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Large deviations is concerned with the study of rare events
and of small probabilities. Let Xi,  ≤ i ≤ n, be independent
identically distributed (i.i.d.) real random variables with
expectationm, and X̄n = (X + . . . +Xn)/n their empirical
mean.�e law of large numbers shows that, for any Borel
set A ⊂ R not containing m in its closure, P(X̄n ∈ A) → 
as n → ∞, but does not tell us how fast the probability
vanishes. Large deviations theory gives us the rate of decay,
which is exponential in n. Cramér’s theorem states that,

P(X̄n ∈ A) = exp (−n( inf{I(x); x ∈ A} + o()))

as n → ∞, for all interval A.�e rate function I can be
computed as the Legendre conjugate of the logarithmic
moment generating function of X,

I(x) = sup{λx − lnE exp(λX); λ ∈ R},

and is called the Cramér transform of the common law
of the Xi’s.�e natural assumption is the �niteness of the
7moment generating function in a neighborhood of the
origin, i.e., the property of exponential tails. �e func-
tion I : R→ [,+∞] is convex with I(m) = .

● In the Gaussian case Xi ∼ N (m, σ ), we �nd I(x) =
(x −m)/(σ ).

● In the Bernoulli case P(Xi = ) = p =  − P(Xi = ),
we �nd the entropy function I(x)=x ln(x/p) + ( − x)
ln(−x)/(−p) for x ∈ [, ], and I(x) = +∞otherwise.

To emphasize the importance of rare events, let us
mention a consequence, the Erdös–Rényi law: consider an
in�nite sequence Xi, i ≥ , of Bernoulli i.i.d. variables with
parameter p, and let Rn denote the length of the longest
consecutive run, contained within the �rst n tosses, in
which the fraction of s is at least a (a > p). Erdös and
Rényi proved that, almost surely as n→∞,

Rn/ lnnÐ→ I(a)−,

with the function I from the Bernoulli case above.�ough
it may look paradoxical, large deviations are at the core
of this event of full probability.�is result is the basis of
7bioinformatics applications like sequence matching, and
of statistical tests for sequence randomness.

�e theory does not only apply to independent vari-
ables, but allows for many variations, including weakly
dependent variables in a general state space, Markov or
7Gaussian processes, large deviations from 7ergodic the-
orems, non-asymptotic bounds, asymptotic expansions
(Edgeworth expansions), etc.
Here is the formal de�nition. Given a Polish space

(i.e., a separable complete metric space) X , let {Pn} be
a sequence of Borel probability measures on X , let an be
a positive sequence tending to in�nity, and �nally let I :
X → [,+∞] be a lower semicontinuous functional on X.
We say that the sequence {Pn} satis�es a large deviation
principle with speed an and rate I, if for each measurable
set E ⊂ X

− inf
x∈E○
I(x) ≤ lim

n
a−n lnPn(E)

≤ lim
n
a−n lnPn(E) ≤ − inf

x∈Ē
I(x)

where Ē andE○ denote respectively the closure and interior
of E.�e rate function can be obtained as

I(x) = − lim
δ↘

lim
n→∞ a

−
n lnPn(B(x, δ)),

with B(x, δ) the ball of center x and radius δ.
Sanov’s theorem and sampling with replacement: let µ

be a probability measure on a set Σ that we assume �nite
for simplicity, with µ(y) >  for all y ∈ Σ. Let Yi, i ≥ , an
i.i.d. sequence with law µ, and Nn the score vector of the
n-sample,

Nn(y) =
n

∑
i=
y(Yi).

By the law of large numbers,Nn/n→ µ almost surely. From
the 7multinomial distribution, one can check that, for all
ν such that nν is a possible score vector for the n-sample,

(n + )−∣Σ∣e−nH(ν∣µ) ≤ P(n−Nn = ν) ≤ e−nH(ν∣µ),

where H(ν∣µ) = ∑y∈Σ ν(y) ln ν(y)
µ(y) is the relative entropy

of ν with respect to µ.�e large deviations theorem holds
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for the empirical distribution of a general n-sample, with
speed n and rate I(ν) = H(ν∣µ) given by the natu-
ral generalization of the above formula. �is result, due
to Sanov, has many consequences in information the-
ory and statistical mechanics (Dembo and Zeitouni ;
den Hollander ), and for exponential families in
statistics. Applications in statistics also include point esti-
mation (by giving the exponential rate of convergence
of M-estimators) and for hypothesis testing (Bahadur
e�ciency) (Kester ), and concentration inequalities
(Dembo and Zeitouni ).

�e Freidlin–Wentzell theory deals with di�usion pro-
cesses with small noise,

dXє
t = b (Xє

t )dt +
√
є σ (Xє

t )dBt , Xє
 = y.

�e coe�cients b, σ are uniformly lipshitz functions, and
B is a standard Brownian motion (see 7Brownian Motion
and Di�usions).�e sequence Xє can be viewed as є ↘ 
as a small random perturbation of the ordinary di�erential
equation

dxt = b(xt)dt , x = y.
Indeed, Xє → x in the supremum norm on bounded time-
intervals. Freidlin andWentzell have shown that, on a �nite
time interval [,T], the sequenceXє with values in the path
space obeys the LDP with speed є− and rate function

I(ϕ) = 
 ∫

T


σ(ϕ(t))−( ˙ϕ(t) − b(ϕ(t)))


dt

if ϕ is absolutely continuous with square-integrable deriva-
tive and ϕ() = y; I(ϕ) =∞ otherwise. (To �t in the above
formal de�nition, take a sequence є = єn ↘ , and for Pn
the law of Xєn .)

�e Freidlin–Wentzell theory has applications in
physics (metastability phenomena) and engineering (track-
ing loops, statistical analysis of signals, stabilization of sys-
tems, and algorithms) (Freidlin andWentzell ; Dembo
and Zeitouni ; Olivieri and Vares ).
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�e laws of large numbers (LLNs) provide bounds on the
�uctuation behavior of sums of random variables and, as
we will discuss herein, lie at the very foundation of sta-
tistical science. �ey have a history going back over 
years.�e literature on the LLNs is of epic proportions, as
this concept is indispensable in probability and statistical
theory and their application.
Probability theory, like some other areas of mathemat-

ics such as geometry for example, is a subject arising from
an attempt to provide a rigorous mathematical model for
real world phenomena. In the case of probability theory,
the real world phenomena are chance behavior of biologi-
cal processes or physical systems such as gambling games
and their associated monetary gains or losses.

�e probability of an event is the abstract counterpart
to the notion of the long-run relative frequency of the
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occurence of the event through in�nitelymany replications
of the experiment. For example, if a quality control engi-
neer asserts that the probability is . that a widget pro-
duced by her production team meets speci�cations, then
she is asserting that in the long-run, % of those widgets
meet speci�cations.�e phrase “in the long-run” requires
the notion of limit as the sample size approaches in�nity.
�e long-run relative frequency approach for describing
the probability of an event is natural and intuitive but, nev-
ertheless, it raises serious mathematical questions. Does
the limiting relative frequency always exist as the sample
size approaches in�nity and is the limit the same irrespec-
tive of the sequence of experimental outcomes? It is easy
to see that the answers are negative. Indeed, in the above
example, depending on the sequence of experimental out-
comes, the proportion of widgets meeting speci�cations
could �uctuate repeatedly from near  to near  as the
number of widgets sampled approaches in�nity. So in what
sense can it be asserted that the limit exists and is .?
To provide an answer to this question, one needs to apply
a LLN.

�e LLNs are of two types, viz., weak LLNs (WLLNs)
and strong LLNs (SLLNs). Each type involves a di�erent
mode of convergence. In general, a WLLN (resp., a SLLN)
involves convergence in probability (resp., convergence
almost surely (a.s.)). �e de�nitions of these two modes
of convergence will now be reviewed.
Let {Un,n ≥ } be a sequence of random variables

de�ned on a probability space (Ω,F ,P) and let c ∈ R. We
say thatUn converges in probability to c (denotedUn

P→ c) if

lim
n→∞P(∣Un − c∣ > ε) =  for all ε > .

We say that Un converges a.s. to c (denoted Un → c a.s.) if

P({ω ∈ Ω : lim
n→∞Un(ω) = c}) = .

If Un → c a.s., then Un
P→ c; the converse is not true in

general.
�e celebrated Kolmogorov SLLN (see, e.g., Chow

and Teicher [], p. ) is the following result. Let
{Xn,n ≥ } be a sequence of independent and identically
distributed (i.i.d.) random variables and let c ∈ R.�en

∑ni= Xi
n

→ c a.s. if and only if EX = c. ()

Using statistical terminology, the su�ciency half of ()
asserts that the sample mean converges a.s. to the popula-
tionmean as the sample size n approaches in�nity provided
the population mean exists and is �nite. �is result is of

fundamental importance in statistical science. It follows
from () that

if EX = c ∈ R, then ∑
n
i= Xi
n

P→ c; ()

this result is the KhintchineWLLN (see, e.g., Petrov [],
p. ).
Next, suppose {An,n ≥ } is a sequence of independent

events all with the same probability p. A special case of the
Kolmogorov SLLN is the limit result

p̂n → p a.s. ()

where p̂n = ∑ni= IAi/n is the proportion of {A, . . . ,An} to
occur, n ≥ . (Here IAi is the indicator function ofAi, i ≥ .)
�is result is the �rst SLLN ever proved and was discov-
ered by Emile Borel in . Hence, with probability , the
sample proportion p̂n approaches the population propor-
tion p as the sample size n → ∞. It is this SLLN which
thus provides the theoretical justi�cation for the long-run
relative frequency approach to interpreting probabilities.
Note, however, that the convergence in () is not point-
wise on Ω but, rather, is pointwise on some subset of Ω
having probability . Consequently, any interpretation of
p = P(A) via () necessitates that one has a priori an
intuitive understanding of the notion of an event having
probability .

�e SLLN () is a key component in the proof of the
Glivenko–Cantelli theorem (see7Glivenko-Cantelli�eo-
rems) which, roughly speaking, asserts that with probabil-
ity , a population distribution function can be uniformly
approximated by a sample (or empirical) distribution func-
tion as the sample size approaches in�nity. �is result is
referred to by Rényi (, p. ) as the fundamental the-
orem of mathematical statistics and by Loève (, p. )
as the central statistical theorem.
In , Jacob Bernoulli (–) proved the �rst

WLLN

p̂n
P→ p. ()

Bernoulli’s renowned book Ars Conjectandi (�e Art of
Conjecturing) was published posthumously in , and it is
here where the proof of his WLLN was �rst published. It is
interesting to note that there is over a  year gap between
the WLLN () of Bernoulli and the corresponding SLLN
() of Borel.
An interesting example is the following modi�cation

of one of Stout (, p. ). Suppose that the quality con-
trol engineer referred to above would like to estimate the
proportion p of widgets produced by her production team
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that meet speci�cations. She estimates p by using the pro-
portion p̂n of the �rst n widgets produced that meet speci-
�cations and she is interested in knowing if there will ever
be a point in the sequence of examined widgets such that
with probability (at least) a speci�ed large value, p̂n will be
within ε of p and stay within ε of p as the sampling contin-
ues (where ε >  is a prescribed tolerance).�e answer is
a�rmative since () is equivalent to the assertion that for
a given ε >  and δ > , there exists a positive integer Nε,δ
such that

P (∩∞n=Nε,δ [∣p̂n − p∣ ≤ ε]) ≥  − δ.

�at is, the probability is arbitrarily close to  that p̂n will be
arbitrarily close to p simultaneously for all n beyond some
point. If one applied instead the WLLN (), then it could
only be asserted that for a given ε >  and δ > , there
exists a positive integer Nε,δ such that

P(∣p̂n − p∣ ≤ ε) ≥  − δ for all n ≥ Nε,δ .

�ere are numerous other versions of the LLNs and we
will discuss only a few of them. Note that the expressions
in () and () can be rewritten, respectively, as

∑ni= Xi − nc
n

→  a.s. and ∑
n
i= Xi − nc
n

P→ 

thereby suggesting the following de�nitions. A sequence
of random variables {Xn,n ≥ } is said to obey a general
SLLN (resp., WLLN) with centering sequence {an,n ≥ }
and norming sequence {bn,n ≥ } (where  < bn →∞) if

∑ni= Xi − an
bn

→  a.s. (resp., ∑
n
i= Xi − an
bn

P→ ) .

A famous result of Marcinkiewicz and Zygmund (see,
e.g., Chow and Teicher (), p. ) extended the Kol-
mogorov SLLN as follows. Let {Xn,n ≥ } be a sequence of
i.i.d. random variables and let  < p < .�en

∑ni= Xi − nc
n/p

→  a.s. for some c ∈ R if and only

if E∣X∣p <∞.

In such a case, necessarily c = EX if p ≥  whereas c is
arbitrary if p < .
Feller () extended the Marcinkiewicz–Zygmund

SLLN to the case of a more general norming sequence
{bn,n ≥ } satisfying suitable growth conditions.

�e followingWLLN is ascribed to Feller by Chow and
Teicher (, p. ). If {Xn,n ≥ } is a sequence of i.i.d.
random variables, then there exist real numbers an,n ≥ 
such that

∑ni= Xi − an
n

P→  ()

if and only if

nP(∣X∣ > n)→  as n→∞. ()

In such a case, an − nE(XI[∣X ∣≤n])→  as n→∞.
�e condition () is weaker than E∣X∣ < ∞. If {Xn,

n ≥ } is a sequence of i.i.d. random variables where X has
probability density function

f (x) =
⎧⎪⎪⎨⎪⎪⎩

c
x log ∣x∣ , ∣x∣ ≥ e
, ∣x∣ < e

where c is a constant, then E∣X∣ = ∞ and the SLLN
∑ni= Xi/n → c a.s. fails for every c ∈ R but () and hence
the WLLN () hold with an = ,n ≥ .
Klass and Teicher () extended the Feller WLLN

to the case of a more general norming sequence
{bn,n ≥ } thereby obtaining a WLLN analog of Feller’s
() extension of the Marcinkiewicz–Zygmund SLLN.
Good references for studying the LLNs are the books

by Révész (), Stout (), Loève (), Chow and
Teicher (), and Petrov (). While the LLNs have
been studied extensively in the case of independent sum-
mands, some of the LLNs presented in these books involve
summands obeying a dependence structure other than that
of independence.
A large literature of investigation on the LLNs for

sequences of Banach space valued random elements has
emerged beginning with the pioneering work of Mourier
(). See themonograph byTaylor () for background
material and results up to . Excellent references are the
books by Vakhania, Tarieladze, and Chobanyan () and
Ledoux and Talagrand (). More recent results are pro-
vided by Adler et al. (), Cantrell and Rosalsky (),
and the references in these two articles.
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Learning Statistics in a Foreign
Language
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Background
�e Sultanate of Oman is an Arabic-speaking country,
where the medium of instruction in pre-university edu-
cation is Arabic. In Sultan Qaboos University (SQU) all

sciences (including Statistics) are taught in English. �e
reason is that most of the scienti�c literature is in English
and teaching in the native language may leave graduates
at a disadvantage. Since only few instructors speak Ara-
bic, the university adopts a policy of no communication
in Arabic in classes and o�ce hours. Students are required
to achieve a minimum level in English (about . IELTS
score) before they start their study program. Very few stu-
dents achieve that level on entry and the majority spends
about two semesters doing English only.

Language and Cultural Problems
It is to be expected that students from a non-English-
speaking background will face serious di�culties when
learning in English especially in the �rst year or two. Most
of the literature discusses problems faced by foreign stu-
dents pursuing study programs in an English-speaking
country, or a minority in a multi-cultural society (see
for example Coutis P. and Wood L., Hubbard R, Koh E).
Such students live (at least while studying) in an English-
speaking community with which they have to interact on a
daily basis.�ese di�culties are more serious for our stu-
dents who are studying in their own countrywhere English
is not the o�cial language.�ey hardly use English outside
classrooms and avoid talking in class as much as they can.

My SQU Experience
Statistical concepts and methods are most e�ectively
taught through real-life examples that the students appre-
ciate and understand. We use the most popular textbooks
in the USA for our courses. �ese textbooks use this
approach with US students in mind. Our main prob-
lems are:

● Most of the examples and exercises used are com-
pletely alien to our students.�e discussions meant to
maintain the students’ interest only serve to put ours
o�. With limited English they have serious di�culties
understanding what is explained and hence tend not to
listen to what the instructor is saying.�ey do not read
the textbooks because they contain pages and pages of
lengthy explanations and discussions they cannot fol-
low. A direct e�ect is that students may �nd the subject
boring and quickly lose interest.�eir attention then
turns to the art of passing tests instead of acquiring the
intended knowledge and skills. To pass their tests they
use both their class and study times looking through
examples, concentrating on what formula to use and
where to plug the numbers they have to get the answer.
�is way they manage to do the mechanics fairly well,
but the concepts are almost entirely missed.
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● �e problem is worse with introductory probability
courses where games of chance are extensively used
as illustrative examples in textbooks. Most of our stu-
dents have never seen a deck of playing cards and some
may even be o�ended by discussing card games in a
classroom.

�e burden of �nding strategies to overcome these di�cul-
ties falls on the instructor. Statistical terms and concepts
such as parameter/statistic, sampling distribution, unbi-
asedness, consistency, su�ciency, and ideas underlying
hypothesis testing are not easy to get across even in the stu-
dents’ own language. To do that in a foreign language is a
real challenge. For the Statistics program to be successful,
all (or at least most of the) instructors involved should be
up to this challenge.�is is a time-consuming task with lit-
tle reward, other than self satisfaction. In SQU the problem
is compounded further by the fact that most of the instruc-
tors are expatriates on short-term contracts who are more
likely to use their time for personal career advancement,
rather than time-consuming community service jobs.

What Can Be Done?
For our �rst Statistics course we produced a manual that
contains very brief notes and many samples of previous
quizzes, tests, and examinations. It contains a good col-
lection of problems from local culture to motivate the
students.�e manual was well received by the students, to
the extent that students prefer to practice with examples
from the manual rather than the textbook.
Textbooks written in English that are brief and to the

point are needed.�ese should include examples and exer-
cises from the students’ own culture. A student trying
to understand a speci�c point gets distracted by lengthy
explanations and discouraged by thick textbooks to begin
with. In a classroom where students’ faces clearly indicate
that you have got nothing across, it is natural to try explain-
ing more using more examples. In the end of semester
evaluation of a course I taught, a student once wrote “�e
instructor explains things more than needed. He makes
simple points di�cult.”�is indicates that, when teaching
in a foreign language, lengthy oral or written explanations
are not helpful. A better strategywill be to explain concepts
and techniques brie�y and provide plenty of examples and
exercises that will help the students absorb the material by
osmosis. �e basic statistical concepts can only be e�ec-
tively communicated to students in their own language.
For this reason textbooks should contain a good glossary
where technical terms and concepts are explained using the
local language.

I expect such textbooks to go a long way to enhance
students’ understanding of Statistics. An international
project can be initiated to produce an introductory statis-
tics textbook, with di�erent versions intended for di�erent
geographical areas.�e English material will be the same;
the examples vary, to some extent, from area to area and
glossaries in local languages. Universities in the develop-
ing world, naturally, look at western universities asmodels,
and international (western) involvement in such a project
is needed for it to succeed.�e project will be a major con-
tribution to the promotion of understanding Statistics and
excellence in statistical education in developing countries.
�e international statistical institute takes pride in sup-
porting statistical progress in the developing world. �is
project can lay the foundation for this progress and hence
is worth serious consideration by the institute.
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For i = , , . . . ,n, let {xi, xi, . . . , xiq, yi} represent the ith
observation on a set of q +  variables and suppose that we
wish to �t a linear model of the form

yi = xiβ + xiβ +⋯ + xiqβq + єi
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to these n observations. �en, for p > , the Lp-norm
�tting procedure chooses values for b, b, . . . , bq to min-
imise the Lp-norm of the residuals [∑ni= ∣ei∣p]

/p where, for
i = , , . . . ,n, the ith residual is de�ned by

ei = yi − xib − xib − ... − xiqbq.

�e most familiar Lp-norm �tting procedure, known
as the 7least squares procedure, sets p =  and chooses
values for b, b, . . . , bq tominimize the sum of the squared
residuals∑ni= ei .
A second choice, to be discussed in the present article,

sets p =  and chooses b, b, . . . , bq to minimize the sum
of the absolute residuals∑ni= ∣ei∣.
A third choice sets p =∞ and chooses b, b, . . . , bq to

minimize the largest absolute residualmaxni=∣ei∣.
Setting ui = ei and vi =  if ei ≥  and ui = 

and vi = −ei if ei < , we �nd that ei = ui − vi so that
the least absolute residuals (LAR) �tting problem chooses
b, b, . . . , bq to minimize the sum of the absolute residuals

n

∑
i=

(ui + vi)

subject to

xib + xib +⋯ + xiqbq +Ui − vi = yi for i = , , . . . ,n

and Ui ≥ , vi ≥  for i = , , . . . ,n.
�e LAR �tting problem thus takes the form of a linear
programming problem and is o�en solved by means of a
variant of the dual simplex procedure.
Gauss has noted (when q = ) that solutions of this

problem are characterized by the presence of a set of q
zero residuals. Such solutions are robust to the presence of
outlying observations. Indeed, they remain constant under
variations in the other n − q observations provided that
these variations do not cause any of the residuals to change
their signs.

�e LAR �tting procedure corresponds to the maxi-
mum likelihood estimator when the є-disturbances follow
a double exponential (Laplacian) distribution.�is estima-
tor is more robust to the presence of outlying observations
than is the standard least squares estimator which maxi-
mizes the likelihood function when the є-disturbances are
normal (Gaussian).Nevertheless, theLAR estimator has an
asymptotic normal distribution as it is amember ofHuber’s
class ofM-estimators.

�ere are many variants of the basic LAR proce-
dure but the one of greatest historical interest is that
proposed in  by the Croatian Jesuit scientist Rugjer
(or Rudjer) Josip Bošković (–) (Latin: Rogerius
JosephusBoscovich; Italian: RuggieroGiuseppeBoscovich).

In his variant of the standard LAR procedure, there are two
explanatory variables of which the �rst is constant xi = 
and the values of b and b are constrained to satisfy the
adding-up condition ∑ni=(yi − b − xib) =  usually
associated with the least squares procedure developed by
Gauss in  and published by Legendre in . Com-
puter algorithms implementing this variant of the LAR
procedure with q ≥  variables are still to be found in the
literature.
For an account of recent developments in this area,

see the series of volumes edited by Dodge (, ,
, ). For a detailed history of the LAR procedure,
analyzing the contributions of Bošković, Laplace, Gauss,
Edgeworth, Turner, Bowley and Rhodes, see Farebrother
(). And, for a discussion of the geometrical and
mechanical representation of the least squares and LAR
�tting procedures, see Farebrother ().
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Least Squares (LS) problem involves some algebraic and
numerical techniques used in “solving” overdetermined
systems F(x) ≈ b of equations, where b ∈ Rn while F(x)
is a column of the form

F(x) =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

f(x)

f(x)

⋯

fm−(x)

fm(x)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

with entries fi = fi(x), i = , . . . n, where x = (x, . . . , xp)T .
�e LS problem is linear when each fi is a linear function,
and nonlinear – if not.
Linear LS problem refers to a system Ax = b of linear

equations. Such a system is overdetermined if n > p. If b ∉
range(A) the system has no proper solution and will be
denoted by Ax ≈ b. In this situation we are seeking for a
solution of some optimization problem.�e name “Least
Squares” is justi�ed by the l-norm commonly used as a
measure of imprecision.

�e LS problem has a clear statistical interpretation in
regression terms. Consider the usual regression model

yi = fi(xi, . . . , xip; β, . . . , βp) + ei for i = , . . . ,n ()

where xij, i = , . . . n, j = , . . . p, are some constants given
by experimental design, fi, i = , . . . n, are given functions
depending on unknown parameters βj, j = , . . . , p, while
yi, i = , . . . ,n, are values of these functions, observed with
some random errors ei. We want to estimate the unknown
parameters βi on the basis of the data set {xij, yi}.

In linear regression each fi is a linear function of type
fi = ∑p

j= cij(x, . . . , xn)βj and the model () may be
presented in vector-matrix notation as

y = Xβ + e,

where y = (y, . . . , yn)T , e = (e, . . . , en)T and β =
(β, . . . , βp)T , while X is a n × p matrix with entries xij.
If e, . . . , en are not correlated with mean zero and a com-
mon (perhaps unknown) variance then the problem of
Best Linear Unbiased Estimation (BLUE) of β reduces to
�nding a vector β̂ that minimizes the norm ∣∣y − Xβ̂ ∣∣


=

(y − Xβ̂)T(y − Xβ̂)
Such a vector is said to be the ordinary LS solution of

the overparametrized system Xβ ≈ y. On the other hand
the last one reduces to solving the consistent system

XTXβ = XTy

of linear equations called normal equations. In particular,
if rank(X) = p then the system has a unique solution of the
form

β̂ = (XTX)−XTy.

For linear regression yi = α+βxi+ei with one regressor
x the BLU estimators of the parameters α and β may be
presented in the convenient form as

β̂ = nsxy
nsx

and α̂ = y − β̂x,

where

nsxy =∑
i
xiyi −

(∑i xi) (∑i yi)
n

,

nsx =∑
i
xi −

(∑i xi)

n
, x = ∑i xi

n
and y = ∑i yi

n

For its computation we only need to use a simple pocket
calculator.

Example �e following table presents the number of resi-
dents in thousands (x) and the unemployment rate in% (y)
for some cities of Poland. Estimate the parameters β and α.

xi       

yi . . . . . . .

In this case∑i xi = , , ∑i yi = ., ∑i xi = , 
and ∑i xiyi = , .�erefore nsx = , . and nsxy =
−.�us β̂ = −. and α̂ = . and hence f (x) =
−.x + ..
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If the variance–covariance matrix of the error vector e
coincides (except a multiplicative scalar σ ) with a positive
de�nite matrix V then the Best Linear Unbiased estima-
tion reduces to the minimization of (y −Xβ̂)TV(y −Xβ̂),
called the weighed LS problem. Moreover, if rank(X) = p
then its solution is given in the form

β̂ = (XTV−X)−XTV−y.

It is worth to add that a nonlinear LS problem is more
complicated and its explicit solution is usually not known.
Instead of this some algorithms are suggested.
Total least squares problem. �e problem has been

posed in recent years in numerical analysis as an alterna-
tive for the LS problem in the casewhen all data are a�ected
by errors.
Consider an overdetermined system of n linear equa-

tionsAx ≈ b with k unknown x.�e TLS problem consists
in minimizing the Frobenius norm

∣∣[A, b] − [Â, b̂]∣∣F
for all Â ∈ Rn×k and b̂ ∈ range(Â), where the Frobenius
norm is de�ned by ∣∣(aij)∣∣F = ∑i,j aij. Once a minimizing
[Â, b̂] is found, then any x satisfying Âx = b̂ is called a TLS
solution of the initial system Ax ≈ b.

�e trouble is that the minimization problem may
not be solvable, or its solution may not be unique. As an
example one can set

A =
⎡⎢⎢⎢⎢⎢⎣

 

 

⎤⎥⎥⎥⎥⎥⎦
and b =

⎡⎢⎢⎢⎢⎢⎣





⎤⎥⎥⎥⎥⎥⎦
.

It is known that the TLS solution (if exists) is always
better than the ordinary LS in the sense that the cor-
rection b − Ax̂ has smaller l-norm. �e main tool in
solving the TLS problems is the following Singular Value
Decomposition:
For any matrix A of n × k with real entries there

exist orthonormal matrices P = [p, . . . , pn] and

Q = [q, . . . , qk] such that

PTAQ = diag(σ, . . . , σm), where σ ≥ ⋯ ≥ σm and
m = min{n, k}.
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Introduction
Lévy processes have become increasingly popular in engi-
neering (reliability, dams, telecommunication) andmathe-
matical �nance.�eir applications in reliability stems from
the fact that they provide a realistic model for the degrada-
tion of devices, while their applications in the mathemati-
cal theory of dams as they provide a basis for describing
the water input of dams. �eir popularity in �nance is
because they describe the �nancialmarkets in amore accu-
rate way than the celebrated Black–Scholes model. �e
latter model assumes that the rate of returns on assets
are normally distributed, thus the process describing the
asset price over time is continuous process. In reality, the
asset prices have jumps or spikes, and the asset returns
exhibit fat tails and 7skewness, which negates the nor-
mality assumption inherited in the Black–Scholes model.
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Because of the de�ciencies in the Black–Scholes model
researchers in mathematical �nance have been trying to
�ndmore suitable models for asset prices. Certain types of
Lévy processes have been found to provide a good model
for creep of concrete, fatigue crack growth, corroded steel
gates, and chloride ingress into concrete. Furthermore, cer-
tain types of Lévy processes have been used to model the
water input in dams.
In this entry, we will review Lévy processes and give

important examples of such processes and state some
references to their applications.

Lévy Processes
A stochastic process X = {Xt , t ≥ } that has right con-
tinuous sample paths with le� limits is said to be a Lévy
process if the following hold:

. X has stationary increments, i.e., for every s, t ≥ , the
distribution of Xt+s − Xt is independent of t.

. X has independent increments, i.e., for every t, s≥ ,
Xt+s − Xt is independent of ( Xu,u ≤ t).

. X is stochastically continuous, i.e., for every t ≥  and
є > :

lims→tP(∣Xt − Xs∣ > є) = .
�at is to say a Lévy process is a stochastically continu-
ous process with stationary and independent increments
whose sample paths are right continuous with le� hand
limits.
If Φ(z) is the characteristic function of a Lévy process,

then its characteristic component φ(z) def= ln Φ(z)
t is of the

form

{iza − z
b

+ ∫

R
[exp(izx) −  − izxI{∣x∣<}]ν(dx)}

where a ∈ R, b ∈ R+ and ν is a measure on R satisfying
ν({}) = , ∫R( ∧ x

)ν(dx) <∞.
�e measure ν characterizes the size and frequency of

the jumps. If the measure is in�nite, then the process has
in�nitelymany jumps of very small sizes in any small inter-
val.�e constant a de�ned above is called the dri� term of
the process, and b is the variance (volatility) term.

�e Lévy–It
^
o decomposition identify any Lévy process

as the sum of three independent processes, it is stated as
follows:
Given any a ∈ R, b ∈ R+ and measure ν on R satisfying

ν({}) = , ∫R(∧x
)ν(dx) <∞, there exists a probability

space (Ω, ,P) on which a Lévy process X is de�ned.�e

process X is the sum of three independent processes
()
X ,

()
X , and

()
X , where

()
X is a Brownianmotionwith dri� a and

volatility b (in the sense de�ned below),
()
X is a compound

Poisson process, and
()
X is a square integrable martingale.

�e characteristic components of
()
X ,

()
X , and

()
X (denoted

by
()
φ (z),

()
φ (z) and

()
φ (z), respectively) are as follows:

()
φ (z) = iza − zb

 ,
()
φ (z)= ∫{∣x∣≥}(exp(izx) − )ν(dx),
()
φ (z)= ∫{∣x∣<}(exp(izx) −  − izx)ν(dx).

Examples of the Lévy Processes
The Brownian Motion
A Lévy process is said to be a Brownian motion (see
7Brownian Motion and Di�usions) with dri� µ, and
volatility rate σ , if µ = a, b = σ , and ν (R)= . Brow-
nian motion is the only nondeterministic Lévy processes
with continuous sample paths.

The Inverse Brownian Process
Let X be a Brownian motion with µ >  and volatility rate
σ . For any x > , let Tx = inf{t : Xt > x}.�en Tx is an
increasing Lévy process (called inverse Brownianmotion),
its Lévy measure is given by

υ(dx) = √
πσ x

exp(−xµ


σ 
) .

The Compound Poisson Process
�e compound Poisson process (see 7Poisson Processes)
is a Lévy process where b =  and ν is a �nite measure.

The Gamma Process
�e gamma process is a nonnegative increasing Lévy pro-
cess X, where b =  , a − ∫  xν(dx) =  and its Lévy
measure is given by

ν(dx) = α
x
exp(−x/β)dx, x > 

where α, β > . It follows that the mean term (E(X ))
and the variance term (V(X )) for the process are equal
to αβ and αβ, respectively.

�e following is a simulated sample path of a gamma
process, where α =  and β = . (Fig. ).

The Variance Gamma Process
�e variance gamma process is a Lévy process that can be
represented as either the di�erence between two indepen-
dent gamma processes or as a Brownian process subordi-
nated by a gamma process.�e latter is accomplished by a
random time change, replacing the time of the Brownian
process by a gamma process, with a mean term equal to .
�e variance gamma process has three parameters: µ – the
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Brownian process dri� term, σ – the volatility of the
Brownian process, and ν – the variance term of the the
gamma process.

�e following are two simulated sample paths, one for
a Brownian motion with a dri� term µ = . and volatility
term σ = . and the other is for a variance gamma process
with the same values for the dri� term and the volatility
terms and ν =  (Fig. ).
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Life expectancy is de�ned as the average number of years
a person is expected to live from age x, as determined by
statistics.
Statistics on life expectancy are derived from a mathe-

matical model known as the 7life table. In order to calcu-
late this indicator, the mortality rate at each age is assumed
to be constant. Life expectancy (ex) can be evaluated at
any age and, in a hypothetical stationary population, can
be written in discrete form as:

ex =
Tx
lx

where x is age; Tx is the number of person-years lived
aged x and over; and lx is the number of survivors at age
x according to the life table.
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Life expectancy can be calculated for combined sexes
or separately for males and females.�ere can be signi�-
cant di�erences between sexes.
Life expectancy at birth (e) is the average number of

years a newborn child can expect to live if currentmortality
trends remain constant:

e =
T
l

where T is the total size of the population and l is the
number of births (the original number of persons in the
birth cohort).
Life expectancy declines with age. Life expectancy at

birth is highly in�uenced by infant mortality rate. �e
paradox of the life table refers to a situation where life
expectancy at birth increases for several years a�er birth
(e < e < . . .e and even beyond).�e paradox re�ects the
higher rates of infant and child mortality in populations
in pre-transition and middle stages of the demographic
transition.
Life expectancy at birth is a summary measure of mor-

tality in a population. It is a frequently used indicator
of health standards and socio-economic living standards.
Life expectancy is also one of the most commonly used
indicators of social development. �is indicator is easily
comparable through time and between areas, including
countries. Inequalities in life expectancy usually indicate
inequalities in health and socio-economic development.
Life expectancy rose throughout human history. In

ancient Greece and Rome, the average life expectancy
was below  years; between the years  and ,
life expectancy at birth rose from about  years to a
global average of  years, and to more than  years in
the richest countries (Riley ). Furthermore, in most
industrialized countries, in the early twenty-�rst century,
life expectancy averaged at about  years (WHO).�ese
changes, called the “health transition,” are essentially the
result of improvements in public health, medicine, and
nutrition.
Life expectancy varies signi�cantly across regions and

continents: from life expectancies of about  years in
some central African populations to life expectancies of
 years and above in many European countries. �e
more developed regions have an average life expectancy of
 years, while the population of less developed regions
is at birth expected to live an average  years less. �e
two continents that display the most extreme di�erences
in life expectancies are North America (. years) and
Africa (. years) where, as of recently, the gap between
life expectancies amounts to  years (UN, –
 data).

Countries with the highest life expectancies in the
world ( years) are Australia, Iceland, Italy, Switzerland,
and Japan ( years); Japanese men and women live an
average of  and  years, respectively (WHO ).
In countries with a high rate of HIV infection, prin-

cipally in Sub-Saharan Africa, the average life expectancy
is  years and below. Some of the world’s lowest life
expectancies are in Sierra Leone ( years), Afghanistan
( years), Lesotho ( years), and Zimbabwe ( years).
In nearly all countries, women live longer than men.

�e world’s average life expectancy at birth is  years for
males and  years for females; the gap is about �ve years.
�e female-to-male gap is expected to narrow in the more
developed regions andwiden in the less developed regions.
�e Russian Federation has the greatest di�erence in life
expectancies between the sexes ( years less for men),
whereas in Tonga, life expectancy for males exceeds that
for females by  years (WHO ).
Life expectancy is assumed to rise continuously.

According to estimation by the UN, global life expectancy
at birth is likely to rise to an average  years by –.
By , life expectancy is expected to vary across countries
from  to  years. Long-range United Nations popula-
tion projections predict that by , on average, people
can expect to live more than  years, from  (Liberia) up
to  years (Japan).
For more details on the calculation of life expectancy,

including continuous notation, see Key�tz (, )
and Preston et al. ().
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�e life table is a classical tabular representation of central
features of the distribution function F of a positive variable,
say X, which normally is taken to represent the lifetime of
a newborn individual.�e life table was introduced well
before modern conventions concerning statistical distri-
butions were developed, and it comes with some special
terminology and notation, as follows. Suppose that F has a

density f (x) = d
dx
F(x) and de�ne the force of mortality or

death intensity at age x as the function

µ(x) = − d
dx
ln{ − F(x)} = f (x)

{ − F(x)} .

Heuristically, it is interpreted by the relation µ(x)dx =
P{x < X < x + dx∣X > x}. Conversely F(x) =

 − exp{−
x

∫

µ(s)ds} .�e survivor function is de�ned as

ℓ(x) = ℓ(){ − F(x)}, normally with ℓ() = , . In
mortality applications ℓ(x) is the expected number of sur-
vivors to exact age x out of an original cohort of , 
newborn babies.�e survival probability is

tpx = P{X > x + t∣X > x} = ℓ(x + t)/ℓ(x)

= exp{−∫
t


µ(x + s)ds},

and the non-survival probability is (the converse) tqx =
 −tpx. For t =  one writes qx = qx and px = px. In partic-
ular, we get ℓ(x + ) = ℓ(x)px.�is is a practical recursion
formula that permits us to compute all values of ℓ(x) once
we know the values of px for all relevant x.

�e life expectancy is eo = EX = ∫ ∞ ℓ(x)dx/ℓ()
(�e subscript  in eo indicates that the expected value is
computed at age  (i.e., for newborn individuals) and the
superscript o indicates that the computation is made in

the continuous mode.).�e remaining life expectancy at
age x is:

eox = E(X − x∣X > x) = ∫
∞


ℓ(x + t)dt/ℓ(x),

i.e., it is the expected lifetime remaining to someone who
has attained age x.
To turn to the statistical estimation of these various

quantities, suppose that the function µ(x) is piecewise
constant, which means that we take it to equal some con-
stant, say µj, over each interval (xj, xj+) for some partition
{xj} of the age axis. For a collection {Xi} of independent
observations of X, let Dj be the number of Xi that fall in
the interval (xj, xj+). In mortality applications, this is the
number of deaths observed in the given interval. For the
cohort of the initially newborn, Dj is the number of indi-
viduals whodie in the interval (called the occurrences in the
interval). If individual i dies in the interval, he or she will
of course have lived for Xi − xj time units during the inter-
val. Individuals who survive the interval, will have lived for
xj+ − xj time units in the interval, and individuals who
do not survive to age xj, will not have lived during this
interval at all. When we aggregate the time units lived in
(xj, xj+) over all individuals, we get a total Rj which is
called the exposures for the interval, the idea being that
individuals are exposed to the risk of death for as long as
they live in the interval. In the simple case where there are
no relations between the individual parameters µj, the col-
lection {Dj,Rj} constitutes a statistically su�cient set of
observations with a likelihood Λ that satis�es the relation
ln Λ = ∑j{−µjRj+Dj ln µj}which is easily seen to bemax-
imized by µ̂j = Dj/Rj.�e latter fraction is therefore the
maximum-likelihood estimator for µj (In some connec-
tions an age schedule of mortality will be speci�ed, such as
the classical Gompertz–Makeham function µx = a + bcx,
which does represent a relationship between the intensity
values at the di�erent ages x, normally for single-year age
groups.Maximum likelihood estimators can then be found
by plugging this functional speci�cation of the intensities
into the likelihood function, �nding the values â, b̂, and
ĉ that maximize Λ, and using â + b̂ĉx for the intensity in
the rest of the life table computations. Methods that do not
amount tomaximum likelihood estimationwill sometimes
be used because they involve simpler computations. With
some luck they provide starting values for the iterative pro-
cess that must usually be applied to produce the maximum
likelihood estimators. For an example, see Forsén ()).
�is whole schema can be extended trivially to cover cen-
soring (withdrawals) provided the censoringmechanism is
unrelated to the mortality process.
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If the force of mortality is constant over a single-year
age interval (x, x + ), say, and is estimated by µ̂x in this
interval, then p̂x = e−µ̂x is an estimator of the single-year
survival probability px.�is allows us to estimate the sur-
vival function recursively for all corresponding ages, using
ℓ̂(x + ) = ℓ̂(x)p̂x for x = , , . . . , and the rest of the
life table computations follow suit. Life table construction
consists in the estimation of the parameters and the tab-
ulation of functions like those above from empirical data.
�e data can be for age at death for individuals, as in the
example indicated above, but they can also be observa-
tions of duration until recovery from an illness, of intervals
between births, of time until breakdown of some piece of
machinery, or of any other positive duration variable.
So far we have argued as if the life table is computed for

a group of mutually independent individuals who have all
been observed in parallel, essentially a cohort that is fol-
lowed from a signi�cant common starting point (namely
from birth in our mortality example) and which is dimin-
ished over time due to decrements (attrition) caused by
the risk in question and also subject to reduction due to
censoring (withdrawals).�e corresponding table is then
called a cohort life table. It is more common, however, to
estimate a {px} schedule from data collected for the mem-
bers of a population during a limited time period and to
use the mechanics of life-table construction to produce a
period life table from the px values.
Life table techniques are described in detail in most

introductory textbooks in actuarial statistics,7biostatistics,
7demography, and epidemiology. See, e.g., Chiang (),
Elandt-Johnson and Johnson (), Manton and Stallard
(), Preston et al. (). For the history of the
topic, consult Seal (), Smith and Key�tz (), and
Dupâquier ().
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Introduction
�e likelihood function in a statistical model is propor-
tional to the density function for the random variable to
be observed in the model. Most o�en in applications of
likelihood we have a parametric model f (y; θ), where the
parameter θ is assumed to take values in a subset of Rk,
and the variable y is assumed to take values in a subset of
Rn: the likelihood function is de�ned by

L(θ) = L(θ; y) = cf (y; θ), ()

where c can depend on y but not on θ. In more gen-
eral settings where the model is semi-parametric or non-
parametric the explicit de�nition is more di�cult, because
the density needs to be de�ned relative to a dominating
measure, whichmay not exist: seeVan derVaart () and
Murphy andVan derVaart ().�is article will consider
only �nite-dimensional parametric models.
Within the context of the given parametric model, the

likelihood function measures the relative plausibility of
various values of θ, for a given observed data point y. Val-
ues of the likelihood function are only meaningful relative
to each other, and for this reason are sometimes stan-
dardized by the maximum value of the likelihood func-
tion, although other reference points might be of interest
depending on the context.
If ourmodel is f (y; θ) = (ny)θy(−θ)n−y, y = , , . . . ,n;

θ ∈ [, ], then the likelihood function is (any function
proportional to)

L(θ; y) = θy( − θ)n−y
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and can be plotted as a function of θ for any �xed value
of y. �e likelihood function is maximized at θ = y/n.
�is model might be appropriate for a sampling scheme
which recorded the number of successes amongn indepen-
dent trials that result in success or failure, each trial having
the same probability of success, θ. Another example is the
likelihood function for the mean and variance parameters
when sampling from a normal distribution with mean µ
and variance σ :

L(θ; y) = exp{−n log σ − (/σ )Σ(yi − µ)},

where θ = (µ, σ ).�is could also be plotted as a function
of µ and σ  for a given sample y, . . . , yn, and it is not dif-
�cult to show that this likelihood function only depends
on the sample through the sample mean y = n−Σyi and
sample variance s = (n − )−Σ(yi − y), or equivalently
through Σyi and Σyi . It is a general property of likelihood
functions that they depend on the data only through the
minimal su�cient statistic.

Inference
�e likelihood function was de�ned in a seminal paper
of Fisher (), and has since become the basis for most
methods of statistical inference. One version of likelihood
inference, suggested by Fisher, is to use some rule such
as L(θ̂)/L(θ) > k to de�ne a range of “likely” or “plau-
sible” values of θ. Many authors, including Royall ()
and Edwards (), have promoted the use of plots of
the likelihood function, along with interval estimates of
plausible values.�is approach is somewhat limited, how-
ever, as it requires that θ have dimension  or possibly ,
or that a likelihood function can be constructed that only
depends on a component of θ that is of interest; see section
“7Nuisance Parameters” below.
In general, we would wish to calibrate our inference

for θ by referring to the probabilistic properties of the
inferential method. One way to do this is to introduce a
probability measure on the unknown parameter θ, typi-
cally called a prior distribution, and use Bayes’ rule for
conditional probabilities to conclude

π(θ ∣ y) = L(θ; y)π(θ)/∫
θ
L(θ; y)π(θ)dθ,

where π(θ) is the density for the prior measure, and π(θ ∣
y) provides a probabilistic assessment of θ a�er observing
Y = y in the model f (y; θ). We could then make con-
clusions of the form, “having observed  successes in 
trials, and assuming π(θ) = , the posterior probability
that θ > . is .,” and so on.

�is is a very brief description of Bayesian inference, in
which probability statements refer to that generated from

the prior through the likelihood to the posterior. A major
di�culty with this approach is the choice of prior prob-
ability function. In some applications there may be an
accumulation of previous data that can be incorporated
into a probability distribution, but in general there is not,
and some rather ad hoc choices are o�en made. Another
di�culty is themeaning to be attached to probability state-
ments about the parameter.
Inference based on the likelihood function can also be

calibrated with reference to the probability model f (y; θ),
by examining the distribution ofL(θ;Y) as a random func-
tion, or more usually, by examining the distribution of
various derived quantities.�is is the basis for likelihood
inference from a frequentist point of view. In particular,
it can be shown that  log{L(θ̂;Y)/L(θ;Y)}, where θ̂ =
θ̂(Y) is the value of θ at which L(θ;Y) is maximized, is
approximately distributed as a χk random variable, where
k is the dimension of θ. To make this precise requires an
asymptotic theory for likelihood, which is based on a cen-
tral limit theorem (see 7Central Limit�eorems) for the
score function

U(θ;Y) = ∂
∂θ
logL(θ;Y).

If Y = (Y, . . . ,Yn) has independent components, then
U(θ) is a sum of n independent components, which under
mild regularity conditions will be asymptotically normal.
To obtain the χ result quoted above it is also necessary to
investigate the convergence of θ̂ to the true value govern-
ing the model f (y; θ). Showing this convergence, usually
in probability, but sometimes almost surely, can be di�-
cult: see Scholz () for a summary of some of the issues
that arise.
Assuming that θ̂ is consistent for θ, and that L(θ;Y)

has su�cient regularity, the follow asymptotic results can
be established:

(θ̂ − θ)T i(θ)(θ̂ − θ) d→ χk, ()

U(θ)T i−(θ)U(θ) d→ χk, ()

{ℓ(θ̂) − ℓ(θ)} d→ χk, ()

where i(θ) = E{−ℓ′′(θ;Y); θ} is the expected Fisher infor-
mation function, ℓ(θ) = logL(θ) is the log-likelihood
function, and χk is the 7chi-square distribution with k
degrees of freedom.

�ese results are all versions of a more general result
that the log-likelihood function converges to the quadratic
form corresponding to a multivariate normal distribution
(see 7Multivariate Normal Distributions), under suitably
stated limiting conditions. �ere is a similar asymptotic
result showing that the posterior density is asymptotically
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normal, and in fact asymptotically free of the prior distri-
bution, although this result requires that the prior distribu-
tion be a proper probability density, i.e., has integral over
the parameter space equal to .

Nuisance Parameters
In models where the dimension of θ is large, plotting the
likelihood function is not possible, and inference based on
the multivariate normal distribution for θ̂ or the χk dis-
tribution of the log-likelihood ratio doesn’t lead easily to
interval estimates for components of θ. However it is pos-
sible to use the likelihood function to construct inference
for parameters of interest, using variousmethods that have
been proposed to eliminate nuisance parameters.
Suppose in the model f (y; θ) that θ = (ψ, λ), where ψ

is a k-dimensional parameter of interest (which will o�en
be ).�e pro�le log-likelihood function of ψ is

ℓP(ψ) = ℓ(ψ, λ̂ψ),

where λ̂ψ is the constrainedmaximum likelihood estimate:
it maximizes the likelihood function L(ψ, λ) when ψ is
held �xed.�e pro�le log-likelihood function is also called
the concentrated log-likelihood function, especially in
econometrics. If the parameter of interest is not expressed
explicitly as a subvector of θ, then the constrained maxi-
mum likelihood estimate is found using Lagrange multi-
pliers.
It can be veri�ed under suitable smoothness conditions

that results similar to those at ( – ) hold as well for the
pro�le log-likelihood function: in particular

{ℓP(ψ̂) − ℓP(ψ)} = {ℓ(ψ̂, λ̂) − ℓ(ψ, λ̂ψ)}
d→ χk ,

�is method of eliminating nuisance parameters is not
completely satisfactory, especially when there are many
nuisance parameters: in particular it doesn’t allow for
errors in estimation of λ. For example the pro�le likeli-
hood approach to estimation of σ  in the linear regression
model (see 7Linear Regression Models) y ∼ N(Xβ, σ )
will lead to the estimator σ̂  = Σ(yi − ŷi)/n, whereas the
estimator usually preferred has divisor n−p, where p is the
dimension of β.

�us a large literature has developed on improvements
to the pro�le log-likelihood. For Bayesian inference such
improvements are “automatically” included in the formu-
lation of the marginal posterior density for ψ:

πM(ψ ∣ y)∝ ∫ π(ψ, λ ∣ y)dλ,

but it is typically quite di�cult to specify priors for possibly
high-dimensional nuisance parameters. For non-Bayesian

inference most modi�cations to the pro�le log-likelihood
are derived by considering conditional or marginal infer-
ence in models that admit factorizations, at least approxi-
mately, like the following:

f (y; θ) = f(y;ψ)f(y ∣ y; λ), or
f (y; θ) = f(y ∣ y;ψ)f(y; λ).

A discussion of conditional inference and density factori-
sations is given in Reid ().�is literature is closely tied
to that on higher order asymptotic theory for likelihood.
�e latter theory builds on saddlepoint and Laplace expan-
sions to derive more accurate versions of (–): see, for
example, Severini () and Brazzale et al. (). �e
direct likelihood approach of Royall () and others does
not generalize very well to the nuisance parameter setting,
although Royall and Tsou () present some results in
this direction.

Extensions to Likelihood
�e likelihood function is such an important aspect of
inference based on models that it has been extended to
“likelihood-like” functions formore complex data settings.
Examples include nonparametric and semi-parametric
likelihoods: the most famous semi-parametric likelihood
is the proportional hazards model of Cox (). But
many other extensions have been suggested: to empiri-
cal likelihood (Owen ), which is a type of nonpara-
metric likelihood supported on the observed sample; to
quasi-likelihood (McCullagh ) which starts from the
score function U(θ) and works backwards to an infer-
ence function; to bootstrap likelihood (Davison et al. );
and many modi�cations of pro�le likelihood (Barndor�-
Nielsen andCox ; Fraser ).�ere is recent interest
for multi-dimensional responses Yi in composite likeli-
hoods, which are products of lower dimensional condi-
tional or marginal distributions (Varin ). Reid ()
concluded a review article on likelihood by stating:

7 From either a Bayesian or frequentist perspective, the like-
lihood function plays an essential role in inference. The
maximum likelihood estimator, once regarded on an equal
footing among competing point estimators, is now typi-
cally the estimator of choice, although some refinement
is needed in problems with large numbers of nuisance
parameters. The likelihood ratio statistic is the basis for
most tests of hypotheses and interval estimates. The emer-
gence of the centrality of the likelihood function for infer-
ence, partly due to the large increase in computing power,
is one of the central developments in the theory of statistics
during the latter half of the twentieth century.
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Further Reading
�e book by Cox and Hinkley () gives a detailed
account of likelihood inference and principles of statis-
tical inference; see also Cox (). �ere are several
book-length treatments of likelihood inference, including
Edwards (), Azzalini (), Pawitan (), and Sev-
erini (): this last discusses higher order asymptotic
theory in detail, as does Barndor�-Nielsen andCox (),
and Brazzale, Davison and Reid (). A short review
paper is Reid (). An excellent overview of consis-
tency results for maximum likelihood estimators is Scholz
(); see also Lehmann andCasella (). Foundational
issues surrounding likelihood inference are discussed in
Berger and Wolpert ().
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Limit �eorems of Probability �eory is a broad name
referring to the most essential and extensive research area
in Probability �eory which, at the same time, has the
greatest impact on the numerous applications of the latter.
By its very nature, Probability �eory is concerned

with asymptotic (limiting) laws that emerge in a long series
of observations on random events. Because of this, in the
early twentieth century even the very de�nition of prob-
ability of an event was given by a group of specialists
(R. von Mises and some others) as the limit of the rela-
tive frequency of the occurrence of this event in a long
row of independent random experiments. �e “stability”
of this frequency (i.e., that such a limit always exists) was
postulated. A�er the s, Kolmogorov’s axiomatic con-
struction of probability theory has prevailed. One of the
main assertions in this axiomatic theory is the Law of Large
Numbers (LLN) on the convergence of the averages of large
numbers of random variables to their expectation. �is
law implies the aforementioned stability of the relative fre-
quencies and their convergence to the probability of the
corresponding event.

�e LLN is the simplest limit theorem (LT) of probabil-
ity theory, elucidating the physical meaning of probability.
�e LLN is stated as follows: if X,X,X, . . . is a sequence
of i.i.d. random variables,

Sn :=
n

∑
j=
Xj,

and the expectation a := EX exists then n−Sn
a.s.Ð→ a

(almost surely, i.e., with probability ).�us the value na
can be called the �rst order approximation for the sums Sn.
�e Central Limit�eorem (CLT) gives one a more precise
approximation for Sn. It says that, if σ  := E(X − a) <∞,
then the distribution of the standardized sum ζn := (Sn −
na)/σ

√
n converges, as n → ∞, to the standard normal

(Gaussian) law.�at is, for all x,

P(ζn < x)→ Φ(x) := √
π

x

∫
−∞

e−t
/dt.

�e quantity nEξ + ζσ
√
n, where ζ is a standard normal

random variable (so that P(ζ < x) = Φ(x)), can be called
the second order approximation for Sn.

�e �rst LLN (for the Bernoulli scheme) was proved
by Jacob Bernoulli in the late s (published posthu-
mously in ). �e �rst CLT (also for the Bernoulli
scheme) was established by A. de Moivre (�rst published
in  and referred nowadays to as the deMoivre–Laplace
theorem). In the beginning of the nineteenth century,
P.S. Laplace and C.F. Gauss contributed to the generaliza-
tion of these assertions and appreciation of their enormous
applied importance (in particular, for the theory of errors
of observations), while later in that century further break-
throughs in both methodology and applicability range
of the CLT were achieved by P.L. Chebyshev () and
A.M. Lyapunov ().

�e main directions in which the two aforementioned
main LTs have been extended and re�ned since then are:

. Relaxing the assumption EX < ∞. When the sec-
ond moment is in�nite, one needs to assume that the
“tail” P(x) := P(X > x) + P(X < −x) is a func-
tion regularly varying at in�nity such that the limit
lim
x→∞P(X > x)/P(x) exists.�en the distribution of the
normalized sum Sn/σ(n), where σ(n) := P−(n−),
P− being the generalized inverse of the function P, and
we assume that Eξ =  when the expectation is �nite,
converges to one of the so-called stable laws as n→∞.
�e7characteristic functions of these laws have simple
closed-form representations.

. Relaxing the assumption that the Xj’s are identically
distributed and proceeding to study the so-called tri-
angular array scheme, where the distributions of the
summands Xj = Xj,n forming the sum Sn depend not
only on j but on n as well. In this case, the class of all
limit laws for the distribution of Sn (under suitable nor-
malization) is substantially wider: it coincides with the
class of the so-called in�nitely divisible distributions.
An important special case here is the Poisson limit the-
orem on convergence in distribution of the number of
occurrences of rare events to a Poisson law.

. Relaxing the assumption of independence of the Xj’s.
Several types of “weak dependence” assumptions onXj
under which the LLN and CLT still hold true have
been suggested and investigated.One should alsomen-
tion here the so-called ergodic theorems (see7Ergodic
�eorem) for a wide class of random sequences and
processes.

. Re�nement of the main LTs and derivation of asymp-
totic expansions. For instance, in the CLT, bounds of
the rate of convergence P(ζn < x) − Φ(x) →  and
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asymptotic expansions for this di�erence (in the pow-
ers of n−/ in the case of i.i.d. summands) have been
obtained under broad assumptions.

. Studying large deviation probabilities for the sums Sn
(theorems on rare events). If x → ∞ together with n
then the CLT can only assert that P(ζn > x) → .
�eorems on large deviation probabilities aim to �nd a
function P(x,n) such that

P(ζn > x)
P(x,n) →  as n→∞, x →∞.

�e nature of the function P(x,n) essentially depends
on the rate of decay of P(X > x) as x →∞ and on the
“deviation zone,” i.e., on the asymptotic behavior of the
ratio x/n as n→∞.

. Considering observations X, . . . ,Xn of a more com-
plex nature – �rst of all, multivariate random vectors.
If Xj ∈ Rd then the role of the limit law in the CLT
will be played by a d-dimensional normal (Gaussian)
distribution with the covariance matrix E(X − EX)
(X − EX)T .

�e variety of application areas of the LLN and CLT
is enormous. �us, Mathematical Statistics is based on
these LTs. Let X∗n := (X, . . . ,Xn) be a sample from
a distribution F and F∗n (u) the corresponding empirical
distribution function.�e fundamental Glivenko–Cantelli
theorem (see 7Glivenko-Cantelli �eorems) stating that
supu ∣F

∗
n (u)− F(u)∣

a.s.Ð→  as n→∞ is of the same nature
as the LLN and basically means that the unknown distri-
bution F can be estimated arbitrary well from the random
sample X∗n of a large enough size n.

�e existence of consistent estimators for the unknown
parameters a = Eξ and σ  = E(X − a) also follows from
the LLN since, as n→∞,

a∗ : = 
n

n

∑
j=
Xj

a.s.Ð→ a, (σ )∗ := 
n

n

∑
j=

(Xj − a∗)

= 
n

n

∑
j=
Xj − (a∗) a.s.Ð→ σ .

Under additional moment assumptions on the distri-
bution F, one can also construct asymptotic con�dence
intervals for the parameters a and σ , as the distributions
of the quantities

√
n(a∗ − a) and

√
n((σ )∗ − σ ) con-

verge, as n → ∞, to the normal ones.�e same can also
be said about other parameters that are “smooth” enough
functionals of the unknown distribution F.

�e theorem on the 7asymptotic normality and
asymptotic e�ciency of maximum likelihood estimators
is another classical example of LTs’ applications in mathe-
matical statistics (see e.g., Borovkov ). Furthermore, in

estimation theory and hypotheses testing, one also needs
theorems on large deviation probabilities for the respec-
tive statistics, as it is statistical procedures with small error
probabilities that are o�en required in applications.
It is worth noting that summation of random variables

is by no means the only situation in which LTs appear in
Probability�eory.
Generally speaking, the main objective of Probabil-

ity�eory in applications is �nding appropriate stochastic
models for objects under study and then determining the
distributions or parameters one is interested in. As a rule,
the explicit form of these distributions and parameters is
not known. LTs can be used to �nd suitable approximations
to the characteristics in question.
At least two possible approaches to this problem should

be noted here.

. Suppose that the unknown distribution Fθ depends on
a parameter θ such that, as θ approaches some “critical”
value θ, the distributions Fθ become “degenerate” in
one sense or another.�en, in a number of cases, one
can �nd an approximation for Fθ which is valid for the
values of θ that are close to θ. For instance, in actuarial
studies,7queueing theory and some other applications
one of the main problems is concerned with the dis-
tribution of S := sup

k≥
(Sk − θk), under the assumption

that EX = . If θ >  then S is a proper random vari-
able. If, however, θ →  then S a.s.Ð→ ∞. Here we deal
with the so-called “transient phenomena.” It turns out
that if σ  := Var (X) <∞ then there exists the limit

lim
θ↓
P(θS > x) = e−x/σ  , x > .

�is (Kingman–Prokhorov) LT enables one to �nd
approximations for the distribution of S in situations
where θ is small.

. Sometimes one can estimate the “tails” of the unknown
distributions, i.e., their asymptotic behavior at in�nity.
�is is of importance in those applications where one
needs to evaluate the probabilities of rare events. If the
equation Eeµ(X−θ) =  has a solution µ >  then, in
the above example, one has

P(S > x) ∼ ce−µx, x →∞,

where c is a known constant. If the distribution F of X
is subexponential (in this case, Eeµ(X−θ) = ∞ for any
µ > ) then

P(S > x) ∼ 
θ ∫

∞

x
( − F(t))dt, x →∞.
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�isLTenablesone to�ndapproximations forP(S > x)
for large x.
For both approaches, the obtained approximations

can be re�ned.

An important part of Probability�eory is concerned
with LTs for random processes. �eir main objective is
to �nd conditions under which random processes con-
verge, in some sense, to some limit process. An extension
of the CLT to that context is the so-called Functional
CLT (a.k.a. the Donsker–Prokhorov invariance princi-
ple) which states that, as n → ∞, the processes
{ζn(t) := (S⌊nt⌋ − ant)/σ

√
n}t∈[,] converge in distribu-

tion to the standard Wiener process {w(t)}t∈[,].�e LTs
(including large deviation theorems) for a broad class of
functionals of the sequence (7random walk) {S, . . . , Sn}
can also be classi�ed as LTs for 7stochastic processes.
�e same can be said about Law of iterated logarithm
which states that, for an arbitrary ε > , the random walk
{Sk}∞k= crosses the boundary (−ε)σ

√
k ln ln k in�nitely

many times but crosses the boundary ( + ε)σ
√
k ln ln k

�nitely many times with probability . Similar results hold
true for trajectories of Wiener processes {w(t)}t∈[,] and
{w(t)}t∈[,∞).
In mathematical statistics a closely related to func-

tional CLT result says that the so-called “empirical process”
{√n(F∗n (u) − F(u))}u∈(−∞,∞) converges in distribution

to {w(F(u))}u∈(−∞,∞), where w(t) := w(t) − tw() is
the Brownian bridge process.�is LT implies7asymptotic
normality of a great many estimators that can be repre-
sented as smooth functionals of the empirical distribution
function F∗n (u).

�ere are many other areas in Probability �eory
and its applications where various LTs appear and are
extensively used. For instance, convergence theorems
for 7martingales, asymptotics of extinction probability
of a branching processes and conditional (under non-
extinction condition) LTs on a number of particles etc.
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In observational studies, repeated measurements may be
taken at almost arbitrary time points, resulting in an
extremely large number of time points at which only one
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or only a few measurements have been taken. Many of the
parametric covariance models described so far may then
contain toomany parameters tomake them useful in prac-
tice, while other,more parsimonious,modelsmay be based
on assumptions which are too simplistic to be realistic.
A general, and very �exible, class of parametric models for
continuous longitudinal data is formulated as follows:

yi∣bi ∼ N(Xiβ + Zibi,Σi), ()
bi ∼ N(,D), ()

where Xi and Zi are (ni × p) and (ni × q) dimensional
matrices of known covariates, β is a p-dimensional vec-
tor of regression parameters, called the �xed e�ects, D is
a general (q × q) covariance matrix, and Σi is a (ni × ni)
covariance matrix which depends on i only through its
dimension ni, i.e., the set of unknown parameters in Σi will
not depend upon i. Finally, bi is a vector of subject-speci�c
or random e�ects.

�e above model can be interpreted as a linear regres-
sion model (see 7Linear Regression Models) for the vec-
tor yi of repeated measurements for each unit separately,
where some of the regression parameters are speci�c (ran-
dom e�ects, bi), while others are not (�xed e�ects, β).�e
distributional assumptions in () with respect to the ran-
dom e�ects can be motivated as follows. First, E(bi) = 
implies that the mean of yi still equals Xiβ, such that the
�xed e�ects in the random-e�ects model () can also be
interpreted marginally. Not only do they re�ect the e�ect
of changing covariates within speci�c units, they alsomea-
sure the marginal e�ect in the population of changing the
same covariates. Second, the normality assumption imme-
diately implies that, marginally, yi also follows a normal
distribution with mean vector Xiβ and with covariance
matrix Vi = ZiDZ′i + Σi.
Note that the random e�ects in () implicitly imply the

marginal covariance matrix Vi of yi to be of the very spe-
ci�c form Vi = ZiDZ′i + Σi. Let us consider two examples
under the assumption of conditional independence, i.e.,
assuming Σi = σ Ini . First, consider the case where the
random e�ects are univariate and represent unit-speci�c
intercepts. �is corresponds to covariates Zi which are
ni-dimensional vectors containing only ones.

�e marginal model implied by expressions () and
() is

yi ∼ N(Xiβ,Vi), Vi = ZiDZ′i + Σi

which can be viewed as a multivariate linear regression
model, with a very particular parameterization of the
covariance matrix Vi.

With respect to the estimation of unit-speci�c param-
eters bi, the posterior distribution of bi given the observed
data yi can be shown to be (multivariate) normal with
mean vector equal to DZ′iV

−
i (α)(yi − Xiβ). Replacing β

and α by their maximum likelihood estimates, we obtain
the so-called empirical Bayes estimates b̂i for the bi. A key
property of these EB estimates is shrinkage, which is best
illustrated by considering the prediction ŷi ≡ Xi β̂ +Zib̂i of
the ith pro�le. It can easily be shown that

ŷi = ΣiV−i Xi β̂ + (Ini − ΣiV−i ) yi,

which can be interpreted as a weighted average of the
population-averaged pro�le Xi β̂ and the observed data yi,
with weights ΣiV−i and Ini −ΣiV−i , respectively. Note that
the “numerator” of ΣiV−i represents within-unit variabil-
ity and the “denominator” is the overall covariance matrix
Vi. Hence, much weight will be given to the overall average
pro�le if the within-unit variability is large in comparison
to the between-unit variability (modeled by the random
e�ects), whereasmuchweight will be given to the observed
data if the opposite is true.�is phenomenon is referred to
as shrinkage toward the average pro�leXi β̂. An immediate
consequence of shrinkage is that the EB estimates show less
variability than actually present in the random-e�ects dis-
tribution, i.e., for any linear combination λ of the random
e�ects,

var(λ′b̂i)≤ var(λ′bi) = λ′Dλ.
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7 I did not want proof, because the theoretical exigencies of
the problem would afford that. What I wanted was to be
started in the right direction.

(F. Galton)

�e linear regressionmodel of statistics is any functional
relationship y = f (x, β, ε) involving a dependent real-
valued variable y, independent variables x, model param-
eters β and random variables ε, such that a measure of
central tendency for y in relation to x termed the regression
function is linear in β. Possible regression functions include
the conditional mean E(y∣x, β) (as when β is itself random
as in Bayesian approaches), conditional medians, quantiles
or other forms. Perhaps y is corn yield from a given plot
of earth and variables x include levels of water, sunlight,
fertilization, discrete variables identifying the genetic vari-
ety of seed, and combinations of these intended to model
interactive e�ects they may have on y. �e form of this
linkage is speci�ed by a function f known to the experi-
menter, one that depends upon parameters β whose values
are not known, and also upon unseen random errors ε
about which statistical assumptions are made.�ese mod-
els prove surprisingly �exible, as when localized linear
regression models are knit together to estimate a regres-
sion function nonlinear in β. Draper and Smith () is
a plainly written elementary introduction to linear regres-
sion models, Rao () is one of many established general
references at the calculus level.

Aspects of Data, Model and Notation
Suppose a time varying sound signal is the superposition
of sine waves of unknown amplitudes at two �xed known
frequencies embedded in white noise background y[t] =
β+β sin[.t]+β sin[.t]+ε.Wewrite β+βx+βx+ε
for β = (β, β, β), x = (x, x, x), x ≡ , x(t) =
sin[.t], x(t) = sin[.t], t ≥ . A natural choice of regres-
sion function is m(x, β) = E(y∣x, β) = β + βx + βx
provided Eε ≡ . In the classical linear regression model
one assumes for di�erent instances “i” of observation that
random errors satisfy Eεi ≡ , Eεiεk ≡ σ  > , i = k ≤
n, Eεiεk ≡  otherwise. Errors in linear regression mod-
els typically depend upon instances i at which we select
observations and may in some formulations depend also
on the values of x associated with instance i (perhaps the
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errors are correlated and that correlation depends upon
the x values). What we observe are yi and associated val-
ues of the independent variables x. �at is, we observe
(yi, , sin[.ti], sin[.ti]), i ≤ n.�e linear model on data
may be expressed y = xβ+εwith y = column vector {yi, i ≤
n}, likewise for ε, and matrix x (the design matrix) whose
n entries are xik = xk[ti].

Terminology
Independent variables, as employed in this context, is
misleading. It derives from language used in connec-
tion with mathematical equations and does not refer to
statistically independent random variables. Independent
variables may be of any dimension, in some applications
functions or surfaces. If y is not scalar-valued the model
is instead a multivariate linear regression. In some ver-
sions either x, β or both may also be random and subject
to statistical models. Do not confuse multivariate linear
regression with multiple linear regression which refers to
a model having more than one non-constant independent
variable.

General Remarks on Fitting Linear
Regression Models to Data
Early work (the classical linear model) emphasized inde-
pendent identically distributed (i.i.d.) additive normal
errors in linear regression where 7least squares has par-
ticular advantages (connections with 7multivariate nor-
mal distributions are discussed below). In that setup least
squares would arguably be a principle method of �tting
linear regression models to data, perhaps with modi�ca-
tions such as Lasso or other constrained optimizations that
achieve reduced sampling variations of coe�cient estima-
tors while introducing bias (Efron et al. ). Absent a
breakthrough enlarging the applicability of the classical
linear model other methods gain traction such as Bayesian
methods (7Markov Chain Monte Carlo having enabled
their calculation); Non-parametric methods (good perfor-
mance relative to more relaxed assumptions about errors);
Iteratively Reweighted least squares (having under some
conditions behavior like maximum likelihood estimators
without knowing the precise form of the likelihood).�e
Dantzig selector is good news for dealing with far fewer
observations than independent variables when a relatively
small fraction of them matter (Candès and Tao ).

Background
C.F. Gauss may have used least squares as early as . In
 he was able to predict the apparent position at which

asteroid Ceres would re-appear from behind the sun a�er
it had been lost to view following discovery only  days
before. Gauss’ prediction was well removed from all others
and he soon followed upwith numerous other high-caliber
successes, each achieved by �tting relatively simple models
motivated by Keppler’s Laws, work at which he was very
adept and quick.�ese were �ts to imperfect, sometimes
limited, yet fairly precise data. Legendre () published
a substantive account of least squares following which the
method became widely adopted in astronomy and other
�elds. See Stigler ().
By contrast Galton (), working with what might

today be described as “low correlation” data, discovered
deep truths not already known by �tting a straight line.
No theoretical model previously available had prepared
Galton for these discoveries which were made in a study
of his own data w = standard score of weight of parental
sweet pea seed(s), y = standard score of seed weights(s)
of their immediate issue. Each sweet pea seed has but one
parent and the distributions of x and y the same. Work-
ing at a time when correlation and its role in regression
were yet unknown, Galton found to his astonishment a
nearly perfect straight line tracking points (parental seed
weight w, median �lial seed weight m(w)). Since for this
data sy ∼ sw this was the least squares line (also the regres-
sion line since the data was bivariate normal) and its slope
was rsy/sw = r (the correlation). Medians m(w) being
essentially equal to means of y for eachw greatly facilitated
calculations owing to his choice to select equal numbers
of parent seeds at weights ,±,±,± standard deviations
from the mean of w. Galton gave the name co-relation
(later correlation) to the slope ∼ . of this line and
for a brief time thought it might be a universal constant.
Although the correlation was small, this slope nonetheless
gavemeasure to the previously vague principle of reversion
(later regression, as when larger parental examples beget
o�spring typically not quite so large). Galton deduced the
general principle that if  < r <  then for a value w > Ew
the relation Ew < m(w) < w follows. Having sensibly
selected equal numbers of parental seeds at intervals may
have helped him observe that points (w, y) departed on
each vertical from the regression line by statistically inde-
pendentN(, θ) random residuals whose variance θ > 
was the same for all w. Of course this likewise amazed him
and by  he had identi�ed all these properties as a con-
sequence of bivariate normal observations (w, y), (Galton
).
Echoes of those long ago events reverberate today in

our many statistical models “driven,” as we now proclaim,
by random errors subject to ever broadening statistical
modeling. In the beginning it was very close to truth.
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Aspects of Linear Regression Models
Data of the real world seldomconformexactly to any deter-
ministic mathematical model y = f (x, β) and through the
device of incorporating random errors we have now an
established paradigm for �tting models to data (x, y) by
statistically estimating model parameters. In consequence
we obtain methods for such purposes as predicting what
will be the average response y to particular given inputs
x; providing margins of error (and prediction error) for
various quantities being estimated or predicted, tests of
hypotheses and the like. It is important to note in all this
that more than one statistical model may apply to a given
problem, the function f and the other model components
di�ering among them. Two statistical modelsmay disagree
substantially in structure and yet neither, either or both
may produce useful results. In this respect statistical mod-
eling is more a matter of how much we gain from using
a statistical model and whether we trust and can agree
upon the assumptions placed on the model, at least as a
practical expedient. In some cases the regression function
conforms precisely to underlying mathematical relation-
ships but that does not re�ect the majority of statistical
practice. It may be that a given statistical model, although
far from being an underlying truth, confers advantage by
capturing some portion of the variation of y vis-a-vis x.�e
method principle components,which seeks to �nd relatively
small numbers of linear combinations of the independent
variables that together account for most of the variation
of y, illustrates this point well. In one application elec-
tromagnetic theory was used to generate by computer an
elaborate database of theoretical responses of an induced
electromagnetic �eld near a metal surface to various com-
binations of �aws in the metal.�e role of principle com-
ponents and linear modeling was to establish a simple
model re�ecting those �ndings so that a portable device
could be devised to make detections in real time based on
the model.
If there is any weakness to the statistical approach

it lies in the fact that margins of error, statistical tests
and the like can be seriously incorrect even if the predic-
tions a�orded by a model have apparent value. Refer to
Hinkelmann and Kempthorne (), Berk (),
Freedman (), Freedman ().

Classical Linear Regression Model
and Least Squares
�e classical linear regression model may be expressed y =
xβ + ε, an abbreviated matrix formulation of the system of
equations in which random errors ε are assumed to satisfy

EεI ≡ ,Eε i ≡ σ  > , i ≤ n :

yi = xiβ +⋯ + xipβp + εi, i ≤ n. ()

�e interpretation is that response yi is observed
for the ith sample in conjunction with numerical values
(xi, . . . , xip) of the independent variables. If these errors
{εI} are jointly normally distributed (and therefore sta-
tistically independent having been assumed to be uncor-
related) and if the matrix xtrx is non-singular then the
maximum likelihood (ML) estimates of the model coef-
�cients {βk, k ≤ p} are produced by ordinary least squares
(LS) as follows:

βML = βLS = (xtrx)−xtry = β +Mε ()

forM = (xtrx)−xtr with xtr denotingmatrix transpose of x
and (xtrx)− thematrix inverse.�ese coe�cient estimates
βLS are linear functions in y and satisfy the Gauss–Markov
properties ()():

E(βLS)k = βk, k ≤ p. ()

and, among all unbiased estimators β∗k (of βk) that are
linear in y,

E((βLS)k − βk) ≤ E (β∗k − βk)
 , for every k ≤ p. ()

Least squares estimator () is frequently employed
without the assumption of normality owing to the fact that
properties ()() must hold in that case as well. Many sta-
tistical distributions F, t, chi-square have important roles in
connection with model () either as exact distributions for
quantities of interest (normality assumed) or more gener-
ally as limit distributions when data are suitably enriched.

Algebraic Properties of Least Squares
Setting all randomness assumptions aside we may exam-
ine the algebraic properties of least squares. If y = xβ + ε
then βLS = My = M(xβ + ε) = β + Mε as in (). �at
is, the least squares estimate of model coe�cients acts on
xβ + ε returning β plus the result of applying least squares
to ε.�is has nothing to do with the model being correct
or ε being error but is purely algebraic. If ε itself has the
form xb + e then Mε = b +Me. Another useful observa-
tion is that if x has �rst column identically one, as would
typically be the case for a model with constant term, then
each row Mk, k > , of M satis�es .Mk =  (i.e., Mk is a
contrast) so (βLS)k = βk + Mk.ε and Mk.(ε + c) = Mk.ε
so ε may as well be assumed to be centered for k > .
�ere are many of these interesting algebraic properties
such as s(y−xβLS) = (−R)s(y)where s(.) denotes the
sample standard deviation and R is themultiple correlation
de�ned as the correlation between y and the �tted val-
ues xβLS. Yet another algebraic identity, this one involving
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an interplay of permutations with projections, is exploited
to help establish for exchangeable errors ε, and contrasts
v, a permutation bootstrap of least squares residuals that
consistently estimates the conditional sampling distribution
of v.(βLS − β) conditional on the 7order statistics of ε.
(See LePage and Podgorski ). Freedman and Lane in
 advocated tests based on permutation bootstrap of
residuals as a descriptive method.

Generalized Least Squares
If errors ε are N(,Σ) distributed for a covariance matrix
Σ known up to a constant multiple then the maximum
likelihood estimates of coe�cients β are produced by a gen-
eralized least squares solution retaining properties ()()
(any positive multiple of Σ will produce the same result)
given by:

βML = (xtrΣ−x)−xtrΣ−y = β + (xtrΣ−x)−xtrΣ−ε. ()

Generalized least squares solution () retains prop-
erties ()() even if normality is not assumed. It must
not be confused with 7generalized linear models which
refers to models equating moments of y to nonlinear func-
tions of xβ.
A very large body of work has been devoted to linear

regression models and the closely related subject areas of
experimental design,7analysis of variance, principle com-
ponent analysis and their consequent distribution theory.

Reproducing Kernel Generalized Linear
Regression Model
Parzen (, Sect. ) developed the reproducing kernel
framework extending generalized least squares to spaces
of arbitrary �nite or in�nite dimension when the ran-
dom error function ε = {ε(t), t ∈ T} has zero means
Eε(t) ≡  and a covariance function K(s, t) = Eε(s)ε(t)
that is assumed known up to some positive constant mul-
tiple. In this formulation:

y(t) = m(t) + ε(t), t ∈ T,
m(t) = Ey(t) = Σiβiwi(t), t ∈ T,

where wi(.) are known linearly independent functions in
the reproducing kernel Hilbert (RKHS) space H(K) of the
kernel K. For reasons having to do with singularity of
Gaussian measures it is assumed that the series de�ning
m is convergent in H(K). Parzen extends to that context
and solves the problem of best linear unbiased estima-
tion of the model coe�cients β and more generally of
estimable linear functions of them, developing con�dence
regions, prediction intervals, exact or approximate distri-
butions, tests and other matters of interest, and establish-
ing the Gauss–Markov properties ()().�e RKHS setup

has been examined from an on-line learning perspective
(Vovk ).

Joint Normal Distributed (x, y) as
Motivation for the Linear Regression
Model and Least Squares
For the moment, think of (x, y) as following a multivariate
normal distribution, as might be the case under process
control or in natural systems. �e (regular) conditional
expectation of y relative to x is then, for some β:

E(y∣x) = Ey + E((y − Ey)∣x) = Ey + x.β for every x

and the discrepancies y − E(y∣x) are for each x distributed
N(, σ ) for a �xed σ , independent for di�erent x.

Comparing Two Basic Linear Regression
Models
Freedman () compares the analysis of two super�cially
similar but di�ering models:
Errors model:Model () above.
Samplingmodel:Data (xi, . . . , xip, yi), i ≤ n represent

a random sample from a �nite population (e.g., an actual
physical population).
In the sampling model, {εi} are simply the residual

discrepancies y-xβLS of a least squares �t of linear model
xβ to the population. Galton’s seed study is an exam-
ple of this if we regard his data (w, y) as resulting from
equal probability without-replacement random sampling
of a population of pairs (w, y) with w restricted to be at
,±,±,± standard deviations from themean. Both with
and without-replacement equal-probability sampling are
considered by Freedman. Unlike the errors model there
is no assumption in the sampling model that the popula-
tion linear regressionmodel is in anyway correct, although
least squares may not be recommended if the population
residuals depart signi�cantly from i.i.d. normal. Our only
purpose is to estimate the coe�cients of the population LS
�t of the model using LS �t of the model to our sample,
give estimates of the likely proximity of our sample least
squares �t to the population �t and estimate the quality of
the population �t (e.g., multiple correlation).
Freedman () established the applicability of Efron’s

Bootstrap to each of the two models above but under dif-
ferent assumptions. His results for the sampling model are
a textbook application of Bootstrap since a description of
the sampling theory of least squares estimates for the sam-
pling model has complexities largely, as had been said, out
of the way when the Bootstrap approach is used. It would
be an interesting exercise to examine data, such as Galton’s
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seed data, analyzing it by the two di�erent models, obtain-
ing con�dence intervals for the estimated coe�cients of a
straight line �t in each case to see how closely they agree.

Balancing Good Fit Against
Reproducibility
A balance in the linear regression model is necessary.
Including too many independent variables in order to
assure a close �t of the model to the data is called over-
�tting. Models over-�t in this manner tend not to work
with fresh data, for example to predict y from a fresh choice
of the values of the independent variables. Galton’s regres-
sion line, although it did not a�ord very accurate predic-
tions of y from w, owing to the modest correlation ∼ .,
was arguably best for his bi-variate normal data (w, y).
Tossing in another independent variable such as w for a
parabolic �t would have over-�t the data, possibly spoiling
discovery of the principle of regression to mediocrity.
A model might well be used even when it is under-

stood that incorporating additional independent variables
will yield a better �t to data and a model closer to truth.
How could this be? If the more parsimonious choice of
x accounts for enough of the variation of y in relation to
the variables of interest to be useful and if its fewer coe�-
cients β are estimated more reliably perhaps. Intentional
use of a simpler model might do a reasonably good job
of giving us the estimates we need but at the same time
violate assumptions about the errors thereby invalidat-
ing con�dence intervals and tests. Gauss needed to come
close to identifying the location at which Ceres would
appear. Going for too much accuracy by complicating the
model risked over�tting owing to the limited number of
observations available.
One possible resolution to this tradeo� between reli-

able estimation of a few model coe�cients, versus the risk
that by doing so too much model related material is le�
in the error term, is to include all of several hierarchically
ordered layers of independent variables, more thanmay be
needed, then remove those that the data suggests are not
required to explain the greater share of the variation of y
(Raudenbush and Bryk ). New results on data com-
pression (Candès and Tao ) may o�er fresh ideas for
reliably removing, in some cases, less relevant independent
variables without �rst arranging them in a hierarchy.

Regression to Mediocrity Versus
Reversion to Mediocrity or Beyond
Regression (when applicable) is o�en used to prove that a
high performing group on some scoring, i.e., X > c > EX,
will not average so highly on another scoring Y , as they do
on X, i.e., E(Y ∣X > c) < E(X∣X > c). Termed reversion

to mediocrity or beyond by Samuels () this property
is easily come by when X,Y have the same distribution.
�e following result and brief proof are Samuels’ except
for clari�cations made here (italics).�ese comments are
addressed only to the formal mathematical proof of the
paper.

Proposition Let random variables X,Y be identically
distributed with �nite mean EX and �x any c >
max(,EX). If P(X > c and Y > c) < P(Y > c) then there
is reversion to mediocrity or beyond for that c.

Proof For any given c > max(,EX) de�ne the di�erence
J of indicator random variables J = (X > c) − (Y > c). J is
zero unless one indicator is  and the other . YJ is less or
equal cJ = c on J =  (i.e., on X > c,Y ≤ c) and YJ is strictly
less than cJ = −c on J = − (i.e., on X ≤ c,Y > c). Since
the event J = − has positive probability by assumption, the
previous implies E YJ < c EJ and so

EY(X > c) = E(Y(Y > c) + YJ) = EX(X > c) + E YJ
< EX(X > c) + cEJ = EX(X > c),

yielding E(Y ∣X > c) < E(X∣X > c). ◻
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Local Asymptotic Mixed Normal
Family

Ishwar V. Basawa
Professor
University of Georgia, Athens, GA, USA

Suppose x(n) = (x, . . . , xn) is a sample from a stochastic
process x = {x, x, ...}. Let pn(x(n); θ) denote the joint
density function of x(n), where θєΩ ⊂ Rk is a parameter.
De�ne the log-likelihood ratio Λn = [ pn(x(n);θn)pn(x(n);θ) ], where
θn = θ + n−  h, and h is a (k × ) vector.�e joint density
pn(x(n); θ) belongs to a local asymptotic normal (LAN)
family if Λn satis�es

Λn = n−

 htSn(θ) − n− ( 


htJn(θ)h) + op() ()

where Sn(θ) = dlnpn(x(n);θ)
dθ , Jn(θ) = − d

 lnpn(x(n);θ)
dθdθ t , and

(i)n−

 Sn(θ) dÐ→ Nk(,F(θ)), (ii)n−Jn(θ) pÐ→ F(θ),

()

F(θ) being the limiting Fisher information matrix. Here,
F(θ) ia assumed to be non-random. See LaCam and Yang
() for a review of the LAN family.
For the LAN family de�ned by () and (), it is well

known that, under some regularity conditions, the maxi-
mum likelihood (ML) estimator θ̂n is consistent asymp-
totically normal and e�cient estimator of θ with

√
n(θ̂n − θ) dÐ→ Nk(,F−(θ)). ()

A large class of models involving the classical i.i.d. (inde-
pendent and identically distributed) observations are cov-
ered by the LAN framework. Many time series models and
7Markov processes also are included in the LAN family.
If the limiting Fisher information matrix F(θ) is non-

degenerate random, we obtain a generalization of the LAN
family for which the limit distribution of the ML estima-
tor in () will be a mixture of normals (and hence non-
normal). If Λn satis�es () and () with F(θ) random, the
density pn(x(n); θ) belongs to a local asymptotic mixed
normal (LAMN) family. See Basawa and Scott () for
a discussion of the LAMN family and related asymptotic
inference questions for this family.
For the LAMN family, one can replace the norm

√
n by

a random norm J


n (θ) to get the limiting normal distribu-

tion, viz.,
J


n (θ)(θ̂n − θ) dÐ→ N(, I), ()

where I is the identity matrix.
Two examples belonging to the LAMN family are given

below:

Example  Variance mixture of normals

Suppose, conditionally on V = v, (x, x, . . . , xn)
are i.i.d. N(θ, v−) random variables, and V is an expo-
nential random variable with mean . �e marginal
joint density of x(n) is then given by pn(x(n); θ) ∝

[ + 


n

∑

(xi − θ)]

−( n +)
. It can be veri�ed that F(θ) is

an exponential random variable with mean .�e ML esti-
mator θ̂n = x and

√
n(x − θ) dÐ→ t(). It is interesting to

note that the variance of the limit distribution of x is∞!

Example  Autoregressive process

Consider a �rst-order autoregressive process {xt}
de�ned by xt = θxt− + et , t = , , . . . , with x = , where
{et} are assumed to be i.i.d. N(, ) random variables.
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We then have pn(x(n); θ) ∝ exp [− 
n

∑

(xt − θxt−)].

For the stationary case, ∣θ∣ < , this model belongs
to the LAN family. However, for ∣θ∣ > , the model
belongs to the LAMN family. For any θ, the ML esti-

mator θ̂n = (
n

∑

xixi−)(

n

∑

xi−)

−
. One can verify that

√
n(θ̂n − θ) dÐ→ N(, ( − θ)−), for ∣θ∣ < , and

(θ − )−θn(θ̂n − θ) dÐ→ Cauchy, for ∣θ∣ > .

About the Author
Dr. Ishwar Basawa is a Professor of Statistics at the
University of Georgia, USA. He has served as interim
head of the department (–), Executive Edi-
tor of the Journal of Statistical Planning and Inference
(–), on the editorial board of Communications
in Statistics, and currently the online Journal of Prob-
ability and Statistics. Professor Basawa is a Fellow of
the Institute of Mathematical Statistics and he was an
Elected member of the International Statistical Institute.
He has co-authored two books and co-edited eight Pro-
ceedings/Monographs/Special Issues of journals. He has
authored more than  publications. His areas of research
include inference for stochastic processes, time series, and
asymptotic statistics.

Cross References
7Asymptotic Normality
7Optimal Statistical Inference in Financial Engineering
7Sampling Problems for Stochastic Processes

References and Further Reading
Basawa IV, Scott DJ () Asymptotic optimal inference for

non-ergodic models. Springer, New York
LeCam L, Yang GL () Asymptotics in statistics. Springer,

New York

Location-Scale Distributions
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A random variable X with realization x belongs to the
location-scale family when its cumulative distribution is a
function only of (x − a)/b:

FX(x ∣ a, b) = Pr(X ≤ x∣a, b) = F(x − a
b

) ; a ∈ R, b > ;

where F(⋅) is a distribution having no other parameters.
Di�erent F(⋅)’s correspond to di�erent members of the
family. (a, b) is called the location–scale parameter, a being
the location parameter and b being the scale parameter. For
�xed b =  we have a subfamily which is a location family
with parameter a, and for �xed a =  we have a scale family
with parameter b.�e variable

Y = X − a
b

is called the reduced or standardized variable. It has a = 
and b = . If the distribution of X is absolutely continuous
with density function

fX(x ∣ a, b) =
dFX(x ∣ a, b)

d x
then (a, b) is a location scale-parameter for the distribu-
tion of X if (and only if)

fX(x ∣ a, b) =

b
f(x − a

b
)

for some density f (⋅), called the reduced density. All distri-
butions in a given family have the same shape, i.e., the same
skewness and the same kurtosis.WhenY hasmean µY and
standard deviation σY then, the mean of X is E(X) = a +
b µY and the standard deviation of X is

√
Var(X) = b σY .

�e location parameter a, a ∈ R is responsible for
the distribution’s position on the abscissa. An enlargement
(reduction) of a causes a movement of the distribution to
the right (le�).�e location parameter is either a measure
of central tendency e.g., the mean, median and mode or it
is an upper or lower threshold parameter.�e scale param-
eter b, b > , is responsible for the dispersion or variation
of the variate X. Increasing (decreasing) b results in an
enlargement (reduction) of the spread and a correspond-
ing reduction (enlargement) of the density. b may be the
standard deviation, the full or half length of the support,
or the length of a central ( − α)–interval.

�e location-scale family has a great number of
members:

● Arc-sine distribution
● Special cases of the beta distribution like the rectan-
gular, the asymmetric triangular, the U–shaped or the
power–function distributions

● Cauchy and half–Cauchy distributions
● Special cases of the χ–distribution like the half–
normal, theRayleigh and theMaxwell–Boltzmann
distributions

● Ordinary and raised cosine distributions
● Exponential and re�ected exponential distributions
● Extreme value distribution of the maximum and the
minimum, each of type I

● Hyperbolic secant distribution
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● Laplace distribution
● Logistic and half–logistic distributions
● Normal and half–normal distributions
● Parabolic distributions
● Rectangular or uniform distribution
● Semi–elliptical distribution
● Symmetric triangular distribution
● Teissier distribution with reduced density f (y) =

[ exp(y) − ] exp[ + y − exp(y)], y ≥ 
● V–shaped distribution

For each of the above mentioned distributions we can
design a special probability paper. Conventionally, the
abscissa is for the realization of the variate and the ordinate,
called the probability axis, displays the values of the cumu-
lative distribution function, but its underlying scaling is
according to the percentile function. �e ordinate value
belonging to a given sample data on the abscissa is called
plotting position; for its choice see Barnett (, ),
Blom (), Kimball ().When the sample comes from
the probability paper’s distribution the plotted data will
randomly scatter around a straight line, thus, we have a
graphical goodness-�t-test.Whenwe �t the straight line by
eye we may read o� estimates for a and b as the abscissa or
di�erence on the abscissa for certain percentiles. A more
objective method is to �t a least-squares line to the data,
and the estimates of a and b will be the the parameters of
this line.

�e latter approach takes the order statisticsXi:n, X:n ≤
X:n ≤ . . . ≤ Xn:n as regressand and the mean of the
reduced order statistics αi:n := E(Yi:n) as regressor, which
under these circumstances acts as plotting position. �e
regression model reads:

Xi:n = a + b αi:n + εi,

where εi is a random variable expressing the di�erence
betweenXi:n and its mean E(Xi:n) = a+b αi:n. As the order
statistics Xi:n and – as a consequence – the disturbance
terms εi are neither homoscedastic nor uncorrelated we
have to use – according to Lloyd () – the general-least-
squares method to �nd best linear unbiased estimators of
a and b. Introducing the following vectors and matrices:

x :=

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎝

X:n

X:n

⋮

Xn:n

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟

⎠

,  :=

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎝





⋮



⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟

⎠

, α :=

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎝

α:n

α:n

⋮

αn:n

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟

⎠

, ε :=

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎝

ε

ε

⋮

εn

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟

⎠

, θ :=
⎛

⎜
⎜

⎝

a

b

⎞

⎟
⎟

⎠

,

A := ( α)

the regression model now reads

x = A θ + ε

with variance–covariance matrix

Var(x) = b B.

�e GLS estimator of θ is

θ̂ = (A′ΩA)−A′Ω x

and its variance–covariance matrix reads

Var( θ̂ ) = b (A′ΩA)−.

�e vector α and the matrix B are not always easy to �nd.
For only a few location–scale distributions like the expo-
nential, the re�ected exponential, the extreme value, the
logistic and the rectangular distributions we have closed-
form expressions, in all other cases we have to evalu-
ate the integrals de�ning E(Yi:n) and E(Yi:n Yj:n). For
more details on linear estimation and probability plot-
ting for location-scale distributions and for distributions
which can be transformed to location–scale type see Rinne
(). Maximum likelihood estimation for location–scale
distributions is treated by Mi ().
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�e logistic-normal distribution arises by assuming that
the logit (or logistic transformation) of a proportion has
a normal distribution, with an obvious extension to a vec-
tor of proportions through taking a logistic transformation
of a multivariate normal distribution, see Aitchison and
Shen (). In the univariate case, this provides a family of
distributions on (, ) that is distinct from the 7beta dis-
tribution, while the multivariate version is an alternative
to the Dirichlet distribution. Note that in the multivariate
case there is no unique way to de�ne the set of logits for
the multinomial proportions (just as in multinomial logit
models, see Agresti ) and di�erent formulations may
be appropriate in particular applications (Aitchison ).
�e univariate distribution has been used, o�en implicitly,
in random e�ects models for binary data and the multi-
variate version was pioneered by Aitchison for statistical
diagnosis/discrimination (Aitchison and Begg ), the
Bayesian analysis of contingency tables and the analysis of
compositional data (Aitchison , ).

�e use of the logistic-normal distribution is most eas-
ily seen in the analysis of binary data where the logit model
(based on a logistic tolerance distribution) is extended
to the logit-normal model. For grouped binary data with

responses ri out of mi trials (i = , . . . ,n), the response
probabilities, Pi, are assumed to have a logistic-normal dis-
tribution with logit(Pi) = log(Pi/( − Pi)) ∼ N(µi, σ ),
where µi is modelled as a linear function of explanatory
variables, x, . . . , xp.�e resulting model can be summa-
rized as

Ri∣Pi ∼ Binomial(mi,Pi)
logit(Pi)∣Z = ηi + σZ = β + βxi +⋯ + βpxip + σZ

Z ∼ N(, )

�is is a simple extension of the basic logit model with
the inclusion of a single normally distributed random
e�ect in the linear predictor, an example of a general-
ized linear mixed model, see McCulloch and Searle ().
Maximum likelihood estimation for this model is compli-
cated by the fact that the likelihood has no closed form
and involves integration over the normal density, which
requires numerical methods using Gaussian quadrature;
routines now exist as part of generalized linear mixed
model �tting in all major so�ware packages, such as SAS,
R, Stata and Genstat. Approximate moment-based estima-
tion methods make use of the fact that if σ  is small then,
as derived in Williams (),

E[Ri] = miπi and
Var(Ri) = miπi( − π)[ + σ (mi − )πi( − πi)]

where logit(πi) = ηi.�e form of the variance function
shows that this model is overdispersed compared to the
binomial, that is it exhibits greater variability; the ran-
dom e�ect Z allows for unexplained variation across the
grouped observations. However, note that for binary data
(mi = ) it is not possible to have overdispersion arising in
this way.
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Logistic regression is the most common method used to
model binary response data. When the response is binary,
it typically takes the form of /, with  generally indicat-
ing a success and  a failure.However, the actual values that
 and  can take vary widely, depending on the purpose of
the study. For example, for a study of the odds of failure in a
school setting,  may have the value of fail, and  of not-fail,
or pass. �e important point is that  indicates the fore-
most subject of interest forwhich a binary response study is
designed. Modeling a binary response variable using nor-
mal linear regression introduces substantial bias into the
parameter estimates. �e standard linear model assumes
that the response and error terms are normally or Gaus-
sian distributed, that the variance, σ , is constant across
observations, and that observations in the model are inde-
pendent. When a binary variable is modeled using this
method, the �rst two of the above assumptions are violated.
Analogical to the normal regression model being based
on the Gaussian probability distribution function (pdf ),
a binary response model is derived from a Bernoulli dis-
tribution, which is a subset of the binomial pdf with the
binomial denominator taking the value of .�e Bernoulli
pdf may be expressed as:

f (yi; πi) = π yi
i ( − πi)−yi . ()

Binary logistic regression derives from the canonical
form of the Bernoulli distribution. �e Bernoulli pdf is
a member of the exponential family of probability distri-
butions, which has properties allowing for a much easier

estimation of its parameters than traditional Newton–
Raphson-based maximum likelihood estimation (MLE)
methods.
In  Nelder and Wedderbrun discovered that it

was possible to construct a single algorithm for estimat-
ing models based on the exponential family of distri-
butions. �e algorithm was termed 7Generalized linear
models (GLM), and became a standard method to esti-
mate binary response models such as logistic, probit, and
complimentary-loglog regression, count response mod-
els such as Poisson and negative binomial regression, and
continuous response models such as gamma and inverse
Gaussian regression.�e standard normalmodel, or Gaus-
sian regression, is also a generalized linear model, andmay
be estimated under its algorithm.�e formof the exponen-
tial distribution appropriate for generalized linear models
may be expressed as

f (yi; θ i, ϕ) = exp{(yiθ i − b(θ i))/α(ϕ) + c(yi; ϕ)}, ()

with θ representing the link function, α(ϕ) the scale
parameter, b(θ) the cumulant, and c(y; ϕ) the normaliza-
tion term, which guarantees that the probability function
sums to . �e link, a monotonically increasing func-
tion, linearizes the relationship of the expected mean and
explanatory predictors. �e scale, for binary and count
models, is constrained to a value of , and the cumulant is
used to calculate the model mean and variance functions.
�e mean is given as the �rst derivative of the cumulant
with respect to θ, b′(θ); the variance is given as the second
derivative, b′′(θ). Taken together, the above four terms
de�ne a speci�c GLM model.
We may structure the Bernoulli distribution () into

exponential family form () as:

f (yi; πi) = exp{yi ln(πi/( − πi)) + ln( − πi)}. ()

�e link function is therefore ln(π/(−π)), and cumu-
lant − ln( − π) or ln(/( − π)). For the Bernoulli, π is
de�ned as the probability of success.�e �rst derivative of
the cumulant is π, the second derivative, π( − π).�ese
two values are, respectively, the mean and variance func-
tions of the Bernoulli pdf . Recalling that the logistic model
is the canonical form of the distribution, meaning that it is
the form that is directly derived from the pdf , the values
expressed in (), and the values we gave for the mean and
variance, are the values for the logistic model.
Estimation of statistical models using the GLM algo-

rithm, as well asMLE, are both based on the log-likelihood
function.�e likelihood is simply a re-parameterization of
the pdf which seeks to estimate π, for example, rather than
y.�e log-likelihood is formed from the likelihood by tak-
ing the natural log of the function, allowing summation
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across observations during the estimation process rather
than multiplication.

�e traditional GLM symbol for the mean, µ, is typ-
ically substituted for π, when GLM is used to estimate a
logisticmodel. In that form, the log-likelihood function for
the binary-logistic model is given as:

L(µi; yi) =
n

∑
i=

{yi ln(µi/( − µi)) + ln( − µi)}, ()

or

L(µi; yi) =
n

∑
i=

{yi ln(µi) + ( − yi) ln( − µi)}. ()

�e Bernoulli-logistic log-likelihood function is essen-
tial to logistic regression. When GLM is used to esti-
mate logistic models, many so�ware algorithms use the
deviance rather than the log-likelihood function as the
basis of convergence.�e deviance, which can be used as
a goodness-of-�t statistic, is de�ned as twice the di�erence
of the saturated log-likelihood and model log-likelihood.
For logistic model, the deviance is expressed as

D = 
n

∑
i=

{yi ln(yi/µi)+(−yi) ln((−yi)/(− µi))}. ()

Whether estimated using maximum likelihood techniques
or asGLM, the value of µ for each observation in themodel
is calculated on the basis of the linear predictor, x′β. For the
normal model, the predicted �t, ŷ, is identical to x′β, the
right side of (). However, for logistic models, the response
is expressed in terms of the link function, ln(µi/( − µi)).
We have, therefore,

x′iβ = ln(µi/(− µi)) = β + βx + βx +⋯+ βnxn. ()

�e value of µi, for each observation in the logistic model,
is calculated as

µi = / ( + exp (−x′iβ)) = exp (x′iβ) / ( + exp (x′iβ)) .
()

�e functions to the right of µ are commonly used ways
of expressing the logistic inverse link function, which con-
verts the linear predictor to the �tted value. For the logistic
model, µ is a probability.
When logistic regression is estimated using a Newton-

Raphson type ofMLE algorithm, the log-likelihood func-
tion as parameterized to x′β rather than µ.�e estimated
�t is then determined by taking the �rst derivative of the
log-likelihood function with respect to β, setting it to zero,
and solving.�e �rst derivative of the log-likelihood func-
tion is commonly referred to as the gradient, or score
function.�e second derivative of the log-likelihood with
respect to β produces the Hessian matrix, from which the
standard errors of the predictor parameter estimates are

derived. �e logistic gradient and hessian functions are
given as

∂L(β)
∂β

=
n

∑
i=

(yi − µi)xi ()

∂L(β)
∂β∂β′

= −
n

∑
i=

{xix′i µi( − µi)} ()

One of the primary values of using the logistic regression
model is the ability to interpret the exponentiated param-
eter estimates as odds ratios. Note that the link function
is the log of the odds of µ, ln(µ/( − µ)), where the odds
are understood as the success of µ over its failure,  − µ.
�e log-odds is commonly referred to as the logit function.
An example will help clarify the relationship, as well as the
interpretation of the odds ratio.
We use data from the  Titanic accident, compar-

ing the odds of survival for adult passengers to children.
A tabulation of the data is given as:

Age (Child vs Adult)

Survived child adults Total

no   

yes   

Total  , ,

�e odds of survival for adult passengers is /, or
..�e odds of survival for children is /, or ..
�e ratio of the odds of survival for adults to the odds of
survival for children is (/)/(/), or ..
�is value is referred to as the odds ratio, or ratio of the two
component odds relationships. Using a logistic regression
procedure to estimate the odds ratio of age produces the
following results

survived
Odds
Ratio

Std.
Err. z P> ∣z∣

[% Conf.
Interval]

age . . −. . . .

With  = adult and  = child, the estimated odds ratio
may be interpreted as:

7 The odds of an adult surviving were about half the odds of a

child surviving.

By inverting the estimated odds ratio above, we may
conclude that children had [/.∼ .] some % – or
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nearly two times – greater odds of surviving than did
adults.
For continuous predictors, a one-unit increase in a pre-

dictor value indicates the change in odds expressed by
the displayed odds ratio. For example, if age was recorded
as a continuous predictor in the Titanic data, and the
odds ratio was calculated as ., we would interpret the
relationship as:

7 Theoddsof surviving isoneandahalfpercentgreater for each

increasing year of age.

Non-exponentiated logistic regression parameter esti-
mates are interpreted as log-odds relationships, which
carry little meaning in ordinary discourse. Logistic mod-
els are typically interpreted in terms of odds ratios, unless
a researcher is interested in estimating predicted prob-
abilities for given patterns of model covariates; i.e., in
estimating µ.
Logistic regression may also be used for grouped or

proportional data. For these models the response consists
of a numerator, indicating the number of successes (s)
for a speci�c covariate pattern, and the denominator (m),
the number of observations having the speci�c covariate
pattern.�e response y/m is binomially distributed as:

f (yi; πi,mi) = (mi
yi

)π yi
i ( − πi)mi−yi , ()

with a corresponding log-likelihood function expressed as

L(µi; yi,mi) =
n

∑
i=

{yi ln(µi/( − µi)) +mi ln( − µi)

+ (mi
yi

)}. ()

Taking derivatives of the cumulant, −mi ln( − µi), as
we did for the binary response model, produces a mean of
µi = miπi and variance, µi( − µi/mi).
Consider the data below:

y cases x x x

    

    

    

    

    

    

y indicates the number of times a speci�c pattern of covari-
ates is successful. Cases is the number of observations

having the speci�c covariate pattern.�e �rst observation
in the table informs us that there are three cases having
predictor values of x = , x = , and x = . Of those
three cases, one has a value of y equal to , the other two
have values of . All current commercial so�ware appli-
cations estimate this type of logistic model using GLM
methodology.

y
Odds
ratio

OIM
std. err. z P > ∣z∣

[% conf.
interval]

x . . . . . .

x . . −. . . .

x . . −. . . .

�e data in the above table may be restructured so that
it is in individual observation format, rather than grouped.
�e new table would have ten observations, having the
same logic as described. Modeling would result in iden-
tical parameter estimates. It is not uncommon to �nd an
individual-based data set of, for example, , observa-
tions, being grouped into – rows or observations as
above described. Data in tables is nearly always expressed
in grouped format.
Logisticmodels are subject to a variety of �t tests. Some

of the more popular tests include the Hosmer-Lemeshow
goodness-of-�t test, ROC analysis, various information
criteria tests, link tests, and residual analysis.�eHosmer–
Lemeshow test, once well used, is now only used with
caution. �e test is heavily in�uenced by the manner in
which tied data is classi�ed. Comparing observed with
expected probabilities across levels, it is now preferred to
construct tables of risk having di�erent numbers of lev-
els. If there is consistency in results across tables, then the
statistic is more trustworthy.
Information criteria tests, e.g., Akaike informationCri-

teria (see 7Akaike’s Information Criterion and 7Akaike’s
Information Criterion: Background, Derivation, Proper-
ties, and Re�nements) (AIC) and Bayesian Information
Criteria (BIC) are the most used of this type of test. Infor-
mation tests are comparative, with lower values indicating
the preferred model. Recent research indicates that AIC
and BIC both are biased when data is correlated to any
degree. Statisticians have attempted to develop enhance-
ments of these two tests, but have not been entirely suc-
cessful.�e best advice is to use several di�erent types of
tests, aiming for consistency of results.
Several types of residual analyses are typically recom-

mended for logistic models. �e references below pro-
vide extensive discussion of these methods, together with
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appropriate caveats. However, it appears well established
that m-asymptotic residual analyses is most appropri-
ate for logistic models having no continuous predictors.
m-asymptotics is based on grouping observations with
the same covariate pattern, in a similar manner to the
grouped or binomial logistic regression discussed earlier.
�e Hilbe () and Hosmer and Lemeshow () ref-
erences below provide guidance on how best to construct
and interpret this type of residual.
Logistic models have been expanded to include cat-

egorical responses, e.g., proportional odds models and
multinomial logistic regression. �ey have also been
enhanced to include the modeling of panel and corre-
lated data, e.g., generalized estimating equations, �xed and
random e�ects, and mixed e�ects logistic models.
Finally, exact logistic regression models have recently

been developed to allow the modeling of perfectly pre-
dicted data, as well as small and unbalanced datasets.
In these cases, logistic models which are estimated using
GLM or full maximum likelihood will not converge. Exact
models employ entirely di�erent methods of estimation,
based on large numbers of permutations.
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�e logistic distribution is a location-scale family distri-
bution with a very similar shape to the normal (Gaussian)
distribution but with somewhat heavier tails. �e distri-
bution has applications in reliability and survival analysis.
�e cumulative distribution function has been used for
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modelling growth functions and as a tolerance distribu-
tion in the analysis of binary data, leading to the widely
used logit model. For a detailed discussion of the proper-
ties of the logistic and related distributions, see Johnson
et al. ().

�e probability density function is

f (x) = 
τ

exp{−(x − µ)/τ}
[ + exp{−(x − µ)/τ}]

, −∞ < x <∞ ()

and the cumulative distribution function is

F(x) = 
[ + exp{−(x − µ)/τ}] , −∞ < x <∞ .

�e distribution is symmetric about the mean µ and has
variance τπ/, so that when comparing the standard
logistic distribution (µ = , τ = ) with the standard nor-
mal distribution, N(, ), it is important to allow for the
di�erent variances.�e suitably scaled logistic distribution
has a very similar shape to the normal, although the kur-
tosis is . which is somewhat larger than the value of 
for the normal, indicating the heavier tails of the logistic
distribution.
In survival analysis, one advantage of the logistic

distribution, over the normal, is that both right- and le�-
censoring can be easily handled.�e survivor and hazard
functions are given by

S(x) = 
[ + exp{(x − µ)/τ}] , −∞ < x <∞

h(x)= 
τ


[ + exp{−(x − µ)/τ}] .

�e hazard function has the same logistic form and is
monotonically increasing, so themodel is only appropriate
for ageing systemswith an increasing failure rate over time.
In modelling the dependence of failure times on explana-
tory variables, if we use a linear regression model for µ,
then the �tted model has an accelerated failure time inter-
pretation for the e�ect of the variables. Fitting of thismodel
to right- and le�-censored data is described in Aitkin et al.
().
One obvious extension for modelling failure times, T,

is to assume a logistic model for logT, giving a log-logistic
model for T analagous to the lognormal model.�e result-
ing hazard function based on the logistic distribution in
() is

h(t) = α
θ

(t/θ)α−

 + (t/θ)α , t, θ, α > 

where θ = eµ and α = /τ. For α ≤  the hazard is
monotone decreasing, and for α >  it has a single max-
imum as for the lognormal distribution; hazards of this
form may be appropriate in the analysis of data such as

heart transplant survival – there may be an initial period
of increasing hazard associated with rejection, followed by
decreasing hazard as the patient survives the procedure
and the transplanted organ is accepted.
For the standard logistic distribution (µ = , τ = ),

the probability density and the cumulative distribution
functions are related through the very simple identity

f (x) = F(x) [ − F(x)]

which in turn, by elementary calculus, implies that

logit(F(x)) := loge [
F(x)
 − F(x)] = x ()

and uniquely characterizes the standard logistic distribu-
tion. Equation () provides a very simple way for sim-
ulating from the standard logistic distribution by setting
X = loge[U/( − U)] where U ∼ U(, ); for the general
logistic distribution in () we take τX + µ.

�e logit transformation is now very familiar in mod-
elling probabilities for binary responses. Its use goes back
to Berkson (), who suggested the use of the logis-
tic distribution to replace the normal distribution as the
underlying tolerance distribution in quantal bio-assays,
where various dose levels are given to groups of subjects
(animals) and a simple binary response (e.g., cure, death,
etc.) is recorded for each individual (giving r-out-of-n type
response data for the groups).�e use of the normal dis-
tribution in this context had been pioneered by Finney
through his work on 7probit analysis and the same meth-
ods mapped across to the logit analysis, see Finney ()
for a historical treatment of this area. �e probability of
response, P(d), at a particular dose level d is modelled by
a linear logit model

logit(P(d)) = loge [
P(d)
 − P(d)] = β + βd

which, by the identity (), implies a logistic tolerance dis-
tribution with parameters µ = −β/β and τ = /∣β∣.
�e logit transformation is computationally convenient
and has the nice interpretation of modelling the log-
odds of a response. �is goes across to general logis-
tic regression models for binary data where parameter
e�ects are on the log-odds scale and for a two-level factor
the �tted e�ect corresponds to a log-odds-ratio. Approx-
imate methods for parameter estimation involve using
the empirical logits of the observed proportions. How-
ever, maximum likelihood estimates are easily obtained
with standard generalized linear model �tting so�ware,
using a binomial response distribution with a logit link
function for the response probability; this uses the itera-
tively reweighted least-squares Fisher-scoring algorithm of
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Nelder and Wedderburn (), although Newton-based
algorithms for maximum likelihood estimation of the logit
model appeared well before the unifying treatment of
7generalized linearmodels. A comprehensive treatment of
7logistic regression including models and applications is
given in Agresti () and Hilbe ().
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Definition and Properties
It is a general rule that income distributions are skewed.
Although various distributionmodels, such as the Lognor-
mal and the Pareto have been proposed, they are usually
applied in speci�c situations. For general studies, more
wide-ranging tools have to be applied, the �rst and most
common tool of which is the Lorenz curve. Lorenz ()
developed it in order to analyze the distribution of income
and wealth within populations, describing it in the follow-
ing way:

7 Plot along one axis accumulated percentages of the popula-

tion from poorest to richest, and along the other, wealth held

by these percentages of the population.

�e Lorenz curve L(p) is de�ned as a function of the
proportion p of the population. L(p) is a curve starting
from the origin and ending at point (, ) with the follow-
ing additional properties (I) L(p) is monotone increasing,
(II) L(p) ≤ p, (III) L(p) convex, (IV) L()=  and L()= .
�e Lorenz curve is convex because the income share of the
poor is less than their proportion of the population (Fig. ).

�e Lorenz curve satis�es the general rules:

7 A unique Lorenz curve corresponds to every distribution. The

contrary does not hold, but every Lorenz L(p) is a common

curve for a whole class of distributions F(θ x) where θ is an

arbitrary constant.

�e higher the curve, the less inequality in the income
distribution. If all individuals receive the same income,
then the Lorenz curve coincides with the diagonal from
(, ) to (, ). Increasing inequality lowers the Lorenz
curve, which can converge towards the lower right corner
of the square.
Consider two Lorenz curves LX(p) and LY(p). If

LX(p) ≥ LY(p) for all p, then the distribution correspond-
ing to LX(p) has lower inequality than the distribution
corresponding to LY(p) and is said to Lorenz dominate the
other. Figure  shows an example of Lorenz curves.

�e inequality can be of a di�erent type, the corre-
sponding Lorenz curves may intersect, and for these no
Lorenz ordering holds.�is case is seen in Fig. . Under
such circumstances, alternative inequality measures have
to be de�ned, the most frequently used being the Gini
index, G, introduced by Gini ().�is index is the ratio
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Lorenz Curve. Fig.  Two intersecting Lorenz curves. Using the
Gini index L(p) has greater inequality (G = .) than L(p)

(G = .)

between the area between the diagonal and the Lorenz
curve and the whole area under the diagonal.�is de�ni-
tion yields Gini indices satisfying the inequality  ≤ G ≤ .

�e higher the G value, the greater the inequality in the
income distribution.

Income Redistributions
It is a well-known fact that progressive taxation reduces
inequality. Similar e�ects can be obtained by appropriate
transfer policies, �ndings based on the following general
theorem (Fellman ; Jakobsson ; Kakwani ):

�eorem Let u(x) be a continuous monotone increasing
function and assume that µY = E (u(X)) exists.�en the
Lorenz curve LY(p) for Y = u(X) exists and

(I) LY(p) ≥ LX(p) if
u(x)
x
is monotone decreasing

(II) LY(p) = LX(p) if
u(x)
x
is constant

(III) LY(p) ≤ LX(p) if
u(x)
x
is monotone increasing.

For progressive taxation rules, u(x)
x
measures the pro-

portion of post-tax income to initial income and is a
monotone-decreasing function satisfying condition (I),
and the Gini index is reduced. Hemming and Keen ()
gave an alternative condition for the Lorenz dominance,

which is that u(x)
x
crosses the µY

µX
level once from above.

If the taxation rule is a �at tax, then (II) holds and the
Lorenz curve and the Gini index remain. �e third case
in �eorem  indicates that the ratio u(x)

x
is increasing

and the Gini index increases, but this case has only minor
practical importance.
A crucial study concerning income distributions and

redistributions is the monograph by Lambert ().
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Loss functions occur at several places in statistics. Here
we attach importance to decision theory (see 7Decision
�eory: An Introduction, and 7Decision �eory: An
Overview) and regression. For both �elds the same loss
functions can be used. But the interpretation is di�erent.
Decision theory gives a general framework to de�ne

and understand statistics as a mathematical discipline.�e
loss function is the essential component in decision theory.
�e loss function judges a decisionwith respect to the truth
by a real value greater or equal to zero. In case the decision
coincides with the truth then there is no loss.�erefore the
value of the loss function is zero then, otherwise the value
gives the loss which is su�ered by the decision unequal
the truth.�e larger the value the larger the loss which is
su�ered.
To describe this more exactly let Θ be the known set

of all outcomes for the problem under consideration on
which we have information by data. We assume that one
of the values θ ∈ Θ is the true value. Each d ∈ Θ is a possi-
ble decision.�e decision d is chosen according to a rule,
more exactly according to a function with values in Θ and

de�ned on the set of all possible data. Since the true value θ
is unknown the loss function L has to be de�ned on Θ×Θ,
i.e.,

L : Θ ×Θ → [,∞).

�e �rst variable describes the true value, say, and the
second one the decision.�us L(θ, a) is the loss which is
su�ered if θ is the true value and a is the decision.�ere-
fore, each (up to technical conditions) function L : Θ ×
Θ → [,∞) with the property

L(θ, θ) =  for all θ ∈ Θ

is a possible loss function. �e loss function has to be
chosen by the statistician according to the problem under
consideration.
Next, we describe examples for loss functions. First

let us consider a test problem. �en Θ is divided in two
disjoint subsets Θ and Θ describing the null hypothesis
and the alternative set, Θ = Θ + Θ.�en the usual loss
function is given by

L(θ, ϑ) =
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

 if θ, ϑ ∈ Θ or θ, ϑ ∈ Θ

 if θ ∈ Θ, ϑ ∈ Θ or θ ∈ Θ, ϑ ∈ Θ
.

For point estimation problems we assume that Θ is a
normed linear space and let ∣ ⋅ ∣ be its norm. Such a space
is typical for estimating a location parameter.�en the loss
L(θ, ϑ) = ∣θ − ϑ∣, θ, ϑ ∈ Θ, can be used. Next, let us con-
sider the speci�c case Θ=R.�en L(θ, ϑ) = ℓ(θ − ϑ) is a
typical form for loss functions, where ℓ : IR → [,∞) is
nonincreasing on (−∞, ] and nondecreasing on [,∞)
with ℓ() = . ℓ is also called loss function. An important
class of such functions is given by choosing ℓ(t) = ∣t∣p,
where p >  is a �xed constant.�ere are two prominent
cases, for p =  we get the classical square loss and for p = 
the robust L-loss. Another class of robust losses are the
famous Huber losses

ℓ(t) = t/, if ∣t∣ ≤ γ, and ℓ(t) = γ∣t∣ − γ/, if ∣t∣ > γ,

where γ >  is a �xed constant. Up to now we have shown
symmetrical losses, i.e., L(θ, ϑ) = L(ϑ, θ).�ere are many
problems in which underestimating of the true value θ
has to be di�erently judged than overestimating. For such
problems Varian () introduced LinEx losses

ℓ(t) = b(exp(at) − at − ),

where a, b >  can be chosen suitably. Here underestimat-
ing is judged exponentially and overestimating linearly.
For other estimation problems corresponding losses

are used. For instance, let us consider the estimation of a
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scale parameter and let Θ = (,∞).�en it is usual to con-
sider losses of the form L(θ, ϑ) = ℓ(ϑ/θ), where ℓmust be
chosen suitably. It is, however, more convenient to write
ℓ(ln ϑ − ln θ).�en ℓ can be chosen as above.
In theoretical works the assumed properties for loss

functions can be quite di�erent. Classically it was assumed
that the loss is convex (see 7Rao–Blackwell �eorem).
If the space Θ is not bounded, then it seems to be more
convenient in practice to assume that the loss is bounded
which is also assumed in some branches of statistics. In
case the loss is not continuous then it must be carefully
de�ned to get no counter intuitive results in practice, see
Bischo� ().
In case a density of the underlying distribution of the

data is known up to an unknown parameter the class of
divergence losses can be de�ned. Speci�c cases of these
losses are the Hellinger and the Kulback-Leibler loss.
In regression, however, the loss is used in a di�er-

ent way. Here it is assumed that the unknown location
parameter is an element of a known class F of real valued
functions. Given n observations (data) y, . . . , yn observed
at design points t, . . . , tn of the experimental region a
loss function is used to determine an estimation for the
unknown regression function by the ‘best approximation’,

i.e., the function in F that minimizes ∑ni= ℓ (r
f
i ) , f ∈ F ,

where r fi = yi − f (ti) is the residual in the ith design point.
Here ℓ is also called loss function and can be chosen as
described above. For instance, the least squares estimation
is obtained if ℓ(t) = t.
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