LTCC/Reid: Derivation of limiting results: scalar parameter November 6, 2012

Using the notation on the handout from November 5, (“weekl-handout.pdf”), here
is a moderately rigorous proof of the results
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The vector case is unchanged, except for tedious notational changes in Taylor’s
theorem with remainder, although of course we need the dimension of 6 fixed as
n — oQ.

For (1), we have

(@) = 00)+ 6000 + 50— 07"6;)
2O 1. ()

e(65)/n )
—0(6)/n"

= VB -1~ 5(0-0)

\/Lﬁél(e 11(0) B . -
i1(0) <—€”(0)/n) = Vn(@-0){1+2,}.

The term in brackets on the LHS of the last line converges in probability to 1,
by the WLLN, so can be written 1 + 0,(1). The remainder term Z,, converges in
probability to 0, because we assume § = 6, so that 0% 5 6, because |0* —0| < [0—6).
Also £0"(67) 2 E{0"(#;Y)} which we assume is finite (p.281 of CH, for example);
similarly —¢”(6) % 41(0), so Z, = 0,(1)O,(1) = 0,(1). Then we can move over the

LHS term as L o)

because 1+ 0,(1) is the same as 1 — 0,(1), and {1+ 0,(1)} 7! =1 —0,(1).
For (2), we have
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where again Z,, = 0 as above.



This begs the question of whether the maximum likelihood estimator is the root
of // (é) = 0, and whether the maximum likelihood estimator converges in probability
to 6. Wald’s proof of the consistency of the MLE relies on showing (roughly) that
the likelihood function is maximized at the true value, in the limit, so that the
parameter point that maximizes the likelihood function will converge to that true
value. However the devil is in the details. A good discussion is given in van der
Waart, Ch.5. An easier approach is to assume enough about the density to be able to
prove that there are consistent solutions to the score equation; then if the likelihood
function has its maximum in the interior of the parameter space, and the solution
to the score equation is unique, it is the MLE. Lehmann and Casella give the details
for this approach; I also found the encylopedia article by Scholz very helpful.

BNC avoid all these problems by just assuming that the score equation gives
the MLE, and ’enough regularity’ on the model to ensure consistency. After that
asymptotic normality follows if one has a central limit theorem for the score function.
This can hold much more generally that in the i.i.d. setting.
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