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Notes
I No Office Hour today, Tuesday Mar 2
I Practise test questions posted
I HW 2 due date Tuesday Mar 9
I HW 2 questions and HW 1 answers Thursday, Mar 4
I Statistical Society of Canada case studies

http://www.ssc.ca/documents/case_studies/2010/
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§7.3 Estimating expected prediction error
I

ErrT = E{L(Y , f̂ (X )) | T }
Err = ET [E{L(Y , f̂ (X )) | T }]

I know that err = 1
N
∑

L{yi , f̂ (xi)} is too small
I can show that on average, err should be inflated by

2
dσ2

ε

N

I where d is the number of inputs
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... can show (§7.4)
I Define

Errin =
1
N

N∑
i=1

E{L(Y 0
i , f̂ (xi)) | T }

I new Y 0
i at each of the training inputs x1, . . . , xN

I and define
ω = Ey(Errin − err)

I expectation over y instead of T (x ’s fixed)
I

ω =
2
N

N∑
i=1

cov(ŷi , yi)

I leading to (7.22)
I

Ey(Errin) = Ey(err) +
2
N

N∑
i=1

cov(ŷi , yi)

= Ey(err) +
2
N

dσ2
ε

I for linear fits with d basis functions
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... can show
I

Ey(Errin) = Ey(err) +
2
N

N∑
i=1

cov(ŷi , yi)

= Ey(err) +
2
N

dσ2
ε

I (§7.5) err estimates Ey(err)
2
N

d σ̂2
ε estimates 2nd term

I with log-likelihood loss function, the result is
I as N →∞,

−2E{log Pr(Y ; θ̂)} ' − 2
N

N∑
i=1

log Pr(yi ; θ̂) + 2
d
N

I which motivates

AIC = − 2
N
`(θ̂;y) +

2d
N

I e.g. in (7.30) d = d(α) depends on a smoothing parameter
I (§7.6) with smoothing splines replace d by traceSλ
I skip §7.7, 8, 9
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Direct estimation of EPE §7.10
I another way to estimate prediction error
I

Err = ET E{L(Y , f̂ (X )) | T }

I

CV (f̂ ) =
1
N

N∑
i=1

L(yi , f̂−κ(i)(xi)}

I leave-one-out (N-fold):
I

1
N

∑
L(yi , f̂−i(xi)) = (e.g.)

1
N

∑
{yi − f̂−i(xi)}2

I

yi − f̂−i(xi) =
yi − f̂ (xi)

1− Sii

I for any linear smoother f̂ = Sy
I

CV =
1
N

∑
{yi − f̂ (xi)

1− Sii
}2

I

GCV =
1
N

∑
{ yi − f̂ (xi)

1− tr(S)/N
}2
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comments
I §7.10.2,3: CV must be carried out before any model

simplification that uses the y ’s
I both CV and K -fold CV seem to estimate expected

prediction error but not prediction error
I CV can be quite variable (especially leave one out)
I p.231: using AIC, CV or GCV to choose smoothing

parameter seems to overfit the data (?)
I Example: biasvariance.R
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Projection pursuit regression (§11.2)
I response Y , inputs X = (X1, . . . ,Xp)

I model f (X ) = E(Y | X ) or f (X ) = pr(Y = 1 | X ) or
fk (X ) = pr(Y = k | X )

I PPR model f (X ) =
∑M

m=1 gm(ω
T
mX ) =

∑
gm(Vm), say

I gm are ’smooth’ functions, as in generalized additive
models

I Vm = ωT
mX are derived variables: the projection of X onto

ωm = (ωm1, . . . , ωmp), with ||ωm|| = 1
I Figure 11.1
I as gm are nonlinear (in general), we are forming nonlinear

functions of linear combinations
I as M →∞,

∑
gm(ω

T
mX ) can get arbitrarily close to any

continuous function on Rp

I if M = 1 a generalization of linear regression
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PPR fitting
I training data (xi , yi), i = 1, . . . ,N

min
{gm,ωm}

N∑
i=1

{yi −
M∑

m=1

gm(ω
T
mxi)}2

I M = 1: fix ω, form vi = ωT xi , i = 1, . . . ,N
I solve for g using a regression smoother – kernel, spline,
loess, etc.

I given g, estimate ω by weighted least squares of a derived
variable zi on xi with weights g2

0(ω
T
0 xi) and no constant

term
I uses a simple linear approximation to g(·) (see note)
I if M > 1 add in each derived input one at a time
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PPR fitting

g(ωT xI) ' g(ωT
0 xi) + g′(ωT

0 xi)(ω − ω0)
T xi

{yi − g(ωT xi)}2 = {yi − g0 − g′
0(ω − ω0)

T xi}2

= (g′
0)

2{ yi

g′
0
− g0

g′
0
− (ω − ω0)

T xi}2

= (g′
0)

2
{
ωT

0 xi +

(
yi − g0

g′
0

)
− ωT xi

}2

weight derived response (target)
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PPR implementation
I a smoothing method that provides derivatives is convenient
I M is usually estimated as part of the fitting
I provided in MASS library as ppr: fits Mmax terms and drops

least effective term and refits, continues down to M terms:
both M and Mmax provided by the user

I ppr also accommodates more than a single response Y ;
see help file

I difficult to interpret results of model fit, but may give good
predictions on test data

I PPR is more general than GAM, because it can
accommodate interactions between features: eg.
X1X2 = {(X1 + X2)

2 − (X1 − X2)
2}/4

I the idea of ‘important’ or ‘interesting’ projections can be
used in other contexts to reduce the number of features, in
classification and in unsupervised learning, for example
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Example

> sigmoid = function(x){1/(1+exp(-x))}
> x1 = rnorm(100)
> x2 = rnorm (100)
> z = rnorm(100)
> y = sigmoid(3*x1+3*x2)+ (3*x1-3*x2)ˆ2 + 0.3*z
> simtest = data.frame(cbind(x1,x2,y))
> pairs(simtest)
> sim.ppr = ppr(y ˜ x1 + x2, data=simtest, nterms = 2, max.terms=5)
> summary(sim.ppr)
Call:
ppr(formula = y ˜ x1 + x2, data = simtest, nterms = 2, max.terms = 5)

Goodness of fit:
2 terms 3 terms 4 terms 5 terms

48.23182 40.63610 27.36090 27.82126

Projection direction vectors:
term 1 term 2

x1 -0.7133944 -0.8127244
x2 0.7007627 0.5826483

Coefficients of ridge terms:
term 1 term 2

24.5680314 0.9625025
> plot(sim.ppr)
> plot(update(sim.ppr,sm.method="gcv",nterms=2))
## adapted from code in Venables and Ripley, Sec.8.9 and help files
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ppr using simulated data (exercise 11.5)

term 1

-2 -1 0 1 2
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ppr using simulated data (exercise 11.5)

term 2
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update(..., sm.method="gcv")

term 1
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-1
.5
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5
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0
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5

update(..., sm.method="gcv")

term 2
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Neural networks (§11.3)
I inputs (features) X1, . . . ,Xp

I derived inputs Z1, . . . ,ZM (hidden layer)
I output (response) Y1, . . . ,YK

I usual regression has K = 1
I classification has (Y1, . . . ,YK ) = (0, . . . ,1,0, . . . )
I also can accommodate multivariate regression with several

outputs
I Figure 11.2
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... neural networks
I derived inputs Zm = σ(α0m + αT

mX ) for some choice σ(·)
I called an activation function
I often chosen to be logistic 1/(1 + e−v ) (sigmoid)
I target Tk = β0k + βT

k Z
I output Yk = fk (X ) = gk (T1, . . . ,TK ) for some choice gk (·)
I in regression gk would usually be the identity function

I in K -class classification usually use gk (T ) =
eTk∑K
`=1 eT`

I in 2-class classification g1(T ) = 1(T > 0)
hard thresholding

I Yk = gk (β0k +
∑M

m=1 βkmZm)

I Yk = gk (β0k +
∑M

m=1 βkmσ(α0m +
∑p

`=1 α`mX`))
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... neural networks
I connection to PPR: f (X ) =

∑M
m=1 γmgm(ω

T
mX ) =

∑
γmVm

I Vm → Zm = σ(α0m + αT
mX )

I gm →
∑M

m=1 βkmZm

I i.e. gm(Vm) (arbitrary but smooth) replaced by
I βmσ(α0m + αT

mX ) (linear logistic)
I smooth functions are in principle more flexible, but can use

a large number of derived Z ’s
I the intercept terms α0m and β0k could be absorbed into the

general expression by including an input of 1, and a hidden
layer input of 1

I these are called ‘bias units’
I Eq. (11.7), Figure 11.3
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NN fitting (§11.4)
I need to estimate (α0m, αm),m = 1, . . . ,M M(p + 1)

and (β0k , βk ), k = 1, . . .K K (M + 1)
I loss function R(θ); θ = (α0m, αm, β0k , βk ) to be minimized;

regularization needed to avoid overfitting
I loss function would be least squares in regression setting,

e.g.
N∑

i=1

K∑
k=1

{yik − fk (xi)}2

I for classification could use cross-entropy

N∑
i=1

K∑
k=1

yik log fk (xi)

I the parameters α and β called (confusingly) weights, and
regularization is called weight decay
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Back propogation
I data (yik , xi), i = 1, . . . ,N, k = 1, . . . ,K
I let zmi = σ(α0m + αT

mxi) and zi = (z1i , . . . , zmi)

I R(θ) =
∑N

i=1
∑K

k=1{yik − fk (xi)}2 =
∑

Ri(θ), say
I fk (xi) = gk (β

T
k zi)

∂Ri

∂βkm
= −2{yik − fk (xi)}g′k (β

T
k zi)zmi

∂Ri

∂αm`
= −2

K∑
k=1

{yik − fk (xi)}g′k (β
T
k zi)βkmσ

′(αT
mxi)xi`

at each iteration use ∂R/∂θ to guide choice to next point
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β
(r+1)
km = β

(r)
km − γr

N∑
i=1

∂Ri

∂β
(r)
km

α
(r+1)
m` = α

(r)
m` − γr

N∑
i=1

∂Ri

∂α
(r)
m`

(11.13)

δki = −2{yik − fk (xi)}g′k (β
T
k zi)

smi = −2
K∑

k=1

{yik − fk (xi)}g′k (β
T
k zi)βkmσ

′(αT
mxi)

smi = σ′(αT
mxi)

K∑
k=1

βkmδki (11.15)

use current estimates to get f̂k (xi)
compute δki and hence smi from (11.15)
put these into (11.13)
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• the coefficients (αm`, βkm) are usually called weights

• the algorithm is called back propogation or the δ-rule

• can be computed in time linear in the number of hidden units

• can be processed one instance (case) at a time

• any continuous function can be represented this way (with
enough Z ’s)
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Training NNs (§11.5)
I with small αm`, σ(v) ' v ; large linear regression
I if algorithm stops early, αm` still small; fit ‘nearly’ linear or

shrunk towards a linear fit
I use penalty as in ridge regression to avoid overfitting
I minθ{R(θ) + λJ(θ)}
I J(θ) =

∑
β2

km +
∑
α2

m`
I as in ridge regression need to scale inputs to mean 0, var

1 (at least approx.)
I λ called weight decay parameter; seems to be more crucial

than the number of hidden units
I nnet in MASS library; rec’d λ ∈ (10−4,10−2) for LS;
λ ∈ (.01, .1) for entropy

I regression examples: §11.6, simulated Figures 11.6, 7, 8
I classification example: Figure 11.4 and Section 11.7
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