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CBC News

Can a new test to identify the likelihood of
Alzheimer's lead to better treatment?

Wednesday, March 12, 2014 | Categories: Episodes [0 0

I (244 ] | Tweet (22 g1 17 [ share 288

earchers at Georgetown University announced the discovery o a blood test that can predict whether someane will develop
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http://www.cbc.ca/thecurrent/episode/2014/03/12/can-a-new-test-to-identify-the-likelihood-of-alzheimers-lead-to-better-treatment/

Nature Medicine News Release

nature Inte: tional weekly journal of seience
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o om0 e e 3

< = e
Biomarkers could predict Alzheimer's before it starts

Study identifies potential blood test for cognitive decline.
Alison Abbott
09 March 2014
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Nature Medicine Advance Publication
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http://www.nature.com/nm/journal/vaop/ncurrent/full/nm.3466.html

Nature Medicine

» 525 patients, followed for five years

» 46 patients had AD or pre-AD(“aMCI”) at entry; 28
converters

» in year 3 53 patients with aMCI/AD selected for plasma
testing

» matched with 53 normal controls

» looked for biomarkers of disease, using logistic regression
and lasso

» used the most promising to test on a further set of 21
patients with 20 matched controls

» ROC curve: plot of sensitivity (True Positives) against 1-
specificity (False Positives) as cut-off varies
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http://www.nature.com/nm/journal/vaop/ncurrent/fig_tab/nm.3466_F2.html

... hature medicine

Figure 2 ROC results for the lipidomics a s b 4 [ %
analyses. (a—c) Plots of ROC results from i Uniarpetedilecovery il Lemeted niscouery A Larocted valdon
the models derived from the three phases J

of the lipidomics analysis. Simple logistic 08 ’—‘ 0.8 08

models using only the metabolites identified

in each phase of the lipidomics analysis 06 06 0.6

were developed and applied to determine e - P

the success of the models for classifying the g

Cpre and NC groups. The red line in each 02 02 02

plot represents the AUC obtained from the AUG = 0.96 (95% Cl 0.93-0.99) AUC = 0.96 (95% Cl 0.93-0.99) AUG = 0.92 (95% Gl 0.87-0.9
discovery-phase LASSO analysis (a), the 0 0 0

targeted analysis of the ten metabolites in 0 02 04 06 08 10 0 02 04 06 08 1.0 0 02 04 06 08

the discovery phase (b) and the application
of the ten-metabolite panel developed from the targeted discovery phase in the independent validation phase (c). The ROC plots represent sensitivity
(i.e., true positive rate) versus 1 — specificity (i.e., false positive rate).
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Lasso for choosing explanatory variables

» penalized least squares

min (T4 — o — 0512 + X7, 15
» equivalent to

minT{yi — fo — T xp5)° s TIg| <t

» quadratic programming problem
» [3/ass0 is nonlinear function of y

Tibshirani (1996), JRSS B and (2011), JRSS B
> http://www-stat.stanford.edu/~-tibs/lasso.html

» extends to generalized linear models, implemented in
glmnet
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http://www-stat.stanford.edu/~tibs/lasso.html

Extensions of semi-parametric regression

» original model y; = g(x;) + ¢

» fit by local polynomial regression: A

9(x0) = Bo + B1(Xj — Xo) + -+ + Br(X — x0)¥,  9(X0) = Bo
» 3 maximizes

1 Xj — Xo
(B, X0, h) =) i <Ih> tj(B, 0 Xo)
> 4(B,0:X0) = — 55 {¥;— Bo— B1(Xj — Xo) — - - - — B (X — X0)¥}2
—logo?

» local log-likelihood fitting
| 2

extend to more general models by replacing ¢; by the
appropriate log-likelihood contribution

STA 2201: Applied Statistics I March 14,2014



Example 10.32
» toxoplasmosis data; response — incidence;
x — yearly rainfall SM Figure 10.12
> yj=r/m;, 1 ~Binom{mx(x;)}

> m(x) = exp[f(x)/{1 + exp{d(x)}]
> 0(X) = Bo+ B1(x — Xo) + -+ + Br(X — X0)K /KL, O(x0) = fo
» local log-likelihood

0(B; X0, ) =) %W (X/ ;X()) mi{yx[ 8 —log(1 + €97)}

» or possibly allow for over-dispersion

1 [ j T
08, 61 X0, 1) = ZEW <Xl hXo> IZ/{YijTB—bg(‘I +e57))
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Example 10.32

528 10 - Nonlinear Regression Models

Figure 10.17  Local fit
to the toxoplasmosis dat;
The left panel shows fitt
probabilities 7 (x), with
the fit of local linear
logistic model with

h = 400 (solid) and 0.95
pointwise confidence
bands (dots). Also showr
is the local linear fit witk
h = 300 (dashes). The
right panel shows the loc
quadratic fit with h = 40
and its 0.95 confidence
band. Note the increased
1600 1800 2000 2200 2400 1600 1800 2000 2200 2400  Veriabilitydue tothe
quadratic fit, and its

Rainfall (mm) Rainfall (mm}) stronger curvature at the
boundaries.

1.0
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Proportion positive

Proportion positive
00 02 04 06 08

00 02 04 06 08

STA 2201: Applied Statistics Il March 14, 2014 11/37



.. Ex10.32

> library (mgcv)

> library(SMPracticals)

> data (toxo)

> ?2gam

> toxo.gam <- gam(cbind(r,m-r) ~ s(rain), family = binomial, data = toxo)
> summary (toxo.gam)

Family: binomial
Link function: logit

Formula:
cbind(r, m - r)

s (rain)

Parametric coefficients:
Estimate Std. Error z value Pr(>|z])
(Intercept) -0.09015 0.08573 -1.052 0.293

Approximate significance of smooth terms:
edf Ref.df Chi.sg p-value
s(rain) 6.515 7.57 23.05 0.00259 =%

> par (mfrow=c(2,2))
> toxo.gam$sp

s (rain)
0.008141828
> plot (gam(cbind(r,m-r) ~ s(rain),sp=toxo.gam$sp, family = binomial, data = toxo), residuals=
> plot (gam(cbind(r,m-r) ~ s(rain),sp=0.05, family = binomial, data = toxo), residuals=TRUE, p
> plot (gam(cbind(r,m-r) ~ s(rain),sp=0.5, family = binomial, data = toxo), residuals=TRUE, pc
> plot (gam(cbind(r,m-r) ~ s(rain),sp=1, family = binomial, data = toxo), residuals=TRUE, pch=

STA 2201: Applied Statistics Il March 14, 2014 12/37
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... Ex10.32

>

gam uses spline smoothing terms, rather than local
polynomials

smoothing parameter replaces bandwidth h

kgplmin librarygplm computes kernel smooths, but for
Bernoulli data

note from output that ¢ = 1
quasibinom is a valid choice of family

gives estimate of ¢ as 1.8 (with default choice of
smoothing)

smooth fit no longer significant

STA 2201: Applied Statistics I March 14,2014
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. Ex10.32

» estimation of smoothing parameter using generalized
cross-validation

or generalization of AIC

v

| 4
~ 2
_ yi —9(x)
sovin = S { gy
>
B .0 14tr(Sp)/n
AIC;(h) = nlog 5<(h) + ni— (S, + 21/n

» for generalized linear models

14+1tr(Sp)/n
1 —{tr(Sp) +2}/n

AICq(h) = " di{y;: py(h)} + n

STA 2201: Applied Statistics I March 14,2014 15/37



Flexible modelling using basis expansions 1072
>y =9(X%) +¢

v

Flexible linear modelling
9(x) = Zh_1 Bmhim(x)

This is called a linear basis expansion, and hy, is the mth
basis function
For example if X is one-dimensional:

9(x) = Bo + Bix + B2X?, or
9(x) = Bo + B sin(x) + B2 cos(x), etc.

v

v

v

Simple linear regression has hy(x) =1, ha(x) = x

STA 2201: Applied Statistics I March 14,2014
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Piecewise polynomials

>

>

piecewise constant basis functions

hi(x) = I(x < &), hao(x)=1(& < x < &),
ha(x) = I(&2 < X)

equivalent to fitting by local averaging

piecewise linear basis functions , with constraints
hi(x) =1, ho(x) = x

ha(x) = (x = &)y, ha(x) = (x — &)+
windows defined by knots &1, &o, . ..

piecewise cubic basis functions
h1 (X) = 17 hz(X) =X, h3(X) = Xza h4(X) = X3

continuity hs(x) = (x — &1)3,  he(x) = (x — &)2

continuous function, continuous first and second

Aariviativiac

STA 2201: Applied Statistics I March 14,2014 17/37



Piecewise Constant Piecewise Linear

El 5‘3 El Ez

Continuous Piecewise Linear Piecewise-linear Basis Function

& 3 & £

The top left panel shows a piecewise constant function fit to some
artificial data. The broken vertical lines indicate the positions of the two knots
&1 and E2. The blue curve represents the true function, from which the data were



Piecewise Cubic Polynomials

Discontinuous Continuous

& 31 & 3

Continuous First Dervative Continuous Second Dernivative

& 31 & 3

FIGURE 5.2. A series of piecewise-cubic polynomials, with increasing orders of
continuity.



Example: earthquake data

> data (quake, package="SMPracticals")
> head (quake)
time mag
1 40.08333 6.0
2 162.38889 6.9
3 210.22917 6.0
> with(quake, plot(log(l/time),mag))## using a different measure of intensity here than in Fi
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... earthquake

> eg.gam <- gam(mag s (intensity), data = quake)
> with(quake, lines (intensity, eq.gam$fitted.values))
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... earthquake

> plot (eq.gam, residual=TRUE, pch = "o")
# standard errors plotted by default

s(intensity,2.28)
0.0 1.0 1.5 2.0

-0.5

JIIF.HIIUMMLIJUIMHI\\\\\I\ I |
T T T T T

-10 9 -8 7 -6 5 -4

intensity
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Cubic splines

v

truncated power basis of degree 3

need to choose number of knots K and placement of knots
&,... ¢k SM uses n knots
construct features matrix using truncated power basis set
use constructed matrix as set of predictors

Piecewise Gubic Polynomials

v

vy

Discontinuous Continuous

STA 2201: Applied Statisti 23/37




... cubic splines

> with (quake, bs(log(l/time)) [1:10,1)
#bs (x) with no other arguments just gives a single cubic polyn

1 2 3
[1,]1 0.0000000 0.0000000 1.0000000
[2,] 0.1018013 0.3903714 0.4989780
[3,1 0.1359705 0.4189773 0.4303434
[4,] 0.1884790 0.4408886 0.3437743
[5,] 0.2056632 0.4436068 0.3189471

attr (, "degree")

[11 3

attr(, "knots")

numeric (0)

attr (, "Boundary.knots")

[1] —-10.454784 -3.690961
attr(,"intercept")

[1] FALSE

attr(,"class")

[1] "bs" "basis" "matrix"

STA 2201: Applied Statistics Il March 14, 2014 24/37



... cubic splines

> with (quake,bs(log(l/time), df=5)[1:10,])
# gives a proper cubic spline basis, here with 5 df

1 2 3 4 5
[1,1] 0 0.00000000 0.0000000 0.0000000 1.0000000
[2,] 0 0.01110655 0.1250814 0.4247847 0.4390274
[3,1 0 0.01846075 0.1661869 0.4486889 0.3666635
[4,] 0 0.03370916 0.2283997 0.4600092 0.2778819
[5,1 0 0.03989014 0.2484715 0.4585984 0.2530400

attr (, "degree")

[1] 3

attr(, "knots")

33.33333% 66.66667%
-9.943294 -9.520987

attr (, "Boundary.knots")
[1] -10.454784 -3.690961

STA 2201: Applied Statistics Il March 14, 2014 25/37



... earthquake data

>
>
>

quake.bs = lm(mag ~ bs(log(l/time),df=5),data = quake)
quake.pred = predict (quake.bs, se.fit = TRUE, interval = "confidence")
quake.pred

$fit

1
2
3
>
>
>
>
>

mag

fit lwr upr
5.962665 5.216283 6.709047
6.279641 5.979190 6.580092
6.323859 6.042772 6.604946
lines (log(1l/quake$time), quake.pred[[1
lines (log(1l/quake$time), quake.pred[[1
lines (log(1l/quake$time), quake.pred[[1
quake.lo = loess(mag ~ log(l/time), d
quake.lopred = predict (quake.lo, se=T

[,11)
[,21, 1ty=2)
[,31, 1ty=2)

11
11
1]
ata = quake)
)

w0 w0
© 7 ° © 7 °

o o

o o

o o
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©
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Smoothing splines §10.7.2
> yi=9(t) +e, j=1,....n

v

choose g(-) to solve

mmZ{y g ~ 52 /{g” (H)Y2dt, ,A>0

v

solution is a cubic spline, with knots at each observed x;
value

see Figure 10.18 for a non-regularized solution

v

v

has an explicit, finite dimensional solution

g=1{9(t),....a(t)} = (1 + AK) 1y
K is a symmetric n x n matrix of rank n — 2

v

v

STA 2201: Applied Statistics I March 14,2014 27137
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... sSmoothing splines

v

quake$int = log(l/quake$time)
quake([1:4,]

time mag int
40.08333 6.0 -3.690961
162.38889 6.9 -5.089994
210.22917 6.0 -5.348198
303.85417 6.2 -5.716548

v

W N e

> attach (quake)

> plot (int,mag)

> quake.ss2 = smooth.spline(x = int, y = mag, df = 5)
> lines (quake.ss2, col="red")

> quake.ss3

Call:

smooth.spline(x = int, y = mag, cv = TRUE)

Smoothing Parameter spar= 1.499945 lambda= 0.0001340604 (25 iterations)
Equivalent Degrees of Freedom (Df): 11.35023

Penalized Criterion: 64.57512

PRESS: 0.1730025

> lines (quake.ss3, col="blue")

STA 2201: Applied Statistics Il March 14, 2014 29/37



... sSmoothing splines
An example from the R help file for smooth.spline:

> data(cars)

> attach (cars)

> plot (speed, dist, main = "data(cars) & smoothing splines™")
> cars.spl <- smooth.spline (speed, dist)

> (cars.spl)

Call:

smooth.spline (x = speed, y = dist)

Smoothing Parameter spar= 0.7801305 lambda= 0.1112206 (11 iterations
Equivalent Degrees of Freedom (Df): 2.635278

Penalized Criterion: 4337.638

GCV: 244.1044

> lines(cars.spl, col = "blue")

> lines (smooth.spline (speed, dist, df=10), lty=2, col = "red")

> legend (5,120, c(paste ("default [C.V.] => df =",round(cars.spl$df,1)),
+ "s( x , df = 10)"), col = c("blue","red"), 1lty = 1:2,
+ bg='bisque’)

> detach ()

STA 2201: Applied Statistics Il March 14, 2014 30/37
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Multidimensional splines

» so far we are considering just 1 X at a time

» for regression splines we replace each X by the new
columns of the basis matrix

» for smoothing splines we get a univariate
regression

» it is possible to construct smoothing splines for two or more
inputs simultaneously, but
computational difficulty increases rapidly

» these are called thin plate splines

» alternative:
E(Y [ Xi,...,Xp) = fi(X1) + B2(X2) + - + fo(Xp)
additive models

» binary response:
|Og|t{E(Y | Xi,... ,Xp)} = f1(X1) + fg(Xg) + -+ fp(Xp)
generalized additive models
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Which smoothing method?

vVvyVYyywy

basis functions: natural splines, Fourier, wavelet bases
regularization via cubic smoothing splines
kernel smoothers: locally constant/linear/polynomial
adaptive bandwidth, running medians, running
M-estimates
Dantzig selector, elastic net, rodeo (Lafferty & Wasserman,
2008)
Faraway (2006) Extending the Linear Model:
» with very little noise, a small amount of local smoothing
(e.g. nearest neighbours)
» with moderate amounts of noise, kernel and spline methods
are effective
» with large amounts of noise, parametric methods are more
attractive
“It is not reasonable to claim that any one smoother is
better than the rest”
» loess is robust to outliers, and provides smooth fits
» spline smoothers are more efficient, but potentially sensitive
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http://www.jacquielawson.com/preview.asp?hdn=0&mpv=3370143&path=105741

