Today
» HW 1: due February 7, 2 pm.

January 31, 4-5 pm reserved for questions re HW
» Aspects of Design CD Chapter 2, Placebo/migraine study

» Generalized linear models: fitting, scale parameter,
over-dispersion, examples

» In the News: neuroscience reading study,
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http://www.utstat.toronto.edu/reid/2201S14.html

Design of Studies CD, Ch.2

>

>

common objectives

to avoid systematic error, that is distortion in the
conclusions arising from sources that do not cancel out in
the long run

to reduce the non-systematic (random) error to a
reasonable level by replication and other techniques

to estimate realistically the likely uncertainty in the final
conclusions

to ensure that the scale of effort is appropriate
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... design of studies

>

we concentrate largely on the careful analysis
of individual studies

in most situations synthesis of information from different
investigations is needed

but even there the quality of individual studies
remains important

examples include overviews, such as the
Cochrane reviews

in some areas new investigations can be set up and
completed relatively quickly; design of individual studies
may then be less important
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http://http://www.cochrane.org/

... design of studies

>

>

formulation of a plan of analysis

establish and document that proposed data are capable of
addressing the research questions of concern

main configurations of answers likely to be obtained should
be set out

level of detail depends on the context

even if pre-specified methods must be used, it is crucial
not to limit analysis

planned analysis may be technically inappropriate

more controversially, data may suggest new research
questions or replacement of objectives

latter will require confirmatory studies
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Unit of study and analysis

>

smallest subdivision of experimental material that may be
assigned to a treatment

Example: RCT — unit may be a patient, or a patient-month
(in crossover trial)

Example: public health intervention — unit is often a
community/school/...

split plot experiments have two classes of units of study
and analysis

in investigations that are not randomized, it may be helpful
to consider what the primary unit of analysis would have
been, had a randomized experiment been feasible

the unit of analysis may not be the unit of interpretation —
ecological bias

on the whole, limited detail is needed in examining the
variation within the unit of study
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Table S5. Structure of the eight treatment sequences and assignment of subjects to treatment

sequences

Ticitinent Treatment conditions Number of subjects

sequence” Attack 1 Attack2 Attack3 Attack4 Attack5 Attack6 Recruited Droppedout Analyzed

5 M-M M-P P-M P-P U-M U-P 10 1 9
T P-M P-P M-M M-P U-M U-pP 9 2 7
1 U-M U-P M-M M-P P-M P-P 9 2 T
3 U-M U-P P-M P-P M-M M-P 10 0 10
2 U-p U-M M-P M-M P-P P-M 9 . T
4 U-p U-M P-P P-M M-M 9 2
6 - M-M P-P P-M - U-M 10 1 9
8 -P P-M M-P M-M U-M 10 0 10
Totals 76 10 66

The 6 pill/label combinations are abbreviated as follows: the first letter (in ifalic) denotes the label (M for
‘Mazxalt’, P for ‘Placebo’, U for the unspecified ‘Maxalt or Placebo’): the second letter (in color) denotes
the actual pill (M for maxalt, P for placebo). “Sequence numbers correspond to the order they were
entered in the GLMM analyses (cf. table S6).




Avoidance of systematic error CD §2.4
» “distortion in the conclusions arising from irrelevant
sources that do not cancel out in the long run”

» can arise through systematic aspects of, for example,
a measuring process, or the spatial or temporal
arrangement of units

» this can often be avoided by design,
or adjustment in analysis

» can arise by the entry of personal judgement
into some aspect of the data collection process

» this can often be avoided by randomization and blinding
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... avoidance of systematic error

STA 2201: Applied Statistics I

CD §2.4

Table : lllustration: a comparison of T and C

Day 1 2 3 4 5 7 8
morning T T T T T T T
afternoon C C C C C C C
Day 1 2 3 4 5 7 8
morning T T T C T c T
afternoon C C C T C T C
Day 1 2 3 4 5 7 8
morning T T C T C C C
afternoon C C C C T T T

aaaaa y 24,2014



. avoidance of systematic error

» sometimes systematic error can be removed by modelling
>

Yj=n+TX 0z e, j=1,20=1,...n

. — | 1 if T used
Y71 =1 if Cused

z; = 1 morning
Zz = -1 afternoon

find least squares estimate 7 of 7

if T used pn times in morning, var(#) = ¢2/{8p(1 — p)n}
minimized at p = 1/2 compare (b) and (c) on previous slide
in (a) systematic error cannot be adjusted for;

in (b) it can be adjusted for with some loss of precision;

in (c) treatment comparison is unaffected by systematic
differences between morning and afternoon

vVvyyVvYyy
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Control and estimation of random error CD §2.5

» statistical analysis is particularly important in investigations
in which haphazard variation plays an important role
» we can lessen the impact of haphazard variation by
» use of artificially uniform material
» arranging that the comparisons of main interest compare
like with like
» inclusion of background variables
» replication
» these may impact generalizability, so depend on the
context
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Scale of effort CD §2.6

» how big should my sample be?
» key observation: var(y; — ¥») = 20%/m

» set a bound on the standard error of the most important
comparison, say ¢

» then want 202/m ~ ¢?

> i.e. m~ 202/c?

» ¢ will be to some extent determined by the magnitude of
differences of interest

» this requires fewer quantities to be set than usual power
calculations
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Migraine study revisited

7 “conditions”, or treatments

» unit of analysis?

» within patients, each attack assigned one of the 7
treatments; 1st 'treatment’ always C

» small subset of 6! choices used for each patient/block

» balanced on order, since attacks are sequential in time

» alternating M and P for for pill; repeat each envelope label
twice

» several observations in each unit, corresponding to
different patients

» model

v

log wjt = B1 + cond; + time; + cond x timej + b

Yijt = Wijt + €ijt
» family = gaussian, link = log
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Table S5. Structure of the eight treatment sequences and assignment of subjects to treatment

sequences

Ticitinent Treatment conditions Number of subjects

sequence” Attack 1 Attack2 Attack3 Attack4 Attack5 Attack6 Recruited Droppedout Analyzed

5 M-M M-P P-M P-P U-M U-P 10 1 9
T P-M P-P M-M M-P U-M U-pP 9 2 7
1 U-M U-P M-M M-P P-M P-P 9 2 T
3 U-M U-P P-M P-P M-M M-P 10 0 10
2 U-p U-M M-P M-M P-P P-M 9 . T
4 U-p U-M P-P P-M M-M 9 2
6 - M-M P-P P-M - U-M 10 1 9
8 -P P-M M-P M-M U-M 10 0 10
Totals 76 10 66

The 6 pill/label combinations are abbreviated as follows: the first letter (in ifalic) denotes the label (M for
‘Mazxalt’, P for ‘Placebo’, U for the unspecified ‘Maxalt or Placebo’): the second letter (in color) denotes
the actual pill (M for maxalt, P for placebo). “Sequence numbers correspond to the order they were
entered in the GLMM analyses (cf. table S6).







Generalized linear models: theory

yj0; — b(6;)
b

» E(y; | ;) = b/(6;) = pj defines p; as a function of 6

f(yji 1y, ¢f) = exp{ + ey 8)}

v

9(uj) = XI.TB = n; links the n observations together via
covariates

v

g(-) is the link function; 7; is the linear predictor

v

Var(y; | x) = 6b"(6)) = 6V (1))

v

V(-) is the variance function
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Examples

Normal

Binomial

Poisson
Gamma/Exponential
Inverse Gaussian

vV vy vy VvYy

¥i9; — b(6;)

)

(s 1y ¢1) = exp{ +e(ie)t B =ws var(y) = oV(w)
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Scale parameter ¢,

» in most cases, either ¢; is known, or ¢; = ¢a;,
where a; is known

» Normal distribution, ¢ =
» Binomial distribution ¢; =

» Gamma distribution, ¢ =
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Inference
> U(By) = S+ oy, 0))

v

b'(0)) = wji  9(wj) = mj = X8

v

UBiy) =2 Liini(B), y;}, say
B y) oL 877, i
> —X;
0Bk =2 %y a1y 9B =2 an;
onj  00; 377/ d’jg/(ﬂj) V(1)
matrix notation:

o ) )
a(g) XTu(B), X=aﬁ7’T, u=(ur,... Un), U=

v
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Maximum likelihood estimation

g W =X U(,B), X = 86T7 u (U17 7Un)7 U=
> linearization: X"u(B) = 0 = X"u(B8) + (3 — B) Tagéf)

» re-arrange: 3 = B+ I(8) ' X u(B)

» ntbc:
I(8) = X"WX, W =diag(w)), w;=1/{g'(1)?¢;V (1))}

B o= B+ (XTWX) XTu(8) = (X"WX) {XTWXB + X u(B)}
= (X"WX)"{X"W(XB+ W u(B)}
= (X"WX) ' X"Wz



... maximum likelihood estimation
Bo= B+ (XWX)T XTu(B) = (X"WX)"{X"WXB + X u(B)}
= (X"WX)"Y{X"W(XB+ W u(B)}
= (X"WX)'X"Wz

does not involve ¢;

v

v

if unknown (e.g. normal distribution or gamma distribution),
must be estimated

v

maximum likelihood estimate of ¢ may be poor (by analogy
with normal theory linear model)

1 Zn: (v — y)?

P VL)

qb:n
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Chimp data SM, Ex 10.16

Table 10.5 Times in
minutes taken by four Word
chimpanzees to learn ten
words (Brown and

Hollander, 1977, p. 257). Chimpanzee 1 2 3 4 5 6 7 8 9 10
1 178 60 177 36 225 345 40 2 287 14
2 7 14 80 15 10 115 10 12 129 80
3 99 18 20 25 15 54 25 10 476 55
4 297 20 195 18 24 420 40 15 372 190

» “when a linear model is fitted, the F-statistic for
non-additivity (8.27) strongly indicates and change of
scale” (p.485,6); eq. (8.27) is on p.391

> linear model: yj; = pu + o + B + €j

» non-additivity: y; = u+ o + Bj + §(iB)) + ¢

» special type of non-additivity with just 1 parameter to
estimate ¢

chimp.lm = Im(y ~ chimp + word, data = chimps)
anova (update (chimp.lm, . ~ . + I(chimp.lm$fitted.valuesschimp.lm$fitted.values)))
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... chimp data

Residuals

100 200

-100 O

Residuals vs Fitted

290
o 360
o o
o o
O o
° o
Bo‘go o .
®
o
o
26
T T T T
0 100 200 300

Fitted values
Im(y ~ chimp + word)
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. chimp data

» change to a model more suitable for a response that
measures time

suggestion: Gamma model with mean pcw = exp(ac + yw)

v

1 _ v \"
f(Yew: pew, V) = Wyémﬂ <M> exp(—vYyew/ thew)

cw

E(Yew) = ptews var(Yew) = Ngw/y
linear predictor

v

New = Q¢ + Yw
link function

v

n=log(n);  p=-exp(n)
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... chimp data

486 10 - Nonlinear Regression Models
Table 10.6  Analysis of
Deviance Deviance deviance for models fitted
Term df  reduction Term df  reduction to chimpanzee data.
Chimp (unadj. for Word) 3 6.95 Chimp (adj. for Word) 3 6.22
Word (adj. for Chimp) 9 3846 Word (unadj. for Chimp}) 9 39.19
chimp.glm = glm(y ~ chimp + word, family = Gamma(link = "log"), data = chimps)

> anova (chimp.glm)
Analysis of Deviance Table

Model: Gamma, link: log
Response: y

Terms added sequentially (first to last)

Df Deviance Resid. Df Resid. Dev

NULL 39 60.378
chimp 3 6.948 36 53.430
word 9 38.459 27 14.972

> summary (£it7)
(Dispersion parameter for Gamma family taken to be 0.4336663)

Null deviance: 60.378 on 39 degrees of freedom
Residual deviance: 14.972 on 27 degrees of freedom

STA 2201: Applied Statistics Il January 24, 2014 25/34



... chimp data
» “the signficance of the deviance reductions ... is gauged by
F-tests” (p.486)

» see Eq (10.2), but note a few lines above “for now we
suppress ¢”

» see Example 10.3: Dg— Dy = ¢~ ' > {..} ~ x5 4
» in this example we are estimating ¢ not needed for binary data

» p.483, 2nd paragraph: “when ¢ is unknown, the scaled
deviance is replaced by the deviance”

» net result: deviance reduction for chimp, adjusted for
word is 6.22 on 3 d.f.

» this is scaled by the estimate of ¢, using (10.20), which is
0.4336 from R code; 0.432 in text

» refer (6.22/3)/0.433 to F3 o7 distribution; p-value is
pf(4.788,3,27,lower.tail=F) # 0.0084
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... chimp data

plot.glm.diag (chimps.glm)

Residuals

Cook statistic
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... chimp data

» the canonical link is ey = 1/ picw

» interpretation as the speed at which a word is learned
» non-additivity test for this link has p-value 0.11

» how to compare inverse link to log link?
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Example 10.29

)
=

516 - Nonlinear Regression Models

Table 10.19

City Rain rfm  City Raim r/m City Rein rfm  City Rain r/m  Toxoplumosis o
rainfull (mm) and the

aumbers of people testing
1173 o 112050 724 21 1756 212 31 ITE0 B3 posiivefor
21036 310 121830 01 1160 21900 VIO towoplasmosis -, aurafm
3000 1S 131650 1500 Boms0 I 33 996 L People tesid for 4 cities
40T W0 M o200 42 M W6 4T M 202 ma7  pasieeEn
5 1750 1 15 2000 011 3180 2451
6 180 35 16 1770 6l % 1871 716
71750 18 171920 01 6 4682
8 W7 79 BT 354 X AW 913
9 10 6 19 2240 49 B 1918 2343
100180 W10 20 160 $IE 30 184 537

Table 10.20  Analysis of
Terms df  Deviance deviance for golynomial
Ingistic models fitted to
the toxoplasmosis data,
Constant 33 7421
Linear 32 W
Quadratic 31 7409
Cubic 30 6263

» incidence of toxoplasmosis as a function of rainfall

» residual deviances approximately twice the degrees of
freedom
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... example 10.29

v

data (toxo)
rain m r
1620 18 5
1650 30 15
1650 1 0
1735 4 2
toxo.glm0 = glm(cbind(r,m-r) ~ rain + I(rain”2) + I(rain”3), data = toxo,
family = binomial)

Vos W N e

> anova (toxo.glm0)

Df Deviance Resid. Df Resid. Dev

NULL 33 74.212
rain 1 0.1244 32 74.087
I(rain"2) 1 0.0000 31 74.087
I(rain®3) 1 11.4529 30 62.635
> toxo.glml = glm(cbind(r,m-r) ~ poly(rain,3), data = toxo, family = binomial)

> summary (toxo.glml)

Coefficients:

Estimate Std. Error z value Pr(>|z|)
(Intercept) 0.02427 0.07693 0.315 0.752401
poly(rain, degree = 3)1 -0.08606 0.45870 -0.188 0.851172
poly(rain, degree = 3)2 -0.19269 0.46739 -0.412 0.680141

poly(rain, degree = 3)3 1.37875 0.41150 3.351 0.000806 xxx
Signif. codes: 0 “xxx’ 0.001 “x%’ 0.01 ‘+’ 0.05 ‘.” 0.1 " 1
(Dispersion parameter for binomial family taken to be 1)

Mozl Aoszi s 4 210 4 £ £ 4
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Dichotomizing continuous data (§10.4.1)

v

v

suppose Z = X[y +o¢j, j=1,....m;

Y; =11if Z; > 0; otherwise 0

Pr(Y;=1)=1-F(-

examples (Table 10.7)

logistic F(u)y=¢"/(1+¢€")
normal F(u) = o(uv)
log-Weibull ~ F(u) =1 — exp(—¢€")

Gumbel F(u) = exp{—e~ "}

going from Zto Y

in special case where x; =
z; = 0.5+ 2% + ¢,
yi=1(z>0)
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1,
€ ~ N(0,1)

/o) =1-F(-

logit

probit
log-log
c-log-log

Example 10.17 considers how much information is lost in

-0.9,...

6 ~ (")

X/ B) =

log{p/(1 -

—log{—log(p

log{—

,0.9,1,

v
—

)

e
XXX

—_— =

T

-

QQQQ

T
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... example 10.17

>

xi=-1,-0.9,...,09,1,
z=05+2x;+¢, € ~N(0,1), y=1(z>0)
Bz is least squares estimator from original data

-1

var(Biz) =1/ 3(x — X)?

A

» [y is the estimator from dichotomized data
» cov(By) = (XTWX)~', W =diag(w)) (p.488)

>

>

Wi ¢?(Bo + B1X;)
T @(—Bo — B1%)®(Bo + B1X))
1

var(Bry) = (XTWX) 5l
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... example 10.17

» Figure 10.6 (right) plots 51/4/>_(X; — X)? on the x-axis,
and 81/,/— on the y-axis
» trying to compare vz and vy, as well as indicate behaviour

of B1y//Vy as 3y — o0

10.4 - Proportion Data 489

Figure 10.6  Efficiency
loss due to reducing Ll
continuous variables to

binary ones. Left panel:

simulated data. Blobs =
above the dotted line are

counted as successes, with

zeros below it as failures; Noo
the solid line is (L5 + 2x.

Right panel: Comparison

of asymptotic ¢ statistics o
when continuous data are

dichotomized, for normal

error distribution, when -
Bo =0.5, 1, L5 (solid, E
dots, dashes).

Standardized slope (binary)

00 05 1.0 15 20 25 3.0

-0 05 00 05 1.0 0 2 4 6 8 10 12

X Standardized slope (continuous)
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