STA 3000S (January-April, 2011)
Homework 3. (due March 25)

(1) Suppose Yi,...,Y, are i.i.d. with density

1 Y
Jvi(y; 1) = ;exp(—ﬁ),y >0, 1> 0.

Show that the leading term in the saddlepoint approximation to the density
of Y = fi reproduces the gamma density, with I'(n) replaced by Stirling’s ap-
proximation to it. Deduce that the renormalized saddlepoint approximation
is exact.

(2) (Calibration) Suppose we have n observations ¥, . .., y, from a linear regres-
sion with known z’s:

Y, = a+ B, + oe;

where ey, ..., e, are i.i.d. N(0,1). We will take a further observation yy, say,
from the model
Yo=a+ By +oe

where e is also N(0,1) and independent of eq,...,e,. The parameter of
interest is v, the value of x corresponding to the new observation y,. Derive
the likelihood ratio statistic for testing 1, and show that it is a function of a
suitably defined t-statistic.

(3) (Severini, Ch.4). Let Yi,...,Y, be independent and identically distributed
from a density f(y | #),0 € R, and let 7(6) be a probability density function
for 6. Define the estimator 6 by

iy) = [ om0 | y)de.

J (0] y)do
Using the Laplace approximation for integrals, show that § — 6 = O,(1/n),
where § = é(y) is the maximum likelihood estimator of 6.

(4) (Wasserman, Ch.11; Berger & Wolpert, 1984). Let X;, X5 be independent
Bernoulli random variables with Pr(X; = 1) = Pr(X; = —1) = 1/2, and

define Y; = X; + 0, —00 < 6 < oo, and suppose Y; and Y, are observed.
(a) Show that

o -1 ifvi=Y,
L {MM+Y)/2) it Yy # Y,

is a confidence set for 6 with confidence 0.75. Suppose we observe y; = 15
and y, = 17. What interpretation should we give to the statement that

C' is a 0.75-confidence set, since we are certain # = 167
1



(b) Suppose 6 is an integer, and let w(6) be a probability mass function that
is positive for every #. Compute the posterior distribution for # when
y1 = 15 and y, = 17, and contrast the inference statement with the
confidence statement.

(5) (A Neyman-Scott problem). A class of problems where maximum likelihood
estimators are not consistent are those in which the number of nuisance pa-
rameters increases with the sample size. These are often called Neyman-
Scott problems.! For example, if Y;;,7 = 1,...,m;i = 1,...,n follow a
N (pi, 0?) distribution, the maximum likelihood estimator of o2 is inconsis-
tent as n — oo; in particular if m; = 2, then 6% — 02/2; see CH Example
9.24.

(a) Suppose that Y;; and Y}, are independent observations from exponen-
tial distributions with means ¥\; and ©/)\;, respectively, i = 1,..., n.
Show that the maximum likelihood estimator of v is not consistent, but
converges in probability to (7/4).

(b) A modification to the profile likelihood to account for estimation of nui-
sance parameters was proposed in Cox & Reid (1987, JRSS B):

. 1 A
€m<w) = €<¢7 )\1/)) - 5 IOg |j/\/\(w> /\¢)|7

where A = (\,...,\,) and A, is the constrained maximum likelihood
estimator of A\. This is to be computed using a parametrization of
the nuisance parameter that is orthogonal to the parameter of interest
¥, with respect to expected Fisher information. (The correction term
210g 7 (1, Ay)| is not invariant to reparameterizations,) Show for the
exponential case that \ is orthogonal to v, and that the value of ¥ that
solves £ (¢) = 0, 1, say, converges to (7/3)1.
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