Administration

- Homework 1 on web page, due Feb 11
- NSERC summer undergraduate award applications due Feb 5
- Some helpful books
... administration
... administration

- collection of tools for regression and classification
- some old (least squares, discriminant analysis)
- some new (lasso, support vector machines)
- statistical justifications: loss, likelihood, mean squared error, classification error, posterior probabilities...
- statistical thinking
- framework for analysing new tools
Linear regression plus

- variable selection: forward, backward, stepwise, all possible subsets
- comparing models: adjusted R^2, C_p vs. p, AIC^1 and variants, K-fold cross-validation
- shrinkage methods: ridge regression, lasso, Least Angle Regression
- tuning parameter (amount of shrinkage): validation data, K-fold cross-validation
- derived variables: principal components regression, partial least squares

1 C_p and AIC can be shown to be estimates of expected prediction error
Predictions with smoothing regression

- on training data: x’s are centered and scaled when fitting Lasso, LAR, and ridge regression
- $\hat{\beta}_0$ is not included in shrinkage
- \[(3.41)\]
 \[
 \hat{\beta}_{\text{ridge}} = \arg\min_{\beta} \sum (y_i - \beta_0 - \sum_{j=1}^{p} x_{ij}\beta_j)^2 + \lambda \sum_{j=1}^{p} \beta_j^2
 \]
- \[(3.52)\]
 \[
 \hat{\beta}_{\text{lasso}} = \arg\min_{\beta} \sum (y_i - \beta_0 - \sum_{j=1}^{p} x_{ij}\beta_j)^2 + \lambda \sum_{j=1}^{p} |\beta_j|
 \]
- $\hat{\beta}_0 = \bar{y} = \bar{y}_{\text{train}}$
- for predicting a new $y^0 = \hat{\beta}_0 + \sum_{j=1}^{p} (x_{ij}^0 - \bar{x}_j)\hat{\beta}_j$: use $\hat{\beta}_0 = \bar{y}_{\text{train}}$, and \bar{x}_j means average for jth feature on the training data
- see construction of tx and mm in Table 33R.txt
predictions

> options(digits=4)

> as.vector(predict.lars(pr.lars, newx=test[,1:8], type="fit", s=0.36, mode="fraction")$fit)

[1] 2.094 1.443 1.780 2.292 2.695 2.009 2.283 1.731 1.969 1.694 2.588 2.486

> as.vector(tx %*% coef(pr.lars, s=0.36, mode="fraction")) + mean(train$lpsa)

[1] 2.094 1.443 1.780 2.292 2.695 2.009 2.283 1.731 1.969 1.694 2.588 2.486
Derived features §3.5

- replace $\mathbf{x}_1, \ldots, \mathbf{x}_p$ with linear combinations of columns
- principal components from SVD are natural candidates
- $\mathbf{X} = \mathbf{UDV}^T$, $\mathbf{U}^T \mathbf{U} = \mathbf{I}_N$, $\mathbf{V}^T \mathbf{V} = \mathbf{I}_p$
- $z_m = \mathbf{X} \mathbf{v}_m$, $m = 1, \ldots, M < p$
- z_m are orthogonal by construction

$$
\hat{\mathbf{y}}^{pcr}_{(M)} = \bar{\mathbf{y}} \mathbf{1} + \sum_{m=1}^{M} \hat{\theta}_m z_m
$$

$$
\hat{\theta}_m = \frac{\langle z_m, \mathbf{y} \rangle}{\langle z_m, z_m \rangle} = \frac{\sum_{i=1}^{n} z_{mi} y_i}{\sum_{i=1}^{n} z_{mi}^2}
$$

- inputs should be scaled first (mean 0, variance 1)
- Angle brackets notation explained at (3.25).
 Exercise: $\bar{z}_m = 0$??
... derived features

- closely related method Partial least squares
- also constructs derived variables
- widely used in chemometrics, where often $p > N$
- see §3.6 for discussion
3. Linear Methods for Regression

- All Subsets
- Ridge Regression
- Lasso
- Principal Components Regression
- Partial Least Squares
Linear methods for classification

(Chapter 4)
- inputs $X = X_1, \ldots, X_p$ (notation x used on p.101)
- output Y takes values in one of K classes
- output G is a group label: values $1, \ldots, K$
- response Y as needed ($Y \leftrightarrow G$), e.g. $Y = 1, 0$ as $G = \text{blue, orange}$ Fig 2.1; eq. (2.7)
- data $(x_i, g_i), i = 1, \ldots N$
- goal to learn a model to predict the correct class for a future output, based on inputs

FIGURE 2.1. A classification example in two dimensions. The classes are coded as a binary variable (BLUE = 0, ORANGE = 1), and then fit by linear regression. The line is the decision boundary defined by $y'\beta = 0.5$. The orange shaded region denotes that part of input space classified as ORANGE, while the blue region as classified as BLUE.

code is in ElemStatLearn.pdf
Linear methods

- rule: $G = 2 \iff$ linear function of inputs \geq something, else $G = 1$ (with extensions for $K > 2$)
- see Fig. 2.2 for a nonlinear method
- note that boundaries can be curved by including terms like X_j^2 and $X_j X_k$: see Fig. 4.1
- types of linear methods:
 - linear regression §4.2 $Y = \beta_0 + \beta^T X$
 - linear discriminant analysis §4.3
 - logistic regression §4.4
 \[
 \log \frac{P(Y = 1)}{P(Y = 0)} = \beta_0 + \beta^T X
 \]
 - separating hyperplanes §4.5
Linear regression §4.2

\[Y = \begin{pmatrix} y_{11} & \ldots & y_{1K} \\ y_{21} & \ldots & y_{2K} \\ \vdots & \vdots & \vdots \\ y_{N1} & \ldots & y_{NK} \end{pmatrix} = \begin{pmatrix} 0 & 0 & \ldots & 1 \\ 0 & 1 & \ldots & 0 \\ 1 & 0 & \ldots & 0 \\ \vdots & \vdots & \vdots & \vdots \\ 1 & 0 & \ldots & 0 \end{pmatrix} \]

- \(y_i = (y_{i1}, \ldots, y_{iK}) \) multivariate Bernoulli
- \(E(Y \mid X) = XB \)
- \(\hat{B} = (X^T X)^{-1} X^T Y \): dimension?
- new observation \((1, x_0^T)\), new prediction \((1, x_0^T) \hat{B} = (\hat{f}_1, \ldots, \hat{f}_K)\): find the largest

\[X = \begin{pmatrix} 1 & x_1^T \\ 1 & x_2^T \\ \vdots & \vdots \\ 1 & x_N^T \end{pmatrix} \]
... linear regression

- if $K = 1$ this is linear regression of 0/1 response
- will produce predictions larger than 1, smaller than 0
- more natural to consider instead modelling $Pr(Y = 1 \mid X)$ and finding methods that predict in $(0, 1)$
- but if data supports $0.2 < Pr(Y = 1 \mid X) < 0.8$ results will not be very different
- Figure 4.2
- "targets" t_k (p. 104): $t_k = (0, \ldots, 1, \ldots, 0)$
- find the largest $\{\hat{f}(x_0) - t_k\}^2$; another way to state the least squares solution
Discriminant analysis (§4.3)

- $G \in \{1, 2, \ldots, K\}$,
- $f_k(x) = f(x \mid G = k)$ = density of x in class k
- new ingredient: density of inputs
- Bayes Theorem:

$$\Pr(G = k \mid x) = \frac{f(x \mid G = k)\pi_k}{f(x)} \quad k = 1, \ldots, K$$

- associated classification rule: assign a new observation to class k if

$$\Pr(G = k \mid x) > \Pr(G = k' \mid x) \quad k' \neq k$$

(maximize the posterior probability)
special case - Normal

\[x \mid G = k \sim N_p(\mu_k, \Sigma_k) \]

\[\Pr(G = k \mid x) \propto \pi_k \frac{1}{(\sqrt{2\pi})^p |\Sigma_k|^{1/2}} \exp -\frac{1}{2} (x - \mu_k)^T \Sigma_k^{-1} (x - \mu_k) \]

which is maximized by maximizing the log:

\[\max_k \{ \log \pi_k - \frac{1}{2} \log |\Sigma_k| - \frac{1}{2} (x - \mu_k)^T \Sigma_k^{-1} (x - \mu_k) \} \]

– if we further assume \(\Sigma_k = \Sigma \), then

\[\max_k \{ \log \pi_k - \frac{1}{2} (x - \mu_k)^T \Sigma^{-1} (x - \mu_k) \} \]

\[\Leftrightarrow \max_k \{ \log \pi_k - \frac{1}{2} (x^T \Sigma^{-1} x - x^T \Sigma^{-1} \mu_k - \mu_k \Sigma^{-1} x + \mu_k^T \Sigma^{-1} \mu_k) \} \]

\[\Leftrightarrow \max_k \{ \log \pi_k + x^T \Sigma^{-1} \mu_k - \frac{1}{2} \mu_k^T \Sigma^{-1} \mu_k \} \]
Procedure: compute
$$\delta_k(x) = \log \pi_k + x^T \Sigma^{-1} \mu_k - \frac{1}{2} \mu_k^T \Sigma^{-1} \mu_k$$

classify observation x to class k if $\delta_k(x)$ largest (see Figure 4.5, left)

Estimate unknown parameters π_k, μ_k, Σ:

$$\hat{\pi}_k = \frac{N_k}{N}, \quad \hat{\mu}_k = \sum_{i: g_i = k} \frac{x_i}{N_k}$$

$$\hat{\Sigma} = \sum_{k=1}^{K} \sum_{i: g_i = k} (x_i - \hat{\mu}_k)(x_i - \hat{\mu}_k)^T / (N - K)$$

Figure 4.5, 4.1, 4.11
Special case: 2 classes

\[\log \hat{\pi}_2 + x^T \hat{\Sigma}^{-1} \hat{\mu}_2 - \frac{1}{2} \hat{\mu}_2^T \hat{\Sigma}^{-1} \hat{\mu}_2 > (\leq) \]

\[\log \hat{\pi}_1 + x^T \hat{\Sigma}^{-1} \hat{\mu}_1 - \frac{1}{2} \hat{\mu}_1^T \hat{\Sigma}^{-1} \hat{\mu}_1, \]

\[\iff x^T \hat{\Sigma}^{-1} (\hat{\mu}_2 - \hat{\mu}_1) > (\leq) \]

\[\frac{1}{2} \hat{\mu}_2^T \hat{\Sigma}^{-1} \hat{\mu}_2 - \frac{1}{2} \hat{\mu}_1^T \hat{\Sigma}^{-1} \hat{\mu}_1 + \log(N_1/N) - \log(N_2/N) \]

LHS is a linear combination of the inputs; RHS is the “cutpoint”

If \(\Sigma_k \) not all equal, the discriminant function \(\delta_k(x) \) defines a quadratic boundary; see Figure 4.6, left

An alternative is to augment the original set of features with quadratic terms and use linear discriminant functions; see Figure 4.6, right
Another description of LDA (\S4.3.2, 4.3.3)

- Let \mathbf{W} = within class covariance matrix
 $$\sum_{k=1}^{K} \sum_{i:g_i=k} (x_i - \bar{x}_k)(x_i - \bar{x}_k)^T$$

- \mathbf{B} = between class covariance matrix
 $$\sum_{k=1}^{K} N_k (\bar{x}_k - \bar{x})(\bar{x}_k - \bar{x})^T$$

- $$\mathbf{B} + \mathbf{W} = \sum_{k=1}^{K} \sum_{i:g_i=k} (x_i - \bar{x})(x_i - \bar{x})^T = \mathbf{T}$$

- linear classification rule $a^T x$

 $$\max_a \frac{a^T \mathbf{B} a}{a^T \mathbf{W} a}$$

- equivalently

 $$\max_a a^T \mathbf{B} a, \text{ subject to } a^T \mathbf{W} a = 1$$
Solution a_1, say, is the eigenvector of $W^{-1}B$ corresponding to the largest eigenvalue. This determines a line in \mathbb{R}^p.

continue, finding a_2, orthogonal (with respect to W) to a_1, which is the eigenvector corresponding to the second largest eigenvalue, and so on.

There are at most $\min(p, K - 1)$ positive eigenvalues.

These eigenvectors are the linear discriminants, also called canonical variates.

This technique can be useful for visualization of the groups.

Figure 4.11
... LDA

- (§ 4.3.3) write $\hat{\Sigma} = UDU^T$, where $U^T U = I$, D is diagonal (see p.109 for $\hat{\Sigma}$)
- $X^* = D^{-1/2} U^T X$, with $\hat{\Sigma}^* = I$
- classification rule is to choose k if $\hat{\mu}_k^*$ is closest (closest class centroid)
- only needs the K points $\hat{\mu}_k^*$, and the $K - 1$ dimension subspace to compute this, since remaining directions are orthogonal (in the X^* space)
- if $K = 3$ can plot the first two variates (cf wine data)
- Figures 4.4 and 4.8
- algorithm on p.114
R code for the wine data

```r
> library(MASS)
> wine.lda <- lda(class ~ alcohol + malic + ash + alcil + mag + totphen +
   flav + nonflav + proanth + col + hue + dil + proline, data = wine)
> wine.lda
Call:
da.formula(class ~ alcohol + malic + ash + alcil + mag + totphen +
   flav + nonflav + proanth + col + hue + dil + proline, data = wine)

Prior probabilities of groups:
  1  2  3
0.3314607 0.3988764 0.2696629

Group means:
alcohol  malic  ash  alcil  mag  totphen  flav  nonflav  proanth  col  hue  dil  proline
1  13.74475  2.010678  2.455593  17.03729  106.3390  2.840169  2.9823729  0.290000       
2  12.27873  1.932676  2.244789  20.23803   94.5493  2.258873  2.0808451  0.363662       
3  13.15375  3.333750  2.437083  21.41667  100.3125  1.678750  0.7814583  0.447500       

Coefficients of linear discriminants:

   LD1   LD2
alcohol  -0.403399781  0.8717930699
malic     0.165254596   0.3053797325
ash      -0.369075256   2.3458497486
alcil     0.154797889  -0.1463807654
mag      -0.002163496  -0.0004627565
totphen    0.618052068  -0.0322128171
flav     -1.661191235  -0.4919980543
nonflav  -1.495818440  -1.6309537953
proanth   0.134092628  -0.3070875776
col       0.355055710   0.2532306865
hue      -0.818036073  -1.5156344987
dil      -1.157559376   0.0511839665
proline  -0.002691206   0.0028529846
```

Proportion of trace:

```r
   LD1  LD2
0.6875 0.3125
```
Logistic regression

- data \((x_i, g_i)\), \(g_i = 1, 2\); equivalently \((x_i, y_i)\), \(y_i = 0, 1\)
- natural starting point is Bernoulli distribution for \(y_i\): \(y_i = 1\) with probability \(p_i = p_i(\beta)\)
- likelihood function

\[
L(\beta) = \prod_{i=1}^{N} p_i^{y_i}(1 - p_i)^{1-y_i}
\]

- log-likelihood

\[
\ell(\beta) = \sum_{i=1}^{N} y_i \log p_i(\beta) + (1 - y_i) \log \{1 - p_i(\beta)\}
\]

- A common choice for \(p_i(\beta)\) is the logistic function

\[
p_i(\beta) = \frac{\exp(\beta^T x_i)}{1 + \exp(\beta^T x_i)}
\]

\(x_i\) is a column vector: the \(i\)th row of \(X\) is \(x_i^T\)
Likelihood methods

- **log-likelihood**

\[
\ell(\beta) = \sum_{i=1}^{N} \left\{ y_i \beta^T x_i - \log(1 + e^{\beta^T x_i}) \right\}
\]

(constant term included in the set of inputs; \(\beta \) has length \(p + 1 \))

- **Maximum likelihood estimate of \(\beta \):**

\[
\left. \frac{\partial \ell(\beta)}{\partial \beta} \right|_{\beta = \hat{\beta}} = 0 \iff \sum_{i=1}^{N} y_i x_{ij} = \sum_{i=1}^{N} p_i(\hat{\beta}) x_{ij}, \quad j = 1, \ldots, p
\]

- **Fisher information**

\[
- \left. \frac{\partial^2 \ell(\beta)}{\partial \beta \partial \beta^T} \right|_{\beta = \hat{\beta}} = \sum_{i=1}^{N} x_i x_i^T \hat{p}_i(1 - \hat{p}_i)
\]

- **Fitting:** use an iteratively reweighted least squares algorithm; equivalent to Newton-Raphson; p.121

- **Asymptotics:**

\[
\hat{\beta} \xrightarrow{d} N(\beta, \{-\ell''(\hat{\beta})\}^{-1})
\]
Inference

- Component: \(\hat{\beta}_j \sim N(\beta_j, \hat{\sigma}_j) \) \(\hat{\sigma}_j^2 = \left\{ -\ell''(\hat{\beta}) \right\}^{-1} \); gives a t-test (z-test) for each component

- \(2\{\ell(\hat{\beta}) - \ell(\beta_j, \tilde{\beta}_{-j})\} \sim \chi^2_{\text{dim}\beta_j} \); in particular for each component get a \(\chi^2_1 \), or equivalently

- \(\text{sign}(\hat{\beta}_j - \beta_j) \sqrt{2\{\ell(\hat{\beta}) - \ell(\beta_j, \tilde{\beta}_{-j})\}} \sim N(0, 1) \)

- this gives two (asymptotically equivalent) ways to test if an input is statistically significant

- To compare 2 models \(M_0 \subset M \) can use this twice to get \(2\{\ell_M(\hat{\beta}) - \ell_{M_0}(\tilde{\beta}_q)\} \sim \chi^2_{p-q} \) which provides a test of the adequacy of \(M_0 \)

- LHS is the difference in (residual) deviances; analogous to SS in regression
Heart Data

> library(ElemStatLearn)
> data(SAheart)
> hr = SA.heart
> pairs(hr[1:9],pch=21,bg=c("red","green")[codes(factor(hr$chd))])
> hr(glm = glm(chd ~ ., data = hr, family=binomial)
> summary(hr glm)

Call:
glm(formula = chd ~ ., family = binomial, data = hr)

Deviance Residuals:
Min 1Q Median 3Q Max
-1.7781 -0.8213 -0.4387 0.8889 2.5435

Coefficients:
 Estimate Std. Error z value Pr(>|z|)
(Intercept) -6.1507209 1.3082600 -4.701 2.58e-06 ***
sbp 0.0065040 0.0057304 1.135 0.256374
sbp 0.0793764 0.0266028 2.984 0.002847 **
tobacco 0.1739239 0.0596617 2.915 0.003555 **
ldl 0.0185866 0.0292894 0.635 0.525700
famhistPresent 0.9253704 0.2278940 4.061 4.90e-05 ***
lsd 0.0395950 0.0123202 3.214 0.001310 **
obesity -0.0629099 0.0442477 -1.422 0.155095
alcohol 0.0452253 0.0121298 3.728 0.000193 ***

Signif. codes: *** 0.001 ** 0.01 * 0.05 . 0.1 1

(Dispersion parameter for binomial family taken to be 1)

Null deviance: 596.11 on 461 degrees of freedom
Residual deviance: 472.14 on 452 degrees of freedom
AIC: 492.14
extensions

- \(E(y_i) = p_i \), \(\text{var}(y_i) = p_i(1 - p_i) \) under Bernoulli
- Often the model is generalized to allow \(\text{var}(y_i) = \phi p_i(1 - p_i) \); called over-dispersion
- Most software provides an estimate of \(\phi \) based on residuals.

- if \(y_i \sim \text{Binom}(n_i, p_i) \) same model applies
- \(E(y_i) = n_i p_i \) and \(\text{var}(y_i) = n_i p_i(1 - p_i) \) under Binomial

- Model selection uses AIC: \(-2\ell(\hat{\beta}) + 2p\)
- In R, use \texttt{glm} to fit logistic regression, \texttt{step} for model selection
- \texttt{glm} can be used for all exponential family models: uses iteratively reweighted least squares See also §4.4.3
> step(hr.glm)
Start: AIC=492.14
chd ~ sbp + tobacco + ldl + adiposity + famhist + typea + obesity + alcohol + age

<table>
<thead>
<tr>
<th></th>
<th>Df</th>
<th>Deviance</th>
<th>AIC</th>
</tr>
</thead>
<tbody>
<tr>
<td>- alcohol</td>
<td>1</td>
<td>472.14</td>
<td>490.14</td>
</tr>
<tr>
<td>- adiposity</td>
<td>1</td>
<td>472.55</td>
<td>490.55</td>
</tr>
<tr>
<td>- sbp</td>
<td>1</td>
<td>473.44</td>
<td>491.44</td>
</tr>
<tr>
<td><none></td>
<td></td>
<td>472.14</td>
<td>492.14</td>
</tr>
<tr>
<td>- obesity</td>
<td>1</td>
<td>474.23</td>
<td>492.23</td>
</tr>
<tr>
<td>- ldl</td>
<td>1</td>
<td>481.07</td>
<td>499.07</td>
</tr>
<tr>
<td>- tobacco</td>
<td>1</td>
<td>481.67</td>
<td>499.67</td>
</tr>
<tr>
<td>- typea</td>
<td>1</td>
<td>483.05</td>
<td>501.05</td>
</tr>
<tr>
<td>- age</td>
<td>1</td>
<td>486.53</td>
<td>504.53</td>
</tr>
<tr>
<td>- famhist</td>
<td>1</td>
<td>488.89</td>
<td>506.89</td>
</tr>
</tbody>
</table>

Step: AIC=490.14
chd ~ sbp + tobacco + ldl + adiposity + famhist + typea + obesity + age

<table>
<thead>
<tr>
<th></th>
<th>Df</th>
<th>Deviance</th>
<th>AIC</th>
</tr>
</thead>
<tbody>
<tr>
<td>- adiposity</td>
<td>1</td>
<td>472.55</td>
<td>488.55</td>
</tr>
<tr>
<td>- sbp</td>
<td>1</td>
<td>473.47</td>
<td>489.47</td>
</tr>
<tr>
<td><none></td>
<td></td>
<td>472.14</td>
<td>490.14</td>
</tr>
<tr>
<td>- obesity</td>
<td>1</td>
<td>474.24</td>
<td>490.24</td>
</tr>
<tr>
<td>- ldl</td>
<td>1</td>
<td>481.15</td>
<td>497.15</td>
</tr>
<tr>
<td>- tobacco</td>
<td>1</td>
<td>482.06</td>
<td>498.06</td>
</tr>
<tr>
<td>- typea</td>
<td>1</td>
<td>483.06</td>
<td>499.06</td>
</tr>
<tr>
<td>- age</td>
<td>1</td>
<td>486.64</td>
<td>502.64</td>
</tr>
<tr>
<td>- famhist</td>
<td>1</td>
<td>488.99</td>
<td>504.99</td>
</tr>
</tbody>
</table>
Step: \(\text{AIC}=488.55 \)

\(\text{chd} \sim \text{sbp} + \text{tobacco} + \text{ldl} + \text{famhist} + \text{typea} + \text{obesity} + \text{age} \)

<table>
<thead>
<tr>
<th>Df</th>
<th>Deviance</th>
<th>AIC</th>
</tr>
</thead>
<tbody>
<tr>
<td>-</td>
<td>sbp 1</td>
<td>473.98 487.98</td>
</tr>
<tr>
<td><none></td>
<td></td>
<td>472.55 488.55</td>
</tr>
<tr>
<td>-</td>
<td>obesity 1</td>
<td>474.65 488.65</td>
</tr>
<tr>
<td>-</td>
<td>tobacco 1</td>
<td>482.54 496.54</td>
</tr>
<tr>
<td>-</td>
<td>ldl 1</td>
<td>482.95 496.95</td>
</tr>
<tr>
<td>-</td>
<td>typea 1</td>
<td>483.19 497.19</td>
</tr>
<tr>
<td>-</td>
<td>famhist 1</td>
<td>489.38 503.38</td>
</tr>
<tr>
<td>-</td>
<td>age 1</td>
<td>495.48 509.48</td>
</tr>
</tbody>
</table>

Step: \(\text{AIC}=487.98 \)

\(\text{chd} \sim \text{tobacco} + \text{ldl} + \text{famhist} + \text{typea} + \text{obesity} + \text{age} \)

<table>
<thead>
<tr>
<th>Df</th>
<th>Deviance</th>
<th>AIC</th>
</tr>
</thead>
<tbody>
<tr>
<td>-</td>
<td>obesity 1</td>
<td>475.69 487.69</td>
</tr>
<tr>
<td><none></td>
<td></td>
<td>473.98 487.98</td>
</tr>
<tr>
<td>-</td>
<td>tobacco 1</td>
<td>484.18 496.18</td>
</tr>
<tr>
<td>-</td>
<td>typea 1</td>
<td>484.30 496.30</td>
</tr>
<tr>
<td>-</td>
<td>ldl 1</td>
<td>484.53 496.53</td>
</tr>
<tr>
<td>-</td>
<td>famhist 1</td>
<td>490.58 502.58</td>
</tr>
<tr>
<td>-</td>
<td>age 1</td>
<td>502.11 514.11</td>
</tr>
</tbody>
</table>
Step: AIC=487.69
chd ~ tobacco + ldl + famhist + typea + age

Df Deviance AIC
<none> 475.69 487.69
- ldl 1 484.71 494.71
- typea 1 485.44 495.44
- tobacco 1 486.03 496.03
- famhist 1 492.09 502.09
- age 1 502.38 512.38

Call: glm(formula = chd ~ tobacco + ldl + famhist + typea + age, family = binomial, data = hr)

Coefficients:

(Intercept) tobacco ldl famhist
 -6.44644 0.0803838 0.161992 0.90818

 typea age
 0.03712 0.05046

Degrees of Freedom: 461 Total (i.e. Null); 456 Residual
Null Deviance: 596.1
Residual Deviance: 475.7 AIC: 487.7
Interpretation of coefficients

- e.g. tobacco (measured in kg): coeff = 0.081

\[
\text{logit } \{p_i(\beta)\} = \beta^T x_i
\]

- increase in one unit of \(x_{ij}\), say, leads to increase in \(\text{logit } p_i\) of 0.081

- increase in \(p_i/(1 - p_i)\) of \(\exp(0.081) = 1.084\).

- estimated s.e. 0.026, \(\text{logit } p_i \pm 0.026\), \(\exp(0.081 + 2 \times 0.026), \exp(0.081 - 2 \times 0.026)\) is (1.03, 1.14).

- similarly for age: \(\hat{\beta}_j = 0.044\); increased odds 1.045 for 1 year increase

- prediction of new values to class 1 or 0 according as \(\hat{p} > (<)0.5\)
L_1 regularization

- eqn (4.31)

$$
\max_{\beta_0, \beta} \left\{ \sum_{i=1}^{N} \left[y_i (\beta_0 + \beta^T x_i) - \log(1 + e^{\beta_0 + \beta^T x_i}) \right] - \lambda \sum_{j=1}^{p} |\beta_j| \right\}
$$

- note that intercept has been separated out
- Figure 4.13
- interpretation?
- recently developed software: *glmpath* and *glmnet*
Notes

- how to choose between logistic regression and discriminant analysis?
- classification error on the training data is overly optimistic
- logistic regression and generalizations to K classes doesn’t assume any distribution for the inputs
- discriminant analysis more efficient if the assumed distribution is correct
- warning: in §4.3 x and x_i are $p \times 1$ vectors, and we estimate β_0 and β, the latter a $p \times 1$ vector
- in §4.4 they are $(p + 1) \times 1$ with first element equal to 1 and β is $(p + 1) \times 1$.
Misclassification

```r
> hr.glm.class = predict(hr.glm)>0
> table(hr.glm.class,hr$chd)

hr.glm.class  0  1  
   FALSE 256 77  
      TRUE 46  83

> hr.glm2 = glm(chd ~ tobacco + ldl + famhist + age, data = hr, family=binomial)
> table(predict(hr.glm2)>0, hr$chd)

0 1  
   FALSE 254 76  
      TRUE 48  84

> hr.lda = lda(chd ~ ., data = hr)
> table(predict(hr.lda)$class,hr$chd)

0 1  
0 258 73  
1  44 87
```