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Neural Network Training via Linear Programming

Kristin P. Bennett! O. L. Mangasarian!

Abstract

An efficient algorithm for training a feed-forward neural network with par-
tially pre-assigned weights is proposed. The algorithm is based on linear pro-
gramming and has a number of advantages over back propagation such as: au-
tomatic determination of the number of hidden units, 100% correctness on the
training set if desired, faster training, and elimination of parameters from the
algorithm. The proposed method is currently in use for breast cancer diagnosis.

1 Introduction

We propose a fast polynomial-time approach for training neural networks based on
linear programming. The principal idea is based on the Multisurface Method (MSM)
for the separation of two disjoint pattern sets with intersecting convex hulls [5]. The
Multisurface Method which is currently in use for breast cancer diagnosis [6,10], can be
modeled as a feed-forward neural network with a partially-fixed topology. Training
neural networks by MSM has the following advantages over the Back Propagation
Algorithm (BP) [8]:

(a) Automatic determination of the number of hidden units.
(b) Achieving 100% correctness on the training set if desired.
(c) Faster training.

(d) Elimination of parameters from the training algorithm.

We begin with a description of the MSM linear programming approach for training
a neural network for the binary classification of two disjoint point sets. Extension of
MSM to discrimination between more than two sets can be achieved by log,s binary
classifications where s is the number of sets, or by other piecewise-linear separators.
For simplicity of presentation we confine ourselves to classifying two sets only.

2 The MSM Classifier

Let the the finite pattern sets A and B be two given disjoint training sets in the
n-dimension real feature space IR". Let the cardinality of A and B be m and &
respectively. The sets A and B are represented by the m x n and k x n matrices A
and B. If the convex hulls of the sets A and B do not intersect, or equivalently if
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they are linearly separable, a single linear program can generate a separating plane
in polynomial time [2,3] by solving the following problem [4]:

maximize )
a,fBw (21)
subject to  Aw > ea,Bw<ef,—e<w<e

where w € IR" is the weight vector associated with the separating plane, 2¥2 is the
threshold that locates the separating plane, and e is a vector of ones in a real space of
arbitrary finite dimension. Note that this linear program generates the weight vector
w and threshold %ﬁ for a linear threshold unit which discriminates between two
linearly separable sets.

When the sets A and B are not linearly separable, w = 0,a = 8 = 0 is a solution
to (2.1), and no useful information is derived from the problem. Hence problem (2.1)
must be modified to generate a sequence of different pairs of separating planes which
constitute the MSM classifier. Each pair of parallel planes distinguishes a subset of
A from a subset of B. Total separation can be achieved by the piecewise-linear MSM
classifier which we now describe.

The piecewise-linear surface consists of p pairs of planes with wei%ht vectors
w!, ..., wP € IR", and thresholds al,‘..,ap‘l,%, and A4!,..., 8P 1, #, with
at < B,i=1,...,p—1and o > . The last pair of planes coalesces into a single
plane in order not to leave any part of the space unclassified. Classification is achieved
as follows:

MSM Classifier for z € R®

fori=1 to p-1

begin
if zw* > B then £ € A ; stop
if —zw? > —a' then z € B; stop
end
if zwP > 9—%-'@1 thenz e A
elsez € B

Geometrically the MSM classifier corresponds to separation by a piecewise-linear
surface as illustrated in Figure 2.1 for a hypothetical case of two pairs of planes in
two dimensions. Figure 2.2 depicts separation by four pairs of parallel planes of the
Wisconsin Breast Cancer Data (WBCD), the actual clinical data described in Section
5 of this paper. This figure shows which points are separated by a given pair of
planes and which points remain to be separated by a succeeding pair of planes. The
top part of Figure 2.2 is the projection of 369 nine-dimensional data points on the
two-dimensional space spanned by the normals, w! and w?, to the first two pairs of
separating planes. Note that w! and w? are not orthogonal to each other in general.
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Piecewise-Linear Classifier

Figure 2.1: Geometric Depiction of MSM Classifier

In the bottom part of Figure 2.2, the points which were not classified by the first two
pairs of parallel planes (i.e. the points in the parallelogram formed in the top graph)
are projected on the two-dimensional space spanned by the normals, w® and w?, to
the last two pairs of separating planes.

3 MSM Classifier as a Neural Network

We give now a novel representation of the MSM classifier as a trained feed-forward
neural network which is depicted in Figure 3.1 and which can be trained efficiently by
our linear programming approach. This network is composed of n input units, 2p — 1
hidden units, and 1 output unit. Fori = 1,...,p— 1, w* and —w’ are the incoming
weights to the (2 — 1)** and the (2i)'® hidden units with thresholds 8¢ and —a!
respectively. For i = p — 1, wP is the incoming weight to the (2p — 1)** hidden unit
with threshold S%ﬁ—, The weights on the arcs connecting the 2p — 1 hidden units
to the output unit (see Figure 3.1) are predetermined such that the activation of the
output unit is caused by the firing hidden unit with the lowest index. The threshold
of the output unit is 0. To reduce clutter in Figure 3.1, the n arcs connecting the n
input units to a hidden unit are consolidated into one arc.

Note that predetermined weights are used between the hidden units and the output
unit. This may restrict the representational power of the network for a fixed number
of units. However this does not seem to degrade the performance of the MSM neural
network, nor does it prevent MSM from discriminating between any two disjoint
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Figure 2.2: MSM Classifier for Wisconsin Breast Cancer Data
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Figure 3.1: MSM Classifier as a Neural Network



Neural Network Training 61

400

300 —

Time
in 200 —
Seconds

100

Number of Bits n

Figure 3.2: Execution Times for BP and MSM on n-Bit Parity Problems

point sets given a sufficient number of hidden units. MSM dynamically determines
the number of hidden units required in order to correctly classify all the training
examples. The performance of MSM is comparable to unrestricted networks trained
with BP. In fact, the number of hidden units determined by MSM is a good estimate
of the number required for a given classification task by an unconstrained network
using BP. For example, consider the n-bit parity function which takes an n-bit binary
vector as its argument and returns a 1 if the number of ones is odd, and 0 otherwise.
This problem requires n hidden units for a feed-forward network [8]. In our tests the
MSM topology required n hidden units when n is odd, and n+1 units when n is even,
and the network was trained in considerably less time using MSM than with BP.
Figure 3.2 plots the execution time of MSM and BP on several n-bit parity problems
on a DECstation 3100.

We note that generating a trained feed-forward network to distinguish between
the disjoint pattern sets A and B can be posed as the following nonlinear nonconvex
optimization problem which is solved exactly by MSM:
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For some integer p:

. H(Z —2r=i| (AW —efi)e — (AW i 4+ ea;).] + %e]‘
minimum ; .
IR S, (B ). — (~BW, + can).] + bl =0
a € RP, 3 € RP,
ﬁi > oy, t= 17~~~5p—-11
Bp=ap
(3.1)
1 i d;>0
where ((d).); = ifd , € is a vector of ones, ||.|; denotes the
0 if d;<0

1-norm, R™%P is the space of n x p real matrices, and W is the i** column of the
matrix W.

The above function counts the number of misclassified points. The summation
inside the first norm counts the number of points in A that are misclassified. The
summation within the second norm counts the number of the misclassified points of
B.

4 Training the MSM Neural Network

In order to generate the MSM classifier for the general case of linearly inseparable
pattern sets, problem (2.1) is modified as follows to ensure that w is nonzero:

maximize a-— (3
@ Bw (4.1)
subject to  Aw >ea,Bw<ef,—-e<w<e,w#0

Each problem (8) is solved by a finite sequence of linear programs. This sequence does
not exceed 2n and is often less depending on the way that the constraint w # 0 is
implemented [5,6]. Each problem (8) separates portions of the sets A and B from each
other. The points thus separated are removed from A and B. This process is repeated
until no points remain. The algorithm with an antidegeneracy procedure ensures that
total separation of any two disjoint point sets can be achieved in polynomial time.

Note that unlike BP, there are no parameters in the learning algorithm that must
be determined experimentally in MSM. For example, the number of hidden units
within the MSM neural net is determined automatically by the program.

5 Computational Comparison of BP and MSM on
Medical Diagnosis Problems

MSM is currently in active use at University of Wisconsin Hospitals for the diagnosis
of breast cancer [10,6]. We briefly discuss this application first and give comparisons
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| | msm| Bp|

Training Time (seconds) 108 | 469.5
Training Set Correctness (%) | 100.0 [ 98.9
Testing Set Correctness (%) 98.3 | 949
Number of Hidden Units 7 6

Training Set Size = 369 Testing Set Size = 118

Table 5.1: Comparison of MSM and BP on Wisconsin Breast Cancer Data

with BP.

The Wisconsin Breast Cancer Data (WBCD) set, developed by Dr. W. H. Wol-
berg, consists of nine measurements taken from fine needle aspirates from human
breast tissue. On this data set, MSM was trained originally on 369 samples and
was tested subsequently on 70 newly acquired samples all of which were classified
correctly except one. At that time it was retrained and since then it has correctly
classified all 48 subsequent samples. For reliability in medical diagnosis applications,
100% correctness on the training and testing sets is very desirable for noise-free data.
Such levels of training set correctness were attained by MSM on this data set but
not by other approaches such as BP, statistical pattern separation and decision tree
approaches [9]. It is important to emphasize that in medical diagnosis, classification
is performed on all available data and the classifier is then used on incoming data.
Table 5.1 compares the best results obtained by BP as implemented in [7] with the
results from MSM on the WBCD. It is interesting to note that BP does not achieve
the correctness rate on either training or testing sets achieved by MSM.

Additional experiments have been conducted comparing the performance BP and
MSM on the WBCD and the Cleveland Heart Disease Data Set [1]. The results of
applying the methods to training and testing sets randomly extracted from the total
points were averaged over many trials. These results are depicted in Figure 5.1 and
5.2.

From these figures we draw the following conclusions:

(a) 100% correctness was always achieved by MSM on the training set but not by
BP.

(b) On the testing sets, MISM achieved a correctness rates which are within 4% of
the correctness rates of BP. The higher discrepancies occurred on the relatively
noisy Cleveland Ileart Disease Data set.
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(¢) The number of hidden units, which is determined automatically by MSM, is a
good estimate for the number of hidden units required using BP to achieve
minimal training time, and optimal training and testing set correctness.

(d) The time to train MSM is consistently much less than for BP. If we take into
account that BP requires experimentation to determine the optimal values of
learning parameters and the number of hidden units, the difference becomes
more pronounced.

To sum up, MSM has the capability of quickly training a neural network and deter-
mining the optimal number of hidden units while maintaining 100% correctness on
the training sets if desired. These are important properties not possessed by BP.
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Figure 5.1: Results of MSM and Back Propagation on Wisconsin Breast Cancer Data
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Figure 5.2: Results of MSM and Back Propagation on Cleveland Heart Disease Data
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