h(x), h(x") >
e polynomial: (14 < x, x’ >)¢
e radial basis: exp(—||x — x||2/c)
e neural network tanh(k1 < X, x’' > +k2)

» Figure 12.3
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Beyond linear (§12.3)

>
>

vy

another view of SVM: a penalization problem

ﬂmoig > {1 = yif(x)}+ + AlIBIP

A corresponds to 1/(27)

Figure 12.4, Table 12.1

The “kernelization” of the SVM algorithm means
computations are easier; you specify a kernel function
instead of (many many h’s)

But we want a sparse solution (many «; = 0) to avoid
overfitting

kernelization can be applied to many algorithms (even
ridge regression)

see Lecture 13 for Sam Roweis’ course on machine
learning

the SVM algorithm induces kernelization and sparsity
simultaneously
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Courtesy of Sam R (Lecture 13 CSC 2515)

SupPPORT VECTOR MACHINES

o A support vector machine (SVM) is nothing more than a kernelized
maximum-margin hyperplane classifier.

¢ You train it by solving the dual quadratic programming problem.

e You run it by finding dot products of the test point with all the
training cases.

o Easy!
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Courtesy of Sam R (Lecture 13 CSC 2515)

in
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svm {el071} R Documentatio
Support Vector Machines

Description

svm I8 used to train a support vector machine. It can be used to carry out general regression and
classification (of nu and epsilon-type). as well as density-estimation. A formula interface is provided.

Usage

## 53 method for class 'formula':
svm|{formula, data = NULL, ..., subset, na.action =
na.omit, scale = TRUE)
## Default 53 method:
svm(x, ¥y = NULL, scale = TRUE, type = NULL, kernel =
“radial", degree = 3, gamma = 1 / ncol{as.matrix(x)), coefl = 0, cost = 1, nu = 0.5
class.weights = NULL, cachesize = 40, tolerance = 0.001, epsilon = 0.1,
shrinking = TRUE, cross = 0, probability = FALSE, fitted = TRUE,
., subset, na.action = na.omit)

Arguments

formula a symbolic description of the model to be fit.

data an optional data frame containing the variables in the model. By default the variables arc
taken from the environment which “svm’ is called from.

X a data mafrix, a vector, or a sparse matrix (object of class matrix.csr as provided by
the package SparseM).

Y a response vector with one label for each row/component of x. Can be either a factor (fc
classification tasks) or a numeric vector (for regression).

scale A logical vector indicating the variables to be scaled. If seale is of length 1, the value 1

recveled ag manvy timec g needed Per defanlt data are ecaled intermallv iboth « and «



Example using R

R : Copyright 2004, The R Foundation for Statistical Computing
Version 2.0.1 (2004-11-15), ISBN 3-900051-07-0

> library (MASS)
> library(el071)
Loading required package: class
> ?svm
> data(cats)
> dim(cats)
[1] 144 3
> cats[1:3,]
Sex Bwt Hwt

F 2 7.0
F 2 7.4
F 2 9.5

## this is a simple example taken from the help file for plot.svm

## Bwt is body weight in kg; Hwt is heart weight in g

m <- svm(Sex~., data=cats)

plot (m, cats)

quartz ()

plot (cats$Hwt, cats$Bwt,pch=21, bg=c("red","green3") [unclass (cats$Sex)])
## we can now look at various components of m, including coefs, SV, index

VVVVVVVWNe
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Extensions

» For more than 2 classes, do K(K — 1)/2 pairwise
comparisons and average (somehow)

» There is a regression version (§12.3.5,6); see Figure 12.6

» Remainder of Chapter 12 is more flexible versions of
discriminant analysis; generalizing LDA (I'll skip this)
» New page 385 available from book web site
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