
Degrees of freedom for splines

I degrees of freedom for cubic splines, 1 covariate
• K knots, K + 1 intervals, 4(K + 1) parameters
• 3K restrictions
• leaves K + 4 parameters, omit constant term, leaves K + 3

I degrees of freedom for natural splines
• linear on (−∞, ξ1] and [ξK ,∞): 4 pars
• cubic in interior intervals 4(K − 1)
• 3K restrictions, leaves K parameters, but
• 2 knots added at x(1), x(n): K + 2
• omit constant term get K + 1

I what does omit constant term mean? Example

S0(x) = a0 + b0x + c0x2 + d0x3, 0 ≤ x ≤ 1

S1(x) = a1 + b1(x − 1) + c1(x − 1)2 + d1(x − 1)3, 1 ≤ x ≤ 2

I e.g. a0 = b0 = c0 = d0 = 1; fixes a1 = 4, b1 = 6, c1 = 8
I or, force a0=0, add it in later

STA 450/4000 S: February 23 2005: , 1

Degrees of freedom for splines

I degrees of freedom for smoothing splines
I

min
f

Σ{yi − f (xi)}2 + λ

∫
{f ′′(t)}2dt

I solution is natural cubic splines with knots at unique xi

I f (x) = ΣN
j=1Nj(x)θj , say

I minθ Σ{yi − ΣjNj(xi)θj}2 + λΣjkθjθkΩjk

I minθ(y − Nθ)T (y − Nθ) + λθT ΩNθ

I Ωjk =
∫

N ′′
j (t)N ′′

k (t)dt

I just like ridge regression: θ̂ = (NT N + λΩN)−1NT y
I f̂ = N θ̂ = n(NT N + λΩN)−1NT y = Sλy , say
I degrees of freedom defined to be traceSλ by analogy
I Same formula works for regression splines (actually

easier) cf (5.15)

STA 450/4000 S: February 23 2005: , 2

Multidimensional splines (§5.7)

I Suppose we have X1, X2, and E(y | X) = f (X1, X2)

I one solution is to combine separate spline bases for X1

and X2

I e.g. additively: f (X1, X2) = f1(X1) + f2(X2) (this is what was
done for heart data)

I doesn’t permit interactions
I alternative is to use all possible cross products: called

tensor products
I f (X1, X2) = ΣM1

j=1Σ
M2
k=1θjkh1j(X1)h2k (X2)

I analogous to forming quadratic functions in regression
using, e.g., x2

1 , x1x2, x2
2

STA 450/4000 S: February 23 2005: , 3

Multidimensional splines (§5.7)

I alternative to derive smoothing splines in two dimensions:

min
f

ΣN
i=1{yi − f (x i)}2 + λJ(|f |)

I J(|f |) =
∫ ∫

(∂2
1 f + ∂2

2 f + 2∂12f)2dxdy
I as in univariate case, solution exists in a spline basis

similar to natural splines
I (5.39): f (x) = β0 + βT x + ΣN

j=1αjhj(x)

I hj(x) = η(||x − x j ||), η(z) = z2 log z
I called radial basis functions: take this form because of

symmetry of penalty
I note uses N knots; reduced in implementation by

regularization

STA 450/4000 S: February 23 2005: , 4

kernel methods for regression

Kernel methods for regression : univariate

I model: E(Y | x) = f (x) (“smooth”)
I data: yi = f (xi) + εi

I running mean smoother: f̂ (x0) = ave(yi | xi ∈ Nk (x0))

I Nk (x0) set of k “nearest neighbours”: k smallest values of
|xi − x0|

I smoother estimate using kernel weighted average

f̂ (x0) =

∑N
i=1 Kλ(x0, yi)yi∑N
i=1 Kλ(x0, xi)

[Figure 6.1]
I kernel

Kλ(x0, x) = D
(
|x − x0|

λ

)
or D

(
|x − x0|
hλ(x0)

)

STA 450/4000 S: February 23 2005: , 5

kernel methods for regression

I λ determines the width of the neighbourhood, hence
smoothness

I increasing λ gives smoother function (higher bias, lower
variance)

I metric window width (hλ(x0) = λ) - constant bias, variance
∝ 1/local density

I nearest neighbour window width (hλ(x0) depends on x0) -
constant variance, bias ∝ 1/local density

I Choice of kernel:

D(t) =

{ 3
4(1− t2), |t | ≤ 1 Epanichakov
0

=

{
(1− |t |3)3, |t | ≤ 1 tri − cube
0

= φ(t) =
1√
2π

exp(−t2/2) Gaussian

STA 450/4000 S: February 23 2005: , 6

kernel methods for regression

R or Splus :

ksmooth(x,y,kernel=c("box","normal"),bandwidth=0.5,range.x=range(x),n.points=max(100,length(x)), x.points)

loess(formula)

more later

> eps<-rnorm(100,0,1/3)
> x<-runif(100)
> sin4x <- function(x){sin(4*x)}
> y<-sin4(x)+eps
> plot(sin4,0,1,type="l",ylim=c(-1.0,1.5),xlim=c(0,1))
> points(x,y)
> lines(ksmooth(x,y,"box",bandwidth=.2),col="blue")
> lines(ksmooth(x,y,"normal",bandwidth=.2),col="green")
> plot(sin4,0,1,type="l",ylim=c(-1.0,1.5),xlim=c(0,1))
> lines(ksmooth(x,y,"normal",bandwidth=.2),col="green")
> lines(ksmooth(x,y,"normal",bandwidth=0.4),col="blue")
> lines(ksmooth(x,y,"normal",bandwidth=0.6),col="red")

(Figure 6.1)
STA 450/4000 S: February 23 2005: , 7

kernel methods for regression

Local linear regression
I replace weighted average of xi ’s with weighted linear (or

polynomial) regression: better endpoint behaviour
I

min
α(x0),β(x0)

∑
Kλ(x0, xi){yi − α(x0)− β(x0)xi}2

I

f̂ (x0) = (1, x0)(X
T W (x0)X)−1X T W (x0)y

I

X =


1 x1

1 x2
...

...
1 xn

 = B

I W (x0) = diag Kλ(x0, xi)

STA 450/4000 S: February 23 2005: , 8

kernel methods for regression

Notes
I Recall weighted least squares:

min
β

∑
wi(yi − β0 − β1xi)

2or min
β

(y − Xβ)T W (y − Xβ)

I

β̂ = (X T WX)−1X T Wy

I can combine the least squares weights with the kernel
weights; see Figure 6.4 and pp. 169, 170.

I can also do local quadratic regression (and higher) but
increases bias at endpoints

I for extrapolation book recommends local linear fits; for
good fits in middle local quadratic

I In R there are several smoothers: ksmooth and loess
are built in

I The first uses kernel smoothing, the second uses local
linear regression (robustified)

STA 450/4000 S: February 23 2005: , 9

kernel methods for regression

I scatter.smooth fits a loess curve to a scatter plot
I loess takes a family argument : family = gaussian

gives weighted least squares using Kλ as weights and
family=symmetric gives a robust version using Tukey’s
biweight

I supsmu implements “Friedman’s super smoother”: a
running lines smoother with elaborate adaptive choice of
bandwidth

I Library KernSmooth has locpoly for local polynomial
fits, and by setting degree = 0 gives a kernel smooth

STA 450/4000 S: February 23 2005: , 10

kernel methods for regression

> lo1 <- loess(y˜x, degree=1, span=0.75)
> attributes(lo1)
$names

[1] "n" "fitted" "residuals" "enp" "s" "one.delta"
[7] "two.delta" "trace.hat" "divisor" "pars" "kd" "call"

[13] "terms" "xnames" "x" "y" "weights"

$class
[1] "loess"
> plot(sin4,0,1,type="l",ylim=c(-1.0,1.5),xlim=c(0,1))
> points(x,lo1$fitted,pch=".",col="red")
> plot(x,lo1$fitted,pch=".",col="red",ylim=c(-1.0,1.5),xlim=c(0,1))
> lines(ksmooth(x,y,"normal",bandwidth=0.4),col="blue")
> plot(x,lo1$fitted,pch=".",col="red",ylim=c(-1.0,1.5),xlim=c(0,1))
> lo2<-loess(y˜x, degree=1, span=0.4)
> points(x,lo2$fitted,pch=".",col="green")
> points(x,loess(y˜x,degree=2,span=0.4)$fitted,pch=".",col="purple")

STA 450/4000 S: February 23 2005: , 11

kernel methods for regression

Notes
I f̂ = Sλy and df=trace(Sλ), as in smoothing splines
I X can have up to 4 numerical predictors
I while possible to fit these models in Rp, (see §6.3, 6.4),

doesn’t seem so useful
I §6.4 describes ways to impose some structure to get a

more interpretable model
I can use the same idea for likelihood functions and

maximum likelihood estimates:

max
β

∑
`(β; yi)

replaced by
max

β

∑
Kλ(x0, xi)`(β; yi)

called local likelihood and described in §6.5

STA 450/4000 S: February 23 2005: , 12

Kernel methods for classification

Kernel methods for classification
I model: X ∼ f (·)
I training data (x1, . . . , xN)

I f̂ (x0) =
#{xi ∈ nλ(x0)}

Nλ
(a histogram)

I f̂ (x0) = 1
Nλ

∑
Kλ(x0, xi): smooth density estimate

I implemented in R as density(x, ...) with a large
choice of kernels; default is Gaussian, see (6.23)

I for classification: compute f̂j(X) for each class

p̂r(Y = j | X = x0) = π̂j f̂j(x0)/
∑

π̂k f̂j(x0)

I with p inputs (§6.6.3); treat the inputs as independent
I

f̂j(X) = Πp
k=1 f̂jk (Xk)

I the Naive Bayes classifier:

p̂r(Y = j | X = x0) = π̂j f̂j((x0)/Σπ̂j f̂j(x0)

STA 450/4000 S: February 23 2005: , 13

	Degrees of freedom for splines
	Multidimensional splines (§5.7)
	 kernel methods for regression
	Kernel methods for classification

