
STA 414S/2104S: Some notes for HW 1

1. the linear model

(a)
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⇒ β̂ = (XTX)−1XTy

σ̂2 =
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n
(y −Xβ̂)T (y −Xβ̂)

Note that the maximum likelihood estimator of σ2 does not adjust for estimation
of β, and is not the usual unbiased estimator, s2 = (y −Xβ)T (y −Xβ)/(n− p).

(b) Assume that the first column of X is a column of 1s. Then, under H0, β̂(0) =
(1T1)−11Ty = ȳ and σ̂2

(0) = (1/n)
∑

(yi − ȳ)2. Then
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.
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(c)

f(y | β)f(β) =
1

(
√

2π)n+1σnτ
exp− 1

2σ2
(y −Xβ)T (y −Xβ) exp− 1

2τ
βTβ

The exponent can be expanded to

− 1

2τ
βTβ − 1

2σ2
(yTy + βTXTXβ − 2βTXTy)

= − 1

2σ2
yTy − 1

2σ2
βT (

σ2

τ 2
I +XTX)β +

2βTXTy

2σ2

= − 1

2σ2
yTy − 1

2σ2
βT (λI +XTX)β +

2βT (λI +XTX)−1(λI +XTX)XTy

2σ2

= − 1

2σ2
yTy − 1

2σ2
{β − (XTX + λI)−1XTy}T (XTX + λI){β − (XTX + λI)−1XTy}

The first term will cancel with the denominator, as it doesn’t depend on β. The
second term is the exponent for a normal density with

mean = (XTX + λI)−1XTy

var = (XTX + λI)−1σ2.

A more careful derivation would make sure to get the expression in front of exp
correct, which follows from detailed calculation, or from arguing that the resulting
conditional density for β given y must integrate to 1.

(d) Actually, this was incorrectly stated, it’s the mode/median of the posterior density
that leads to the lasso estimator.

2. Thanks to Li Li

(a) Let (1, X) denote the N × (p + 1) design matrix, X̃ denote the centered input
matrix.
As we know, (1, X) = QR = ( 1√

N
1, Q2)R = (1, Q2R̃).

Therefore X = Q2R̃.
X is included in the subspace spanned by Q2.
Since X̃ = (x1 − x̄p, ..., xp − x̄p), X̃ is also in the subspace spanned by Q2.
Moreover, we can find a p× p matrix P , such that X̃ = Q2P .
On the other hand, the SVD of X̃ has the form X̃ = UDV T .
Therefore X̃ = Q2P = UDV T .
Q2PV = UDV TV = UD, since V is a p× p orthogonal matrix.
We assume that X̃ is nonsingular, so all the diagonal elements of D are greater
than 0.
Then we have Q2PV D

−1 = U . That indicates that U is in the space spanned by
Q2.
Since U is a N × p orthogonal matrix, rank(U) = rank(Q2).
Therefore Q2 and U span the same subspace.
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(b) When are they the same, up to the sign flips?
Q2R̃− (x̄11, ..., x̄p1) = UDV T .
if Q2 = ±U , U(R̃∓DV T ) = (x̄11, ..., x̄p1).
However, by the definition of U , it doesn’t depend on (x̄11, ..., x̄p1).
Therefore, we get two possibilities:
(1) (x̄11, ..., x̄p1) degenerates to zero.
(2) R̃ = ±DV T , i.e. rij = divji (see (*))
It is straightforward that V is a lower triangular matrix.
However, it is also an orthogonal matrix.
Therefore, it must be an diagonal matrix.
Moreover, it is an identity matrix, i.e. V = ±I. Since XTX = V D2V T , this
implies that XTX is diagonal, i.e. the columns of X are orthogonal.

Expanding on (2):

±UR̃ = Q2R̃ = UDV T + (x̄11, . . . , x̄p1)

⇒ U(R̃∓DV T ) = (x̄11, . . . , x̄p1)

⇒ UTU(R̃∓DV T ) = UT (x̄11, . . . , x̄p1) (∗),

The first term is 0 because (x̄11, . . . , x̄p1) is not in the space spanned by U , so we
must have

R̃∓DV T = 0.

3. (a) The code to do this was given in the hints. Note that set.seed(123) or something
similar will ensure that you can reproduce the results from sample each time.
Otherwise you will get different training samples each time you run the command
sample(1599, 1000).

(b) Fairly standard, as is

(c) .

(d) Most people found test error to be around 0.43, and that best subset regression
or sometimes ridge regression worked nearly as well as anything.

(e) I was worried that with a smallish test set, and most y’s in the (5, 6) range, that
this would inflate test errors even more than might be expected, but this didn’t
materialize.

4. Quite straightforward using 1(a).

5. (a) Thanks to Pak Ho: the approximate 95% confidence interval for f̂(x0) is

{(β̂0 + β̂1x0 + β̂2x
2
0 + β̂3x

3
0)− 1.96σ̂0,

(β̂0 + β̂1x0 + β̂2x
2
0 + β̂3x

3
0) + 1.96σ̂0}

where

σ̂2
0 = ( 1 x0 x20 x30 )(XTX)−1


1
x0
x20
x30

 .
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These are called pointwise confidence bands, when plotted as a function of x0,
because the guarantee of 95% coverage is only valid at each single point, and not
for the whole function.

(b) The confidence set Cβ = {β | (β̂ − β)TXTX(β̂ − β) ≤ σ̂2χ
2(0.95)
4 } gives a set of

β ∈ R4 with approximately 95% confidence. Thus for all 4-vectors a, the set
of aTβ from β ∈ Cβ is a confidence interval for aTβ. Since this is true for the
choice a = (1, x0, x

2
0, x

3
0) for any choice of x0, the resulting confidence band about

f̂(x0) has simultaneous confidence 0.95. The only way I can think of to compute
this confidence band is to simulate β’s from the normal distribution with mean
β̂ and covariance σ̂2(XTX)−1, and draw the fitted function with these simulated
βs. Most people did this with light gray lines, and the band that is eventually
filled in is the simultaneous confidence band for f(x0). This band is wider than
the one for (a), because it’s guarantee of 95% is for the function, instead of for
each function value f(x0).

The “approximate” 0.95 in (a) and (b) is because σ2 is estimated, so under nor-
mality the exact distribution is t or F , not normal or χ2.
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