STA 450/4000 S: February 2 2005

Flexible modelling using basis expansions (Chapter 5)

>

>

Linear regression: y = X3 + ¢, e~ (0,0)

'Smooth’ regression: y = f(X) + e f(X) =E(Y | X) to be
specified

Flexible linear modelling

f(X) = Zmzlﬁm hm(X)

This is called a linear basis expansion, and hy, is the mth
basis function

For example if X is one-dimensional:

f(X) = Bo + B1X + B2X2, or

f(X) = Bo + B1sin(X) + B2 cos(X), etc.

Simple linear regression has h;(X) = 1, hy(X) = X.
Several other examples on p.116

Regression splines

» Polynomial fits: hj(x) =x,j =0,...,m
» Fit using linear regression with design matrix X, where
Xij = hj(xi)

» Justification is that any 'smooth’ function can be
approximated by a polynomial expansion (Taylor series)

» Can be difficult to fit numerically, as correlation between
columns can be large

» May be useful locally, but less likely to work over the range
of X

» (rafal.pdf) f(x) = x2sin(2x), e ~ N(0, 2), n = 200

» It turns out to be easier to find a good set of basis functions
if we only consider small segments in the X-space (local
fits)

» Need to be careful not to overfit, since we are using only a
fraction of the data

Regression splines

>

Piecewise constant: hy(X) = (X < &1),ha(X) =1(&1 <

X < &), hz(x) = 1(& < X); corresponds to fitting by local
averaging

Similarly for piecewise linear fits (Figure 5.1), but
constraints to make it continuous at the break points:
hi(X) =1, ha(X) =X, hg(X)=(X=E&)+, ha(X)=
(X — &)+

windows defined by knots &7, &2, . ..

To fit a cubic polynomial in each window: e.g.

a; + b1 X + ¢1X? + dy X3 in the first,

ay + boX + c,X2 4 dyX3 in second, etc.

basis functions {1w, , Xw,, X s X3, }> {Lw,» Xy, X, X,
etc.

Now require f\,(\,'i)(gl) = f\,(vlz)(gl) etc., puts constraints on the
coefficients a, b, c,d

Cubic splines require continuous function, first derivatives,
second derivatives (Figure 5.2)

Regression splines

» Constraints on derivatives can be incorporated into the
basis: {1,X,X2,X3 (X —&)3,...,(X —&)3} the
truncated power basis

» procedure: choose number (K) and placement of knots
158k

» construct X matrix using truncated power basis set

run linear regression with ?? degrees of freedom

» Example: heart failure data from Chapter 4 (462
observations, 10 covariates)

v

Regression splines

> bs.sbp <- bs(hr$sbp,df=4) # the B-spline basis

> dim(bs.sbp)

[1] 462 4 # this is the basis matrix for the
> bs.sbp[1:4,]

1 2 3 4

[1,] 0.16968090 0.4511590 0.34950621 0.029653925

[2,] 0.35240669 0.4758851 0.17002102 0.001687183

[3,] 0.71090498 0.1642420 0.01087580 0.000000000

[4,] 0.09617733 0.3769808 0.44812470 0.078717201

Regression splines

>

The B-spline basis is hard to described explicitly (see
Appendix to Ch. 5), but can be shown to be equivalent to
the truncated power basis:

In R library(splines): bs(x, df=NULL, knots=NULL,
degree=3,intercept=FALSE,

Boundary.knots=range(x))

Must specify either df or knots . For the B-spline basis, #
knots = df - degree (degree is usually 3: see ?bs).

» The knots are fixed, even if you use df (see R code)
» Natural cubic splines have better endpoint behaviour

(linear) (p.120, 121)

ns(x, df=NULL, knots=NULL,
degree=3,intercept=FALSE,
Boundary.knots=range(x))

For natural cubic splines, # knots = df - 1

Example: heart data

Regression splines (p.120) refers to using these basis
matrices in a regression model.

> ns.hr.glm <- glm (chd ~ ns.sbp+ns.tobacco+ns.ldl+famhist+ns.obesity
+ + ns.alcohol + ns.age, family=binomial, data=hr)
> summary(ns.hr.gim)

Call:
glm(formula = chd ~ ns.sbp + ns.tobacco + ns.ldl + famhist +
ns.obesity + ns.alcohol + ns.age, family = binomial, data = hr)

Deviance Residuals:
Min 1Q Median 3Q Max
-1.7245 -0.8265 -0.3884 0.8870 2.9588

Coefficients:

Estimate Std. Error z value Pr(>|z|)
(Intercept) -2.1158 2.4067 -0.879 0.379324
ns.sbpl -1.4794 0.8440 -1.753 0.079641 .
ns.sbp2 -1.3197 0.7632 -1.729 0.083769 .
ns.sbp3 -8.7537 2.0230 -1.856 0.063520 .
ns.sbp4 1.3973 1.0037 1.392 0.163884
ns.tobaccol 0.6495 0.4586 1.416 0.156691
ns.tobacco2 0.4181 0.9031 0.463 0.643397
ns.tobacco3 3.3626 1.1873 2.832 0.004625 **
ns.tobacco4 3.8534 23769 1.621 0.104976
ns.ldI1 1.8688 1.3266 1.409 0.158933
ns.ldI2 1.7217 1.0320 1.668 0.095248 .
ns.ldI3 4.5209 2.9986 1.508 0.131643
ns.ldl4 3.3454 1.4523 2.304 0.021249 *
famhistPresent 1.0787 0.2389 4.515 6.34e-06 ***
ns_obesitv1 -3 1058 17187 -1 807 _0 070748
ns.obesityZ -2.3153 1.2042 -1.9/2 0.048555 *

ns.obesity3 -5.0541 3.8205 -1.323 0.185871

Example: heart data
O
The individual coefficients don’t mean anything, we need to
evaluate groups of coefficients. We can do this with successive
likelihood ratio tests, by hand, e.g.
> summary(glm(chd"ns.sbp+ns.ldl+famhist+ns.obesity+ns.alcohol+ns.age,
+ family=binomial, data=hr)) # | left out tobacco
... stuff omitted
Null deviance: 596.11 on 461 degrees of freedom
Residual deviance: 469.61 on 440 degrees of freedom
AIC: 513.61
Number of Fisher Scoring iterations: 5
> 469.61-457.63
[1] 11.98
> pchisq(11.98,4)
[1] 0.9824994

> 1-.Last.value
[1] 0.01750061 # doesn't agree exactly with the book, but close

See Figure 5.4

Example: heart data

The function stepAIC does all this for you:

> ns.hr.step <- stepAlC(ns.hr.gim)

Start: AIC= 509.63

chd ~ ns.sbp + ns.tobacco + ns.dl + famhist + ns.obesity + ns.alcohol +
ns.age

Df Deviance AlC
- ns.alcohol 4 458.09 502.09
- ns.obesity 4 465.41 509.41

<none> 457.63 509.63
- ns.sbp 4 466.77 510.77
- nsitobacco 4 469.61 513.61
- ns.dl 4 470.90 514.90
- ns.age 4 480.37 524.37
- famhist 1 478.76 528.76

Step: AIC= 502.09
chd ~ ns.sbp + ns.tobacco + ns.dl + famhist + ns.obesity + ns.age

Df Deviance AIC

<none> 458.09 502.09

- ns.obesity 4 466.24 502.24

- ns.sbp 4 467.16 503.16

- ns.tobacco 4 470.48 506.48

- ns.Idl 4 472.39 508.39

- ns.age 4 481.86 517.86

- famhist 1 479.44 521.44

> #

> # Here we are at Table 5.1; note that alcohol has been dropped from the
> # model

2005-02-08

LExample: heart data

The degrees of freedom fitted are the number of columns in the
basis matrix (+ 1 for the intercept). This can also be computed as the
trace of the hat matrix , which can be extracted from Im. There is
something analogous for gim, because gim’s are fitted using
iteratively reweighted least squares.

Smoothing splines
» This is an approach closer to ridge regression. Put knots at
each distinct x value, and then shrink the coefficients by
penalizing the fit . (Figure 5.6)

>
. 2
argmmBZi (y, — Zjﬁj hj (Xi))
subject to:
BTQB <c
» with no constraint we get usual least squares

Q controls the smoothness of the final fit:
Q = / Y (x)h!(x)dx
This solves the variational problem
b
argmin, Ei(y; — f (%)) + A / (7 (1)} 2dt
a

the solution is a natural cubic spline with knots at each x;

v

v

v

Smoothing splines

» How many parameters have been fit?
» It can be shown that the solution to the smoothing spline
problem gives fitted values of the form

y =Sy
» By analogy with ordinary regression, define the effective
degrees of freedom (EDF) as

trace S
» Reminder: ridge regression
min (Vi — o — BiXin — - = BpXip)? + AT,
— mﬁln YN (Yi — Bo— BiXia — - — BpXip)? st Z].p:lﬁjz <s

has solution
9ridge = X(XTX + Al)ilXTy

12

Smoothing splines

» In the smoothing case it can be shown that
ysmooth = H(HTH + /\QH)ilHTy

where H is the basis matrix. See p. 130, 132 for details on
S, the smoothing matrix.

» How to choose \?
» a) Decide on df to be used up, e.g.

smooth.spline(x,y,df=6) , hote that increasing df
means less 'bias’ and more 'variance’.

» b) Automatic selection by cross-validation (Figure 5.9)

13

Smoothing splines

A smoothing spline version of logistic regression is outlined in

§5.6, but we’ll wait till we discuss generalized additive models.
An example from the R help file for smooth.spline

> data(cars)

> attach(cars)

> plot(speed, dist, main = "data(cars) & smoothing splines")
> cars.spl <- smooth.spline(speed, dist)

> (cars.spl)

Call:

smooth.spline(x = speed, y = dist)

Smoothing Parameter spar= 0.7801305 lambda= 0.1112206 (11 iterations)
Equivalent Degrees of Freedom (Df): 2.635278

Penalized Criterion: 4337.638

GCV: 244.1044

> lines(cars.spl, col = "blue")

lines(smooth.spline(speed, dist, df=10), lty=2, col = "red")

\

> legend(5,120,c(paste("default [C.V.] => df =",round(cars.spl$df,1)),

+ "s(* , df = 10)"), col = c("blue","red"), Ity = 1:2,
+ bg="bisque’)

> detach()

14

	 STA 450/4000 S: February 2 2005
	Regression splines
	Example: heart data
	Smoothing splines

