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Since their emergence in the 1990s, the support vector ma-

chine and the AdaBoost algorithm have spawned a wave of

research in statistical machine learning. Much of this new re-

search falls into one of two broad categories: kernel methods

and ensemble methods. In this expository article, I discuss the

main ideas behind these two types of methods, namely how to

transform linear algorithms into nonlinear ones by using kernel

functions, and how to make predictions with an ensemble or a

collection of models rather than a single model. I also share my

personal perspectives on how these ideas have influenced and

shaped my own research. In particular, I present two recent al-

gorithms that I have invented with my collaborators: LAGO, a

fast kernel algorithm for unbalanced classification and rare tar-

get detection; and Darwinian evolution in parallel universes, an

ensemble method for variable selection.
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1. INTRODUCTION

The 1990s saw two major advances in machine learning: the

support vector machine (SVM) and the AdaBoost algorithm.

Two fundamental ideas behind these algorithms are especially

far-reaching. The first is that we can transform many classical

linear algorithms into highly flexible nonlinear algorithms by

using kernel functions. The second is that we can make accurate

predictions by building an ensemble of models without much

fine-tuning for each, rather than carefully fine-tuning a single

model.

In this expository article, I first present the main ideas be-

hind kernel methods (Section 2) and ensemble methods (Section

3) by reviewing four prototypical algorithms: the support vec-

tor machine (SVM, e.g., Cristianini and Shawe-Taylor 2000),

kernel principal component analysis (kPCA, Schölkopf et al.
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1998), AdaBoost (Freund and Schapire 1996), and random for-

est (Breiman 2001). I then illustrate the influence of these ideas

on my own research (Section 4) by highlighting two recent algo-

rithms that I invented with my collaborators: LAGO (Zhu et al.

2006), a fast kernel machine for rare target detection; and Dar-

winian evolution in parallel universes (Zhu and Chipman 2006),

an ensemble method for variable selection.

To better focus on the main ideas and not be distracted by the

technicalities, I shall limit myself mostly to the two-class clas-

sification problem, although the SVM, AdaBoost, and random

forest can all deal with multiclass classification and regression

problems as well. Technical details that do not affect the under-

standing of the main ideas are also omitted.

2. KERNELS

I begin with kernel methods. Even though the idea of kernels

is fairly old, it is the support vector machine (SVM) that ignited

a new wave of research in this area over the past 10 to 15 years.

2.1 SVM

In a two-class classification problem, we have predictor vec-

tors xi ∈ Rd and class labels yi ∈ {−1,+1}, i = 1, 2, . . . , n.

SVM seeks an optimal hyperplane to separate the two classes.

A hyperplane in Rd consists of all x ∈ Rd that satisfy the

linear equation

f (x) = βββT x+ β0 = 0.

Given xi ∈ Rd and yi ∈ {−1,+1}, a hyperplane is called a

separating hyperplane if there exists c > 0 such that

yi (βββT xi + β0) ≥ c ∀ i = 1, 2, . . . , n. (1)

Clearly, a hyperplane can be reparameterized by scaling, for ex-

ample,

βββT x+ β0 = 0 is equivalent to s(βββT x+ β0) = 0

for any scalar s. In particular, we can scale the hyperplane so

that (1) becomes

yi (βββT xi + β0) ≥ 1 ∀ i = 1, 2, . . . , n, (2)
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Figure 1. Two separating hyperplanes, one with a larger margin than
the other.

that is, scaled so that c = 1. A separating hyperplane satisfy-

ing condition (2) is called a canonical separating hyperplane

(CSHP).

If two classes are perfectly separable, then there exist an in-

finite number of separating hyperplanes. Figure 1 shows two

competing hyperplanes in such a situation. The SVM is based

on the notion that the “best” canonical separating hyperplane to

separate two classes is the one that is the farthest away from the

training points. This notion is formalized mathematically by the

margin of a hyperplane—hyperplanes with larger margins are

better. In particular, the margin of a hyperplane is equal to

margin = 2×min{yidi , i = 1, 2, . . . , n},
where di is the signed distance between observation xi and the

hyperplane; see Figure 1 for an illustration. Figure 1 also shows

to a certain extent why large margins are good on an intuitive

level; there is also an elaborate set of theories to justify this (see,

e.g., Vapnik 1995).

It can be shown (e.g., Hastie et al. 2001, Sect. 4.5) that di is

equal to

di = 1

‖βββ‖ (βββ
T xi + β0). (3)

Then, Equations (2) and (3) together imply that the margin of a

CSHP is equal to

margin = 2×min{yidi } = 2

‖βββ‖ .

To find the “best” CSHP with the largest margin, we are inter-

ested in solving the following optimization problem:

min
1

2
‖βββ‖2 + γ

n∑
i=1

ξi (4)

subject to yi (βββT xi + β0) ≥ 1− ξi and ξi ≥ 0 ∀ i. (5)

The extra variables ξi are introduced to relax the separability

condition (2) because, in general, we cannot assume the two

classes are always perfectly separable. The term γ
∑

ξi acts as

a penalty to control the degree of such relaxation, and γ is a

tuning parameter.

The main message from the brief introduction above is this:

SVM tries to find the best CSHP; it is therefore a linear classi-

fier. The usual immediate response to this message is: So what?

How does this make the SVM much different from and superior

to classical logistic regression?

Equivalently, the constrained optimization problem above

can be written as (e.g., Hastie et al. 2001, Exercise 12.1)

min

n∑
i=1

[
1− yi (βββT xi + β0)

]
+ + λ‖βββ‖2, (6)

where

[z]+ =
{
z if z > 0,

0 if z ≤ 0.

For statisticians, the objective function in (6) has the familiar

form of a loss function plus a penalty term. For the SVM, the

loss function is [1− y(βββT x+β0)]+, and it is indeed very similar

to the binomial log-likelihood used by logistic regression (e.g.,

Hastie et al. 2001, Fig. 12.4). But the usual logistic regression

model does not include the penalty term λ‖βββ‖2. This is the fa-

miliar ridge penalty and often stabilizes the solution, especially

in high-dimensional problems. Indeed, this gives the SVM an

advantage.

However, one cannot possibly expect a linear classifier to suc-

ceed in general situations, no matter how optimal the hyper-

plane is. So, why is the SVM such a sensational success?

2.2 The “Kernel Trick”

Cristianini and Shawe-Taylor (2000, Chaps. 5 and 6) pro-

vided detailed derivations to show that the optimal βββ looks like

this:

βββ =
∑
i∈SV

αi yixi ,

where “SV” denotes the set of “support vectors” with αi > 0

strictly positive; the coefficients αi , i = 1, 2, . . . , n, are solu-

tions to the (dual) problem:

max

n∑
i=1

αi − 1

2

n∑
i=1

n∑
j=1

αiα j yi y jxTi x j (7)

s.t.

n∑
i=1

αi yi = 0 and αi ≥ 0 ∀ i. (8)

This means the resulting hyperplane can be written as

f (x) = βββT x+ β0 =
∑
i∈SV

αi yixTi x+ β0 = 0. (9)

The key point here is the following: In order to obtain αi , one

solves (7)–(8), a problem that depends on the predictors xi only
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through their inner-products xTi x j ; once the αi ’s are obtained,

the ultimate decision function (9) is also just a function of inner-

products in the predictor space.

Therefore, one can make SVM a lot more general simply by

defining a “different kind of inner-product,” say, Kh(u; v), in

place of uT v. The function Kh(u; v) is a called a kernel func-

tion, where h is a hyperparameter, which is often determined

empirically by cross-validation. Then, (7) becomes

max

n∑
i=1

αi − 1

2

n∑
i=1

n∑
j=1

αiα j yi y j Kh(xi ; x j ) (10)

and the decision function (9) becomes

f (x) =
∑
i∈SV

αi yi Kh(x; xi )+ β0 = 0. (11)

The boundary is linear in the space of φ(x) where φ(·) is such

that

Kh(u; v) = φ(u)Tφ(v),

but generally it is nonlinear in the original predictor space (un-

less one picks a linear kernel function). Mercer’s theorem (Mer-

cer 1909) guarantees the existence of such φ(·) as long as Kh is

a nonnegative definite kernel function. The beauty here is that

we do not even need to define the mapping φ(·) explicitly; all

we have to do is to pick a kernel function Kh(u; v). This makes

the SVM very general.

2.3 Kernelization of Linear Algorithms

That we can apply a linear method in a different space is,

of course, not a new idea to statisticians at all. For example,

we all know how to fit a high-order polynomial using linear

regression—simply add the terms x2, x3, . . . , xd to the regres-

sion equation!

The idea that we do not need to explicitly create these high-

order terms is perhaps somewhat less familiar. Actually, it is not

really a new idea, either; it is less familiar only in the sense that

students usually do not learn about it in “Regression Analysis

101.”

However, the SVM does deserve some credit in this regard.

Even though the basic idea of kernels is fairly old, it is the SVM

that has revived it and brought it back into the spotlight for ap-

plied statisticians. The basic idea is as follows.

A typical data matrix we encounter in statistics, X, is n × d,

stacking n observations x1, x2, . . . , xn ∈ Rd as d-dimensional

row vectors. That is,

X =

⎛
⎜⎜⎜⎝
xT1
xT2
...

xTn

⎞
⎟⎟⎟⎠ .

It is easy to see that

XXT =

⎛
⎜⎜⎜⎝
xT1
xT2
...

xTn

⎞
⎟⎟⎟⎠ (x1 x2 . . . xn)

=

⎛
⎜⎜⎜⎝
xT1 x1 x

T
1 x2 . . . xT1 xn

xT2 x1 x
T
2 x2 . . . xT2 xn

...
...

. . .
...

xTn x1 x
T
n x2 . . . xTn xn

⎞
⎟⎟⎟⎠

is an n × n matrix of pairwise inner-products. Therefore, if a

linear algorithm can be shown to depend on the data matrix X

only through

K ≡ XXT , (12)

then it can be easily “kernelized”—we simply replace each

inner-product entry of K with Ki j = Kh(xi , x j ), where Kh(·, ·)
is a desired kernel function.

2.4 Kernel PCA

Kernel principal component analysis (kPCA; Schölkopf et al.

1998) is a successful example of “kernelizing” a well-known

classic linear algorithm. To focus on the main idea, let us as-

sume that the data matrix X is already centered so that each

column has mean zero. Let

S = XTX. (13)

Then, the (ordered) eigenvectors of S, say u1,u2, . . . , ud , are

the principal components. Being eigenvectors, they satisfy the

equations

Su j = λ ju j , j = 1, 2, . . . , d. (14)

Equations (13) and (14) together lead to

XTXu j = λ ju j , j = 1, 2, . . . , d. (15)

This shows that u j can be represented in the form of XTααα j—by

letting ααα j = Xu j/λ j , to be specific. We will plug u j = XTααα j
into (15) and reparameterize the eigenvalue problem in terms of

ααα j .
For j = 1, 2, . . . , d, this leads to

XTXXTααα jjj = λ jX
Tααα j . (16)

If we left-multiply both sides by X, we get

XXTXXTααα jjj = λ jXX
Tααα j ,

or simply

K2ααα jjj = λ jKααα j , (17)

which shows that ααα j can be obtained by solving a problem that

depends on the data matrix only through the inner-product ma-

trix K.
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Figure 2. Kernel PCA, toy example. (a) Original data. (b) Projection onto the first two kernel principal components.

Schölkopf et al. (1998) explained why, in the context of

kPCA, it is sufficient to reduce (17) to Kααα j = λ jααα j ; I do not

go into this detail here. Once we obtain the ααα j ’s, suppose we

would like to project new data Xnew onto a few leading prin-

cipal components, for example, Xnewu j . We immediately find

that

Xnewu j = XnewX
Tααα j ,

and it is easily seen that XnewX
T is just a matrix of pairwise

inner products between each new and old observations.

Hence, it becomes clear that both finding and projecting onto

principal components depend on just the inner-products and, ac-

cording to Section 2.3, PCA can be “kernelized” easily. Figure 2

shows a toy example. There are some spherical data in R2. The

data being spherical, all directions have equal variance and there

are no meaningful principal components in the traditional sense.

But by using a Gaussian kernel—Equation (18) with h = 1—in

place of all the inner-products, the first kernel principal direc-

tion obtained gives a meaningful order of how far each observa-

tion is away from the origin. In this case, kernel PCA has suc-

cessfully discovered the (only) underlying pattern in the data,

one that is impossible to detect with classical PCA.

2.5 Discussion: Kernel Methods are Like Professional

Cameras

Any acute reader must have noticed that, so far, I have never

really discussed the kernel function Kh(u; v) explicitly. This

is not an accident. It is often claimed (e.g., Shawe-Taylor and

Cristianini 2004) that one important advantage of these kernel

methods lies in their modularity: to solve a different problem,

just use a different kernel function. Any discussion about ker-

nel functions, therefore, is best carried out in the context of a

specific problem.

Of course, to be effective in practice, we must use the right

kernel function. What’s more, we must choose the right hyper-

parameter h as well, and the performance of the method can be

quite sensitive to these choices in practice. These are no trivial

tasks and often require a considerable amount of data analytic

experience as well as knowledge of the specific application area.

In this regard, these kernel-based algorithms are very much

like professional cameras. They are capable of producing great

pictures even under very difficult conditions, but you need to

give them to a professional photographer. If you give them to

an amateur or novice, you cannot expect great pictures. The

photographer must know how to select the right lens, set the

right shutter speed, and use the right aperture for any given con-

dition. If any of these parameters is not set appropriately, the

result could be a disaster. But that does not mean the camera

itself is a poor piece of equipment; it simply means one must

be adequately trained to operate it. Much of the power of these

professional cameras lies precisely in the fact that they allow

a knowledgeable and experienced user to control exactly how

each single picture should be taken.

2.5.1 Example: Spam Data
As a very simple illustration, let us try to see how well

the SVM can predict on the spam dataset, available at http://
www-stat.stanford.edu/∼tibs/ElemStatLearn/ index.html. There

are a total of n = 4,601 observations, each with a binary re-

sponse and d = 57 predictors. For more details about this data

set, refer to the aforementioned web site. I use an R package

called e1071 to fit SVMs and use the kernel function

Kh(u; v) = exp
{
−h‖u− v‖2

}
. (18)

A random sample of 1,536 observations are used as training

data and the remaining 3,065 observations are used as test data.

Using different values of γ and h, a series of SVMs are fitted
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Figure 3. Spam data example. (a) SVM: Number of misclassification errors on test data as a function of two tuning parameters, γ and h (see
Section 2.5.1). (b) Random forest: Number of misclassification errors on test data as a function of two tuning parameters, m and B (see Section
3.5.1).

on the training data and then applied to the test data. The total

number of misclassification errors on the test data are recorded

and plotted for each pair of (γ, h); see Figure 3(a). Here, γ is

the penalty parameter in Equation (4).

Figure 3(a) shows that the performance of SVM using this

particular kernel function is very sensitive to the parameter h
but not as sensitive to the parameter γ . Given h, the prediction

performance of SVM is often quite stable for a wide range of

γ ’s, but bad choices of h can lead to serious deteriorations in the

prediction performance. Therefore, if one uses the SVM without

carefully tuning the parameter h, the result can be disastrous.

3. ENSEMBLES

I now turn to ensemble methods. Again, I shall mainly focus

on the two-class classification problem with predictor vectors

xi ∈ Rd and class labels yi ∈ {−1,+1}, i = 1, 2, . . . , n.

3.1 AdaBoost

AdaBoost constructs a collection of classifiers rather than one

single classifier. The entire collection makes up an ensemble,

and it is the ensemble—not any single classifier alone—that

makes the final classification.

Table 1 contains an exact description of the AdaBoost algo-

rithm. Here is a description of the algorithm in plain English:

Start by assigning equal weights to all observations in the train-

ing data. Sequentially build a series of classifiers. At each step,

fit a classifier, say fb, to the training data using the current

weights. Calculate the (properly weighted) right-to-wrong ratio

of this classifier; call it Rb. For those observations incorrectly

classified by fb, inflate their weights by a factor of Rb. With the

new weights, build the next classifier. In the end, each classifier

fb in the ensemble will cast a vote; its vote is to be weighted by

the logarithm of its right-to-wrong ratio, log(Rb).
For people hearing about this algorithm for the very first time,

AdaBoost certainly has a very strong mystical flavor to it. Intu-

itively, we can perhaps appreciate to some extent that the right-

to-wrong ratio must be important for any classifier, but it is not

at all clear why we should reweight incorrectly classified ob-

servations by this ratio each time, nor is it immediately clear

why the final vote from each individual member of the ensem-

ble should be weighted by the logarithm of this ratio.

This is no easy mystery to untangle. Friedman et al. (2000)

gave a very nice argument and revealed that the AdaBoost al-

gorithm actually minimizes an exponential loss function using

a forward stage-wise approach. In particular, AdaBoost chooses

the best ab and fb one step at a time to minimize

n∑
i=1

exp

(
−yi

B∑
b=1

ab fb(xi )

)
,

which they showed to be very similar to maximizing the bino-

mial log-likelihood. This particular interpretation has not only

untangled the AdaBoost mystery (at least to some extent), but

also led to many new (and sometimes better) versions of boost-

ing algorithms.

3.2 Random Forest

Professor Leo Breiman came up with the same basic idea of

using a collection or an ensemble of models to make predic-

tions, except he constructed his ensemble in a slightly different

manner. Breiman called his ensembles random forests; details

are given in Table 2.
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Table 1. The AdaBoost algorithm.

1. Initial weights: wi = 1/n,∀ i .
2. For b = 1 to B:

(a) Using weights wi , i = 1, 2, . . . , n, fit a classifier fb(x) ∈ {−1,+1}.
(b) Set

εb =
∑n
i=1 wi I (yi 
= fb(xi ))∑n

i=1 wi
, Rb = 1− εb

εb
, ab = log(Rb).

(c) Update weights: wi ← wi × Rb if yi 
= fb(xi ).

End For.

3. Output an ensemble classifier

F(x) = sign

⎛
⎝ B∑
b=1

ab fb(x)

⎞
⎠ .

The history behind Breiman’s random forest is very interest-

ing. In 1996, he first proposed an ensemble algorithm called

Bagging (Breiman 1996), which is essentially the random for-

est algorithm with just the bootstrap step (Table 2, Step 1a). In

2001, he added the random subset step (Table 2, Step 1b) and

created random forest (Breiman 2001).

Why did he add the extra random subset step?

3.3 Breiman’s Theorem

Breiman (2001) proved a remarkable theoretical result. First,

he gave a formal definition of random forests: The set

{ f (x; θb) : θb
iid∼ Pθ , b = 1, 2, . . . B}

is called a random forest.

This definition requires some explanation. Here, f (x; θb) is

a classifier completely parameterized by θb. For example, if

f (·; θb) is a classification tree, then the parameter θb specifies

all the splits and the estimates in the terminal nodes. Next, the

statement “θb
iid∼ Pθ ” means that each f (·; θb) is generated inde-

pendently and identically from some underlying random mech-

anism, Pθ .

To be specific, in Breiman’s implementation, iid sampling

from the random mechanism Pθ consists of: (i) iid sampling

from the empirical distribution Fn (the bootstrap step), and (ii)

iid sampling from the set {1, 2, . . . , d} (the random subset step).

Breiman then proved that the prediction error of a random

forest, εRF, satisfies the inequality

εRF ≤ ρ̄

(
1− s2

s2

)
, (19)

where ρ̄ is the mean correlation between any two members of

the forest (ensemble) and s, the mean strength of a typical mem-

ber of the forest (ensemble). This result—including the exact

definitions of ρ̄ and s—is fairly technical; details can be found

in Breiman (2001). Moreover, the actual bound itself is often

useless. For example, if s = 0.4 and ρ̄ = 0.5, then one gets

εRF ≤ ρ̄

(
1− s2

s2

)
= 0.5

(
1− 0.42

0.42

)
= 2.625,

but of course the error rate is less than 100%.

So, why is this result significant?

3.4 The Secret of Ensembles

The fundamental idea of using an ensemble classifier rather

than a single classifier is nothing short of being revolutionary.

Table 2. Breiman’s random forest algorithm.

1. For each b = 1 to B, fit a maximal-depth tree, fb(x), as follows:

(a) (Bootstrap Step) Draw a bootstrap sample of the training data; call it D∗b . Use D∗b to fit fb .

(b) (Random Subset Step) When building fb , randomly select a subset of m < d predictors before

making each split — call it S, and make the best split over the set S rather than over all possible

predictors.

End For.

2. Output an ensemble classifier, i.e., to classify xnew, simply take majority vote over { fb(xnew), b =
1, 2, . . . , B}.
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It also is remarkable that building these ensembles is often rel-
atively mindless. Take Breiman’s random forest, for example.

There is no need to prune the individual trees.

Clearly, there are many different ways to build an ensemble,

AdaBoost and Breiman’s random forest being two primary ex-

amples. What is the most effective way?

Recall the formal definition of random forests. The random

mechanism Pθ that generates the individual members of the for-

est is unspecified. You are free to pick any mechanism you want.

Surely some mechanisms are bound to be more effective than

others. What’s the most effective mechanism?

Breiman’s result is significant because it tells us what makes

a good random forest. Breiman’s theorem (19) tells us that a

good random forest should have a small ρ̄ and a large s. That is,

we should try to reduce the correlation between individual clas-

sifiers within the ensemble and make each individual classifier

as accurate as possible.

This explains why Breiman added the random subset step into

his original Bagging algorithm: extra randomness is needed to

reduce the correlation between individual trees; the bootstrap

step alone is not enough!

Interestingly, we can see that AdaBoost actually operates in

a similar way. Going back to Step (2b) in Table 1, we have

εb =
∑n
i=1 wi I (yi 
= fb(xi ))∑n

i=1 wi
.

From this, we can write

εb
∑
all

wi =
∑

wrong

wi and (1− εb)
∑
all

wi =
∑
right

wi ,

where “all” means i = 1, 2, . . . , n; “wrong” denotes the set

{i : yi 
= fb(xi )} and “right,” the set {i : yi = fb(xi )}. Step (2c)

in Table 1 gives the explicit update rule; the new weights are:

wnew
i =

{
wi ×

(
1− εb

εb

)
, for i ∈ wrong;

wi , for i ∈ right.

Therefore, we can see that

∑
wrong

wnew
i =

(
1− εb

εb

) ∑
wrong

wi

= (1− εb)
∑
all

wi =
∑
right

wi =
∑
right

wnew
i ,

which means the misclassification error of fb under the new

weights wnew
i is exactly 50%—the worst possible error.

The next classifier, fb+1, is built using these new weights, so

it is set up to work with a (weighted) dataset that the current

classifier, fb, cannot classify. This is sometimes referred to as

“decoupling” in the boosting literature—the classifier fb+1 is

decoupled from fb.
In Breiman’s language, we can say that the adaptive and hith-

erto mysterious reweighting mechanism in AdaBoost is actually

aiming to reduce the correlation between consecutive members

of the ensemble.

3.5 Discussion: Ensemble Methods are Like Foolproof

Cameras

Compared with kernel methods, ensemble methods are very

much like foolproof cameras. They are relatively easy for the

less experienced users to operate. This does not mean they do

not have any tuning parameters; they do. Even when using a

foolproof camera, one must still make a few decisions, for ex-

ample, whether or not to turn on the flash, and so on. But rel-

atively speaking, the number of decisions one has to make is

much more limited and these decisions are also relatively easy

to make.

For example, in Breiman’s random forest, the size of the sub-

set, m (Table 2, Step 1b), is an important tuning parameter. If m
is too large, it will cause ρ̄ to be too large. In the extreme case

of m = d, all the trees in the forest will be searching over the

entire set of variables in order to make splits, and they would be

identical if not for the bootstrap step—since the tree-growing

algorithm is deterministic conditional on the data. On the other

hand, if m is too small, it will cause s to be too small. In the

extreme case of m = 1, all the trees will essentially be making

random splits, and they will not be very good classifiers. There

is plenty of empirical evidence to suggest, however, that the pa-

rameterm is still relatively easy to choose in practice. Moreover,

the parameter m is not as sensitive as the complexity parame-

ter h of a kernel function (also see Section 3.5.1). Translation:

Even if you are a bit off, the consequences will not be quite so

disastrous.

I have had many occasions working with graduate students

trying to make predictions using the SVM and Breiman’s ran-

dom forest. They almost always produce much better predic-

tions with the random forest, even on problems that are well-

suited for the SVM! Sometimes, their SVMs actually perform

worse than linear logistic regression. Certainly, there are many

cases in practice where one would not expect the SVM to be

much superior to linear logistic regression, for example, when

the true decision boundary is in fact linear. But if used correctly,

the SVM should at least be comparable with linear logistic re-

gression; there is no reason why it ever would be much worse.

These experiences remind me over and over again just how dif-

ficult it can be for a novice to use the SVM.

But, as I stated in Section 2.5, you can’t blame the profes-

sional camera if you don’t know how to use it properly. There

is always a tradeoff. With limited flexibility, even a fully expe-

rienced professional photographer will not be able to produce

images of the highest professional quality with just a foolproof

camera, especially under nonstandard and difficult conditions.

That’s why professional cameras are still on the market. But we

have to admit: most consumers are amateur photographers and,

more often than not, they are taking pictures under fairly stan-

dard conditions. That’s why the demand for foolproof cameras

far exceeds that for professional cameras. I think the demand

for statistical tools follows a similar pattern.

3.5.1 Example: Spam Data (continued)
As a simple illustration, let us take a look at how well the

random forest can predict on the spam dataset. I use exactly the

same set-up as in Section 2.5.1 and the randomForest pack-

age in R. Using different values of m and B, a series of random
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forests are fitted on the training data and then applied to the test

data. The total number of misclassification errors on the test

data are recorded and plotted; see Figure 3(b). Here, we can see

that the performance of random forests is more sensitive to the

parameter m than to the parameter B. Given m, the prediction

performance of random forests is fairly stable as long as B is

sufficiently large, for example, B > 100 in this case. But it is

important to use an m that is neither too small nor too big, for

example, 3 < m < 10 in this case.

However, if we compare panels (a) and (b) in Figure 3, we

can see that choosing the right h for SVM is much more critical

than choosing the right m for random forest; performance dete-

rioration is much more serious for bad choices of h than for bad

choices of m.

It is also clear from Figure 3 that, for this particular dataset,

an SVM with kernel function (18) is not competitive against a

random forest, even if well tuned. In order to be competitive, it

is necessary to use a different kernel function. I do not pursue

this possibility here because getting the SVM to work for this

dataset is far from the main point of our discussion, but this ex-

ample does demonstrate that choosing the right kernel function

Kh and picking the right hyperparameter h are very important,

and that an ensemble method such as the random forest can be

somewhat easier to use in this regard.

4. PERSPECTIVES

I now share a few personal perspectives on statistical learning

research. Here, I am working with a particular definition of the

word “perspective” from the American Heritage Dictionary: a

subjective evaluation of relative significance [emphasis added].

4.1 Statistical Learning Research

My discussions in Sections 2.5 and 3.5 have led me to ask the

following question: If I were the president of a big camera man-

ufacturing company, how would I run such a business? Other

than standard business divisions such as accounting and human

resources, I see three main lines of operation:

1. (Consulting and Consumer Outreach) Advise and teach

photographers how to use various products and how to use

the right equipment to produce great pictures under various

difficult conditions. This is my consulting and consumer

outreach division.

2. (High-end R&D) Understand the need of professional pho-

tographers and manufacture new, specialized equipment

still lacking on the market. This is my R&D division for

my high-end consumers.

3. (Mass R&D) Build the next-generation foolproof camera.

This is my R&D division for my mass consumers.

I see a great deal of parallelism in statistical learning research.

For statistical learning research, the consulting and consumer

outreach division applies different learning methods to solve

various difficult real-world problems; the high-end R&D di-

vision develops new, specialized algorithms for analyzing new

types of data or data with special characteristics; and the mass

R&D division develops better off-the-shelf learning algorithms.

With this particular point of view in mind, I end this article by

briefly describing two personal learning products: a new kernel

method from my high-end R&D division, and a new ensemble

method from my mass R&D division.

4.2 A High-End R&D Product: LAGO

Consider a two-class problem in which the class of interest

(C1) is very rare; most observations belong to a majority, back-

ground class (C0). Given a set of unlabeled observations, the

goal is to rank those belonging to C1 ahead of the rest.

Of course, one can use any classifier to do this as long as

the classifier is capable of producing not only a class label but

also an estimated posterior probability P(y ∈ C1|x) or a clas-

sification score. For example, the SVM does not estimate pos-

terior probabilities, but the final decision function (11) gives a

classification score which can be used (at least operationally) to

rank unlabeled observations—whether this is effective or not is

a separate issue.

4.2.1 RBFnets
The final decision function produced by SVM (11) is of the

form

f (x) = β0 +
∑
μμμi∈S

βiφ(x; μμμi ,Ri ), (20)

where φ(x; μμμ,R) is a kernel function. For example, we can take

R to be diagonal and let φ be the Gaussian kernel

φ(x; μμμ,R) = 1√
(2π)d |R|exp

[
− (x− μμμ)TR−2(x− μμμ)

2

]
,(21)

where |R| is the determinant of R.

The function (20) is sometimes called a (single-layer) radial

basis function network (RBFnet). Generally speaking, to con-

struct an RBFnet one must compute and specify three ingredi-

ents:

μμμi , the location parameter of each kernel function—together,

they make up the set S;

Ri , the shape parameter of each kernel function; and

βi , the coefficient in front of each kernel function.

Typically, one first specifies μμμi and Ri and then estimates

the βi ’s by least-squares or maximum likelihood. Often, one

sets Ri = rI and treats the parameter r as a global tuning

parameter—this is what SVM does. Determining the μμμi ’s or the

best set S from training data, however, is an NP-hard combina-

torial optimization problem in general.

The SVM can be viewed as an algorithm for determining the

set S and the βi ’s simultaneously (Schölkopf et al. 1997); the

set S = SV is simply the set of all support vectors. In order to

do so, SVM solves a quadratic programming instead of a com-

binatorial optimization problem.
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4.2.2 LAGO
The product from my R&D division is an algorithm called

LAGO (Zhu et al. 2006). The decision function constructed by

LAGO for ranking unlabeled observations is as follows:

f (x) =
∑
xi∈C1

|Ri |φ(x; xi , αRi ). (22)

The parameter α is a global tuning parameter. In the simplest

case, we take

Ri = ri I, (23)

where ri is the average distance between the kernel center, xi ∈
C1, and its K -nearest neighbors from C0, that is,

ri = 1

K
∑

w∈N0(xi ,K )

d(xi ,w). (24)

The notation “N0(xi , K )” denotes the K -nearest neighbors of

xi from C0; and d(u, v) is a distance function, for example,

d(u, v) = ‖u− v‖.
By comparing (22)–(23) with (20), we can easily see that

LAGO can also be viewed as an algorithm for constructing an

RBFnet, just like the SVM. In particular, the three ingredients

of the RBFnet are specified as follows:

μμμi : Every μμμi is a training observation xi from the rare class,

C1.

Ri : Each kernel function φ is spherical with radius propor-

tional to the average distance between its center μμμi ∈ C1

and its the K -nearest neighbors from C0.

βi : Simply set β0 = 0 and βi = |Ri | ∀ i > 0.

Here we see that the only computation needed is the calculation

of ri ; all other ingredients are completely determined a priori.

The calculation of ri , of course, is considerably simpler than

quadratic programming, making LAGO many times faster and

simpler than the SVM. Instead of solving an optimization prob-

lem to find support vectors, LAGO fully exploits the special na-

ture of these rare-class detection problems and simply uses all

training observations from the rare class as its “support vectors,”

a significant shortcut. Our empirical experiences show that the

shortcut is highly worthwhile. We find that LAGO almost al-

ways performs as well as and sometimes even better than the

SVM for these rare-class classification and detection problems.

Zhu et al. (2006) gave a few theoretical arguments for why all

these shortcuts are justified. Suppose p1(x) and p0(x) are den-

sity functions of C1 and C0. The main argument is that (22) can

be viewed as a kernel density estimate of p1 adjusted locally by

a factor that is approximately inversely proportional to p0, that

is, |Ri |. The resulting ranking function f (x) is thus approxi-

mately a monotonic transformation of the posterior probability

that item x belongs to the rare class.

The only nontrivial calculation performed by the algorithm,

Equation (24), is somewhat special and nonstandard. The origi-

nal idea came from a Chinese board game called GO. Consider

the two black stones labeled A and B in Figure 4. A GO player

Figure 4. The board game of GO. In this illustration, the black stone
B controls more territories than the black stone A.

will tell you that B controls more territories on the board than

A. Why? Because, when compared with B, A is closer to more

enemy (white) stones. Therefore, imagine two classes fighting

for control over a common space. Given an observation from

C1, if we want to use a kernel function to describe its effective

control over the entire space, we should use a large kernel ra-

dius if its nearby neighbors from C0 are a long distance away

and a small kernel radius if its nearby neighbors from C0 are a

short distance away. Equation (24) captures this basic principle.

4.2.3 eLAGO versus sLAGO
Instead of (23)–(24), the original LAGO paper (Zhu et al.

2006) used

Ri = diag{ri1, ri2, . . . , rid},
ri j = 1

K
∑

w∈N0(xi ,K )

|xi j − w j |. (25)

That is, the kernel function φ was chosen to be elliptical rather

than spherical. To distinguish the two, we call (25) eLAGO

and (23), sLAGO. For many real-world rare-class problems, the

dataset often contains a limited amount of information because

C1 is very rare. As such, the extra flexibility afforded by eLAGO

is seldom needed in practice.

4.2.4 Discussion: LAGO is a Specialized Kernel Method
LAGO is a kernel method, much like the SVM. There are

two tuning parameters, K and α. Experiments similar to those

described in Section 2.5.1 and Figure 3 have shown that the

performance of LAGO is not very sensitive to K and much more

sensitive to α. In practice, it often suffices to fix K = 5.

LAGO is not a general-purpose method; it is a specialized al-

gorithm for a special learning problem, namely rare-class clas-

sification and detection. Its main advantages are its speed and
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simplicity. Discussions in Section 2.5 have made it clear that

these kernel methods must be carefully tuned, for example, us-

ing empirical procedures such as cross-validation. This means

that, in practice, one almost always has to run these algorithms

repeatedly many times. One may be tempted to think that, if one

algorithm takes 10 minutes to run and another takes 1 minute,

the difference is still “negligible” for all practical purposes, but

such ten-fold differences are often significantly magnified if one

has to run these two algorithms repeatedly many times.

Apart from practical matters such as time savings, the more

important lesson from this research lies in the basic principles

behind the construction of LAGO (22). Here, we see that it al-

ways pays to exploit the special nature of an underlying prob-

lem. For these rare-class problems, there is only limited amount

of useful information in the training data. LAGO fully exploits

this fact by immediately zooming into the useful information

(i.e., xi ∈ C1) and making a few quick local adjustments based

on ri—Equation (24).

4.3 A Mass R&D Product: Darwinian Evolution in Paral-

lel Universes

Let us now consider a different problem, the variable selec-

tion problem. Given d potential predictors, which combination

is the best for predicting y? Let � be the space of all possi-

ble subsets of C = {x1, x2, . . . , xd}. The typical approach is as

follows: First, define a proper evaluation criterion,

F(ω) : � 
→ R.

Preferably F should be a fair measure of ω ∈ �. Com-

mon examples of F include the Akaike information criterion

(AIC, Akaike 1973), the Bayesian information criterion (BIC,

Schwarz 1978), and generalized cross-validation (GCV, Golub

et al. 1979), to name a few. Then, use a search algorithm to find

the best ω which optimizes F(ω).

4.3.1 Two Challenges: Computation and Criterion
There are two main challenges. The first one is computation.

With d potential predictors, the size of � is |�| = 2d . This gets

large very quickly. For example, take d = 100 and suppose we

can evaluate a billion (109) subsets per second. How long will

it take us to evaluate all of them? The answer is about 40,000

billion years:

2100 ÷ 109 ÷ 3600÷ 24÷ 365 ≈ 40,000× 109.

This may seem serious, but it actually is not the problem we

shall be concerned about here. Everyone must face this prob-

lem; there is no way out—just yet. For moderately large d, ex-

haustive search is impossible; stepwise or heuristic search algo-

rithms must be used.

The second challenge is more substantial, especially for

statisticians, and that is the question of what makes a good eval-

uation criterion, F . It is well known that both the AIC and the

BIC are problematic in practice. Roughly speaking, with finite

data, the AIC tends to favor subsets that are too large, while the

BIC tends to favor ones that are too small. For classic linear

models, both the AIC and the BIC have the form:

F(ω) = goodness-of-fit(ω)+ γ |ω|,

where |ω| is the size of ω, or the number of variables included.

The AIC uses γ = 2 whereas the BIC uses γ = log(n), n being

the sample size. Therefore, it appears that γ = 2 is too small

and γ = log(n) is too big. But if this is the case, surely there

must be a magic γ somewhere in between? So why not find out

what it is? Although this logic is certainly quite natural, it by no

means implies that the task is easy.

4.3.2 Darwinian Evolution in Parallel Universes
The product from my R&D division is a very simple yet sur-

prisingly effective method for variable selection by using Dar-

winian evolution in parallel universes (Zhu and Chipman 2006).

Here is how the algorithm works in a nutshell. Create a num-

ber of parallel universes. In each universe, run an evolution-

ary algorithm using the (apparently incorrect) AIC as the ob-

jective function for just a few generations—the evolutionary

algorithm is a heuristic stochastic search algorithm that mim-

ics Darwin’s “natural selection” to optimize any given objective

function (see, e.g., Goldberg 1989). Whatever it is, there will be

a current best solution in each universe when we stop. For ex-

ample, the current best subset in universe 1 may be {x3, x8, x10};
in universe 2, it may be {x1, x3, x8, x15}; in universe 3, perhaps

{x3, x5, x8, x11}; and so on. These form an ensemble. Now take

a majority vote and select those variables that show up in sig-

nificantly more universes than the rest. In the example here, this

would be {x3, x8}—and that is the answer.

4.3.3 Explanation With a Toy Example
Why does this simple strategy work? A small toy example is

enough to illustrate the gist of the idea. Generate

yi = xi,2 + xi,5 + xi,8 + εi ,

xi,1, . . . , xi,10, εi
iid∼ N (0, 1), i = 1, 2, . . . , 50.

In other words, there are ten potential predictors but the true

model contains only three of them: x2, x5, and x8. With just ten

variables, there are altogether 210 = 1, 024 subsets, and we can

still afford to exhaustively compute the AIC for each one of

them.

Figure 5 plots the AIC versus the size for all 210 possible

subsets. A number of characteristic observations can be made:

1. The subset that has the smallest AIC is wrong; it includes

a few variables too many.

2. On the AIC scale, many subsets are very close to each

other and it is hard to tell them apart.

3. Let us separate the 210 subsets into two groups. Group I

consists of those that include all the true variables—they

are labeled with circles (◦) in the plot. Group II consists of

those that miss out on at least one of the true variables—

they are labeled with crosses (×), pluses (+), and triangles

(�). Then, on the AIC scale, a significant gap exists be-

tween these two groups.

Having made these observations, we are now ready to explain

why parallel evolution works. The large gap between group I

and group II (observation 3) means that members from group I
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Figure 5. Why does parallel evolution work? For what this figure tells
us, see Section 4.3.3.

are significantly superior and hence easily favored by evolution.

Therefore, after evolving for just a few generations, the current

best subset in each universe is likely a member from group I.

They are the ones that make up our ensemble. What do they

have in common? They all include the three true variables.

But in order for majority vote to be effective in selecting the

right variables, it is necessary that the true variables are the only

thing that these ensemble members have in common. That is

why we cannot run the evolution for too long in each universe.

With a short evolution, since members of group I are hard to dis-

tinguish from each other on the AIC scale (observation 2), the

random nature of evolution will cause each universe to settle on

different members from this group. If, on the other hand, we run

the evolution for too long, the current best subsets from different

universes will start to develop something else in common—they

will all start to converge to the minimum AIC solution, which

includes spurious variables (observation 1).

Figure 6 illustrates how parallel evolution works on this toy

example. After running the evolutionary algorithm for just six

generations in each universe, we measure the importance of a

variable by how often it shows up across the parallel universes.

The correct solution for this example is {2, 5, 8}. When a single

universe is used (B = 1), we get the wrong solution—a spu-

rious variable, namely variable 6, also shows up. But as more

and more parallel universes are used, only the truly important

variables, that is, variables 2, 5, and 8 in this case, can “survive”

the majority vote. We can see from Figure 6 that when as few as

B = 10 universes are used, the correct solution is already easily

discernible: out of the 10 universes, variables 2, 5, and 8 each

showed up at least 9 times; variable 6 showed up four times; and

all other variables showed up at most twice.

4.3.4 Discussion: Parallel Evolution is an Easy-to-Use En-
semble Method

Parallel evolution for variable selection is a successful ex-

ample of using ensembles in a very different context. By using

an ensemble, we can significantly “boost up” the performance

of an apparently wrong variable selection criterion such as the

AIC. The procedure is very easy to use. Most importantly, it is

trivial to adapt this principle to general variable selection prob-

lems regardless of whether the underlying model is a classic

linear model, a generalized linear model, a generalized additive

model, a Cox proportional hazard model, or any other model

for which the question of variable selection is meaningful. As

such, it is not unfair to call parallel evolution a first-generation,

foolproof, off-the-shelf variable selector.

A number of smart statisticians have questioned whether it

is necessary to use the evolutionary algorithm. For example,

one can apply Breiman’s Bagging principle and create an en-

semble as follows: Draw a bootstrap sample of the data. Using

the bootstrap sample, run a stepwise algorithm to optimize the

AIC and choose a subset. Do this many times, and we get an

ensemble of subsets. Take majority vote. Clearly, this would

also work. I have experimented with this idea and found that

it is not as effective; the probability of selecting the right subset

of variables decreases significantly in simulation experiments.

Why? Breiman’s theorem (Section 3.3) points us to an answer.

Because bootstrapping alone does not create enough diversity

within the ensemble. These subsets share too many things in

common with the minimum AIC solution.

4.4 Section Summary

In this section, I have discussed a new kernel-based algorithm

for rare target detection, LAGO, and a new ensemble method

for variable selection based on parallel evolution. In doing so,

a more general formulation of LAGO is presented (Section 4.2)

using much better mathematical notation, for example, Equa-

tion (22). A simpler version, sLAGO, is given for the first time.

Better explanations are also given for why parallel evolution

(Section 4.3) works, for example, Figure 5. Many people have

the incorrect understanding that parallel evolution is merely a

better search algorithm for variable selection. This is simply

not true. In Section 4.3, it is emphasized that, instead of a bet-

ter search algorithm, parallel evolution is actually an ensemble

method that boosts up the performance of an apparently incor-

rect search criterion such as the AIC.

5. CONCLUSION

So, what have we learned? First of all, we learned that, by

using kernel functions, we can use many linear algorithms such

as separating hyperplanes and principal component analysis to

find nonlinear patterns (Section 2). This easily can be done as

long as the underlying linear algorithm can be shown to depend

on the data only through pairwise inner-products, that is, xTi x j .

Then, we simply can replace the inner-product xTi x j with a ker-

nel function Kh(xi ; x j ). However, even though such a frame-

work is straightforward, we also learned that it is important in

The American Statistician, May 2008, Vol. 62, No. 2 107

http://asa.literatumonline.com/action/showImage?doi=10.1198/000313008X306367&iName=master.img-004.jpg&w=237&h=234


Figure 6. Parallel evolution on the toy example (Section 4.3.3). The correct solution for this example is {2, 5, 8}. When B = 10 parallel
universes are used, the correct solution is already easily discernible.

practice to use the right kernel function Kh and to carefully se-

lect the hyperparameter h (Section 2.5). We saw that this is not

necessarily an easy task (Section 2.5.1).

We then learned about ensemble methods (Section 3). The

fundamental idea there is to use a collection of perhaps not-so-

well-tuned models rather than a single model that often requires

careful fine-tuning. This usually makes ensemble methods eas-

ier to use for nonexperts. I then emphasized that, even for en-

sembles, it is necessary to perform some fine-tuning (Section

3.5)—this typically involves creating the right amount of diver-

sity in the ensemble (Section 3.4 and 3.5). However, we saw

that fine-tuning an ensemble algorithm is often easier than fine-

tuning a kernel-based algorithm (Section 3.5.1).

I then argued (Section 4.1) that kernel methods and ensemble

methods need to coexist in practice. In particular, nonexperts

may tend to prefer ensemble methods because they are easier to

use, whereas experts may tend to prefer kernel methods because

they provide more flexibility for solving nonstandard and diffi-

cult problems (Sections 2.5 and 3.5). Hence, it is important for

researchers in statistical machine learning to advance both types

of methodology. I then presented some of my own research on

both fronts: LAGO, a fast kernel machine for rare target de-

tection (Section 4.2); and Darwinian evolution in parallel uni-

verses, an ensemble method for variable selection (Section 4.3).
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