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A few points on logistic regression

» Logistic regression: Pr(G = k | X) linear on the logit scale
» Linear discriminant analysis:

Pr(G=k| X)x Pr(X| G=k)Pr(G = k)
» Theory: LDA more efficient if X really is normal

» Practice: LR usually viewed as more robust, but HTF claim
prediction errors are very similar

» See: last slide of Jan 26 for calculation of prediction errors
on training data

» Data: LR is more complicated with K > 2; use multinom
in the MASS library

» Lasso version of logistic regression described in §4.4.4
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... logistic regression

» Deviance in a generalized linear model (such as LR), is
—2log L(3) + constant

» Comparing deviances from two model fits is a log-likelihood
ratio test that the corresponding parameters are 0

N

» AIC compares instead —2log L(3) + 2p

» for Binomial data, but not for binary data, residual deviance
provides a test of goodness of fit of the binomial model
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Flexible modelling using basis expansions
(Chapter 5)

» Linear regression: y = X3 + e, e~ (0,02)

» 'Smooth’ regression: y = f(X) + ¢

» f(X) = E(Y | X) to be specified

» Flexible linear modelling

f(X) = Z%ﬂﬁmhm(x)

» This is called a linear basis expansion, and h, is the mth
basis function
» For example if X is one-dimensional:

f(X) = Bo+ 1 X + BoX?, or
f(X) = Bo + 51 sin(X) + B2 cos(X), etc.

» Simple linear regression has hy(X) = 1, ha(X) = X.
Several other examples on p.140
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» Polynomial fits: hj(x) = x/,j=0,...,m

» Fit using linear regression with design matrix X, where
Xij = hi(xi)

» Justification is that any 'smooth’ function can be
approximated by a polynomial expansion (Taylor series)

» Can be difficult to fit numerically, as correlation between
columns can be large

» May be useful locally, but less likely to work over the range
of X

» |dea: fit polynomials locally in X

» Need to be careful not to overfit, since we are using only a
fraction of the data



Piecewise Constant Piecewise Linear
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The top left panel shows a piecewise constant function fit to some
artificial data. The broken vertical lines indicate the positions of the two knots
&1 and E2. The blue curve represents the true function, from which the data were
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Piecewise polynomials

» piecewise constant basis functions
hi(X) = (X < &), ho(X)=1(& < X < &),
hs(x) = I(&2 < X)

» fitting by local averaging

» piecewise linear basis functions , with constraints
hi(X)=1, h(X)=X
ha(X) = (X = &1)+, ha(X) = (X = &)+

» windows defined by knots &1, &, . ..
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... cubic polynomials

» basis functions
h(X) = 1,ha(X) = X, hy(X) = X2, hy(X) = X°

» continuity hs(X) = (X — &), hs(X) = (X —&)2

» continuous function, continuous first and second
derivatives Figure 5.2
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» need to choose number of knots K and placement of knots
&k

» construct features matrix using truncated power basis set

TR
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Cubic splines

» truncated power basis of degree 3

» use constructed matrix as set of predictors

> x =1
> bs(x)
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:10;

cbind (1, x,

## B-spline basis

1

.00000000
.26337449
.40329218
.44444444
.41152263

O O O o o

2

.00000000
.03292181
.11522634
. 22222222
.32921811

x"2,

O O O O o

x"3);

3

.000000000
.001371742
.010973937
.037037037
.087791495

poly (x”3)
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Bone density, Figure 5.6

» data (bone) inElemStatLearn
» 485 observations; 226 male, 259, female
» covariate x = age; response y = bone density
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spnbmd

... bone density

data(bone) # bs(x) with no other arguments Jjust gives a single cubic polynomial
bone[1l:4,] # bs(x, df=12) gives a proper cubic spline basis, with 9 knots
idnum age gender spnbmd

1 11.70 male 0.018080670
112.70 male 0.060109290
1 13.75 male 0.005857545
2 13.25 male 0.010263930

bone.bs.m = with (subset (bone,gender=="male"), lm(spnbmd ~ bs(age)))

bone.bs.f = with (subset (bone,gender=="female"), lm(spnbmd ~ bs(age)))

plot (spnbmd ~ age, data = bone, col =

ifelse (gender=="male", "blue", "red2"))

points (bone$age [bone$gender=="male"],bone.bs.m$fitted.values, col="blue", pch="+")
points (bone$age [bone$gender: "female"],bone.bs.f$fitted.values, col="red", pch="+")
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spnbmd

... useful code

bone.bs.f = with (subset (bone, gender=="female"), lm(spnbmd ~ bs(age,df=12)))
bone.bs.m = with (subset (bone, gende "male"),lm(spnbmd ~ bs(age,df=12)))
ordf = order (bone$age[bone$gender=="female"])

ordm = order (bone$age[bone$gender=="male"])

plot (spnbmd ~ age, data = bone, col =

ifelse (gender=="male", "blue", "red2"))

lines (maleage[ordm],bone.bs.m$fitted.values[ordm],col="blue")

lines (femage[ordf],bone.bs.f$fitted.values[ordf],col="red")
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Heart data

> bs.sbp <- bs (hr$sbp,df=4) # the B-spline basis
# with 4 degrees of freedom
> dim(bs.sbp)
[1] 462 4 # this is the basis matrix
# for the variable "sbp"
> bs.sbpll:4,]

1 2 3 4
[1,] 0.16968090 0.4511590 0.34950621 0.029653925
[2,] 0.35240669 0.4758851 0.17002102 0.001687183
[3,] 0.71090498 0.1642420 0.01087580 0.000000000
[4,] 0.09617733 0.3769808 0.44812470 0.078717201

Regression splines (p.144) are linear fits to these basis
functions
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v

B-splines

The B-spline basis equivalent to the truncated power basis

» Appendix to Ch. 5 describes the construction

» INR library (splines) :

bs (x, df=NULL, knots=NULL, degree=3,
intercept=FALSE, Boundary.knots=range (x))
Must specify either df or knots. For the B-spline basis, #
knots = df - degree and degree is usually 3

Natural cubic splines are linear at the end of the range
(§5.2.1)

ns (x, df=NULL, knots=NULL, degree=3,
intercept=FALSE, Boundary.knots=range (x))
For natural cubic splines, # knots = df - 1
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... heart data

> heart.ns = glm (chd ~ ns(sbp,4)+ ns(tobacco,4) + ns(ldl,4) + famhist + ns(obesity, 4) +
+ ns(age,4), family=binomial)
> summary (heart.ns)

Call:
glm(formula = chd ~ ns(sbp, 4) + ns(tobacco, 4) + ns(ldl, 4) +
famhist + ns(obesity, 4) + ns(age, 4), family = binomial)

Deviance Residuals:
Min 10 Median 30 Max
-1.7216 -0.8322 -0.3777 0.8870 2.9694

Coefficients:

Estimate Std. Error z value Pr(>|z]|)
(Intercept) -2.265534 2.367227 -0.957 0.338547
ns (sbp, 4)1 -1.474172 0.843870 -1.747 0.080652
ns (sbp, 4)2 -1.351182 0.759548 -1.779 0.075251
ns (sbp, 4)3 -3.729348 2.021064 -1.845 0.065003
ns (sbp, 4)4 1.381701 0.995268 1.388 0.165055
ns (tobacco, 4)1 0.654109 0.453248 1.443 0.148975
ns (tobacco, 4)2 0.392582 0.892628 0.440 0.660079
ns (tobacco, 4)3 3.335170 1.179656 2.827 0.004695 «x
ns (tobacco, 4)4 3.845611 2.386584 1.611 0.107104
ns(1ldl, 4)1 1.921215 1.311052 1.465 0.142812
ns(ldl, 4)2 1.783272 1.014883 1.757 0.078897
ns(ldl, 4)3 4.623680 2.972938 1.555 0.119885
ns(1dl, 4)4 3.354692 1.447217 2.318 0.020448 «
famhistPresent 1.078507 0.237685 4.538 5.69e-06 *xx
ns (obesity, 4)1 -3.089393 1.707207 -1.810 0.070355 .
ns (obesity, 4)2 -2.385045 1.200450 -1.987 0.046945 «
ns (obesity, 4)3 -4.998882 3.796264 -1.317 0.187909
ns (obesity, 4)4 0.009109 1.751127 0.005 0.995850 15/30
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The individual coefficients don’t mean anything, we need to
evaluate groups of coefficients. We can do this with successive
likelihood ratio tests, by hand, e.g.

> summary (heart.ns)

. stuff omitted
ns (age, 4)3 7.624692 2.560613 2.978 0.002904 «x
ns (age, 4)4 1.535277 0.591531 2.595 0.009447 xx

Signif. codes: 0 Ox#x0 0.001 Ox+0 0.01 0x0 0.05 0.0 0.1 6 0 1
(Dispersion parameter for binomial family taken to be 1)

Null deviance: 596.11 on 461 degrees of freedom
Residual deviance: 458.09 on 440 degrees of freedom

AIC: 502.09

Number of Fisher Scoring iterations: 6
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> update (heart.ns, B - ns (sbp,4))
Call: glm(formula = chd ~ ns(tobacco, 4) + ns(ldl, 4) + famhist + ns(obesity, 4) + ns(a
Coefficients:
(Intercept) ns (tobacco, 4)1 ns(tobacco, 4)2 ns(tobacco, 4)3
-3.91758 0.61696 0.46188 3.51363
ns (tobacco, 4)4 ns(1dl, 4)1 ns(1dl, 4)2 ns (1dl, 4)3
3.82464 1.70945 1.70659 4.19515
ns (1dl, 4)4 famhistPresent s (obesity, 4)1 ns(obesity, 4)2
2.90793 0.99053 -2.93143 -2.32793
s (obesity, 4)3 s (obesity, 4)4 ns (age, 4)1 ns (age, 4)2
-4.87074 -0.01103 2.52772 3.12963
s (age, 4)3 ns (age, 4)4
7.34899 1.53433

Degrees of Freedom: 461 Total (i.e. Null); 444 Residual
Null Deviance: 596.1

Residual Deviance: 467.2 AIC: 503.2

> 467.2 - 458.1

[11 9.1
> pchisq(9.1,df=4)
[1] 0.941352

> 1l-.Last.value
[1] 0.05864798 # compare Table 5.1
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The function step does all this for you:

> step (heart.ns)

Start: AIC=502.09

chd ~ ns(sbp, 4)
4) + ns(age,

<none>

- ns(obesity, 4)
- ns(sbp, 4)

- ns(tobacco, 4)
- ns(1dl, 4)

- ns(age, 4)

- famhist

4

> anova (heart.ns)
Analysis of Deviance Table

Model: binomial,

Response: chd

link:

)

N NS

lo

Terms added sequentially

NULL
ns (sbp, 4)
ns (tobacco, 4)
ns (1dl, 4)
famhist
s (obesity, 4)
s (age, 4)

N

Df Deviance
458.
466.
467.
470.
472.
481.
479.

git

(first to last)

+ ns(tobacco, 4

502.
503.

508.
517.
521.

) + ns(1dl, 4)

461
457
453
449
448
444
440

+ famhist + ns(obesity,

Df Deviance Resid. Df Resid. Dev
596.
576.
529.
510.
485.
481.
458.
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Notes
The degrees of freedom fitted are the number of columns
in the basis matrix (+ 1 for the intercept).

» This can also be computed as the trace of the hat matrix,
which can be extracted from 1m.

v

» This works as well for g1m, because generalized linear
models are fitted using iteratively reweighted least squares

» §5.2.3 and §5.3 later
> fitted function 7(X;) = h;(X;)7d; Figure 5.4
» standard errors?
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v

Smoothing splines (55.4)

ridge regression applied to natural cubic splines
lots and lots of knots; lead to lots and lots of parameters
regularize the solution through a penalty term

New notation: f(X) = £}, 6;N;(X) (5.10)
knots at each distinct x value

min(y — NO)T(y — NO) +20TQn0  (5.11)
Nj = Ni(x), Qi = | N/ (t)Ni(t)alt
note use of N for set of natural splines

solution A
0=(N"N+XQy) 'NTy
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Smoothing splines (55.4)

» solution A
6= (NTN+XQn) "Ny

» This solves the variational problem

N b
argmin, >~{y; ~ f00)12 + X [ {7"(8))2
i=1 a

» the solution is a natural cubic spline with knots at each x;
» fitted curve

Figure 5.6
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... Smoothing splines

» How many parameters have been fit?
» vector of fitted values at the training data

f=NINTN+ Q) 'NTy = Sy

» By analogy with ordinary regression, define the effective
degrees of freedom (EDF) as

trace S,

» smoother matrix: symmetric, positive definite
not a projection matrix

» See p. 153—155 for more details on properties of S,

» How to choose \?

» a) Decide on degrees of freedom to be used, e.g.
smooth.spline (x,y,df=6), note that increasing df
means less ’bias’ and more ’variance’.

» b) Automatic selection by cross-validation (Figure 5.9)
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... Smoothing splines

A smoothing spline version of logistic regression is outlined in
§5.6, but we’ll wait till we discuss generalized additive models.

An example from the R help file for smooth.spline:

> data (cars)

> attach (cars)

> plot (speed, dist, main = "data(cars) & smoothing splines™)
> cars.spl <- smooth.spline (speed, dist)

> (cars.spl)

Call:

smooth.spline(x = speed, y = dist)

Smoothing Parameter spar= 0.7801305 lambda= 0.1112206 (11 iterations)
Equivalent Degrees of Freedom (Df): 2.635278

Penalized Criterion: 4337.638

GCV: 244.1044

> lines(cars.spl, col = "blue")

> lines (smooth.spline (speed, dist, df=10), lty=2, col = "red")

> legend (5,120, c(paste ("default [C.V.] => df =", round(cars.spl$df,1)),
+ "s( x , df = 10)"), col = c("blue","red"), 1lty = 1:2,
+ bg='bisque’)

> detach()
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Multidimensional splines (55.7)

» so far we are considering just 1 X at a time

» for regression splines we replace each X by the new
columns of the basis matrix

» for smoothing splines we get a univariate
regression

» it is possible to construct smoothing splines for two or more
inputs simultaneously, but
computational difficulty increases rapidly

» these are called thin plate splines

» alternative:
E(Y | X~|,...,Xp) = f1(X1) —+ fg(Xg) + -+ fp(Xp)
additive models

» binary response:
logit{ E(Y | Xi,..., Xp)} = fi(X1) + fa(X2) + - - - + Fo(Xp)
generalized additive models
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