STA 3000F (Fall, 2013)

Notes on Homework 3

- 1. Profile log-likelihood. Suppose $Y = (Y_1, \ldots, Y_n)$ is a vector of independent, identically distributed random variables from the density $f(y; \psi, \lambda)$, where $\psi \in \mathbb{R}$ is the parameter of interest and $\lambda \in \mathbb{R}$ is a nuisance parameter. The profile log-likelihood is defined as $\ell_p(\psi) = \ell(\psi, \hat{\lambda}_{\psi})$, where $\hat{\lambda}_{\psi}$ is assumed to satisfy the score equation $\partial \ell(\psi, \lambda) / \partial \lambda = 0$.
 - (a) Show that the estimator of ψ that satisfies the profile score equation $\partial \ell_{\rm p}(\psi)/\partial \psi = 0$ is the same as the maximum likelihood estimator of ψ .
 - (b) Show that the profile information function $j_{\rm p}(\psi) = -\partial \ell_{\rm p}(\psi) / \partial \psi \partial \psi^T$ satisfies

$$\{j_{\mathbf{p}}(\psi)\}^{-1} = j^{\psi\psi}(\psi, \hat{\lambda}_{\psi}),$$

where $j^{\psi\psi}(\theta)$ is the (ψ, ψ) block of $j^{-1}(\theta)$, the inverse of the observed Fisher information from the log-likelihood function $\ell(\psi, \lambda)$.

(c) Use Taylor series expansion to show that

$$\hat{\lambda}_{\psi} - \hat{\lambda} = -j_{\lambda\lambda}^{-1}(\hat{\psi}, \hat{\lambda}) j_{\lambda\psi}(\hat{\psi}, \hat{\lambda})(\psi - \hat{\psi}) + O_p(n^{-1}).$$

(d) Expand $\ell_p(\psi)$ about $\hat{\psi}$ and use the results of (b) and (c) to show that

$$w_{\mathrm{p}}(\psi) = 2\{\ell_{\mathrm{p}}(\hat{\psi}) - \ell_{\mathrm{p}}(\psi)\} = (\psi - \hat{\psi})^2 j_{\mathrm{p}}(\hat{\psi}) + o_p(1),$$

and hence that the limiting distribution of $w_{\rm p}(\psi)$ is χ_1^2 , under the model.

I don't think any Taylor series are needed for (a) or (b), just the score equations. In (d) the expansion is about $\hat{\psi}$, not ψ as stated in an earlier version.

2. BNC, Exercise 3.6. Based on observations y_1, \ldots, y_n independently normally distributed with unknown mean and variance, obtain the profile log-likelihood for $\Pr(Y > a)$, where a is an arbitrary constant, and compare inference based on this with the exact answer from the non-central *t*-distribution.

The "compare inference ... distribution" is rather cryptic. The following will hopefully get you started.

First, if $Z_1 \sim N(\delta, 1)$, and independently $Z_2 \sim \chi_f^2$, then $Z_1/\sqrt{(Z_2/f)}$ follows a non-central *t*-distribution, with non-centrality parameter δ and degrees of freedom n-1. This density is available in R, using the ncp argument to pt, dt, qt, rt.

Let $\hat{\psi} = \Phi((\bar{y} - a)/s)$ be the maximum likelihood estimate of the parameter of interest $\psi = \Phi((\mu - a)/\sigma)$, where $\bar{y} = \Sigma y_i/n, s^2 = \Sigma (y_i - \bar{y})^2/(n-1)$.¹ Consider finding a value $\psi_L \in \mathbb{R}$, say, for which

$$\Pr(\bar{\psi} > \psi_L) = 1 - \alpha;$$

then ψ_L is a lower confidence bound for ψ . If we used the Wald statistic to compute this, then the solution is simply $\psi_L = \hat{\psi} - z_{\alpha} j_{\rm p} (\hat{\psi})^{1/2}$. For the solution based on the non-central t, we write

$$\begin{aligned} \Pr(\psi > \psi_L) &= \Pr\{\Phi((\bar{y} - a)/s) > \psi_L\} \\ &= \Pr\{(\bar{y} - a)/s > \Phi^{-1}(\psi_L)\} = \Pr\{(\bar{y} - a)/s > Z_L\}, \end{aligned}$$

say, and this last equation has an expression in terms of the non-central t distribution, with non-centrality parameter (I think) $\sqrt{n\Phi^{-1}(\psi)}$.

- 3. Adapted from BNC, Ex. 2.24.
 - (a) Suppose Y_1, \ldots, Y_n are independent, identically distributed as Poisson with mean θ . Show that the conditional distribution of Y_1, \ldots, Y_n , given $S = \Sigma Y_i$, is Multinomial (S, π) where $\pi = (1/n, \ldots, 1/n)$. This distribution can in principle be used to assess goodness of fit of the Poisson model, but if n is much bigger than 2 or 3 it will be difficult to determine which directions in the sample space to examine.

¹Strictly speaking, this is not the m.l.e., because the m.l.e. of σ^2 has divisor n-1. Let's ignore that complication for now.

(b) A summary statistic that could be used to see whether data are consistent with the moment properties of the Poisson is $T = \Sigma (Y_i - \bar{Y})^2 / \{(n-1)\bar{Y}\}$. Show that

$$E(T \mid S = s) = 1$$
, $var(T \mid S = s) = \frac{2(1 - 1/s)}{n - 1}$,

and thus that, conditionally on S = s, (n-1)sT/(s-1) has the same first two moments as a $\chi^2_{(n-1)s/(s-1)}$.

The question came up on Friday about a faster way to compute the variance than grinding it through the multinomial. I haven't tried this, but it might be a little simpler to use the result that the marginal distribution of any component of a multinomial is a binomial, and the joint distribution of any pair of multinomials is a trinomial.

- (c) Explore the extension of this to assessing goodness of fit for a Poisson regression, where $y_i \sim Po(\theta_i)$, and $\log \theta_i = \alpha + \beta x_i$.
- 4. SM, Problem 4.9.1. The logistic density is a location-scale family with density function

$$f(y;\mu,\sigma) = \frac{\exp\{(y-\mu)/\sigma\}}{\sigma[1+\exp\{(y-\mu)/\sigma\}]}, \quad -\infty < y < \infty, -\infty < \mu < \infty, \sigma > 0.$$

- (a) When $\sigma = 1$, show that the expected Fisher information about μ in y is 1/3.
- (b) If instead of observing y, we observe z = 1 if y > 0, otherwise z = 0. When σ = 1 show that the maximum expected Fisher information about μ in z is 1/4, achieved at μ = 0, so that the maximum relative efficiency is 3/4.
 Corrected from corling statement

Corrected from earlier statement.

5. Saddlepoint approximation. Suppose X_1, \ldots, X_n are independent and identically distributed on \mathbb{R} , with density function f(x) and moment generating function $M_X(t) = E\{\exp(tX)\}$ assumed to exist for t in an open interval about 0, and cumulant generating function $K_X(t) =$ $\log M_X(t)$. The saddlepoint approximation to the density of $\bar{X} =$ $n^{-1}\Sigma X_i$ is given by

$$f_{\bar{X}}(\bar{x}) \doteq \frac{1}{\sqrt{2\pi}} \left\{ \frac{n}{K_X''(\hat{\phi})} \right\}^{1/2} \exp\{nK_X(\hat{\phi}) - n\hat{\phi}\bar{x}\},$$

where $\hat{\phi} = \hat{\phi}(\bar{x})$ satisfies the equation $K'_X(\hat{\phi}) = \bar{x}$.

(a) Show that if Y_1, \ldots, Y_n are independent and identically distributed from a scalar parameter exponential family

$$f(y;\theta) = \exp\{\theta y - c(\theta) - d(y)\}\$$

that the saddlepoint approximation to the density of $\hat{\theta}$ is given by

$$f_{\hat{\Theta}}(\hat{\theta};\theta) \doteq \frac{1}{\sqrt{2\pi}} j^{1/2}(\hat{\theta}) \exp\{\ell(\theta) - \ell(\hat{\theta})\}.$$

(b) If y_1, \ldots, y_n are independent and identically distributed from a scalar parameter location family

$$f(y;\theta) = f_0(y-\theta),$$

then we showed in class that the exact density of the maximum likelihood estimator $\hat{\theta}$, given a, where $a_i = y_i - \hat{\theta}, i = 1, ..., n$, is

$$f_{\hat{\Theta}|A}(\hat{\theta} \mid a; \theta) = \frac{\exp\{\ell(\theta; y)\}}{\int \exp\{\ell(\theta; y)\} d\theta},$$

where in the right hand side we recall that $y_i = \hat{\theta} + a_i$. By expanding $\ell(\theta)$ in the denominator in a Taylor series about $\hat{\theta}$, show that the exact conditional density can be approximated by

$$f_{\hat{\Theta}|A}(\hat{\theta} \mid a; \theta) \doteq \frac{1}{\sqrt{2\pi}} j^{1/2}(\hat{\theta}) \exp\{\ell(\theta) - \ell(\hat{\theta})\}.$$

Both these approximations have similar versions for *p*-dimensional parametric models, with slight changes in notation. Both approximations have relative error $O(n^{-1})$, and when re-normalized to integrate to 1 have relative error $O(n^{-3/2})$.

You are not required to show these last two statements, but bonus marks if you do.