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» HW 4: due April 11

v

Final Exam: April 11 2:00 — 5:00 pm SS 1085
in the news
» semi-parametric regression
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March 28: §10.8; proportional hazards regression
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In the News
Globe and Mail March 17

Home » News » National

How losing 18,000 people made
Manitoba $100-million poorer

JOE FRIESEN

DEMOGRAFPHICS REPORTER — The Globe and Mail
Published Monday, Mar. 17 2014, 6:00 AM EDT

Last updated Monday, Mar. 17 2014, 6:00 AM EDT
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Smoothing regressions?

>

kernel smoothers fit locally weighted polynomials, using a
kernel function as weights

in R can use ksmooth (base) or sm.regression in
library (sm)

a more robust version is implemented in 1oess (base)
kernel smoothing useful for graphical summaries, for
exploring effect of bandwidth, for single explanatory
variable

refinements (in addition to loess), include adaptive
bandwidth, running medians, running M-estimates
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... sSmoothing regressions

>

regression splines use a set of basis functions, and fit

E(y | X) = Zm-1 Bmbim(x)

natural splines and B-splines are popular choices

once the basis functions are chosen, fitting is by 1m or g1lm

you choose the number of basis functions for each
explanatory variable

implemented inRinns (x, df = 4) and

bs (x, df = 4)

generalizations include different types of basis functions,
e.g. Fourier basis (sine and cosine)

e.g. wavelet basis (good for extracting local behaviour)
standard errors are computed by the usual methods

for imand glm
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... wavelets

Vidakovi¢ and Mueller, "Wavelets for kids (Part 1)” 1994.
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http://gtwavelet.bme.gatech.edu/wp/kidsA.pdf

... Smoothing regressions

cubic smoothing splines put knots at each observations
and shrink coefficients 3, by regularization

v

v

v

popular because they provide smooth fits
popular because they are “optimal”:

v

n b
min Y-y - o) - A [ (g (Pt x>0
j=1 2

v

has an explicit, finite-dimensional solution:
min (y - 9)" (v - g) + Ag"Kg

» g={9(x1),...,9(xn)}
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... Smoothing regressions

» gamin library (gam) fits cubic smoothing splines
Hastie, Tibshirani & Friedman, Ch. 5

gamin library (mgcv) fits penalized regression splines
Wood, 2001

v

v

see also help files for gam (mvcv)

v

estimation of standard errors is more straightforward in
gam (mvcv)

v

excellent explanation in Appendix A of
Peng R., Dominici F., Louis T., (2006) JRSS A, 169, 179-203
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... sSmoothing regressions

» generalized to several explanatory variables by smoothing
each variable separately

» generalized to likelihood methods by replacing
>_{yj — g(x;)}? by 3= log f{y;i nj}

> nj = g(x) or
nj = g1(X1j) + ga(Xj) + - - - + gp(Xp;) OF
nj =X 8+ 9(t)

» lastis used in §10.7.3 for spring barley data:

Ywb = 9b(twp) + By + €wp

» allow block effects to depend on location (t,)
in a 'smooth’ way
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Figure 10.19 Spring
barley data analysis. Left
panel: yield y as a
function of location x for
the three blocks. Yields
for blocks 2, 3 have been
offset by adding 4, 8
respectively. The smooth
solid lines are the fits of
polynomials of degree 20,
10 and 40 to the data from
blocks 1, 2 and 3. Upper
right: yields for block 1,
with smoothing spline fit
with 18 degrees of
freedom. Lower right:
cross-validation (solid)
and generalized
cross-validation (dots)
criteria for smoothing
spline fits to blocks 1, 2
and 3. with minima at
roughly 20, 10 and

40 equivalent degrees of
freedom.




Figure 10.20 Spring
barley data analysis.
Block 1 is shown on the
left and block 3 on the
right. The panel shows,
from the top, the original
yields y, the fertility trend
and variety effect
estimates 3, (¢) and B,
both offset for display,
and the crude residuals.
The varieties with the ten
largest Ev are marked.
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Multidimensional splines

>

>

so far we are considering just 1 X at a time

for regression splines we replace each X by the new
columns of the basis matrix

for smoothing splines we get a univariate regression

it is possible to construct smoothing splines for two or more
inputs simultaneously, but computational
difficulty increases rapidly

these are called thin plate splines

implemented in gam (mgcv) asbs = "tp"
ins(xl,x2, ...)
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Which smoothing method?

» basis functions: natural splines, Fourier, wavelet bases
» regularization via cubic smoothing splines

» kernel smoothers: locally constant/linear/polynomial
» Faraway (2006) Extending the Linear Model:

» with very little noise, a small amount of local smoothing

» with moderate amounts of noise, kernel and spline methods
are effective

» with large amounts of noise, parametric methods are more
attractive

» “lt is not reasonable to claim that any one smoother is
better than the rest”

» loess is robust to outliers, and provides smooth fits

» spline smoothers are more efficient, but potentially sensitive
to outliers

» kernel smoothers are very sensitive to bandwidth
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Example: health effects of air pollution

Model choice in time series studies of air pollution and mortality |
F

Roger D. Peng, Francesca Dominici,

Thomas A. Louis

Avrticle first published online: 14 FEB 2008
DOI: 10.1111/].1467-985X.2006.00410.x

Additional Information (Show All

Journal of the Royal
Statistical Society: Series A
(Statistics in Society)

Volume 169, Issue 2, pages
179-203, March 2006

In this issue
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The NMMAPS studies

» 90 largest cities in US by population (US Census)

» daily mortality counts from National Center for Health
Statistics 1987-1994

» hourly temperature and dewpoint data from National
Climatic data Center

» data on pollutants PM;q, O3, CO, SO,, NO, from EPA
» response: Y; number of deaths on day t

» explanatory variables: X; pollution on day t — 1, plus
various confounders: age and size of population, weather,
day of the week, time

» mortality rates change with season, weather, changes in
health status, ...
Peng R., Dominici F., Louis T., (2006) JRSS A, 169, 179-203
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... the NMMAPS studies

> Y: ~ Poisson(ut)

» log ut = age specific intercepts + gPM; + vDOW +
g(t, df) + s(tempy, 6) + s(temp;_1,6) + s(dewpoint;, 3) +
s(dewpoint;_1,3) + s4(dewy, 3) + ss(dew;_3,3)

» three ages categories; separate intercept for each
(< 65,65 —74, > 75)

» dummy variables to record day of week

» s(x,7) a smoothing spline of variable x with 7 degrees of
freedom

» estimate of § for each city; estimates pooled using
Bayesian arguments for an overall estimate

» very difficult to separate out weather and pollution effects

see also: Crainiceanu, C., Dominici, F. and Parmigiani, G. (2008).

Adjustment uncertainty in effect estimation. Biometrika 95 63551
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Air Pollution and Mortality 191
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Fig. 3. Sensitivity analysis of the national average estimate of the percentage increase in mortality for an
increasein PMyg of 10 ugm 3 atlag 1: city-specific estimates were obtained from 100 US cities using data for
the years 1987-2000 and the were by using a normal model (&, GLM-NS;
A, GAM-R; X, GAM-S; M, 95% posterior intervals for the estimates obtained by using GLM-NS)
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Fitting generalized additive models

R package mgcv; functions gam and gamm
> dat = gamSim(1l,n=400,dist="normal", scale=2)
> b = gam(y 7 s(x0) + s(x1)+s(x2)+s(x3),data = dat)

> plot (b,pages=1,seWithMean = T, residuals=T)

y = 2sin(mxo) + exp(2x1) + poly(xs, degree = 11) + ¢

Reference: Wood (2006) Generalized Additive Models: An
Introduction with R.
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Shrinkage Methods HTF §3.4

» Ridge regression
Bis = (XTX)7'XTy
Bridge = (XTX + /\/)71XT,V
> can show that fqge satisfies
mﬁin (Z{J// —Bo— Z/p:1xij5j}2 + )\Zf:1ﬁ,'2)
mﬂin Y{yi— fBo — z;’:1x,-,-5,-}2 st EpF <t
>

Assume x;'s are centered and put these in matrix X (with
no column of 1’s:

min(y - XB)T(y—XB) stlBlIF<t
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... ridge regression

>

min{(y - X8)T(y — XB) + N8|}

» \is a tuning parameter: A = 0 gives (5, A — oo

» inRthe library MASS library (MASS) has aridge
regression version of 1m called 1m.ridge

» if columns of X are nearly linearly dependent
(multicollinearity), 8’s for these columns should be shrunk
towards O.

» essential that the predictors are all scaled to the same units
» this is difficult for interpretation of the coefficients
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Xﬁ/\r/dge = X(XTX + )‘l)_1XTy
= UbVvT(vD2VT + A)~'VDUTy
= ubvT(vD?vT + Aavv~'vDUTy
= UD(D?+\)"'DUTy

2

T

i )y

_ , J
= M=y

2

d-:
di(A) = a[X(XTX + AN X =P
=hdf + A

df()\) called effective number of parameters
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Coefficients

T T
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FIGURE 3.8. Profiles of ridge coefficients for the prostate cancer erample, as
the tuning parameter A is varied. Coefficients are plotted versus df (A), the effective
degrees of freedom. A wertical line is drawn at df = 5.0, the value chosen by
cross-validation.



Lasso

>

min (00— 6o — 0552 + TP,
>

min>{y — fo - I x5} st TIF <t
» quadratic programming problem
> j'asso is nonlinear function of y
» Tibshirani (1996), JRSS B and (2011), JRSS B
» http://http:

//www—stat .stanford.edu/~tibs/lasso.html
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FIGURE 3.10. Profiles of lasso coefficients, as the tuning parameter t is varied.

Coefficients are plotted versus s =t/ 3.7 |35]. A vertical line is drawn at s = 0.36,
the value chosen by erass-validation. Compare Figure 3.8 on page 65; the lasso



... shrinkage

» ridge regression gives “proportional shrinkage”

» subset selection gives “hard thresholding” (some 3; — 0)

» lasso gives “soft thresholding”: blend of shrinkage and
zeroing

» elastic net combines lasso and ridge regression

1Y 14
min D= Bo =T+ M Y (G + Ay B

j=1 j=1
» implementedinRin library (glmnet)

» estimates of coefficients are biased (but may have small
mean-squared error)

» Lasso is now used as a variable selection method

» improvements in algorithms allow fast computation even for
p>n
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Prostate data Ch.3, HTF

v

prostate <- read.csv(file="prostate.data",sep="\t")

> rm(try)
> head (prostate)

X lcavol 1lweight age lbph svi lcp gleason pgg45
11 -0.5798185 2.769459 50 -1.386294 0 -1.386294 6 0
2 2 -0.9942523 3.319626 58 -1.386294 0 -1.386294 6 0
3 3 -0.5108256 2.691243 74 -1.386294 0 -1.386294 7 20
4 4 -1.2039728 3.282789 58 -1.386294 0 -1.386294 6 0
55 0.7514161 3.432373 62 -1.386294 0 -1.386294 6 0
6 6 -1.0498221 3.228826 50 -1.386294 0 -1.386294 6 0

lpsa train
-0.4307829 TRUE
-0.1625189 TRUE
-0.1625189 TRUE
.1625189 TRUE
0.3715636 TRUE
0.7654678 TRUE
> xp <- scale(prostate[,2:9])
> y <- prostatel[,10]
> train <- prostate[,11]
## standardize data; y is the response (log psa); extract training data
##
> library (glmnet)
> pr.lasso <- glmnet (xp[train,],y[train])
> plot (pr.lasso)

oUW N
|
o
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... prostate data
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... prostate data
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