
STA 3000S (January-April, 2011)

Homework 3. (due March 25)

(1) Suppose Y1, . . . , Yn are i.i.d. with density

fYi(y;µ) =
1

µ
exp(−y

µ
), y > 0, µ > 0.

Show that the leading term in the saddlepoint approximation to the density
of Ȳ = µ̂ reproduces the gamma density, with Γ(n) replaced by Stirling’s ap-
proximation to it. Deduce that the renormalized saddlepoint approximation
is exact.

(2) (Calibration) Suppose we have n observations y1, . . . , yn from a linear regres-
sion with known x’s:

Yi = α + βxi + σei

where e1, . . . , en are i.i.d. N(0, 1). We will take a further observation y0, say,
from the model

Y0 = α + βψ + σe0

where e0 is also N(0, 1) and independent of e1, . . . , en. The parameter of
interest is ψ, the value of x corresponding to the new observation y0. Derive
the likelihood ratio statistic for testing ψ, and show that it is a function of a
suitably defined t-statistic.

(3) (Severini, Ch.4). Let Y1, . . . , Yn be independent and identically distributed
from a density f(y | θ), θ ∈ R, and let π(θ) be a probability density function

for θ. Define the estimator θ̃ by

θ̃(y) =

∫
θπ(θ | y)dθ∫
π(θ | y)dθ

.

Using the Laplace approximation for integrals, show that θ̃ − θ̂ = Op(1/n),

where θ̂ = θ̂(y) is the maximum likelihood estimator of θ.
(4) (Wasserman, Ch.11; Berger & Wolpert, 1984). Let X1, X2 be independent

Bernoulli random variables with Pr(Xi = 1) = Pr(Xi = −1) = 1/2, and
define Yi = Xi + θ,−∞ < θ <∞, and suppose Y1 and Y2 are observed.
(a) Show that

C =

{
{Y1 − 1} if Y1 = Y2,
{(Y1 + Y2)/2} if Y1 6= Y2,

is a confidence set for θ with confidence 0.75. Suppose we observe y1 = 15
and y2 = 17. What interpretation should we give to the statement that
C is a 0.75-confidence set, since we are certain θ = 16?
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(b) Suppose θ is an integer, and let π(θ) be a probability mass function that
is positive for every θ. Compute the posterior distribution for θ when
y1 = 15 and y2 = 17, and contrast the inference statement with the
confidence statement.

(5) (A Neyman-Scott problem). A class of problems where maximum likelihood
estimators are not consistent are those in which the number of nuisance pa-
rameters increases with the sample size. These are often called Neyman-
Scott problems.1 For example, if Yij, j = 1, . . . ,mi; i = 1, . . . , n follow a
N(µi, σ

2) distribution, the maximum likelihood estimator of σ2 is inconsis-
tent as n → ∞; in particular if mi ≡ 2, then σ̂2 → σ2/2; see CH Example
9.24.
(a) Suppose that Yi1 and Yi2 are independent observations from exponen-

tial distributions with means ψλi and ψ/λi, respectively, i = 1, . . . , n.
Show that the maximum likelihood estimator of ψ is not consistent, but
converges in probability to (π/4)ψ.

(b) A modification to the profile likelihood to account for estimation of nui-
sance parameters was proposed in Cox & Reid (1987, JRSS B):

`m(ψ) = `(ψ, λ̂ψ)− 1

2
log |jλλ(ψ, λ̂ψ)|,

where λ = (λ1, . . . , λn) and λ̂ψ is the constrained maximum likelihood
estimator of λ. This is to be computed using a parametrization of
the nuisance parameter that is orthogonal to the parameter of interest
ψ, with respect to expected Fisher information. (The correction term
1
2

log |jλλ(ψ, λ̂ψ)| is not invariant to reparameterizations,) Show for the
exponential case that λ is orthogonal to ψ, and that the value of ψ that
solves `′m(ψ) = 0, ψ̂m, say, converges to (π/3)ψ.

1Neyman, J. and Scott, E.L. (1948). Consistent estimates based on partially consistent observa-
tions. Econometrica 16, 1–32.


