
Separating hyperplanes (§4.5)

I assume two classes only; change notation so that y = ±1
I use linear combinations of inputs to predict y

y =

{
−1
+1

as
β0 + xT β < 0
β0 + xT β > 0

I misclassification error D(β, β0) = −Σi∈Myi(β0 + xT
i β)

where
I M = {j ; yj(β0 + xT

j β) < 0}
I note that D(β) > 0 and proportional to the ’size’ of β0 +xT

i β

I Can show that an algorithm to minimize D(β, β0) exists and
converges to the plane that separates y = +1 from y = −1
if such a plane exists

I But it will cycle if no such plane exists and be very slow if
the ’gap’ is small
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Separating hyperplanes (§4.5)

I Also if one plane exists there is likely many (Figure 4.13)
I The plane that defines the ”largest” gap is defined to be

”best”
I can show that this needs to

min
β0,β

1
2
||β||2

s.t. yi(β0 + xT
i β) ≥ 1, i = 1, . . . N (4.44)

I See Figure 4.15
I the points on the edges (margin) of the gap called support

points or support vectors; there are typically many fewer of
these than original points

I this is the basis for the development of Support Vector
Machines (SVM), more later

I sometimes add features by using basis expansions; to be
discussed first in the context of regression (Chapter 5)
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Support vector machines (§12.2, 12.3)

I plane in Rp defined by f (x) = β0 + βT x = 0
I call this plane L

1. For any x0 ∈ L, β0 = −βT x0
2. if x1, x2 ∈ L then βT (x1 − x2) = 0, i.e. β⊥(x1 − x2), i.e.

β
||β||⊥L

3. if x ∈ Rp the distance to the closest point in L, x0, say, is

βT

||β||
(x − x0) =

βT x + β0

||β||
=

f (x)

||β||

I a perceptron returns sign(β0 + βT x)

I The perceptron learning algorithm tries to find L by
minimizing the number of misclassifications

I

min D(β, β0) = −
∑
i∈M

yi(xT
i + β0)
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Support vector machines (§12.2, 12.3)

I Algorithm based on derivatives of D: visit points in M in
some order

I update using(
β(t)

β
(t)
0

)
=

(
β(t−1)

β
(t−1)
0

)
+ ρ

(
yixi
yi

)
I ρ called the learning rate
I if classes are linearly separable, this converges in a finite

number of steps
I the separating hyperplane with the largest margin has

max
β,β0,||β||=1

C s.t . yi(xT
i β + β0) > C ∀i
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Support vector machines (§12.2, 12.3)
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Support vector machines (§12.2, 12.3)

Finding the optimal separating plane: a quadratic programming
problem:

max
β,β0

C s.t . yi(xT
i β + β0) ≥ C||β||

max
C
||β||

s.t . yi(xT
i β + β0) ≥ C

max
1
||β||

s.t . yi(xT
i β + β0) ≥ 1

min ||β|| s.t . yi(xT
i β + β0) ≥ 1

min
1
2
||β||2 s.t . yi(xT

i β + β0) ≥ 1
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Support vector machines (§12.2, 12.3)

I Allowing overlap:

min ||β|| s.t . yi(xT
i β + β0) ≥ 1− ξi ∀i (12.7)

with
ξi ≥ 0,

∑
ξi ≤ constant

I ξi called slack variables
I note equivalent to yi(xT

i β + β0) ≥ C(1− ξi)
I some points allowed to cross into the margin
I some points allowed to cross to the wrong side of the

margin (see Figure 12.2)
I the number of ξi > 1 is the number of misclassified points
I
∑

ξi is the total proportional amount by which predictions
are on the wrong side

I new optimization problem

min
β0,β

1
2
||β||2 + γ

N∑
i=1

ξi s.t . ξi ≥ 0, yi(xT
i β + β0) ≥ 1− ξi
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Quadratic programming algorithm

I

LP =
1
2
||β||2+γ

N∑
i=1

ξi−
N∑

i=1

αi{yi(xT
i β+β0)−(1−ξi)}−

N∑
i=1

µiξi

I to be minimized over β, β0, ξi : αi , µi are Lagrange
multipliers

β =
∑

αiyixi

0 =
∑

αiyi

αi = γ − µi , ∀i

as well as positivity constraints on αi , µi , ξi . Substitute into LP :

LD =
N∑

i=1

αi −
1
2

N∑
i=1

N∑
i ′=1

αiαi ′yiyi ′xT
i xi ′

to be maximized subject to 0 ≤ αi ≤ γ and
∑N

i=1 αiyi = 0. plus
conditions (12.14) – (12.16)
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Quadratic programming algorithm

I the solution for β has the form

β̂ =
N∑

i=1

α̂iyixi

I i.e. linear combinations of xi (yi = ±1)
I only some of the α̂i are nonzero: those where the lower

bound is exact (12.14)
I these observations are called the support vectors
I Figure 12.2
I the “Bayes optimal” classifier is based on the exact

posterior probabilities (unknown in general; this example is
simulated data)
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Beyond linear (§12.3)

I use basis function expansions to create more flexible
boundaries

I f (x) = h(x)T β + β0

I new LD =
∑

αi − 1
2
∑∑

αiαi ′yiyi ′h(xi)
T h(xi ′)

I solution looks like (12.20)
f (x) =

∑
αiyi < h(x), h(xi) > +β0

I i.e. depends only on inner products; alternatively depends
on h(·) only through its Kernel function
K (x , x ′) =< h(x), h(x ′) >

• polynomial: (1+ < x , x ′ >)d

• radial basis: exp(−||x − x ′||2/c)
• neural network tanh(κ1 < x , x ′ > +κ2)

I Figure 12.3
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Beyond linear (§12.3)

I another view of SVM: a penalization problem
I

min
β0,β

∑
{1− yi f (xi)}+ + λ||β||2

I λ corresponds to 1/(2γ)
I Figure 12.4, Table 12.1
I The “kernelization” of the SVM algorithm means

computations are easier; you specify a kernel function
instead of (many many h’s)

I But we want a sparse solution (many αi = 0) to avoid
overfitting

I kernelization can be applied to many algorithms (even
ridge regression)

I see Lecture 13 for Sam Roweis’ course on machine
learning

I the SVM algorithm induces kernelization and sparsity
simultaneously
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Courtesy of Sam R (Lecture 13 CSC 2515)
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Courtesy of Sam R (Lecture 13 CSC 2515)
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Example using R

R : Copyright 2004, The R Foundation for Statistical Computing
Version 2.0.1 (2004-11-15), ISBN 3-900051-07-0

...

> library(MASS)
> library(e1071)
Loading required package: class
> ?svm
> data(cats)
> dim(cats)
[1] 144 3
> cats[1:3,]
Sex Bwt Hwt

1 F 2 7.0
2 F 2 7.4
3 F 2 9.5
> ## this is a simple example taken from the help file for plot.svm
> ## Bwt is body weight in kg; Hwt is heart weight in g
> m <- svm(Sex˜., data=cats)
> plot(m,cats)
> quartz()
> plot(cats$Hwt,cats$Bwt,pch=21, bg=c("red","green3")[unclass(cats$Sex)])
> ## we can now look at various components of m, including coefs, SV, index
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Extensions

I For more than 2 classes, do K (K − 1)/2 pairwise
comparisons and average (somehow)

I There is a regression version (§12.3.5,6); see Figure 12.6
I Remainder of Chapter 12 is more flexible versions of

discriminant analysis; generalizing LDA (I’ll skip this)
I New page 385 available from book web site
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