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model choice

random effects and mixed effects models ELM Ch. 8

generalized linear models separate systematic part of the
model from the random part of the model

» linear predictor: g(u;) = x{ 8 E(y) = wi; var(yi) = o V()

exponential family:
f(vi; i) oc exp[{0:iyi — b(6:)}/(aid) + c(¥i, d)]

model choice concerns how to build the linear predictor
linearin g

nonlinear least squares generalizes 7, keeps f(-) in a small

class location: normal, sometimes t, occasionally extreme-value
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Empirical models CD Ch. 6.5
» in many fields of study the models used as a basis for
interpretation do not have a special subject-matter base

» rather represent broad patterns of haphazard variation
quite widely seen

» this is typically combined with a specification of the
systematic part of the variation

» which is often the primary focus

» modelling then often reduces to a choice of distributional
form

» and of the independence structure of the random
components
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... empirical models CD Ch. 65

>

functional form of the probability distribution sometimes critical, for
example where an implicit assumption is involved of a relationship
between variance and mean: geometric, Poisson, binomial

the simple situations that give rise to binomial, Poisson, geometric,
exponential, normal and log normal are some guide to empirical model
choice in more complex situations

In some specific contexts there is a tradition establishing the form of
model likely to be suitable

illustration: financial time series — Y(t) = log{P(t)/P(t — 1)} has a
long-tailed distribution, small serial correlation, large serial correlation in
Y2(t)

illustration: a common type of response arises as the time from some
clearly defined origin to a critical event

often have a long tail of large values; exponential distribution is a
natural staring point

extensions may be needed, including Weibull, gamma or log-normal
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... empirical models CD Ch. 65

>

often helpful to develop random and systematic parts of
the model separately

models should obey natural or known constraints, even if
these lie outside the range of the data
example P(Y =1) = a + Sx

often use instead log ggjg =a +f'x

however, 3 measures the change in probability per unit
change in x

in many common applications, relationship between y and
several variables xy, . .. Xp is involved

unlikely that the system is wholly linear

» impractical to study nonlinear systems of unknown form
therefore reasonable to begin with a linear model

» and seek isolated nonlinearities

v

v
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... empirical models CD Ch. 65

>

often helpful to develop random and systematic parts of
the model separately

naive approach: one random variable per study individual
values for different individuals independent

more realistic: possibility of structure in the random
variation

dependence in time or space, or a hierarchical structure
corresponding to levels of aggregation

ignoring these complications may give misleading
assessments of precision, or bias the conclusions
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... empirical models CD Ch. 65

>

>

example: standard error of mean o//n

but, under mutual correlation, becomes

(o/v/m)(1 + Zpj)'/?

if each observation correlated with k others, at same level,
(o/vV/n)(1 + kp)'/?

1.14 1.26 1.48 1.84
1.18 1.34 1.61 2.05
1.22 1.41 1.73 2.24
1.26 1.48 1.84 2.41
1.30 1.55 1.95 2.57
1.34 1.61 2.05 2.72
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... empirical models CD Ch. 65

» important to be explicit about the unit of analysis

» has a bearing on independence assumptions involved in
model formulation

» example: if all patients in the same clinic receive the same
treatment

» then the clinic is the unit of analysis

» in some contexts there may be a clear hierarchy

» assessment of precision comes primarily from
comparisons between units of analysis

» modelling of variation within units is necessary only if of
intrinsic interest

» when relatively complex responses are collected on each
study individual, the simplest way of condensing these is
through a number of summary descriptive measures

» in other situations it may be necessary to represent
explicitly the different hierarchies of variation
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Models with random effects ELM Ch. 8
» simplest case: one-way layout, linear model
comparing a groups; equality of means
> Vi =1+ o+ €j, i=1,....,a j=1,...n
» usually assume ¢ ~ N(0, 0?)

» ANOVA:
Source df SS MS E(MS)
_ - \2 2 nZ,-a,?
between groups a-—1 Yi(yi. —y.)* SSpy/dfy o

a—1

within groups ain—1) Xilyj—y) SSw/dfw o°

> MSp/MSy, follows an F,_1 a(n—1) distribution under
Hy:a;j=0,i=1,...,a
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. random effects
» change the model assumptions

» Yi=ptaite, i=1,....a j=1,...n
> o~ N(0,0'g), €jj ~ N(0, 0?)

» ANOVA:
Source df SS MS E(MS)
between groups a—1 Yi(vi —y.)? SSp/dfs o+ no?

within groups aln—1) Xi(yj— %) SSw/dfw o°

> MSp/MSy, follows an F,_1) a(n—1) distribution under
Ho : Ug =0
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Inference

» fixed effects model

» var(y;, — yy.) =20%/n

» confidence intervals for p; — pjr

» o2 needs to be estimated, but not of particular interest
» typically use MSE = SSE /{a(n—1)}

» random effects model
» The parameters o2 and o2 are now of interest
» 52 =MSE;, &2=1

» maximum likelihood estimates
» REML: restricted maximum likelihood estimates
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Another easy example: two-way layout

» randomized block design
>y,-j:u+a,-+ﬁj+e,-j, i:1,...,a;j:1,...,b

» B~ N(O, Ug), ej ~ N(O, )
» a mixed effect model, with one fixed effect (treatment) and
one random effect (blocks)

» ANOVA:
Source df SS E(MS)

_ — 2 nZ,-a,?
treatments a—1 iy —7.) o+
blocks b1 (¥ - 7. o® + ao}
error (@=1)(b-1) Zj(yj—7.—7V;i+7.)° o?

cov(yj, Yirj) = CoV(B; + €j, Bj + €nj) = 02 + 02
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Randomized block design with repeats

» repeat observations for each treatment, in each block

> Yik = i+ ai+ B+ (aB)j + €k,
i=1,....aj=1,....bk=1,...n

» Bj ~ N(0,02), (aB)j ~ N(0,02,), €j ~ N(0,c?)

» ANOVA:
Source df ss E(MS)
treatments a—1 (Vi — V.2 0% 4 no%, + "ol
blocks b-1 (7~ ¥.)? o + nacg

interaction (a—1)(b—1) Zu(yj— V. —yj+7.)? o2+ no’

error (n—1)ab ik (Vik — ¥i.)? o?

if the repeats are ’true replications’, then we have a full factorial
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A general framework

yIv=XB+2Zy+e e~ N(0,0%)

v

~ a g—vector of random effects; 3 a p-vector of fixed effects
assumption v ~ N(0, 02D)

v

v

marginal distribution

y ~ N(XB,02(I + ZDZ")) = N(XB,02 V), say

v

applications
» multi-level models
» repeated measures
» longitudinal data
» components of variance
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SM Example 9.16

Example 9.16 (Longitudinal data) A short longitudinal study has one individual
allocated to the treatment and two to the control, with observations

vj=Fotbrtey, wm=fotbiteon yy=Fotpitbite; j=12

Thus there are two measurements on the first and third individuals, and just one on the
second. The b; represent variation among individuals and the &;; variation between
measures on the same individuals. If the »’s and #’s are all mutually independent with
variances o and o2, then

il 1 0 1 0 0 En
yi2 1 0 1 0 0 b| Epn
ya1 b=ilT O (ﬁ")+ 01 0|{e|+|en
yal 11|\ 00 1] \ss 11
a2 11 001 £E32

and this fits into formulation (9.12) with ©, = sz I3 and 2 = o215, Here v comprises

the scalar o /o2, and hence the variance matrix

al+a?  af 0 0 0
af  of+a? 0 0 0
Q4+ 727" = 0 0 o +a? 0 0
0 0 0 o +ot o}
0 0 0 of  oftol

may be written as
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Estimation

> y ~ N(XB,02(I + ZDZ")) = N(XB,02V)
| 2
n PN 1 I
0B y) = 3 log(c“) — > log |V| — T‘_g(y_ XB)'V=(y — XB)
» V may have one or more unknown parameters
» Example 9.16: v ~ N3(0,02/)
>
1402/02 o2 /o? 0 0 0
o2/c? 14 02/0° 0 0 0
1+2DZ" = 0 0 1+ 02/0? 0 0
0 0 0 1+02/02 o2 /o?
0 0 0 02 /02 1+02/02

> By = VX)XV
52 = 1(y = XB,)'V=1(y — XBy)
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. estimation
> By = (XT V-ix)-ixtv-ly
62 = 1y — XBy)"V Uy — XBy)

U

» profile log-likelihood

1 R 1
((¥) = — 510952 — 5log|V,|

» to get better divisors properly adjust for degrees of freedom
» modified profile log-likelihood
also called restricted profile log-likelihood

1 1 _
lmp(0®,4) = —Elog|V¢|—§Iog]XTV¢1X|

1

52 p log o2
o

(v = XB)'V  (y = XBy) —

‘ n 1
lo(0®,9) = —5 log(0) — flog\V\ 5,200
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Example 9.18

>

repeated measurements on the 30 individuals, at 5 time
points

might expect that regression relationship against time is
similar for each individual, subject to random variation

model y;: = Bo + bjo + (B1 + bj1 )Xt + €, t=1,...,5
X takes values 0,1,2,3,4 fort =1,2,3,4,5

same for each j

data (rat.growth, library="SMPracticals")
(bjo, bj1) ~ N2(0,9p), € ~ N(0,0?) independent
two fixed parameters Sy, 54

four variance/covariance parameters:
02,02, cov(by, by), o
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... Example 9.18

> rpaximum IikeIihoodAestimates of fixed effects:
bo = 156.05(2.16), 51 = 43.27(0.73)

» weight in week 1 is estimated to be about 156 units, and
average increase per week estimated to be 43.27

» there is large variability between rats: estimated standard
deviation of 10.93 for intercept, 3.53 for slope

» there is little correlation between the intercepts and slopes

> library (MASS) # this is included the standard R distribution
library (SMPracticals) # this has various data sets from Davison’s book
library(ellipse) # but I got an error the first time and had to download an additional
library (SMPracticals) # and now it works
data (rat.growth) # for Example 9.18
rat.growth[1:10,] # to see what it looks like, and to see variable names
with(rat.growth, plot( y ~ week , type="1"))
separate.lm = lm(y ~ week + factor(rat)+ week:factor(rat), data = rat.growth) # fit sep
rat.mixed = lmer(y ~ week + (week|rat), data = rat.growth) # REML is the default
summary (rat.mixed) # compare Table 9.28
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