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Notes

» Class on Thursday, Mar 25
» Takehome MT due Mar 25

» Trees and forests; Nearest neighbours and prototypes
(Ch. 13)

» Unsupervised Learning: Cluster analysis and
Self-Organizing Maps (Ch. 14)

» Netflix Prize: some details on the models and methods

» www.fields.utoronto.ca/programs/scientific/
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A Decision Tree (Ripley, 1996)
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Shuttle lander decision tree

> library (MASS)
> library (rpart)
> data (shuttle)
> shuttle[1:10,]

stability error sign
1 xstab LX rp
2 xstab LX rp
3 xstab LX o))
4 xstab LX PP
5 xstab LX PP
6 xstab LX joje)
7 xstab LX nn
8 xstab LX nn
9 xstab LX nn
10 xstab LX nn

> ?shuttle

wind
head
head
head
tail
tail
tail
head
head
head
tail

magn vis

Light
Medium
Strong

Light
Medium
Strong

Light
Medium
Strong

Light

no
no
no
no
no
no
no
no
no
no

use
auto
auto
auto
auto
auto
auto
auto
auto
auto
auto
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... Shuttle lander

> shuttle.rp = rpart(use ~ ., data = shuttle, minbucket = 0,
+ xval = 0, maxsurrogate = 0, cp=0, subset = 1:253)
> # from the MASS scripts; the default tree is much simpler
> post (shuttle.rp,horizontal = F, height = 10, width = 8,
+ title = "", pointsize = 8, pretty = 0) #finally a nice look
> summary (shuttle.rp)
Call:
rpart (formula = use ~ ., data = shuttle, subset = 1:253,
minbucket = 0, xval = 0, maxsurrogate = 0, cp = 0)
n= 253

CP nsplit rel error

1 0.84259259 0 1.00000000
2 0.03703704 1 0.15740741
3 0.00925926 4 0.04629630
4 0.00462963 8 0.00925926
5 0.00000000 10 0.00000000

Reference: Chapter 9 of Venables & Ripley, MASS
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Random Forests Ch. 15

» trees are highly interpretable, but also quite variable

» bagging (bootstrap aggregation) resamples from the data
to build B trees, then averages

» if X,..., Xy independent (y, o2), then var(X) = 02 /B

> if corr(Xj, Xj) = p > 0, then

var(X) = po? + 1%02

» — po? as B — oo; no benefit from aggregation

(72
§{1 +p(B—-1)}

» average many trees as in bagging, but reduce correlation
using a trick: use only a random sample of m of the p input
variables each time a node is split

» m= O(y/p), for example, or even smaller
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... random forests

588 15. Random Forests

Algorithm 15.1 Random Forest for Regression or Classification.

1. Forb=1to B:

(a) Draw a bootstrap sample Z* of size N from the training data.

(b) Grow a random-forest tree T, to the bootstrapped data, by re-
cursively repeating the following steps for each terminal node of
the tree, until the minimum node size 1,,;, is reached.

i. Select m variables at random from the p variables.
ii. Pick the best variable/split-point among the m.
iii. Split the node into two daughter nodes.

2. Output the ensemble of trees {T,}{.
To make a prediction at a new point «:
Regression: f2(z) = £ S0 Ty(x).

Classification: Let C'b(x) be the class prediction of the bth random-forest
tree. Then CZ (x) = majority vote {Cy(z)}F.

6/30



STA 414/2104 Mar 23, 2010

... random forests

» email spam example in R
» Figures 15.1,4,5

> spam2 = spam
> names (spam2) =c (spam.names, "spam")
> spam.rf = randomForest (x=as.matrix (spam2[spamtest==0,1:57]),
y=spam?2 [spamtest==0,58] , importance=T)
> varImpPlot (spam.rf)
> table (predict (spam.rf, newdata = as.matrix (spam2[spamtest==1,])),spam2[spamtest==1,58])

email spam
email 908 38
spam 33 557

> .Last.value/sum(spamtest)

email spam
email 0.591146 0.024740
spam 0.021484 0.362630
> .0247+.02148
[1] 0.04618
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... random forests

spam.rf
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Prototype and nearest neighbour methods: Ch. 13

v

model free, or “black-box” methods for classification
related to unsupervised learning (Ch. 14)

training data (x1, g1), ... (Xn, gn): g indicates one of K
classes

reduce xi, ..., Xy to a (small) number of “prototypes”

classify new observation by the class of its closest
prototype

“close”: Euclidean distance
need to center and scale training data x’s
how many prototypes, and where to put them
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K-means clustering

K refers to the number of clusters!, not the number of

classes: book uses R for this

» start with a set of cluster centers, for each center identify
its cluster (training x’s)

» compute the mean of this cluster of training points, make
this the new cluster center

» usually start with R randomly selected points

» with “labelled data” (§13.2.1) apply this cluster algorithm
within each of the K classes

» Figure 13.1 (top)

K-means - 5 Prototypes per Class

v
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... generalizations

» learning vector quantization (§13.2.2) allows observations
from other classes to influence prototypes in class k: see

Algorithm 13.1
» Figure 13.1 (bottom)

Algorithm 13.1 Learning Vector Quantization—LVQ.

1. Choose R initial prototypes for each class: mq(k), ma(k), ..., mp(k),
k=1,2,..., K, for example, by sampling R training points at random
from each class.

2. Sample a training point z,; randomly (with replacement), and let (5, k)
index the closest prototype m;(k) to z;.

(a) If gi = k (i.e., they are in the same class), move the prototype
towards the training point:

mj(k) — m;(k) + e(x; — m;(k)),

where € is the learning rate.

(b) If g; # F (i.e., they are in different classes), move the prototype
away from the training point:

mj(k) — m;(k) — e(z; —m;(k)).

3. Repeat step 2, decreasing the learning rate ¢ with each iteration to-
wards zero.

LVQ - 5 Prototypes per Class
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v

. generalizations

Gaussian mixture modelling (§13 2.3) assumes

Pr(X| G=k) = Zw 11k T)

same flavour as linear d|scr|m|nant analysis

» m are unknown mixing probabilities, to be estimated

along with pk,, *

S T (X e, T) e
22(:1 Zf:1 Tord(X; per X )M
with T, the prior class probabilities
here same number of prototypes R in each class; could let
this vary with class

usually assume ¥ = o2/ scalar covariance matrix
Figure 13.2

Pr(G=k|X=x) = (12.60)
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Reminder: Bayes boundary

o R(X) 7k
)= ok
> o1 fo(X)me
» In Figures 13.1, 13.2, etc., x = (X1, X2)
» data is simulated from known f, with known probability 7y
» pr(G = k | x9) can be calculated for any xo in R?
» Xp assigned to, e.g., class 2 if

pr(G=k|x

pr(G=2x)>pr(G=1]%),pr(G=38|x), (223)

» MASS scripts (Ch. 12) give code for drawing a continuous
boundary

» code from Jean-Francois for SVMs uses expand.grid
and colors to indicate boundary

» boundaries(y, b, n=100)
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k-nearest-neighbours
» classify new point xo using majority vote among k training
points x that are closest to x

» if features are continuous, use Euclidean distance (after
standardizing)

» Cover & Hart: error rate of 1-nearest neighbour
asymptotically bounded above by twice Bayes rate

» asymptotic with size of training set

» can be used as a rough guide to the best possible error
rate (1/2 the 1-nn rate) (p.468)

» LandSat data: Figure 13.5, 13.6

» refinements for improvements: tangent distance (§13.3.3),
adaptive neighbourhoods (§13.4), dimension reduction
(813.5)
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... k-nearest-neighbours

> data (mixture.example) # see ElemStatLearn

> x = mixture.example$x

> g = mixture.exampleSy

> xnew = mixture.example$xnew # gridpoints

> library (class)

> modl5 <- knn(x, xnew, g, k=15, prob=TRUE)

> prob = attr (modl5, "prob")

> prob <- ifelse( modl5=="1", prob, l-prob)

> pxl <- mixture.example$pxl

> px2 <- mixture.exampleS$px2

> probl5 <- matrix(prob, length(pxl), length (px2))

> contour (pxl, px2, probl5, levels=0.5, labels="", xlab="x1",
+ ylab="x2", main = "l5-nearest neighbour")

> points(x, col=ifelse(g==1, "orange", "blue"))

> points (xnew, col = ifelse(probl5 > 0.5, "orange","blue"),
+ pch=".", cex=0.8)
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Unsupervised Learning (Ch 14)

training sample (x1, ..., xn) with p features
no response y
want information on the probability function (density) of X = (X, ..., Xp) based

on these N observations
if p =1 or 2, can use kernel density estimation as in §6.6
we also used density estimation to construct a classifier, via Naive Bayes

goal: subspaces of feature space (RP) where pr(X) is large: principal
components, multidimensional scaling, self-organizing maps, principal curves

search for latent variables of lower dimension

regression with missing response variable

goal: decide whether pr(X) has small number of modes (= clusters)
classification with missing class variable

no loss function to ascertain/estimate how well we're doing

best viewed as descriptive: plots important

exploratory data analysis
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Cluster Analysis (514.3)

» discover groupings among the cases; cases within clusters
should be ’close’ and clusters should be ‘far apart’

» Figure 14.4

» many (not all) clustering methods use as inputan N x N
matrix D of dissimilarities

» require Dy > 0, Djy = Dyjand D;; =0

» sometimes the data are collected this way (see §14.3.1)

» more often D needs to be constructed from the N x p data
matrix

> often (usually) D = 37 di(x;, Xi;), where dj(-, ) to be
chosen, e.g. (Xj — i), |X;j — Xij], etc.

> sometimes Dy = > ;" ; w;dj(Xjj, Xirj), with weights to be
chosen

» pp 504, 505

» this can be done using dist or daisy (the latter in the R
library cluster)
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v

... Cluster analysis

dissimilarities for categorical features
binary: simple matching uses

Dii’ = (#{(1 ’ O) or (07 1) pairs )/p
Jacard coefficient uses
Dii’ = (#{(1 ’ O)or(O, 1) pairs )/(#{(1 ) O)v (07 1) or (1’ 1) pairs )

ordered categories — use ranks as continuous data (see
eq. (14.23))

unordered categories — create binary dummy variables and
use matching
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... cluster analysis

dist (x, method = c("euclidean", "maximum",
"manhattan", "canberra", "binary", "minkowski"))

where maximum is maxq<j<p(Xj — X7;) and binary is Jacard
coefficient.

daisy(x, metric=c("euclidean", "manhattan", "gower")
standardize=F, type=c("ordratio","logratio","asymm","symm")

(see the help files)

> x = matrix (rnorm(100), nrow=5)

> dim(x)
[1] 5 20
> dist (x)
1 2 3 4
2 5.493679
3 6.360923 5.652732
4 7.439924 5.885949 7.960187
5 4.437444 3.679995 6.133873 5.936607
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Combinatorial algorithms

suppose number of clusters K is fixed (K < N)
C(i) = k if observation i is assigned to cluster k

T= Yo
i=1 i'=1
1 K
= 5 jir + it
3> 2. | 2 D+ > D
k=1 C(i)=k \C(i")=k C(i’);ék
K
PSS >y Yo,
k=1 C(i)=k C(i")=k 21z 1.C(i)=k C(i")#k
= W(C)+ B(C)

W(C) is a measure of within cluster dissimilarity
B(C) is a measure of between cluster dissimilarity
T is fixed given the data: minimizing W(C) same as
maximizing B(C)
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K-Means clustering (514.3.6)

» most algorithms use a ‘greedy’ approach by modifying a
given clustering to decrease within cluster distance:
analogous to forward selection in regression

» K-means clustering is (usually) based on Euclidean
distance: D = ||x; — x#||?, so x’s should be centered and
scaled (and continuous)

» Use the result

K

> Z > Z l1xi = xil[2 =N > [1xi— Xl?

k 1.C(i)=k C(i" k=1 C()=k
where Ny is the number of observations in cluster k and
Xk = (Xqk, - .., Xpk) is the mean in the kth cluster

» The algorithm starts with a current set of clusters, and
computes the cluster means. Then assign observations to
clusters by finding the cluster whose mean is closest.

Recompute the cluster means and continue.
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» sometimes require cluster center to be one of the data
values (means that algorithm can be applied to
dissimilarity matrices directly)

» choose K by possibly plotting the total within cluster
dissimilarity vs. K; it is always decreasing but a 'kink’ may
be evident (see §14.3.11).

» hard to describe the results of partitioning methods of
clustering, Figure 14.6
» Algorithm 14.1:

» for a given cluster assignment, minimize the total cluster
variance S5, Nk > cgiy=k [1Xi — mil[? with respect to
{m,..., mg}; this is easily achieved by taking each my to
be the sample mean of the kth cluster

» For a given set of {my}, minimize distance by letting
C(i) = argming << |1 X; — mil[?
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Example: wine data

v

recall 3 classes, 13 feature variables

linear discriminant analysis showed a good separation of
the 3 classes

K-means with a random choice of initial cluster
again on standardized data

v

v

v

25/30



LD2

1
2
2 2
2 2
2
2222
2
2225
2 2 2
2
2 2
2
2

3




LD2

) . 3
3
11 1,1 3% s
1 1 3
1 1111H 3 %58 3
111111 1 33 3 3
LT 333%33 8
11 33
i1 4 1 > 33 33
14 3
2 22
2 2
2 2 222 2
5, 22 52
2 2 255
2 b2 2% 22
2 2 2%
22 222%25
2 2 2
2
2
T T T T T
-6 -4 -2 0 4




STA 414/2104 Mar 23, 2010

vV V. vV VvV Vv Y

Partitioning methods

K-Means — uses the original data
uses Euclidean distance Djr = Y7,
requires a starting classification

minimizes the within-cluster sum of squares

maximizes the between-cluster sum of squares
variables should be ’suitably scaled’ (Ripley): no mention
of this in HTF

K-medioids: replace Euclidean by another dissimiilarity
measure

(X,'j — X,'/j)z

o
Dy = Z |Xj — Xpj|  manhattan
Jj=1

p

X.. —_ X. .

Djy = Z 7’ y i | Canberra
= X+ X
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Dissimilarities for categorical features

binary: simple matching uses

Diy = (#{(1,0) or (0, 1) pairs )/p

Jacard coefficient uses

Dji» = (#{(1,0)or(0,1) pairs )/(#{(1,0),(0,1) or (1, 1) pairs )
» ordered categories — use ranks as continuous data (see
eq. (14.23))

» unordered categories — create binary dummy variables and
use matching

» mixed categories — Gower’s 'general dissimilarity
coefficient’ — see Gordon

v
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Constructing dissimilarity matrices

dist (x, method = c("euclidean", "maximum",
"manhattan", "canberra", "binary"))

where maximum is maxq<j<p(Xj — X7;) and binary is Jacard
coefficient.

daisy (x, metric=c("euclidean", "manhattan",
standardize=F, type=c("ordratio","logratio","asymm"

(see the help files)
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