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: Significance tests

Summary. Firsta number of distinct situations are given in which significance
tests may be relevant. The nature of a simple significance test is set out and
its implications explored. The relation with interval estimation is emphasized.
While most of the discussion is from a frequentist perspective, relations with
Bayesian theory are outlined in the final section.

3.1 General remarks

So far, in our frequentist discussion we have summarized information about the
unknown ﬁm:.wEQQ. ¥ by finding procedures that would give in hypothetical
repeated applications upper (or lower) bounds for v a specified proportion of
times in a long run of repeated applications. This is close to but not the same
as specifying a probability distribution for y; it avoids having to treat ¢ as a
random variable, and moreover as one with a known distribution in the absence
of the data.

Suppose now there is specified a v&.no&&. value Yo of the parameter of
interest and we wish to assess the relation of the data to that value. Often
the hypothesis that ¥ = v is called the null hypothesis and oos<o=mo=m=<
denoted by Hy. It may, for example, assert that some.effect is zero or takes on
a value given by a theory or by previous studies, although v does not have to
be restricted in that way.

There are at least six different situations in which this may arise, namely the
following.

¢ There may be some Wwoﬁm; reason for thinking that the null hypothesis
may be exactly or approximately true or strong subject-matter interest may
focus on establishing that it is likely to be false.
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There may be no special reason for thinking that the null hypothesis is true
but it is important because it divides the parameter space into two (or more)
regions with very different interpretations. We are then interested in
whether the data establish reasonably clearly which region is correct,

for example it may establish the value of sgn(y — o).

o Testing may be a technical device used in the process of generating
confidence intervals.

« Consistency with 1 = ¢ may provide a reasoned justification for
simplifying an otherwise rather complicated model into one that is more
transparent and which, initially at least, may be a reasonable basis for
interpretation.

o Only the model when ¥ = ) is under consideration as a possible model
for interpreting the data and it has been embedded in a richer family just to
provide a qualitative basis for assessing departure from the model.

o Only a single model is defined, but there is a qualitative idea of the kinds of

departure that are of potential subject-matter interest.

The last two formulations are appropriate in particular for examining model
adequacy.

From time to time in the discussion it is useful to use the short-hand descrip- ~
tion of Hy as being possibly true. Now in statistical terms Ho refers to a
probability model and the very word ‘model” implies idealization. With a very
few possible exceptions it would be absurd to think that a mathematical model
is an exact representation of a real system and in that sense all Ho are defined
within a system which is untrue. We use the term to mean that in the current state
of knowledge it is reasonable to proceed as if the hypothesis is true. Note that
an underlying subject-matter hypothesis such as that a certain environmental
exposure has absolutely no effect on a particular disease outcome might indeed
be true.

3.2 Simple significance test

In the formulation of a simple significance test, we suppose available data y and
anull hypothesis Hy that specifies the distribution of the corresponding raidom
variable Y. In the first place, no other probabilistic specification is involved,
although some notion of the type of departure from Hy that is of subject-matter
concern is essential.

The first step in testing Ho is to find a distribution for observed random
variables that has a form which, under Hy, is free of nuisance parameters, i.e., is
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completely known. This is trivial when there is a single unknown parameter
whose value is precisely specified by the null hypothesis. Next find or determine
a test statistic T', large (or extreme) values of which indicate a departure from
the null hypothesis of subject-matter interest. Then if 7ps is the observed value
of T we define

Pobs = P(T = tops), 3.1

" the probability being evaluated under Hp, to be the (observed) p-value of
the test.

It is conventional in many fields to report only very approximate values of
Pobs, for example that the departure from Hy is significant just past the 1 per cent
level, etc.

The hypothetical frequency interpretation of such reported significance levels
is as follows. If we were to accept the available data as just decisive evidence
against Ho, then we would reject the hypothesis when true a long-run proportion
Pobs Of times.

Put more qualitatively, we examine consistency with Hy by finding the con-
sequences of Hp, in this case a random variable with a known distribution,
and seeing whether the prediction about its observed value is reasonably well
fulfilled.

We deal first with a very special case involving testing a null hypothesis that
might be true to a close approximation. .

Example 3. Testof a Poisson mean. Supposeithat ¥ has a Poisson distribution
of unknown mean 1 and that it is required to test the null hypothesis & = uo,
where g is a value specified either by theory or a large amount of previous
experience. Suppose also that only departures in the direction of larger values
of 1 are of interest. Here there is no ambijguity about the choice of test statistic;
it has to be Y or a monotone function of ¥ and given that Y = y the p-value is

Pobs = Z2,e "0 g /vl (3.2)

Now suppose that instead of a single observation we have n independent
replicate observations so that the model is that Yy,...,Y, have independent
Poisson distributions all with mean p. With the same null hypothesis as before,
there are now many possible test statistics that might be used, for example
max(Yy). A preference for sufficient statistics leads, however, to the use of
3 ¥}, which under the null hypothesis has a Poisson distribution of mean nzio.
Then the p-value is again given by (3.2), now with o replaced by nuo and with
y replaced by the observed value of X Y. .

We return to this illustration in Example 3.3. The testing of a null hypothesis
about the mean & of a normal distribution when the standard deviation op is

X
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known follows the same route. The distribution of the sample mean ¥ under
the null hypothesis 11 = 110 is now given by an integral rather than by a sum
and (3.2) is replaced by .
Y — o
00/+/n

We now turn to a complementary use of these ideas, namely to test the
adequacy of a given model, what is also sometimes called model criticism.
We illustrate this by testing the adequacy of the Poisson model. It is necessary
if we are to parallel the previous argument to find a statistic whose distribution is
exactly or very nearly independent of the unknown parameter 1. An important
way of doing this is by appeal to the second property of sufficient statistics,
namely that after conditioning on their observed value the remaining data have
a fixed distribution.

Pobs =1 — @ 3.3)

Example 3.2. Adequacy of Poisson model. Let Y,...,Y, be independent
Poisson variables with unknown mean . The null hypothesis Hy for testing
model adequacy is Emﬁ. this model applies for some unknown . Initially no
alternative is explicitly formulated. The sufficient statistic is M&? so that to
assess consistency with the model we examine the conditional distribution of
the data given XY} = s. This density is zero if Sy # s and is otherwise
st 1
Tyl v’

i.e., is a multinomial distribution with § trials each giving a response equally
likely to fall in one of n cells. Because this distribution is completely specified
numerically, we are essentially in the same situation as if testing consistency
with a null hypothesis that completely specified the distribution of the-observa-
tions free of unknown parameters. There remains, except when n = 2, the need
to choose a test statistic. This is usually taken to be either the &.@Q@.g index:
(Y, — Y)2/Y or the number of zeros. i

The former is equivalent to the ratio of the sample estimate of variance to the
mean. In this conditional specification, because the sample total is fixed, the
statistic is equivalent also to M&w. Note that if, for example, the dispersion test
is used, no explicit family of alternative models has been specified, only an
indication of the kind of discrepancy that it is especially important to detect.
A more formal and fully parametric procedure might have considered the neg-
ative binomial distribution as representing such departures and then used the
apparatus of the Neyman-Pearson theory of testing hypotheses to develop a test
especially sensitive to such departures. _

A quite high proportion of the more elementary tests used in applications were
developed by the relatively informal route just outlined. When a full family of

(3.4)
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distributions is specified, covering both the null hypothesis and one or more
alternatives representing important departures from Hy, it Wb&:ﬂmﬁo base the
test on the optimal statistic for inference about 1 within that family. \ﬂ.mm typic-
ally has sensitivity properties in making the random <mi¢ P coyresponding
to pobs stochastically small under alternative hypotheses. \____

For continuously distributed test statistics, pobs typically may take any real
value in (0, 1). In the discrete case, however, only a discrete set of values of p
are achievable in any particular case. Because preassigned values such as 0.05
play no special role, the only difficulty in interpretation is the theoretical one
of comparing alternative procedures with different sets of achievable values.

Example 3.3. More on the Poisson distribution. For continuous observations
the random variable P can, as already noted, in principle take any value in (0, 1).
Suppose, however, we return to the special case that ¥ has a Poisson distribution

with mean p and that the null hypothesis u = o is to be tested checking for

departures in which p > po, or more generally in which the observed random
variable Y is stochastically larger than a Poisson-distributed random variable
of mean j1o. Then for a given observation y the p-value is
Pl = T2 e Moug /v, 3.5)
whereas for detecting departures in the direction of small values the corres-
ponding p-value is
v
Pobs = Mwnomltotm\i. (3.6)

Table 3.1 shows some values for the special case o = 2. So far as use
for a one-sided significance test is oozoo%wm. the restriction to a particular
set of values is unimportant unless that set is in some sense embarrassingly
small. Thus the conclusion from Table m.E& that in testing . = 2 looking for
departures . < 2 even the most extreme observation possible, namely zero,
does not have a particularly small p-value is hardly surprising. We return to the
implications for two-sided testing in the next section. :

In forming upper confidence limits for ' based on an observed y there is no
difficulty in finding critical values of such that the relevant lower tail area is
some assigned value. Thus with y = 0 the upper 0.95 point for p is such that
e =0.05,1e., " =log20 ~ 3. Asimilar calculation for alower confidence
Jimit is not possible for y = 0, but is possible for all other y. The discreteness
of the set of achievable p-values is in this context largely unimportant.

3.3 One- and two-sided tests 35

Table 3.1. Achievable significance levels
Jor testing that a Poisson-distributed random
variable with observed value y has mean 2:
(a) test against alternatives larger than 2;
(D) test against alternatives less than 2

@ y 2 3 4 5 6
p 0594 0323 0.143 0.053 0.017
® y 0 i 2

p 0.135 0406 0.677

3.3 One- and two-sided tests

In many situations observed values of the test statistic in either tail of its distri-
bution represent interpretable, although typically different, departures from Hy.

The simplest procedure is then often to contemplate two tests, one for each-tail;~. .

in effect taking the more significant, i.e., the smaller tail, as the basis for pos-
sible interpretation. Operational interpretation of the result as a ﬂ%@oﬁo&o&
error rate is achieved by doubling the corresponding p, with a mw,.mra% more
complicated argument in the discrete case.

More explicitly we argue as follows. With test statistic 7', consider-ty

p-values, namely

I—l -
pho=P(T = t;Ho), pa, = P(T < 15 Hp). 3.7)

In general the sum of these values is 1 + P(T = 1). In the two-sided case it is
then reasonable to define a new test statistic

Q = min(P, Py.). . (3.8)

The level of significance is

P(Q < gobs; Ho)? | (3.9)

In the continuous case this is 2¢ops because two disjoint events are .§<o_<oa.
In a discrete problem it is gops plus the achievable p-value from the other tail
of the distribution nearest to but not exceeding gops. As has been stressed the
precise calculation of levels of significance is rarely if ever critical, so that
the careful definition is more one of principle than of pressing applied import-
ance. A more important point is that the definition is unaffected by a monotone
transformation of 7.

In one sense very many applications of tests are essentially two-sided in
that, even though initial interest may be in departures in one direction, it will
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rarely be wise to disregard totally departures in the other direction, even if ini-
tially they are unexpected. The interpretation of differences in the two directions
may well be very different. Thus in the broad class of procedures associated
with the linear model of Example 1.4 tests are sometimes based on the ratio
of an estimated variance, expected to be large if real systematic effects are
present, to an estimate essentially of error. A large ratio indicates the presence of
systematic effects whereas a suspiciously small ratio m:mmnwa an inadequately
specified model structure.

3.4 Relation with acceptance and rejection

There is a conceptual difference, but essentially no mathematical difference,
between the discussion here and the treatment of testing as a two-decision prob-
Jem, with control over the formal error probabilities. In this we fix in principle
the probability of rejecting Ho when it is true, usually denoted by «, aiming to
maximize the probability of rejecting Ho when false. This approach demands
the explicit formulation of alternative possibilities. Essentially it amounts to
setting in advance a threshold for pops. It is, of course, potentially appropriate
when clear decisions are to be made, as for example in some classification prob-
lems. The previous discussion seems to match more closely scientific practice
in these matters, at least for those situations where analysis and interpretation
rather than decision-making are the focus.

That is, there is a distinction between the Neyman—Pearson formulation of
testing regarded as clarifying the meaning of statistical significance via hypo-
thetical repetitions and that same theory regarded as in effect an instruction on
how to implement the ideas by choosing a suitable c in advance and reaching
different decisions accordingly. The interpretation to be attached to accepting
or rejecting a hypothesis is strongly context-dependent; the point at stake here,
however, is more a question of the distinction between assessing evidence, as
contrasted with deciding by a formal rule which of two directions to take.

3.5 Formulation of alternatives msa, test statistics

As set out above, the simplest version of a significance test involves formula-
tion of a null hypothesis Ho and a test statistic T, large, or possibly extreme,
values of which point against Ho. Choice of T is crucial in specifying the kinds
of departure from Hy of concern. In this first formulation no alternative prob-
ability models are explicitly formulated; an implicit family of possibilities is

-/ B

ﬂ 5(@?§ g A LI \?LQ/ \\&
specified via 7. Inn ?o/ﬁEmE\ quite widely used mﬂmnm:.nm:mmm were developed in
this way. T ..

A second possibility is that the null hypothesis corresponds to a particular
parameter value, say ¥ = vy, in a family of models and the departures of main
interest correspond either, in the one-dimensional case, to one-sided alternatives
¥ > o or, more generally, to alternatives ¥ # . This formulation will
suggest the most sensitive test statistic, essentially equivalent to the best estimate
of ¥, and in the Neyman—Pearson formulation such an explicit formulation of
alternatives is essential.

The approaches are, however, not quite as disparate as they may seem.
Let fo(y) denote the density of the observations under Hy. Then we may
associate with a proposed test statistic 7' the exponential family

Jo(y) exp{t6 — k(9)}, _ (3.10)

where k(0) is a normalizing constant. Then the test of @ = Q most sensitive to
these departures is based on 7. Not all useful tests appear natural when viewed
in this way, however; see, for instance, Example 3.5.

. Many of the test procedures for examining model adequacy that are provided
in standard software are best regarded as defined directly by the test statistic
used rather than by a family of alternatives. In principle, as emphasized above,
the null hypothesis is the conditional distribution of the data given the sufficient
statistic for the parameters in the model. Then, within that null distribution

interesting directions of departure are identified. .

The important distinction is between situations in which a whole family of
distributions arises naturally as a base for analysis versus those where analysis
1s at a stage where only the null hypothesis is of explicit interest.

Tests where the null hypotheses.itself is formulated in terms of arbitrary dis-
tributions, so-called aoéwmwéawin or distribution-free tests, illustrate the use of
test statistics that are formulated largely or wholly informally, without specific
probabilistically formulated alternatives in mind. To illustrate the arguments
involved, consider initially a single homogenous set of observations.

That is, let ¥1,...,Y, be independent and identically distributed random
variables with arbitrary cumulative distribution function F(y) = P(Yx < y).
To avoid minor complications we suppose throughout the following discussion
that the distribution is continuous so that, in particular, the possibility of ties,
i.e., exactly equal:pairs of observations, can be ignored. A formal likelihood
can be obtained by dividing the real line into a very large number of very mEm,:
intervals each having an arbitrary probability attached to it. The likelihood for
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data y can then be specified in a number of ways, namely by

o a list of data values actually observed,
o the sample cumulative distribution function, defined as

Fo(y) =n" 21 <), G.11)

where the indicator function I(y; < y) isoneif yr <y and zero o:ﬁa%_mo.
« the set of order statistics y(1) < y@) <+ = Y@, 1.6 the observed values
arranged in increasing order.

The second and third of these are reductions of the first, m:mwnmm&sm the
information about the order in which the observations are obtained. In general
no further reduction is possible and so either of the last two ?5.5 the suf-
ficient statistic. Thus if we apply the general prescription, conclusions about
the function F (y) are to be based on one oﬁ the above, for oﬁ:.:Eo o:. the
sample distribution function, whereas consistency E:.w the n.woao_ _m. wxmBE.ma
via the conditional distribution given the order statistics. This oo:&.ﬁcu& dis-
tribution specifies that starting from the original data, all ! wo::ﬁmco.:m of the
data are equally likely. This leads to tests in general 8&.:0& .h.mx:ES:c: tests.
This idea is now applied to slightly more complicated situations.

Example 3.4. Test of symmetry. Suppose that the null hypothesis is that the
distribution is symmetric about a known point, which we may 8._8 to be NQ..o.
That is, under the null hypothesis F(—y) + F (y) = 1. Under m:m r%@o.ﬁwmu.mu
all, points y and —y have equal probability, so that ﬁ.ro mSamomoE statistic is
determined by the order statistics or sample distribution ?:o:o.: of the |ykl-
15.?9., conditionally on the sufficient statistic, all 2" sample points .HSQ have
oﬁ._m_ probability 27". Thus the %mﬁvzaos, under the null hypothesis of any
test statistic is in principle oxmmﬂE W:,oé:. .

Simple one-sided test statistics for symmetry can be based o:. %.o Ed:&ﬂ
of positive observations, leading to'the sign fest, whose null n__mEc._.Em.E jm
binomial with parameter W and index n, or on the Bo.m: of w:.og.ocho:m.
The distribution of the latter can be found by enumeration or _m@c._.ox_.ﬁmn@m by
finding its first few moments and using a normal or other approximation to the
distribution. .

This formulation is relevant, for example, when the observations m:m_ﬁ.oa are
differences between primary observations after and before.some 5829:6? or
are differences obtained from the same individual under 2<~e &m.mo_.o:.ﬂ regimes.

A strength of such procedures is that they involve no ,mw,oo&omsg of the
functional form of F(y). They do, however, involve strong independence
assumptions, which may often be more critical. Moreover, they do not extend
mmwmv\ to relatively complicated models. -
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Example 3.5. Nonparametric two-sample test. Let (Yyy,...,Y s Yo1, .00,
Yon,) be two sets of mutually independent random variables with cumulative dis-
tribution functions respectively F(y) and F,(y). Consider the null hypothesis
Fi(y) = Fa(y) for all y.

When this hypothesis is true the sufficient statistic is the set of order statistics
of the combined set of observations and under this hypothesis all (1] + 7)!
permutations of the data are equally likely and, in-particular, the first set of n;
observations is in effect a random sample drawn without replacement from the
full set, allowing the null distribution of any test statistic to be found.

Sometimes it may be considered that while the ordering of possible obser-
vational points is meaningful the labelling by numerical values is not. Then
we look for procedures invariant under arbitrary strictly monotone increasing
transformations of the measurement scale. This is achieved by replacing the
individual observations y by their rank order in the full set of order statistics of
the combined sample. If the test statistic, Ty, is the sum of the ranks of, say,
the first sample, the resulting test is called the Wilcoxon rank sum test and the
parallel test for the single-sample symmetry problem is the Wilcoxon signed
rank test. , a

The distribution of the test statistic under the null hypothesis, and hence the
level of significance, is in principle found by enumeration. The moments of Tw
under the null hypothesis can be found by the arguments to be developed in
arather different context in Section 9.2 and in fact the mean and variance are
tespectively ny(ny + nz + 1)/2 and ninz(ny + ng + 1)/12. A normal approx-
imation, with continuity correction, based on this mean and variance will often

" be adequate.

Throughout this discussion the full set of values of y is regarded as fixed.

The choice of test statistic in these argaments is based on informal consider-
ations or broad analogy. Sometimes, :oﬁoép the choice can be sharpened
by requiring good sensitivity of the test were the data produced by some
unknown monotonic transformation of data following a specific parametric
model.

For the two-sample problem, the most obvious possibilities are that the data
are transformed from underlying normal or underlying exponential distribu-
tions, a test of equality of the relevant means being required in each case. The
exponential model is potentially relevant for the analysis of survival data. Up to
a scale and location change in the normal case and up to a scale change in
the exponential case, the originating data can then be reconstructed approx-
imately under the null hypothesis by replacing the rth largest order statistic
out of n in the data by the expected value of that order statistic in samples
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from the standard normal or unit exponential distribution respectively. Then
the standard parametric test statistics are used, relying in principle on their
permutation distribution to preserve the nonparametric propriety of the test.

It can be shown that, purely as a test procedure, the loss of sensitivity of
the resulting nonparametric analysis as compared with the fully parametric
analysis, were it available, is usually small. In the normal case the expected order
statistics, called Fisher and Yates scores, are tabulated, or can be approximated
by oY -3 /8)/(n+ 1/4)}. For the exponential distribution the scores can

be given in explicit form or approximated by log{(n + 1)/(n+ 1 — r — 1/2)}.

3.6 Relation with interval estimation

While conceptually it may seem simplest to regard estimation with uncertainty
as a simpler and more direct mode of analysis than significance testing there are
some important advantages, especially in dealing with relatively complicated
‘problems, in arguing in the other direction. Essentially confidence intervals, or
more generally confidence sets, can be produced by testing consistency with
every possible value in 2y and taking all those values not ‘rejected’ at level c,
say, to produce a 1 — c level interval or region. This procedure has the property
that in repeated applications any true value of ¥ will be included in the region
exceptin a proportion 1 — ¢ of cases. This can be done at various levels ¢, using
the same form of test throughout.

Example 3.6. Ratio of normal means. Given two independent sets of random
variables from normal distributions of unknown means 19, 11 and with known
variance Q%v we first reduce by m:mmwgggo mmgyamm:m Y0, ¥1. Suppose
that the parameter of interest is4f" = 1/up. Consider the null hypothesis
¥ = 0. Then we look for a statistic with a distribution under the null hypothesis

that does not depend on the nuisance parameter. Such a statistic is
f-voko (3.12)
oo/ (1/n1 + W& /no)
this has a standard normal distribution under the null hypothesis. This with
Yo replaced by ¥ could be treated as a w?o,ﬁ provided that we can treat Yy as
positive. ,

Note that provided the two distributions have the same variance a similar
result with the Student  distribution replacing the standard normal would apply
if the variance were unknown and had to be estimated. To treat the probably
more realistic situation where the two distributions have different and unknown
variances requires the approximate techniques of Chapter 6. .
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We now form a 1 — ¢ level confidence _.mm._o: by taking all those values of g
that would not be ‘rejected’ at level ¢ in this test. That is, we take the set
(Y1 — ¢ ¥o)?
o (1/ny + v /ng)
where N«w . 18 the upper ¢ point of the chi-squared distribution with one degree

¥ <

<Kol (3.13)

of freedom. ,

Thus we find the limits for ¢ as the roots of a quadratic equation. If there
are no real roots, all values of i are consistent with the data at the level in
question. If the numerator and especially the denominator are poorly determ-
ined, a confidence interval consisting of the whole line may be the only rational
conclusion to be drawn and is entirely reasonable from a testing point of view,
even though regarded from a confidence interval perspective it may, wrongly,
seem like a vacuous statement. : >

Depending on the context, emphasis may lie on the possible explanations
of the data that are reasonably consistent with the data or on those possible
explanations that have been reasonably firmly refuted.

Example 3.7. Poisson-distributed signal with additive noise. Suppose that ¥
has a Poisson distribution with mean p 4- a, where a > 07is a known con-
stant representing a background process of noise whose rate of occurrence has
been estimated with high precision in a separate study. The parameter Lt cotres=
ponds to a signal of interest. Now if, for example, y = 0 and « is appreciable,
for example, ¢ > 4, when we test consistency with each possible value of
all values of the parameter are inconsistent with the data until we use very small
values of ¢. For example, the 95 per cent confidence interval will be empty. Now
in terms of the initial formulation of confidence intervals, in which, in partic-
ular, the model is taken as a firm basis for analysis, this amounts to making
a statement that is certainly wrong; there is by supposition some value of the
parameter that generated the data. On the other hand, regarded as a statement of
which values of p are consistent with the data at such-and-such a level the state-
ment is perfectly reasonable and indeed is arguably the only sensible frequentist
conclusion possible at that level of c. .

3.7 Interpretation of significance tests

There is a large and ever-increasing literature on the use and misuse of
significance tests. This centres on such points as:

1. Often the null hypothesis is almost certainly false, inviting the question
why is it worth testing it?
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2. Estimation of v is usually more enlightening than testing hypotheses
about .

3. Failure to ‘reject” Hy does not mean that we necessarily consider Hy to be

exactly or even nearly true.

4. If tests show that data are consistent with Hy and inconsistent with the
minimal departures from Hy considered as of subject-matter importance,
then this may be taken as positive support for Hy, i.e., as more than mere
consistency with Hg. ‘

5. With large amounts of data small departures from Hy of no subject-matter
importance may be highly significant.

6. When there are several or many somewhat similar sets of data from
different sources bearing on the same issue, separate significance
tests for each data source on its own are usually best avoided. They
address individual questions in isolation and this is often
inappropriate. B

7. Pobs is not the probability that Hy is true.

Discussion of these points would take us too far afield. Point 7 addresses
a clear misconception. The other points are largely concerned with how in
applications such tests are most fruitfully applied and with the close connection
between tests and interval estimation. The latter theme is emphasized below.
The essential point is that significance tests in the first place address the ques-
tion of whether the data are reasonably consistent with a null hypothesis in
the respect tested. This is in many contexts| an interesting but limited ques-
tion. The miich fuller specification nieeded to do<o_ow confidence limits by this
route leads to much more informative summaries of what the data plus model
assumptions imply.

3.8 Bayesian emmazm :

A Bayesian discussion of significance testing is available only when a full family
of models is available. We work with the posterior distribution of Y. When the
null hypothesis is quite possibly exactly or nearly correct we specify a prior
probability 7o that Hy is true; we need also to specify the conditional prior
distribution of v when Hy is false, as well as aspects of the prior distribution
concerning nuisance parameters A. Some care is needed here because the issue
of testing is not likely to arise when massive easily detected differences are
present. Thus when, say, v can be estimated with a standard error of oy N
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the conditional prior should have standard deviation boy//n, for some not too
large value of b.

When the role of Hy is to divide the parameter space into qualitatively
different parts the discussion essentially is equivalent to checking whether
the posterior interval at some suitable level overlaps the null hypothesis value
of y. If and only if there is no overlap the region containing ¥ is reason-
ably firmly established. In simple situations, such as that of Example 1.1,
posterior and confidence intervals are in exact or approximate agreement
when flat priors are used, providing in such problems some formal justifica-
tion for the use of flat priors or, from a different perspective, for confidence
intervals. -

We defer to Section 5.12 the general principles that apply to the choice of
prior distributions, in particular as they affect both types of testing problems
mentioned here.

Notes 3

Section 3.1. The explicit classification of types of null hypothesis is developed ,
from Cox (1977). .

Section 3.2. The use of the conditional distribution to test conformity with
a Poisson distribution follows Fisher (1950). Another route for dealing with
discrete distributions is to define (Stone, 1969) the p-value for test statistic 7'
by P(T' > tohs) + P(T = tops) /2. This produces a statistic having more nearly
a uniform distribution under the null hypothesis but the motivating operational
meaning has been sacrificed.

§
}

Section 3.3. There are a number of ways of defining two-sided p-values for
discrete distributions; see, for example, Cox and Hinkley (1974, p.79).

Section 3.4. The contrast made here between the calculation of p-values as
measures of evidence of consistency and the more decision-focused emphasis
on accepting and rejecting hypotheses might be taken as one characteristic
difference between the Fisherian and the Neyman-Pearson formulations of
statistical theory. While this is in some respects the case, the actual practice in
specific applications as between Fisher and Neyman was almost the reverse.
Neyman often in effect reported p-values whereas some of Fisher’s use of tests
in applications was much more dichotomous. For a discussion of the notion
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of severity of tests, and the circumstances when consistency with Hy might be
taken as positive support for Ho, see Mayo (1996). A

Section 3.5. For a thorough account of nonparametric tests, see Lehmann
(1998).

Section 3.6. The argument for the ratio of normal means is due to E. C. Fieller,
after whom it is commonly named. The result applies immediately to the ratio
of least squares regression coefficients and hence in particular to estimating
the intercept of a regression line on the z-coordinate axis. A substantial dispute
developed over how this problem should be handled from the point of view of
Fisher’s fiducial theory, which mathematically but not conceptually amounts
to putting flat priors on the two means (Creasy, 1954). There are important
extensions of the situation, for example to inverse regression or (controlied)
calibration, where on the basis of a fitted regression equation it is desired to
estimate the value of an ox@_msmmo@ variable that generated a new value of the
response variable.

Section 3.8. For more on Bayesian tests, see Jeffreys (1961) and also
Section 6.2.6 and Notes 6.2.
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4

More complicated situations

Summary. This chapter continues the comparative discussion of frequentist
and Bayesian arguments by examining rather more oonromﬂam situations. In
particular several versions of the two-by-two contingency table are compared
and further developments indicated. More complicated Bayesian problems are
discussed.

4.1 General remarks -

The previous frequentist discussion in especially Chapter 3 yields a theoretical
approach which is limited in two senses. It is restricted to problems with no
nuisance parameters or ones in which elimination of nuisance parameters is
straightforward. An important step in generalizing the discussion is to extend
the notion of a Fisherian reduction. Then we turn to a more m%mﬁoﬁmﬁ_o discussion
of the role of nuisance parameters.

By comparison, as noted previously in Section 1.5, a great formal advant-
age of the Bayesian formulation is that, once the formulation is accepted, all
subsequent problems are computational and the simplifications consequent on
sufficiency serve only to ease calculations.

4.2 General Bayesian formulation

The argument outlined in Section 1.5 for inference about the mean of a normal
distribution can be generalized as follows. Consider the model frio(y | 0),
where, because we are going to treat the unknown parameter as a random vari-
able, we now regard the model for the data-generating process as a conditional
density. Suppose that © has the prior density fe (0), specifying the marginal
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