
Last weeks
I likelihood

I marginal and conditional likelihood

I profile likelihood

I adjusted profile likelihood

I composite likelihood
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This week
I semiparametric likelihoods

I nonparametric likelihoods

I consistency of maximum likelihood estimators

I comments on problem sets
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Survival Data: single sample
I Model: f (t),h(t),1− F (t),H(t)

density, hazard, survivor function, cumulative hazard
I Data: (t1, δ1), . . . , (tn, δn)

I ti an observed time
I δi = 1 if ti a true failure time, 0 if ti is a censoring time

I random censorship assumption
I parametric inference:

L(θ; t , δ) =
n∑

i=1

δi log h(ti ; θ)− H(ti ; θ)

I examples:
I h(t ;λ) = λ
I h(t ; θ = (λ, α)) = λtα
I f (t ; θ = ν, µ) = Gamma(ν, µ)
I f (t ; θ = (µ, σ2)) = log Normal(µ, σ2) ...
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Parametric regression models
I Data: (ti , δi , x j), . . . , j = 1, . . . ,n

I Likelihood function:

L(θ; t , δ) =
n∑

i=1

δi log h(ti ; θ)− H(ti ; θ)

I Example: Exponential distribution
I h(t ;β) = exp(xT

i β), for example
I `(β) =

∑n
i=1 δixT

i β − exp(xT
i β)ti

I usual maximum likelihood theory applies

I Example: Weibull distribution
I h(t ; θ) = h(t ;β, α) = exp(xT

i β)tα
I θ = (β, α)
I usual maximum likelihood theory applies
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Semi-parametric regression models
I proportional hazards model:

h(t ; x , β) = h0(t) exp(xTβ)

I h0(t) unknown
I

h(t ; x)

h(t ; 0)
= exp(xTβ), does not depend on t

I

1− F (t ; x) = {1− F0(t)}exp(xTβ)

I survivor functions can never cross
I xTβ = x1β1 + · · ·+ xpβp, no constant term
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Estimation of β
I partial likelihood

Lpart (β) =
n∏

i=1

(
exp(xT

i β)∑
k∈Ri

exp(xT
k β)

)δi

I Ri risk set at time t−i ; number of units with ti ≥ ti

I derived in SM §10.8 as approximately a profile likelihood
(h0(·) maximized out)

I β̂ estimated by maximizing partial log-likelihood
`part (β) = log Lpart (β)

I estimated standard error from −`′′part (β̂)
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... partial likelihood
I β̂ estimated by maximizing partial log-likelihood
`part (β) = log Lpart (β)

I estimated standard error from −`′′part (β̂)

I usual asymptotic theory applies: β̂ .∼ N(β,−`′′part (β̂)

I special property of this model: components of the score
vector are uncorrelated

I no need to compute analogue of Godambe information

I there could be loss of efficiency in estimating β; this loss
has been shown to be small in a wide range of settings

I general treatment of likelihood inference for
semi-parametric models Murphy and van der Waart, 2000
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Semi-parametric regression models
I for example, E(yi) = µi(θ) = xT

i β + m(ti), Var(yi) = σ2

I m(·) a ‘smooth’ function of covariates t

I least squares

min
β,m(·)

n∑
i=1

{yi − xT
i β −m(ti)}2

I without constraint on m(·), minimum will be 0, thus

min
β,m(·)

n∑
i=1

{yi − xT
i β −m(ti)}2 −

1
2
λ

∫
{m′′(t)}2dt

I equivalent to

min
β,m(·)

n∑
i=1

{yi − xT
i β −m(ti)}2 + λmT Km

for suitable n × n matrix K
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... semi-parametric regression models
I

min
β,m(·)

n∑
i=1

{yi − xT
i β −m(ti)}2 −

1
2
λ

∫
{m′′(t)}2dt

I extend to generalized linear model

h{E(yi)} = xT
i β + m(ti) = ηi

I penalized log-likelihood

min
β,m(·)

n∑
i=1

`i(ηi)−
1
2
λ

∫
{m′′(t)}2dt

Green, 1987; SM, §10.7
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Nonparametric likelihood
I likelihood functions for infinite-dimensional parameters can

be tricky
I for example, given y1, . . . , yn i.i.d. with distribution function

F (·) and density function f (·)
I the nonparametric maximum likelihood estimator of F (·) is

Fn(t) =
1
n

n∑
i=1

1(Yi ≤ t), t ∈ R

I this is a cumulative distribution function, although discrete
I the nonparametric maximum likelihood estimator of f (·) is

not a density function
I unless we put some constraints on the class of densities

over which we maximize
I for example, might require f (x) to be log concave:

f (x) = exp{η(x)}, η concave Balabdaoui et al, 2009

LTCC Likelihood Theory Week 5 December 3, 2012 10/26



Empirical likelihood
I y1, . . . , yn i.i.d. with distribution function F0(·)
I define

L(F ) =
n∏

i=1

{F (yi)− F (y−i )}

I maximized at Fn, empirical c.d.f.
I empirical likelihood ratio

R(F ) =
L(F )

L(Fn)

I suppose T (F0) is a function of interest, e.g. µ =
∫

xdF (x)
I maximizing R(F ), subject to µ fixed, is equivalent to

max
w1,...,wn

n∏
i=1

wi , subject to
n∑

i=1

wiyi = µ,

n∑
i=1

wi = 1,wi ≥ 0, ∀i

Owen, 1988; 2001
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... empirical likelihood
I

max
w1,...,wn

n∏
i=1

wi , subject to
n∑

i=1

wiyi = µ,

n∑
i=1

wi = 1,wi ≥ 0, ∀i

I likelihood ratio confidence intervals are valid

−2 log R(F0)
L−→ χ2

1, n→∞

I parameter of interest, µ ∈ R
I nuisance parameter w = (w1, . . . ,wn)

I generalized to many more complex situations
Hjort et al. 2009
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Those pesky regularity conditions
I two proofs of the consistency of the maximum likelihood

estimator
I Wald, 1949 – the log-likelihood is maximized in expectation

at the true value; apply Jensen’s inequality to conclude θ̂
must converge to the true value

I requires the parameter space to be compact

I Cramer, 1946 – there exist solutions to the score equation
that are consistent

I Taylor series expansion of log f (y ; θ)

I if the likelihood function is maximized in the interior of the
parameter space, the m.l.e. is one of these solutions

I if the score equation has only one root, the m.l.e. is
consistent
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Non-standard cases
I true parameter θ0 on the boundary of the parameter space
I example: yij = µ+ bi + εij , bi ∼ N(0, σ2

b), εij ∼ N(0, σ2)

I if σ2
b = 0, no difference between groups; this is a boundary

point of the parameter space

I non-identifiability; two different θ1, θ2 for which
f (y ; θ1) = f (y ; θ2)

I example f (y ; θ) = pN(µ1,1) + (1− p)N(µ2,1)

I if µ1 = µ2, then p is not identifiable
I if p = 0 ,then µ1 is not identifiable
I likelihood ratio test of, e.g. H0 : p = 0 will not be

asymptotically χ2
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... non-standard cases
I multi-modal log-likelihoods
I in principle, find all the stationary points, and choose that

corresponding to the maximum
I in practice, may not be feasible
I example: feed-forward neural networks;

I support of the distribution depends on the parameter

I example U(0, θ); n(y(n) − θ)
L−→ Exponential

I example f (y ; θ) = λexp{−λ(y − µ)}

SM, §4.6; BNC94, §3.8; Cox, Ch. 7
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... non-standard cases
I singular information matrix: varθ0{U(θ0)} ≡ 0
I usual Taylor series expansions do not apply; need to go to

higher order terms
I might be fixable by re-parameterization

I Example: skew-normal distribution
I Z ∼ SKN(α) : fZ (z;α) = 2φ(z)Φ(αz)

I three-parameter version: Y = ξ + ωZ
I information matrix is singular, at α = 0
I can be fixed by reparametrization to (µ, σ, α)

Azzalini, 1999; 2011
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Azzalini, 1999



Problems – Week 4
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Problems – Week 4
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Problems – Week 3
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Problems – Week 3
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Problems – Week 2
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Problems – Week 2
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Problems – Week 1
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Problems – Week 1
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Extra notes for HW1, 3
Notes to help
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http://www.utstat.utoronto.ca/reid/ltcc/week1-handout-part2.pdf

