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... PSID —using 1me

From last week: those annoying degrees of freedom
not reported if you use 1mer

> mmod = lme(log(income) ~ cyearxsex + age + educ ,
random = ~ 1 + cyear | person, data=psid)
Fixed effects: log(income) ~ cyear * sex + age + educ

Value Std.Error DF t-value p-value

(Intercept) 6.674204 0.5433252 1574 12.283995 0.0000
cyear 0.085312 0.0089996 1574 9.479521 0.0000
sexM 1.150313 0.1212925 81 9.483790 0.0000
age 0.010932 0.0135238 81 0.808342 0.4213
educ 0.104210 0.0214366 81 4.861287 0.0000
cyear:sexM -0.026307 0.0122378 1574 -2.149607 0.0317
> mmod2 = lmer (log(income) ~ cyearxsex + age + educ +

+ (cyear | person), data=psid)

Fixed effects:
Estimate Std. Error t value

(Intercept) 6.67420 0.54332 12.284
cyear 0.08531 0.00900 9.480
sexM 1.15031 0.12129 9.484
age 0.01093 0.01352 0.808
educ 0.10421 0.02144 4.861
cyear:sexM -0.02631 0.01224 -2.150
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Cox & Donnelly: Model Choice (Ch. 7)

>

Mostly, we aim to summarize the aspects of interest by
parameters, preferably small in number and formally
defined as properties of the probability model

parameters of interest, directly addressing the questions of
concern; often concerning systematic variation

nuisance parameters, necessary to complete the statistical
model; often concerning haphazard variation

the choice of parameters involves their interpretability
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. parameters of interest §7.1.2

» it is essential that subject-matter interpretation is clear and
measured in appropriate units, which should always be
stated

» it is preferable that the units chosen give numerical
answers that are neither inconveniently large or small

» example: assessment of risk factors often/usually
expressed as a ratio or percentage effect

» but for public health we’'d like to know how many individuals
could be affected — this is a difference of probabilities, not
a ratio
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... choice of a specific model §7.3

>

often this will involve at least two levels of choice, first
between distinct separate families and then between
specific models within a chosen family

of course all choices are to some extent provisional

example: survival data — gamma or weibull model both
extend the exponential

example: linear regression E(Y) = 5y + 81X, or
E(Y)=1/(1 +mx)

neither, one, or both may be adequate
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. choice of a specific model

» comparisons between models are sometimes made using
Bayes factors, ... however, misleading if neither model is
adequate

» for dependencies of y on x that are curved, a low-degree
polynomial might be adequate

» but subject-matter may suggest an asymptote, in which
case E(Y) = a + ye~%* may be preferred
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... model choice with a natural hierarchy

>

polynomials provide a flexible family of smooth
relationships, although poor for extrapolation

it will typically be wise to measure the x; from a meaningful
origin near the centre of the data

example:

E(Y) = Boo + BioX1 + Bo1 Xz + B20X2 + B11X1X2 + Bo2X2
it would not normally be sensible to include 541,

and not fBog, Boe2

with qualitative (categorical) x’s, this means models with
interaction terms should include the corresponding main
effects
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... model choice
» example: E(Y) = By + B1X + BaX? + -+ - + BpxP

» example: time series AR(p)
Ye=ptp1(Ye-t = p) + o+ pp(Yep — 1) + et

» for a single set of data choose the smallest order
compatible with the data, using standard tests

» for several sets of data, usually would choose the same
order for each set
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... choosing among explanatory variables

>

response y, potential explanatory variables xy,. .., Xxp

» suppose interest focusses on the role of a particular

>

variable or set of variables, x*

the value, standard error, and interpretation of the
coefficient of x* depends on which other variables are
included

variables prior to x* in the generating process should be
included in the model unless...

unless these variables are conditionally independent of y,
given x* (and other variables in the model)

OR unless they are conditionally independent of x*, given
other variables in the model

variables intermediate between x* and y are omitted in
initial assessment of the effect of x*

but may be needed later to study the pathways of

Aanandanca
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... choosing among explanatory variables

>

relatively mechanical methods of choosing may be helpful
in preliminary exploration, but are insecure as a basis for
final interpretation

explanatory variables not of direct interest, but known to
have a substantial effect, should be included

several different models may be equally effective

if there are several potential explanatory variables on an
equal footing, interpretation is particularly difficult

A two-phase approach:

First search among a large number of possibilities for a
base for interpretation

Second check the adequacy of that base

STA 2201: Applied Statistics I March 7, 2014

10/22



First phase: a broad strategy

» Xx*, required explanatory variables; X some potential further
explanatory variables
» X conceptually prior to x*

» fit a reduced model with x* only Meq

» fit, if possible, a full model with x* and X My,

» compare the estimated standard errors of the coefficients
for x* under the two models

» if these are of the same order, then My, is safer

» if precision improvement under M4 seems substantial,
then explore eliminating some of x

» for example with backwards elimination

» with emphasis on the effect of x*
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Second phase: adequacy of the model

add back selected components of the omitted variables X
to check that conclusions are not changed

or to report on the differences if they are

if the model to date has been linear, may be important now
to check some curvature terms, for continuous xs, and
interaction terms for categorical xs

» these provide a ‘warning system’, but not usually direct
interpretation

v VvyVvYyy

» interpretation of coefficients, especially in observational
studies, needs care

» example: x includes several measurements of smoking
behaviour: yes/no; years since quitting; no. of cigarettes
smoked; pipe/cigar; etc.

» role of these depends on the goal of the study —
confounder? primary exposure?
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Semiparametric Regression §10.7

» model y; = 9g(x;)) +¢, j=1,...,n Xx;scalar

v

mean function g(-) assumed to be “smooth”

v

introduce a kernel function w(u) and define a set of
weights
1 Xj — Xo
=R\ Th

estimate of g(x), at x = xo:

v

St WY
Yo W

Nadaraya-Watson estimator (10.40) — local averaging

9(x0) =

v
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. kernel smoothing

» better estimates can be obtained using local regression at

point x
| 2
» | Bo £l
(m) (l (lexo) (X:—.xn))(ﬁl) (Ez)
N : : o B K
a I (xp—xp) --- (x4 —xp) B 5
>
B=XTwx)'XTwy
>

A

9(x0) = fo
» usually obtain estimates g(x;),j=1,...,n
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... kernel smoothing

>

odd-order polynomials work better than even; usually local
linear fits are used

kernel function is often a Gaussian density, or the tricube
function (10.37)

choice of bandwidth, h controls smoothness of function
kernel estimators are biased

larger bandwidth = more smoothing — increases bias,
decreases variance

some smoothers allows variable bandwidth depending on
density of observations near xg

ksmooth computes local averages; 1oess computes local
linear regression (robustified)
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Inference after fitting smooth functions
» B=XTWX)"1XTwy

» W =diag(ws,...,wn)
> 9(x0) = o = >oim1 S(x0; xj, h)y;

» S(xo; X1, h), ..., S(Xo; Xn, h) first row of “hat” matrix
XTWX)~ ' XTw

> E{9(x0)} = X114 S(x0: Xj, h)g(x;)
> var{g(xo)} = o® XLy S(Xo; X;, h)?
> similarly g = (9(x1), ..., 9(Xn)) = Spy

> vy =1tr(Sp), 1o = tr(S] S}, potential estimates of ‘degrees of
h
frandam’
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Bias and MSE

» J(x) is biased: E{g(x)} = %hzg”(X)

52
var{g(x)} = nhf(x)/wz(u)du

v

could choose h to minimize MSE = bias? + var, at x
could choose h to minimize integrated MSE

v

more usual to use cross-validation

v

CV(h) = {yi— g9}
j=1
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. bias and mse

CV(h) = > {y; - §(x)}?
j=1
" " [ y- 8092
CV(h) = ; { 11_ 3}.}.(,17)}
" " y-a0%) \°
cev =3 AP isy )

n
9(x0) = o =) S(x0: x;. h)y;
j=1

» S(Xo; X1, h), ..., S(Xo; Xn, h) is first row of (X"WX)~'X"W
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Figure 10.16 Smooth
analysis of earthquake
data. Upper left: local
linear regression of
magnitude on log intensity
just before quake (solid),
with 0.95 pointwise
confidence bands (dots).
Upper right: generalized
cross-validation criterion
GCV(h) as a function of
bandwidth i. Lower left
relation between degrees
of freedom vy (solid), vy
(dots), and h. Lower right:
significance traces for test
of ne relation between
magnitude and log
intensity, based on
chi-squared
approximation (dots) and
saddlepoint
approximation (solid).
The horizontal line shows
the conventional 0.05
significance level.




288 6 - Stachastic Model

and has form (). This is he hazard ity of interval
lengths, f. i

among successive inlervals between events, lhough it may be clear from the context
that these are independeat. 1f independent and stationary, they can be treated us
F and i way. .

Example 637 Inabinh intensity at time r depends on

then ay le) = fiy + fyn, where f, = 0, The complete intensity function is 1.
jumps i if i = 0 the process is a homogeneots
.

Poisson process.

Before piving 2 numerical example, we briefly describe two functioas usefal for

Y processes.
“The variance-time curve is Gefined as Vi) = var{N(n)J, for > 0. e
neous Poisson process of intensity 5 has V'{r) = i, comparisons with which may be
informative. Estimation of V(e)is described in Problem 6.12.
“The conditional intensity function i defined as
myle) = lm (0-PrING.1 450 > 0| Ni-8.0) > 0). ¢ >0,

which gives the inteasity of events at + conditionally on there being an event at the
origin. Evidently m ;(r) = 5 for 1 homogeneous Poisson process. An event 2t time 1
need not be the first event after that at the origin.

Example 638 (Japanese earthquake data)  Figure 6 19 shows the times and mag-

ofthe Hokksido.
‘The figure shows all 483 eantbquakes of magnitude 6 or more on the Richter scale
in e o 1885-1950, abo 5 cmors g Yeas, 0 of the o sismically

of Japan. A o faisly evenly sad suggests
be regarded us sttionary: We ke days
as the units, giving f, = 35,175.

This is a marked point process, 25 in adition 1o the event imesthere is 3 mark —
<h<o<h<n
. my, their joint density may be written

and the associated magnitudes i,

| R B ES] § IO CRTTEe ©42)
= =

where ;1) and ;1) fepeesent ... ¢;-1 and ... .1, Here we concen-
trate on inference for the imes using the second lerm. leaving the magnitudes 0
Examples 10.7 and 10.31. The lower panels of Figure 619 show the estimated
vasiance-time curve and conditional inteasity function for the times, which are are
clearly far from Poisson. The variance-time curve grows more quickly than for
a Paisson process, indicating clustering of events, and this is confirmed by the
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Ay =p+ Y wl -
i

where, foru >
Here the intensity at any time s affectad by the occurrence of previous events; often
) z i

distant ones, This may be interpreted as asserting thal eveats oceur in clusters, whose
centres occur as a Poisson process of rate 1. Subsidiary eveals are then spawned
by the inceease in inteasity that occurs due o the superposition of the wiz — 1) for

m; also. aking

e
Wit =t = e
- tim) =ty +p0 ’

where p. y. x. f. 1 > 0, with Under this formalation the increase in intensity
depends not only on the time since an event but also on its magnitide.
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