Degrees of freedom for splines

» degrees of freedom for cubic splines, 1 covariate
e K knots, K + 1 intervals, 4(K + 1) parameters
e 3K restrictions
e leaves K + 4 parameters, omit constant term, leaves K + 3
» degrees of freedom for natural splines
linear on (—oo, &;] and [&k, o0): 4 pars
cubic in interior intervals 4(K — 1)
3K restrictions, leaves K parameters, but
2 knots added at X(1), X(n): K +2
omit constant term getK + 1

» what does omit constant term mean? Example

So(X) = ao+b0X+C0X2+d0X3, 0<x<1
Si(x) = ar+bi(x—1)+ci(x —1)2+di(x —1)%, 1<x<:

»eg a=bg=cg=dp=1,;fixesa; =4,b; =6,¢c, =8
» or, force ag=0, add it in later

STA 450/4000 S: February 23 2005: , 1

Degrees of freedom for splines

v

degrees of freedom for smoothing splines

min Z{y, — F(x))? + A [(F/(1)) et

» solution is natural cubic splines with knots at unique x;
> f(x) = L Nj(x)d), say

> ming Z{y; — I;N; ()0} + AZi6; 0 Qe

> ming(y — N&)T(y —N@) + 10T Qu0

Qi = fNj”(t)Nli’(t)dt

just like ridge regression: # = (NTN + AQyn) INTy

f =N =n(NTN +AQy)INTy = S,y, say

degrees of freedom defined to be traceS) by analogy

Same formula works for regression splines (actually
easier) cf (5.15)

v

vV v.v Yy

STA 450/4000 S: February 23 2005: ,

Multidimensional splines (§5.7)

» Suppose we have Xi, Xp, and E(y | X) = f(X1, X2)

» one solution is to combine separate spline bases for X;
and X,

» e.g. additively: (X1, Xz) = f1(X1) + f2(X2) (this is what was
done for heart data)
» doesn’t permit interactions

» alternative is to use all possible cross products: called
tensor products

> £(X1,Xz) = 5% T2 Oy (Xa)hak (X2)
» analogous to forming quadratic functions in regression
using, e.g., X2, X1 X, X2

STA 450/4000 S: February 23 2005: ,

Multidimensional splines (§5.7)

v

alternative to derive smoothing splines in two dimensions:

min 12, {yi — F(xi)}* + AJ(If])

» J([f]) f f 82f + 82f + Zalzf)zdxdy
» as in univariate case, solution exists in a spline basis
similar to natural splines

> (5.39): f(x) = fo + AT x + T ajhj(x)
> hj(x) =n(llx = xl|), n(z) =2z%logz

» called radial basis functions: take this form because of
symmetry of penalty

» note uses N knots; reduced in implementation by
regularization

STA 450/4000 S: February 23 2005: ,

kernel methods for regression

Kernel methods for regression : univariate
» model: E(Y | x) = f(x) (“smooth”)
» data: y; =f(X) + €
» running mean smoother: f(xo) = ave(y; | X; € Ni(Xo))
» Ng(Xo) set of k “nearest neighbours”: k smallest values of

X — Xol
» smoother estimate using kernel weighted average
N . A
> i1 Ka(xo, %)
[Figure 6.1]
» kernel

=055 w0 (35)

STA 450/4000 S: February 23 2005: ,

kernel methods for regression

»)\ determines the width of the neighbourhood, hence
smoothness

» increasing A gives smoother function (higher bias, lower
variance)

» metric window width (hy(Xo) = A) - constant bias, variance
o 1/local density

» nearest neighbour window width (hy(xo) depends on xo) -
constant variance, bias o 1/local density

» Choice of kernel:

{ %(1 —t2),]t] <1 Epanichakov

0
{ (1t |t <1 tri — cube
0

D(t)

= ot) = \/]2'7 exp(—t%/2) Gaussian

STA 450/4000 S: February 23 2005: ,

kernel methods for regression

R or Splus :
ksmooth(x,y,kernel=c("box","normal"),bandwidth=0.5,range.x=range(x),n.pol

loess(formula)

more later

> eps<-rnorm(100,0,1/3)

> x<-runif(100)

> sindx <- function(x){sin(4*x)}

> y<-sind(x)+eps

> plot(sin4,0,1,type="1",ylim=c(-1.0,1.5),xlim=c(0,1))

> points(x,y)

> lines(ksmooth(x,y,"box",bandwidth=.2),col="blue")

> lines(ksmooth(x,y,"normal",bandwidth=.2),col="green")
> plot(sin4,0,1,type="1",ylim=c(-1.0,1.5),xlim=c(0,1))

> lines(ksmooth(x,y,"normal",bandwidth=.2),col="green")
> lines(ksmooth(x,y,"normal”,bandwidth=0.4),col="blue")
> lines(ksmooth(x,y,"normal”,bandwidth=0.6),col="red")

(Finura A 1)

STA 450/4000 S: February 23 2005: , 7

kernel methods for regression

Local linear regression

» replace weighted average of x;’s with weighted linear (or
polynomial) regression: better endpoint behaviour

>
min K (X0, X){Yi — a(Xo) — B(Xo)xi }2
a(Xo)wg(Xo)Z)\(0 '){y| Oé(0) ﬁ(0) |}
>
f(XO) = (1,XQ)(XTW(XO)X)—leW(XO)y
>
1 X1
1 X2
X= _ | =8
1 Xn

> W(Xo) = d1ag K)\(Xo,Xi)

O
STA 450/4000 S: February 23 2005: , 8

kernel methods for regression

Notes
» Recall weighted least squares:

min S wi (s — o —) °or min(y —X5)TW(y —X)

A= (XTwx)IxTwy

» can combine the least squares weights with the kernel
weights; see Figure 6.4 and pp. 169, 170.

» can also do local quadratic regression (and higher) but
increases bias at endpoints

» for extrapolation book recommends local linear fits; for
good fits in middle local quadratic

» In R there are several smoothers: ksmooth and loess
are built in

» The first uses kernel smoothing, the second uses local
linear regression (robustified)

STA 450/4000 S: February 23 2005: ,

kernel methods for regression

» scatter.smooth fits a loess curve to a scatter plot

» loess takes afamily argument: family = gaussian
gives weighted least squares using K, as weights and
family=symmetric gives a robust version using Tukey’s
biweight

» supsmu implements “Friedman’s super smoother”: a
running lines smoother with elaborate adaptive choice of
bandwidth

» Library KernSmooth has locpoly for local polynomial
fits, and by setting degree = 0 gives a kernel smooth

STA 450/4000 S: February 23 2005: , 10

kernel methods for regression
O

> lol <- loess(y’x, degree=1, span=0.75)
> attributes(lol)

$names

[1] "n" "fitted" "residuals" “"enp" "s" "one.delta"
[7] "two.delta" "trace.hat" "divisor" "pars" "kd" "call"

[13] “terms" "Xxnames" X" "yt "weights"

$class

[1] "loess"

> plot(sin4,0,1,type="I",ylim=c(-1.0,1.5),xlim=c(0,1))
points(x,lo1$fitted,pch="."
plot(x,lo1$fitted,pch=".",col="red",ylim=c(-1.0,1.5),xlim=c(0,1))
lines(ksmooth(x,y,"normal”,bandwidth=0.4),col="blue")
plot(x,lo1$fitted,pch=".",col="red",ylim=c(-1.0,1.5),xlim=c(0,1))
lo2<-loess(y"x, degree=1, span=0.4)
points(x,lo2$fitted,pch=".",col="green")
points(x,loess(y"x,degree=2,span=0.4)$fitted,pch=".",col="purple")

VVVVYVYVYV

O
STA 450/4000 S: February 23 2005: , 11

kernel methods for regression

Notes
» = S,y and df=trace(S,), as in smoothing splines
» X can have up to 4 numerical predictors

» while possible to fit these models in RP, (see §6.3, 6.4),
doesn’t seem so useful

» §6.4 describes ways to impose some structure to get a
more interpretable model

» can use the same idea for likelihood functions and
maximum likelihood estimates:

mngﬁ(ﬁ;yi)
replaced by
mgxz K (X0, %i)€(8: Y1)
called local likelihood and described in §6.5

STA 450/4000 S: February 23 2005: , 12

Kernel methods for classification

Kernel methods for classification

>
>

>

model: X ~ f(-)

training data (X1,...,XN)

f(xo0) = #{ ENT\A(XO)} (a histogram)

f(x0) = s 3= Ka(xo,i): smooth density estimate
implemented in R as density(x, ...) with a large

choice of kernels; default isAGaussian, see (6.23)
for classification: compute f;(X) for each class

pr(Y =j | X =xo) = #fj(x0)/ Y _ #cfj(xo)
with p inputs (§6.6.3); treat the inputs as independent

(X)) = M fic (Xo)
the Naive Bayes classifier:

Pr(Y =] | X = Xo) = #jf; ((X0) /Z#fj (xo)

STA 450/4000 S: February 23 2005: , 13

	Degrees of freedom for splines
	Multidimensional splines (§5.7)
	 kernel methods for regression
	Kernel methods for classification

