Practice Exam Questions for STA 442/2101: December, 2009 Some of these questions will be on the exam

- 1. Problem 8.9.20 from Davison
- 2. Samples of the same material are sent to four laboratories for chemical analysis as part of a study to determine whether laboratories give the same results. The results for laboratories A–D, with the row means, are:

А	58.7	61.4	70.9	59.1	58.2	59.66
В	62.7	64.5	63.1	59.2	60.3	61.96
С	55.9	56.1	57.3	55.2	58.1	56.52
D	60.7	60.3	60.9	61.4	62.3	61.12

- (a) Write out the linear model used to fit this data, explaining all notation and giving needed assumptions.
- (b) Explain how to assess the consistency of the data with the null hypothesis that there is no difference among the laboratories.
- 3. Problem 9.6.3 of Davison
- 4. Problem 9.6.2 of Davison
- 5. One way to model binary data is to suppose the existence of an underlying continuous variable, W_i , say, where $W_i = x_i^T \beta + \epsilon_i$, and to define Y_i by

$$Y_i = 1 \quad \text{if} \quad W_i > 0, \\ = 0 \quad \text{if} \quad W_i \le 0.$$

Show that if $\epsilon_i \sim N(0,1)$ that this leads to a binary model for Y_i in which $\Phi^{-1}(p_i) = x_i^T \beta$, where $p_i = \Pr(Y_i = 1)$, whereas if ϵ_i follows a logistic distribution

$$F(\epsilon_i) = \frac{1}{1 + \exp(-\epsilon_i)}, \quad -\infty < \epsilon_i < \infty,$$

that this leads to the logistic regression model. The former is called *probit* regression.

6. The following data set was contrived to illustrate some aspects of regression with survival data:

	time	status	х	sex
1	4	1	0	0
2	3	1	2	0
3	1	1	1	0
4	1	0	1	0
5	2	1	1	1
6	2	1	0	1
7	3	0	0	1

Here time is the days to failure or censoring, status indicates death (1) or censoring (0), and x and sex are covariates. The model fit to the data was

$$h(t; \beta, x, \operatorname{sex}) = h_0(t) \exp(\beta_0 + \beta_1 x + \beta_2 \operatorname{sex}),$$

where $h(t; \beta, x, sex)$ is the hazard function for the distribution of time to failure.

The estimates and estimated standard errors for β_0 , β_1 and β_2 are given in the following excerpt of **R** code:

```
> Surv(test1$time,test1$status)
[1] 4 3 1 1+ 2 2 3+
> summary(coxph(Surv(time, status) ~ x + factor(sex), test1))
Call:
coxph(formula = Surv(time, status) ~ x + factor(sex), data = test1)
  n= 7
               coef exp(coef) se(coef)
                                            z \Pr(|z|)
             0.7812
                       2.1841
                                0.7976 0.979
                                                 0.327
х
factor(sex)1 0.9338
                       2.5441
                                1.4081 0.663
                                                 0.507
             exp(coef) exp(-coef) lower .95 upper .95
                 2.184
                           0.4579
                                      0.4575
                                                 10.43
х
                                      0.1610
factor(sex)1
                 2.544
                           0.3931
                                                 40.19
Rsquare= 0.15
                (max possible= 0.822 )
Likelihood ratio test= 1.13 on 2 df,
                                         p=0.567
Wald test
                     = 0.96 on 2 df,
                                         p=0.619
Score (logrank) test = 1.05
                             on 2 df,
                                        p=0.5927
```

 (a) Explain in non-technical language the inference implied by the confidence interval for x. (b) A plot of the estimated survivor functions for the data with sex = 0 and sex = 1 (ignoring x) are shown below. Which of the two lines corresponds to sex = 1? Does it appear that the proportional hazards assumption is valid?

- 7. Problem 10.10.2 of Davison
- 8. Problem 10.10.9 of Davison
- 9. You should also review Examples H and J, and all the questions from homework.