Today
» HW 2: due March 4, 11.59 pm.

v

Generalized Linear Models Chs. 6 and 7 SM 10.2,3

after mid-term break: random effects, mixed linear and
non-linear models, nonparametric regression methods

v

In the News: measles

v
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http://www.utstat.toronto.edu/reid/2201S15.html

Generalized linear models: theory

>

yiti — B(6:) (blb(@/) + c(yis i)}

» E(yi | x;) = b/(6;) = u; defines pu; as a function of 6;

(YI M/»¢l) = eXp{

v

g(uj) = x,.T,B = n; links the n observations together via
covariates

v

g(+) is the link function; #; is the linear predictor

v

Var(y; | x;) = ¢ib"(0;) = ¢; V(i)

v

V(-) is the variance function
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Examples

» Normal

» Binomial

» Poisson

» Gamma/Exponential
» Inverse Gaussian

family {stats} R Documentation
Family Objects for Models
Description

Family objects provide a convenient way to specify the details of the models used by functions such as gim. See the
documentation for gim for the details on how such model fitting takes place.

Usage
family(object, ...)

binomial{link = "logit")

gaussian(link = "identity")

Gamma (link = "inverse")

inverse.gaussian(link = "1/mu"2")

poisson(link = "log")

quasi(link = "identity", variance = "constant")
quasibinomial{link = "logit")
quasipoisson(link = "log")
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Examples
> Normal: (i 1 0%) = 3 expl = (= i)}
. 2
= exp{ 1= UM (4/2)10g.02 — 4 /20 ~ (1/2) 0g y/(2m)

¢i =02 0;=pi, b(ui) = p?/20? note b" () = 1

» Binomial: f(r;; p;) = (T’)p,-"ﬁ —p)™ 7 yi=r/m;
]
= exp[m;yilog{pi/(1 — p;)} + milog(1 — p;) +log ()]

¢i=1/m;, 0;=log{pi/(1 —pi)}, b(pi)=—log(1—pi)
Note p; = i = E(yi)
» ELM (p.115) uses aj(¢) in place of ¢, later (p.117) ai(¢) = ¢/ w;; later
(p-118) w; used for weights in IRWLS algorithm;
SM uses ¢;, later (p. 483) ¢; = ¢a;
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Inference using Blackboard Notes, Feb 11
> ((Biy) = LSO 1 c(y, 00))

b'(0;) = iz 9(ui) = g(b'(0;)) = ni = x/ B
_ 9U(B:y) Zae 00; Zy,-—b’(a,-)@

v

08, 20, 05; a5;
(BN (0) 5 = x5 = o 1) V() See Side 2

L oUBY) o = N~ YiTHi
0B, Z ¢lg i )V i) X Z a;ig’ (i) V (1i) Xi

when ¢; = aip

» matrix notation:
olp) _on B
86 _XTU(B)v X_GBT’ U—(U1a-~-aun)
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Scale parameter ¢;

» in most cases, either ¢; is known, or ¢; = ¢a;,
where a; is known

» Normal distribution, ¢ = o
» Binomial distribution ¢; = m;"’
» Gamma distribution, ¢ = 1/v

. 2B y) =S
oJs) =2 g GV ¢>:Q =2 a;g' (1) V(Mi)XU

when ¢; = g;j¢

» if 6; = g(p;) canonical link, then g’(u;) = 1/V(;), and

YiXi = YilliXij
pORA S

STA 2201: Applied Statistics I February 11, 2015



Solving maximum likelihood equation
» Newton-Raphson: ¢/(8) = 0 ~ ¢/(8) + (8 — B)¢"(B)

defines iterative scheme
> BED = O — {r(BO)1e(3)

» Fisher scoring: —¢"(5) «— E{—¢"(B)} = i(5)

many books use /(3)

> BN = B0+ (i(B0)} e (B0)

» applied to matrix version:
XTu(B) = 0 = Xu() + (5 — pyx+ 240

95T slide 5

» change to Fisher scoring: 3 = 8+ i(8)" ' X"u(3)
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. maximum likelihood equation
> B=pB+i(8)""Xu(B)

PPUBy) —b"(0;) (%) <39/> yi—b(0) 8%
omom 2= \og)\am ) T2 5 o50n

_825(5?Y) _ V(1) Xij Xik XijXik
E( 0,0k ) B Z oi 9 (i) V(i) 9’ (i) V(i) Z i{g’ (i) Y2V (i)
B o= B+ (XTWX)TXTU(B) = (XTWX) T {XTWXB + XTu(8)}
— (XTWX) T XTWXB + W u())
= (X"WX) ' X"Wz

» does not involve ¢,;

» iteratively re-weighted least squares W, z both depend on
» derived response z = X3+ W~ 'u linearized version of y
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Nonlinear least squares SM§10.2

>

>

>

yi ~ N(ui, 0®), independently, i =1,...,n
generalized linear model with 6; = p;
link function g(u;) = xj 3 = n; is non-canonical link

can be more natural to think of
Yi=ni(B)+e,i=1,....n ¢~ N(O,O‘Z)

as with gims 3 can be computed by iteratively re-weighted
LS

b= (XTWX)TXTWz X = X(B) = ag(f)
LAY

as before W = W(B) = diag(w;); w; = E(—92(;/0n?)
as before z = z(3) = (XB+ W Tu);  ui(B) = d¢;(n)/dn;
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Calcium data: Example 10.1

10.1 - Introduction

Table 10.1  Calcium
uptake (nmales/img) of Time (minutes) Calcium uptake (nmoles/mg)
cells suspended in a

solution of radivactive

calcium, as a function of 045 034170 —0.00438  0.82531
time suspended (minuies) 130 177967 005384 0.64080
(Ranlings, 1983, p. 403). 240 175136 127497 1173%2
4.00 U273 260958 257429
610 317881 300782 267061
8.05 305959 394321 343726
1115 480735 335583 278300
13.15 513825 470274 425702
15.00 360407 415029 342484

Figure 10.1 Calcium .
uptake (nmoles/img) of 5 ° ..
cells suspended in a g
solution of radioactive E < . b
calcium, as a function of ° .
time suspended (minutes). E - . .

E o R

2 . :

g o

Bl .

E .

A

o .

] .

o |
[+] 5 10 15

STA 2201: Applied Statistics Il February 11, 2015 10/24



... calcium data

>

model
E(yi) = Bo{1—exp(—xi/B1)}, Vi = E(yi)+ei, €i ~ N(0,0?)

» fitting:

n

: 2
min i — N
Bo,B1 j:Z1(yl 77/)

use nls or nlm; requires starting values

> library (SMPracticals); data(calcium)

> fit = nls(cal ~ b0*(l-exp(-time/bl)), data = calcium, start = list (b0=5,bl=5))
> summary (fit)

Formula: cal ~ b0 » (1 - exp(-time/bl))

Parameters:
Estimate Std. Error t value Pr(>|t])
b0 4.3094 0.3029 14.226 1.73e-13 #*x*

bl 4.7967 0.9047 5.302 1.71e-05 xx*
Signif. codes: 0 ‘xxx’ 0.001 ‘xx’ 0.01 '+’ 0.05 .7 0.1 " 1
Residual standard error: 0.5464 on 25 degrees of freedom

Number of iterations to convergence: 3
Achieved convergence tolerance: 9.55e-07
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... calcium data

[=) Figure 104 Fitofa
- nonlinear model to the
@© ) calcium data. Upper left:
o contours for £,(f. ).
© Upper right: contours for
T ®© E S Lo, 1), where
3 [} 1 = 1/ Lower left:
E-=] _'% = standardized residuals
o plotted against time.
= o Lower right: plot of Cook
=] statistics against
° hj(1 — h), where & is
o = leverage.
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... calcium data

» there are 3 observations at each time point
» can fit a model with a different parameter for each time:
E(yi) =mni+ei
» the nonlinear model is nested within this; constrains n; as
above
anova (lm(cal ~ factor(time), data = calcium))

> Analysis of Variance Table

Response: cal

Df Sum Sg Mean Sg F value Pr (>F)
factor (time) 8 48.437 6.0546 22.720 6.688e-08 **x*
Residuals 18 4.797 0.2665

> deviance (fit) # 7.464514 (mistake in Davison)
> sum(residuals (fit) "2) # 7.464514
> (7.464514 - 4.797)/(25 - 18) # 0.3811
.3811/.2665
] 1.429919 ## Davison has 1.53
pf(1.430,7,18, lower=F)
] 0.2538313

>
[1
>
[

1
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calcium data

» checking constant variance assumption
» estimates of o2 at each time, each with 2 degrees of

freedom
> s2 = tapply(calcium$cal, factor(calcium$time), var)

> s2

> s2
0.45 1.3 2.4 6.1 8.05

0.17367258 0.34616902 0.09523507 0. 09422579 0.06686923 0.19656739
11.15 13.15 15

1.08876166 0.19415027 0.14279290

v

plot (sort (s2),gchisq((1:9)/10,2))

qehisq((1:9)/10, 2)
°

Son(s2)
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Diagnostics ELM §6.4
> residuals rp; = (y; — fi;)// V(i) E() = . Var(y) = oV (i)

» rpj = sign(y; — i)V d; ¥r3 = X2, ¥r = Deviance

» response residuals: y; — y; not usually of interest
» working residuals: residuals in last iteration of weighted LS
myglm$residuals

» instead use
residuals (myglm, type = c("deviance",
"Pearson"))

» plot residuals in the usual way: look for non-constant
variance, outliers

» plot residuals vs linear predictor; use ggnorm or
halfnorm for outliers
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... diagnostics

>

>

linear model y = X3 +e: y = X3 = X(X"X)"'XTy
hat matrix H = X(X"X)~' X7

generalized linear model: 3 = (X"WX)~'X"Wz
hat matrix H = W'/2X(X"WX)~1 X" W'/2

leverage of point i = Hj; = h;
influence (myglm) Shat

measures influence of y; on fitted model

in the IinAear model, depend only on X; in glm, depend as
well on 3
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. diagnostics

» case influence: effect of y; on estimate of 5
» influence (myglm) $coef n x p matrix
» Cook’s distances:
2 ~ A~
Dj = —{€(B) — €(B-i}
p
» effect of case i on the ‘average’ estimation of
g h
Di~——' 2
" op(1—hy) P
hi = Hi: H= W'"2X(X"WX)~ ' XTW'/?
» cooks.distance (myglm)

see ELM §6.4 for partial residuals, equivalent expresson for D;
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Choosing models

» generalized linear models have two structural components:

» the probability distribution for the response  or just mean and
variance

» the regression component: how does the response depend
on x

» it is often very helpful to separate these two features

» probability distribution depends on: convenience, standard
in the field, consistency with known generating
mechanisms, plausible simple starting point, ...

» two or more plausible distributions may lead to same, or
different, conclusions

> see e.g. ELM example wafer p.137, where log-normal or
gamma model give same conclusions

» and motoring p.138, where they do not

» example: inverse Gaussian density arises in
boundary-crossing problems

> has V(u) = 1}

» see §7.2 where this is too rapid an increase to fit the data
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. models

» fitting generalized linear models uses only g(E(y;)) = x/3

and var(y;) = ¢ V()
recall score equation:

n
inul Z =0
i=1

1 M/)

v

B ou;
E(UI) - 07 E( 37/1,) - Var(ul)
these two properties mimic those of a log-likelihood

E(£(0)) = 0;var(¢ (0)) = —E(¢"(0))

v

v

suggests that we can use

-y a) Z/ y’_t

as a “log-likelihood”, based only on mean and variance
see §7.4 where this is used for proportion data

vy
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Example: poisson regression SM 10.28

Set2

Table 2 (Bissell, 1972) gives the numbers of faults in rolls of textile fabric. The
distribution of number of faults is of interest, especially in its relation to that
expected if faults occur at random at a fixed rate per metre.

Table 2. Numbers of faults in rolls of textile fabric

Rall No. Roll No. of Roll No. Roll No. of
length fauls length faults
{metres) (metres)
1 551 6 17 543 8
2 651 4 18 842 9
3 832 17 19 905 2
4 375 9 20 542 9
3 715 14 21 522 6
6 868 8 2 122 1
7 mn 5 23 657 9
8 630 ? 24 170 4
9 491 7 25 138 9
10 mn 7 26 m 14
11 645 6 27 35 17
12 441 8 28 748 10
13 895 28 29 495 T
14 458 4 30 16 3
15 642 10 k1 952 9
16 492 4 Er 417 2
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... Poisson regression

> data(cloth)
> cloth[1:5,]
Xy
11.22 1
2 1.70 4
32.71 5
4 3.71 14
5 3.72 7
> with(cloth,plot(x,y)) # gives Fig 10.11
> cloth.glm0 = glm(y ~ x - 1, family = poisson(link = identity), data
> summary (cloth.glm0)
Coefficients:
Estimate Std. Error z value Pr(>|z|)
0.08962 16.85 <2e-16 *x*

x 1.51024

(Dispersion parameter for poisson family taken to be 1)

Null deviance: Inf on 32 degrees of freedom
Residual deviance: 64.537 on 31 degrees of freedom
> cloth.glml = glm(y ~ x - 1, family = quasipoisson(link = identity),
> summary (cloth.glml)
Coefficients:
Estimate Std. Error t value Pr(>|t])
X 1.5102 0.1328 11.38 1.35e-12 xx%

(Dispersion parameter for quasipoisson family taken to be 2.194371

= cloth)

data = cloth)
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Quasi-Poisson model fit

Residuals vs Fitted
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Measles

Downloaded from http://adc.bmj.com/ on February 11, 2015 - Published by group.bm

Original article

" Newcomen Centre, Guy's & St
Thomas’ NHS Foundation Trust,
London, UK; 2 Biostatistics
Group, Division of Epidemiology
& Health Sciences, University of
Manchester, Manchester, UK;

3 Department of Child and
Adolescent Psychiatry, Institute
of Psychiatry, King's College
London, UK; * Behavioural and
Brain Sciences Unit, UCL
Institute of Child Health, London,

Measles vaccination and antibody res
autism spectrum disorders

G Baird," A Pickles,? E Simonoff,® T Charman,* P Sullivan,® S
D Meldrum,” M Afzal 2 B Thomas,® L Jin,® D Brown®

ABSTRACT
Objective: To test the hypothesis that measles What is already ki
vaccination was involved in the pathogenesis of autism

spectrum disorders (ASD) as evidenced by signs of a
persistent measles infection or abnormally persistent
immune response shown by circulating measles virus or
raised antibody titres in children with ASD who had been stz f e
vaccinated against measles, mumps and rubella (MMR) » Epidemiological s
compared with controls. between MMR ar
Design: Case—control study, community based.

» Public concern ab
mumps, measles
and autism spect
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