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§7.3 Estimating expected prediction error

Errp — E{L(Y,?(XZ)lT }
Err = Ef[E{L(Y,#(X))| T}

> know that erf = 4 3" L{y;, f(x;)} is too small
» can show that on average, err should be inflated by

2
do

N

» where d is the number of inputs
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... can show (57.4)

» Define N
1 R
Erry, = N Z E{L(Y107 f(XI)) ‘ T}

i=1
» new Y? at each of the training inputs X1, ..., Xy
» and define

w = Ey(EI‘I'in — W)

» expectation over y instead of 7 (x’s fixed)
>

2 N
w= g D cov(Fi¥)
i=1

leading to (7.22)

vy

Ey(Emn) = Ey(erm) Zcov Vi ¥i)

- Eyem) + 2do?

v

for linear fits with d basis functions
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... can show

N
__, 2 -
Ey(Brm) = Ey(8m) + 1D cov(§i.y)

i=1

Ey(err) + %dcrf

. ___ 2 .
> (§7.5) err estimates Ey(err) Ndaf estimates 2nd term

» with log-likelihood loss function, the result is
» as N — oo,

N

. 2 . d
—2E{logPr(Y;0)} ~ -4 ;‘ log Pr(y;; 0) + 25
=
» which motivates
2 . 2d
AIC = -5 l(0:y) + 7

» e.g. in (7.30) d = d(«) depends on a smoothing parameter
» (§7.6) with smoothing splines replace d by traceS)
» skip §7.7, 8,9
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Direct estimation of EPE §7.10

» another way to estimate prediction error
>

Err = ErE{L(Y,}(X)) | T}

N
eV(h) = 5 3o Ll 0}
i=1

vy

leave-one-out (N-fold):

NZLy,, (x) = (e.g. Nz{yﬁf (xi)}?

ey Yi— (%)
yi—t'(x) = g

for any linear smoother 7 = Sy

vy T

vy

1 yi — F(x)
acv=y 2{1 - tr(S)/N}2
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v

comments
§7.10.2,3: CV must be carried out before any model
simplification that uses the y’s

both CV and K-fold CV seem to estimate expected
prediction error but not prediction error

CV can be quite variable (especially leave one out)

p.231: using AIC, CV or GCV to choose smoothing
parameter seems to overfit the data (?)

Example: biasvariance.R
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Projection pursuit regression (511.2)

» response Y, inputs X = (Xj,..., Xp)

» model f(X)=E(Y | X)or f(X)=pr(Y=1]|X)or
f(X) = pr(Y = k | X)

> PPR model f(X) = -1 gm(wpX) = 3 gm(Vim), say

» gm are 'smooth’ functions, as in generalized additive

models

» V= w/ X are derived variables: the projection of X onto
wm = (Wmt, -, wmp), With [Jwm|| =1

» Figure 11.1

» as gm are nonlinear (in general), we are forming nonlinear
functions of linear combinations

» as M — oo, 3 gm(w/ X) can get arbitrarily close to any
continuous function on RP

» if M = 1 a generalization of linear regression
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PPR fitting
» training data (x;,y;), i=1,...,N

M
min Z{y, S gmlwhxi)}?
m=1

{gm,wm}
» M=1:fixw, formvi=w’x,i=1,....,N
» solve for g using a regression smoother — kernel, spline,
loess, etc.

» given g, estimate w by weighted least squares of a derived
variable z; on x; with weights g2(w{ x;) and no constant
term

» uses a simple linear approximation to g(-) (see note)

» if M > 1 add in each derived input one at a time
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L PPR fitting

PPR fitting
training data (x, ), i =1,.... N

9w X)) ~ g(wg xi) + &' (wf X)(w — wo) " X;

{yi — g(w"x)}?

= {¥i—

= (90)°
= (9)°

weight

9o — Gh(w — wo) Txi}2

Yi 9
QT;) T (w —wo) X}

2
fone (132) -
0

derived response (target)
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PPR implementation

» a smoothing method that provides derivatives is convenient

» M is usually estimated as part of the fitting

» provided in MASS library as ppr: fits Mpmax terms and drops
least effective term and refits, continues down to M terms:
both M and Mpmax provided by the user

» ppr also accommodates more than a single response Y;
see help file

» difficult to interpret results of model fit, but may give good
predictions on test data

» PPR is more general than GAM, because it can
accommodate interactions between features: eg.
XiXo = {(X1 + X2)? — (X1 — X2)2} /4

» the idea of ‘important’ or ‘interesting’ projections can be
used in other contexts to reduce the number of features, in
classification and in unsupervised learning, for example

10/19
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Example

> sigmoid = function(x) {1/ (l+exp (-x))}

> x1 = rnorm(100)

> x2 = rnorm (100)

> z = rnorm(100)

> y = sigmoid(3#x1+3%x2)+ (3%xx1-3%x2) "2 + 0.3xz

> simtest = data.frame (cbind(xl,x2,y))

> pairs(simtest)

> sim.ppr = ppr(y ~ xl1 + x2, data=simtest, nterms = 2, max.terms=5
> summary (sim.ppr)

Call:

ppr (formula = y - x1 + x2, data = simtest, nterms = 2, max.terms = 5)

Goodness of fit:
2 terms 3 terms 4 terms 5 terms
48.23182 40.63610 27.36090 27.82126

Projection direction vectors:
term 1 term 2

x1 -0.7133944 -0.8127244

x2 0.7007627 0.5826483

Coefficients of ridge terms:
term 1 term 2
24.5680314 0.9625025
> plot (sim.ppr)
> plot (update (sim.ppr, sm.method="gcv", nterms=2))
## adapted from code in Venables and Ripley, Sec.8.9 and help files
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ppr using simulated data (exercise 11.5)

ppr using simulated data (exercise 11.5)

© 4
< 4
~ 4
o
o
T T T T T
-2 -1 0 1 2
term 2
update(..., sm.method="gcv")
v o
o
v
o
©
2 1
e
-2 -1 0 1 2
term 2

12/19



STA 414/2104 Mar 2, 2010

Neural networks (511.3)

» inputs (features) Xi,..., Xp
» derived inputs Zi, ..., Zy (hidden layer)
» output (response) Yi,..., Yk
» usual regression has K = 1
» classification has (Yi,..., Yx) =(0,...,1,0,...)
» also can accommodate multivariate regression with several
outputs
» Figure 11.2

® ®
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... heural networks

» derived inputs Zy, = o(agm + o}, X) for some choice o)

» called an activation function

» often chosen to be logistic 1/(1 + e™") (sigmoid)

> target Ty = Bok + B Z

» output Yy = fi(X) = gk(T1,. .., Tk) for some choice gx(-)

» in regression gx would usually be the identity function
e’k

» in K-class classification usually use gx(T) = W
e't
=1

» in 2-class classification g1(T) = 1(T > 0)
hard thresholding

> Yk = gk(Bok + XoM_ BkmZm)
> Y = Gk(Bok + Som_t Brmo(qom + Sh_y aumXe))
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v

... heural networks
connection to PPR: f(X) = XM _ +.gm(whX) = 3 7m Vim
dm — 2%21 BkmZm
i.e. gm(Vm) (arbitrary but smooth) replaced by
Bmo(com + LX) (linear logistic)
smooth functions are in principle more flexible, but can use
a large number of derived Z’s

the intercept terms oo, and Sk could be absorbed into the
general expression by including an input of 1, and a hidden
layer input of 1

these are called ‘bias units’
Eqg. (11.7), Figure 11.3
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NN fitting (511.4)
» need to estimate (agm, am),m=1,..., M M(p+1)
and (B()k,ﬁk),k:‘l,...K K(M+1)

» loss function R(0); 0 = (com, @m, Bok, Bx) 10 be minimized;
regularization needed to avoid overfitting

» loss function would be least squares in regression setting,
e.g.
N K
> {yi — f(xi)}?
i=1 k=1
» for classification could use cross-entropy

N K

D> yilog fi(x)

i=1 k=1

» the parameters o and g called (confusingly) weights, and
regularization is called weight decay
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Back propogation
» data (yi,X),i=1,....,NJk=1,.. K
> let z,i = o(agm + X)) and z; = (24}, . . ., Zmi)
> R(0) = SN Sk {yik — f(x)}2 = 32 Ri(6), say
> f(xi) = gk(B) )

OR;

e = —2{yi — fu(x1) } 9k (BY ) Zmi
OR; K
doame ~2 (i — f(x)) Y9k (B ) Brm0” (cejpXi)Xie

k=1

at each iteration use 9R/90 to guide choice to next point
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ﬁ(r+1 )
km

(r+1)
X

Oki

Smi

Smi

N

OR,

ﬁ;ﬂr) - r Z
" sl

N

(r) OR;
’era o (11.13)
i=1 9%my

—2{}/ik — fi(xi) Y 9k(BY 2)

-2 Z{ylk X/ }gk(ﬁk Z,)ﬁkmg (a;x,)

o’ (X)) Z BkmOki (11.15)
k=1

use current estimates to get (x;)
compute dx and hence sp,; from (11.15)
put these into (11.13)
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o the coefficients (ame, Bkm) are usually called weights

¢ the algorithm is called back propogation or the §-rule

e can be computed in time linear in the number of hidden units
e can be processed one instance (case) at a time

e any continuous function can be represented this way (with
enough Z’s)
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Training NNs (511.5)

» with small apm, o(v) ~ v; large linear regression

» if algorithm stops early, am, still small; fit ‘nearly’ linear or
shrunk towards a linear fit

» use penalty as in ridge regression to avoid overfitting

» ming{R(0) + \J(0)}

> J(0) =X B + 2 ady

» as in ridge regression need to scale inputs to mean 0, var
1 (at least approx.)

» )\ called weight decay parameter; seems to be more crucial
than the number of hidden units

» nnet in MASS library; recd A € (1074,1072) for LS;
A € (.01,.1) for entropy

» regression examples: §11.6, simulated Figures 11.6, 7, 8
» classification example: Figure 11.4 and Section 11.7
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